
The meaning of infinity in calculus

and computer algebra systems

Michael Beeson1 and Freek Wiedijk2

1 San José State University
2 University of Nijmegen

Abstract. We use filters of open sets to provide a semantics justifying
the use of infinity in informal limit calculations in calculus, and in the
same kind of calculations in computer algebra. We compare the behavior
of these filters to the way Mathematica behaves when calculating with
infinity.
We stress the need to have a proper semantics for computer algebra
expressions, especially if one wants to use results and methods from
computer algebra in theorem provers. The computer algebra method
under discussion in this paper is the use of rewrite rules to evaluate
limits involving infinity.

1 Introduction

1.1 Problem

In calculus, when calculating limits, one often first uses the heuristic of ‘calcu-
lating with infinity’ before trying to evaluate the limit in a more formal way. For
instance one ‘calculates’:

lim
x→∞

1

x+ 1
=

1

∞+ 1
=

1

∞ = 0

which indeed gives the correct answer. However, it is not clear what the meaning
of this use of the symbol ‘∞’ is, and why this method works. This problem arises
in calculus textbooks, which usually avoid examples of such calculations for fear
of ‘lack of rigor’, although students are taught these methods at the blackboard.
It arose in the design of the first author’s software, MathXpert [1–3]. This soft-
ware, which is designed to assist a student in producing step-by-step solutions
to calculus problems, had to be able to produce ‘ideal’ step-by-step solutions of
limit problems. Are such ‘ideal solutions’ allowed to use calculations involving
infinity? Or are those calculations just private preliminary considerations in-
tended to guide a rigorous proof? MathXpert does allow calculations involving
infinity, but not the full system justified in this paper, since that goes beyond
what one finds in calculus textbooks.

In the Mathematica system [9] the approach of calculating with infinity is
used. Since Mathematica gives answers, rather than step-by-step solutions, one
will not notice the calculations with infinity, in cases where the limit turns out to

2 Michael Beeson and Freek Wiedijk

exist (and be a finite number). But in fact, in Mathematica there is a complete
‘calculus of infinity’ (and some related symbols):

In[1]:= 1/(Infinity + 1)

Out[1]= 0

In[2]:= Sqrt[Infinity]

Out[2]= Infinity

In[3]:= Infinity - Infinity

Infinity::indet:

Indeterminate expression (-Infinity) + (Infinity) encountered.

Out[3]= Indeterminate

In[4]:= Indeterminate + Infinity

Out[4]= Indeterminate

In[5]:= Sin[Infinity]

Out[5]= Interval[{-1, 1}]

In[6]:= 1/Interval[{-1, 1}]

Out[6]= Interval[{-Infinity, -1}, {1, Infinity}]

In[7]:= Interval[{-1, 1}]*Interval[{-1, 1}]

Out[7]= Interval[{-1, 1}]

In[8]:= Interval[{-1, 1}]^2

Out[8]= Interval[{0, 1}]

In[9]:= 0*Sin[Infinity]

Out[9]= Interval[{0, 0}]

In[10]:= Infinity/Sin[Infinity]

Out[10]= Interval[{-Infinity, -Infinity}, {Infinity, Infinity}]

In[11]:= Infinity/Sin[Infinity]^2

Out[11]= Interval[{Infinity, Infinity}]

Other computer algebra systems implement similar calculi. For instance, the
Maple system [6] uses the symbols infinity and undefined in answers to limit
problems.1

It is well known that many computer algebra packages make errors. One
of the reasons for that is that they fail to check the pre-conditions or ‘side
conditions’ that must be satisfied for a simplification rule to be applicable. For
example, before applying

√
x2 = x we need to check that x ≥ 0. Systematically

keeping track of such assumptions is difficult. The errors in computer algebra
systems sometimes give the impression that those systems place a higher priority

1 There is also some notion of interval in Maple, written as 1 .. 2, but our attempts to
calculate with these terms led only to error messages. These terms seem primarily
to be used for generating integer sequences, although the answer to limx→∞ sinx

comes out as -1 .. 1.

The meaning of infinity in calculus and computer algebra systems 3

on performing as many simplifications as possible than on ensuring that only
correct computations are performed. Generally, ‘evaluation errors’ which users
complain about are taken care of on an ad hoc basis only, to get rid of the most
embarrassing ones.

Related to these errors is the fact that these systems have no unified se-
mantics for their expression language. In this paper we focus on the apparatus
for limits and offer a solution: a semantics explaining and supporting the use
of infinities in limit calculations. We will present a formal semantics of limits,
which not only explains the calculations usually performed with infinities, but
offers some extensions by introducing some other symbols for common ways in
which a function can fail to have a limit. Thus, we will be able to get an answer
by calculation for such a limit as limx→∞ 1/(2 + sinx) which will be ‘oscilla-
tions through the interval [1

3
, 1]’. We then compare the resulting semantics to

the behavior of Mathematica as illustrated above. There is a rough general cor-
respondence, and our semantics agrees with some of the examples above, but
in some instances Mathematica does give incorrect answers, and in some cases
we are able to distinguish between identical Mathematica expressions which are
different in our semantics.

1.2 Approach

We will represent∞ and its cousins indeterminate and interval by filters over some
underlying topological space (which in calculus textbooks and Mathematica is
the space of real numbers, but could also be the complex numbers or more
general spaces). For each point of the space there will be a filter associated with
it, which is called the principal filter of the point. For each function on the space
there will be a lifted version that works on the filters instead of on the points.

Furthermore we will define classes of filters called the interval filters and
the connected filters. It will turn out that those two classes coincide and that
connectedness of filters is preserved under continuous mappings. Also we will
define the join and the meet of two filters.

It turns out that the calculus used in Mathematica corresponds directly to
the set of finite joins of interval filters.

1.3 Related work

First, in topology, the two standard approaches for defining limits in topological
spaces make use of nets or filters. There is therefore nothing original in the use
of filters to analyze the notion of limits. However, our focus to use them in an
applied setting, and identify specific filters associated with ‘extra-mathematical’
symbols such as ∞, seems to be new.

Second, the interval filters are directly related to the active field of interval
arithmetic. We throw a new light on the calculations with intervals by looking
at them as filters.

Third, justifying ‘calculations with infinite objects’ rigorously, is close to
doing the same with ‘calculations with infinitesimal objects’, which is the domain

4 Michael Beeson and Freek Wiedijk

of nonstandard analysis. In nonstandard analysis one also has infinity as a first
class citizen. This relation is even more manifest when noting that the simplest
way to get non-standard objects is as ultrafilters, a special kind of filter. The
difference between filters and ultrafilters indicates what the difference between
our approach and the non-standard one is. In nonstandard analysis there is not
one, designated, infinity; instead there are many infinite nonstandard numbers,
without a ‘canonical’ one. In our case there is a canonical infinity. To illustrate
this difference concretely, let ω be the infinity of nonstandard analysis. Then we
have ω + 1 6= ω, but ∞+ 1 =∞. Another difference between the ultrafilters of
nonstandard analysis and the filters that we study here is that our filters only
contain open sets instead of arbitrary sets. Nonstandard analysis has been used
in [4] to help in the computation of limits in a computer algebra system.

2 Filters, lifting, refinement and limits

Definition 1. Let X be a topological space. Denote the open sets of X by O(X).
A filter on X is a set A ⊆ O(X) that satisfies:

∀U ∈ A.∀V ∈ O(X). U ⊆ V ⇒ V ∈ A
∀U ∈ A.∀V ∈ A.U ∩ V ∈ A

In words: a filter is a set of open sets that is closed under supersets and finite
intersections. The collection of filters on X is written X̄.

A filter that does not contain the empty set is called proper. A filter that does
not contain any set at all is called empty.

Often the property of being proper is made part of the definition of a filter.
However we did not do this, because otherwise we would be unable to define the
notion of meet on page 9 below. Sometimes the property of being non-empty is
made part of the definition of a filter too. However the empty filter, which is
called domain-error below, is essential to our application. We found variants of
the definition of filter in the literature, both allowing for improper [5] and for
empty [7] filters. Therefore we feel free to define the concept of filter to suit our
purposes.

In the topological literature a filter is generally not defined on a topological
space but on an arbitrary set. In that case the restriction to open sets is not
present. However, for our application it is more natural to restrict ourselves to
filters of open sets.

Definition 2. Here are some common filters on the real numbers, where a ∈ R
is an arbitrary real number:

improper ≡ † ≡ O(R)

domain-error ≡ ⊥ ≡ ∅
indeterminate ≡ ↔ ≡ {R}

principal(a) ≡ ā ≡ {U ∈ O(R) | a ∈ U}

The meaning of infinity in calculus and computer algebra systems 5

= {U ∈ O(R) | ∃ε ∈ R>0. (a− ε, a+ ε) ⊆ U}
left(a) ≡ a− ≡ {U ∈ O(R) | ∃ε ∈ R>0. (a− ε, a) ⊆ U}

right(a) ≡ a+ ≡ {U ∈ O(R) | ∃ε ∈ R>0. (a, a+ ε) ⊆ U}
punctured(a) ≡ a± ≡ {U ∈ O(R) | ∃ε ∈ R>0. (a− ε, a) ∪ (a, a+ ε) ⊆ U}

infinity ≡ ∞ ≡ {U ∈ O(R) | ∃ε ∈ R>0. (1/ε,∞) ⊆ U}
minus-infinity ≡ −∞ ≡ {U ∈ O(R) | ∃ε ∈ R>0. (−∞,−1/ε) ⊆ U}

bi-infinity ≡ ±∞ ≡ {U ∈ O(R) | ∃ε ∈ R>0. (−∞,−1/ε) ∪ (1/ε,∞) ⊆ U}
positive ≡ → ≡ {U ∈ O(R) | (0,∞) ⊆ U}
negative ≡ ← ≡ {U ∈ O(R) | (−∞, 0) ⊆ U}

non-zero ≡ ±→ ≡ {U ∈ O(R) | (−∞, 0) ∪ (0,∞) ⊆ U}
For each of these filters we have a ‘long’ and a ‘short’ notation. The first four
filters can be defined for any topological space. The other filters have analogues
in any order topology.

Definition 3. Let again X be a topological space. Let A be a collection of subsets
of X (not necessarily open) that satisfies:

∀U ∈ A.∀V ∈ A.∃W ∈ A.W ⊆ U ∩ V (∗)
The filter generated by A is defined to be:

generated-by(A) ≡ {U ∈ O(X) | ∃V ∈ A. V ⊆ U}
The collection of sets A is called the basis of the filter generated-by(A).

Being closed under finite intersections implies (∗). If all elements of A are open
sets, the filter generated by A is the intersection of all filters that contain A as
a subset.

The filters given in Definition 2 can be defined more naturally using the
notion of a generated filter. For instance, we have:

improper = generated-by({∅})
principal(a) = generated-by({{a}})

right(a) = generated-by({(a, a+ ε) | ε ∈ R>0}
infinity = generated-by({(1/ε,∞) | ε ∈ R>0}

All other filters from Definition 2 can be defined in a similar way.

Definition 4. Let f : X → X be some (possibly partial) function with domain
dom(f). The lift of f is a function f̄ : X̄ → X̄, defined by:

f̄(A) ≡ generated-by
(

{f [U] |U ⊆ dom(f) ∧ U ∈ A}
)

This definition can be generalized to arbitrary arities. The function f̄ : X̄ × X̄ ×
. . .× X̄ → X̄ is defined by:

f̄(A1, A2, . . . , An) ≡
generated-by

(

{f [U] |U ⊆ dom(f) ∧ U = U1 × U2 × . . .× Un ∧
U1 ∈ A1 ∧ U2 ∈ A2 ∧ . . . ∧ Un ∈ An}

)

6 Michael Beeson and Freek Wiedijk

Although f can be a partial function, the lift of f is always total. One can get
rid of the problems of partial functions in calculus by lifting the whole theory
to filters. In some sense by going to filters we are adding a ‘bottom element’ ⊥
to the values of the theory. Looked at in this way, we have a strict partial logic,
because a function applied to ⊥ will always give ⊥ again.

Note also that the definitions of ā as a principal filter and as lift of a 0-ary
constant function coincide. This justifies using one notation for both.

From now on we will often write f instead of f̄ when one or more of the
arguments of f are filters. So we will write sin(A) instead of sin(A). This will
allow us to write things like

√
A, and mean the lift of the square root function.

To state this convention more precisely: if t[x1, . . . , xn] is a term that does not
involve filters (so x1, . . . , xn are variables ranging over the ordinary reals) then
t[A1, . . . , An] will mean the lift of the function λx1 · · · xn. t[x1, . . . , xn] applied
to the filters A1, . . . , An. Note that with this convention 1/A means something
different from 1̄/A. The first is the lift of the unary function λx. 1/x applied to
A. The second is the lift of the binary function λx y. x/y applied to 1̄ and A.
Those are not necessarily equal: 1/1+ = 1− but 1̄/1+ = 1̄.

Definition 5. The filter limit of the function f : X → X when taking the limit
to the filter A is defined to be:

Lim
x→A

f(x) ≡ f̄(A)

We distinguish a filter limit from an ordinary limit by writing ‘Lim’ with a capital
letter L. Note that the filter limit is always defined, even for non-continuous f .
It might seem silly to introduce a new notation for this when we already have
defined lifting, as it is the same operation. However, now we can write:

Lim
x→0+

x/x

which is something different from

0+/ 0+

The first is the lift of the unary function λx. x/x applied to 0+ and has as value
1̄. The second is the lift of the binary function λx y. x/y applied to the pair
(0+, 0+) and has as value →.

Definition 6. A filter A refines a filter B, notation A v B when A ⊇ B as
collections of open sets. When the two filters A and B differ we write A @ B.

Here are some refinement relations between the filters defined in Definition 2.
For any proper and non-empty filter A we have:

† @ A v ↔ @ ⊥

At any real number a ∈ R we have:

a−, a+ @ a± @ ā

The meaning of infinity in calculus and computer algebra systems 7

and the ‘infinite’ filters are related by:

−∞,∞ @ ±∞ @↔, −∞ @← @ ±→ @↔, ∞ @→ @ ±→ @↔

Note that the filters from Definition 2 are not the only ones. There are many
‘wild’ filters refining ā and ∞. For instance the filter generated by the sets
{2πn |n > N} is a filter which refines∞. It has the property that the filter limit
of sin to this filter is 0̄.

We can now state the first theorem2, which lists some of the many calculation
rules that one needs for arithmetic on filters:

Theorem 1. Let a ∈ R>0 be some positive real number. Then:

∞+ ā =∞
∞− ā =∞
∞+∞ =∞
∞−∞ =↔

ā/0̄ = ⊥
ā/0+ =∞
ā/0± = ±∞

0+/0+ =→

ā/∞ = 0+

ā/±∞ = 0±

ā/→ =→
ā/↔ = ⊥

0̄∞ =↔
0+∞ =→
0±∞ = ±→
∞∞ =∞

Note that, although the lift of division is a total function, ‘division by zero’ is
still not allowed in a sense, because the result of ā/0̄ is domain-error. This is
essentially different from the way that Mathematica behaves. We will come back
to this in Section 4

The next theorem tells us how to evaluate the lift of a continuous function
in a point:

Theorem 2. Let f be a function that is continuous at a and monotonically
increasing in a neighborhood of a. Then:

f̄(ā) = f(a), f̄(a±) = f(a)±, f̄(a−) = f(a)−, f̄(a+) = f(a)+

Similar theorems hold for decreasing functions and functions at a local maximum
or minimum.

The next theorems show how to evaluate filter limits:

Theorem 3. Bringing filter limits inside expressions:

Lim
x→A

f(g1(x), g2(x), . . . , gn(x)) v f̄(Lim
x→A

g1(x), Lim
x→A

g2(x), . . . , Lim
x→A

gn(x))

Note again that this theorem also holds for non-continuous f .
As an example of the fact that we do not always have equality here, not even

when all functions are continuous, consider:

Limx→∞(x− x) = Limx→∞ 0 = 0̄
(Limx→∞ x)− (Limx→∞ x) =∞−∞ =↔

This agrees with the Theorem, since 0̄ v ↔.

2 We omit the straightforward proofs of the theorems in this paper. A paper containing
a full development of the theory presented here, including all the proofs, can be found
on the web pages of the authors.

8 Michael Beeson and Freek Wiedijk

Theorem 4. Monotonicity with respect to refinement:

A1 v B1, A2 v B2, . . . , An v Bn ⇒ f̄(A1, A2, . . . , An) v f̄(B1, B2, . . . , Bn)

Together these two theorems allow one to evaluate a filter limit ‘up to refinement’
by substituting the filter inside the expression. Often this refinement does not
hurt, because the right hand side will be a refinement of ā or∞ anyway, allowing
us to apply the next theorem, which gives the relation between filter limits and
the usual kind of limits:

Theorem 5. Limit correspondence theorem:

lim
x→a

f(x) = b ⇔ Lim
x→a±

f(x) v b̄

lim
x→a+

f(x) = b ⇔ Lim
x→a+

f(x) v b̄

lim
x→∞

f(x) = b ⇔ Lim
x→∞

f(x) v b̄

Similar theorems hold at a− and −∞ and for limits to plus or minus infinity.
In Europe limx→a+ is sometimes written as limx↓a. The ∞ and a+ in the

‘ordinary’ limits on the left are not filters: those are just the customary notations
for limits from the right and to infinity. The a±, a+ and∞ on the right are filters.

Together these theorems now give us a method to rigorously evaluate ordinary
limits using filters:

1. Replace the limit by the corresponding filter limit.
2. ‘Evaluate’ the filter limit using filter calculations, leading to a refinement.
3. If the right hand side of the refinement refines ā, −∞ or ∞ then we have

succeeded and can use Theorem 5 (or its analogue for infinite limits) to find
the answer to the original question. If not, the method failed.

As an example, we use this method to evaluate limx→∞ 1/(x+ 1):

Lim
x→∞

1

x+ 1
v 1̄

Limx→∞(x+ 1)
v 1̄

∞+ 1̄
=

1̄

∞ = 0+

(The refinements here are really equalities but the theorems that we have do not
give that, and in fact we do not need it.) Now 0+ v 0̄ and so from Theorem 5
we find that:

lim
x→∞

1

x+ 1
= 0

3 Interval filters and connected filters

Definition 7. We will define a class of filters on R called the interval filters.
Consider the set:

R = {−∞+} ∪ {a−, a+ | a ∈ R} ∪ {∞−}

The meaning of infinity in calculus and computer algebra systems 9

For each pair of elements α and β from R for which α ≤ β in the natural order
on R, we will define a filter interval(α, β). We map the elements of R to formulas
as:

α φl(x, α, ε) φr(x, α, ε)

−∞+ > x < −1/ε
a− a− ε < x x < a
a+ a < x x < a+ ε
∞− 1/ε < x >

and then we define:

interval(α, β) ≡ {U ∈ O(R) | ∃ε ∈ R>0.∀x ∈ R. φl(x, α, ε) ∧ φr(x, β, ε)⇒ x ∈ U}

We will write interval filters using interval notation:

[a, b) ≡ interval(a−, b−)
[a, b] ≡ interval(a−, b+)

(a, b) ≡ interval(a+, b−)
(a, b] ≡ interval(a+, b+)

We suppose that it will be clear from the context when we mean an interval as a
set of real numbers and when we mean an interval as an interval filter. Generally,
for finite a and b they are related like:

(a, b] = generated-by({(a, b]})

but not always. If a = b, then the left hand side is a+ but the right hand side is
improper because the set (a, a] is empty.

When we analyze a two-sided limit into two one-sided limits, and then want
to put the results back together, we need the concept of the ‘join’ of two filters,
which we write A ∨ B. For example, 0− ∨ 0+ = 0±. This concept is defined as
follows:

Definition 8. The operations join and meet on filters are defined by:

A ∨B = A ∩B
A ∧B = {U ∩ V |U ∈ A ∧ V ∈ B}

We can now write the filters from Definition 2 as interval filters or as joins of
interval filters:

ā = [a, a]
a− = [a, a)
a+ = (a, a]
a± = [a, a) ∨ (a, a]

∞ = [∞,∞)
−∞ = (−∞,−∞]
±∞ = (−∞,−∞] ∨ [∞,∞)
↔ = (−∞,∞)

→ = (0,∞)
← = (−∞, 0)
±→ = (−∞, 0) ∨ (0,∞)

Now that we have the class of interval filters, we will define the class of connected
filters. This definition is much simpler:

Definition 9. A filter A is called connected when:

∀U ∈ A.∃V ∈ A. V ⊆ U ∧ V is a connected set

10 Michael Beeson and Freek Wiedijk

Note that each of improper, domain-error and indeterminate is a connected filter.
The next three theorems give the relevant properties of the connected filters.

Together they ‘explain’ why in practice one encounters only joins of interval
filters: the filters one starts with are of that kind, and the operations that one
applies to them conserve the property.

Theorem 6. The interval filters are the proper non-empty connected filters.

So all interval filters are connected, and the only connected filters which are not
an interval filter are the ‘error filters’ improper and domain-error.

Theorem 7. If f is a function that is continuous on its domain, and A is a
connected filter, then f̄(A) is also connected.

Theorem 8. f̄(A ∨B) = f̄(A) ∨ f̄(B) and f̄(A ∧B) v f̄(A) ∧ f̄(B).

These last two theorems show that if one applies functions that are continuous
on their domain to finite joins of interval filters, one always will end up with
finite joins of interval filters again.

4 Mathematica revisited

Now that we have given a calculus of filters that resembles the way Mathematica
calculates with infinity, we will compare the behavior of our calculus and that of
Mathematica in detail. This is what the calculations in the example Mathematica
from Section 1.1 become when we redo them in our filter calculus:

1/(∞+ 1) = 0+

√∞ =∞
∞−∞ =↔
↔+∞ =↔
sin∞ = [−1, 1]

1/[−1, 1] = ⊥
[−1, 1] · [−1, 1] = [−1, 1]

[−1, 1]2 = [0, 1]
0̄ sin∞ = 0̄
∞/ sin∞ =∞/(sin∞)2 = ⊥

Here are some differences with Mathematica:

– Mathematica does not like to give ‘no’ for an answer. So it prefers not to
complain about undefinedness of a function. According to Mathematica:

1

[−1, 1] = (−∞,−1] ∨ [1,∞)

instead of ⊥. Our definitions have different behavior because we want the
correspondence theorem about limits, Theorem 5, to hold. As an example of
this difference in attitude consider the limit:

lim
x→0+

x arctan(tan
1

x
)

The graph of x arctan(tan(1/x)) looks like a ‘saw tooth’ converging to 0, and
it is undefined infinitely often in each neighborhood of 0. Still Mathematica
says3:

3 In version 3.0. In version 4.1 it leaves the expression unevaluated.

The meaning of infinity in calculus and computer algebra systems 11

In[12]:= Limit[x*ArcTan[Tan[1/x]], x->0, Direction->-1]

Out[12]= 0

If you ask MathXpert to evaluate this limit, you get the message: This func-
tion is undefined for certain values arbitrarily close to the limit point, so the
limit is undefined.

– Mathematica does not identify as many expressions as it might. For instance,
in the example session it might have simplified:

Interval[{0, 0}] = 0

Interval[{Infinity, Infinity}] = Infinity

Interval[{-Infinity, Infinity}] = Indeterminate

– Mathematica does not distinguish between open and closed intervals, nor
does it have the concept of left and right filters to a point. In order to add
this subtlety to its Interval calculus all that would be needed is to mark
all the endpoints of the intervals with a + or a −.

– We have two kinds of ‘undefined’ in our filter calculus: domain-error = ⊥ and
indeterminate = ↔. (The third filter, improper = †, only occurs as the meet
of two disjoint interval filters, and never occurs in practice.) Mathematica
only has Indeterminate, and does not distinguish between these two kinds
of undefinedness.

– Mathematica issues a ‘warning’ message like:

Power::infy: Infinite expression
1

0
encountered.

when it gets infinite or indeterminate results. This seems to imply that such
results are errors. However, in our theory those results are not errors at all
but the correct answers, and they should not generate such a message.

– We gave the details of the filter theory for the space of real numbers. However,
the expression language of Mathematica is about the complex numbers. This
is clear, for example, from the results of applying Sqrt and Log to negative
numbers. It is therefore strange that Mathematica gives answers involving
intervals to limit questions, since such answers are appropriate to real limits.

In any case, our filter theory can be adapted to the complex numbers. For ex-
ample, complex infinity is represented by the filter generated by the exteriors
of disks centered at 0 (i.e., ‘neighborhoods of infinity’). The ‘one-sided’ filters
a+ and a− are replaced by a wide variety of other filters representing different
ways in which a complex number z can ‘approach’ a limit point a: for example,
in complex analysis it is common to consider a limit restricted to an angular
sector, such as |θ| < π/4. It is easy to define a ‘sector filter’ generated by such a
sector. Our theorems that do not involve interval filters carry over to the com-
plex setting: pushing filter limits inside functions, the method of limit evaluation
by refinement, etc. We have not given a characterization of the connected filters
in the complex case. For example, there are more than just the sector filters: the
filter generated by |θ| < r2 is not refined by any sector filter.

12 Michael Beeson and Freek Wiedijk

5 Conclusion and future directions

We have presented the filter approach to evaluating limits involving infinity.
The usual way of calculating with infinities is not rigorous; indeed the central
concept infinity is never defined in calculus textbooks. The issue is skirted by
such statements as: ‘The symbol ∞ does not represent a real number and we
cannot use it in arithmetic in the usual way.’ [8], p. 112.

Consider a student who says that limx→0+ 1/x is ‘undefined’, while the
teacher says that ∞ is a better answer. ‘But’, says the student, ‘you said ∞
is undefined.’ Such dialogues do occur regularly in classrooms and teachers are
unable to answer these questions on any rigorous basis. We have now, at least in
principle, provided a remedy for this situation, since our theory of infinite limits
is completely rigorous. Questions at the student level in our theory can usually
be proved or refuted.

When computer algebra systems make use of a set of calculation rules, there
should ideally be a semantics according to which these calculation rules are
correct. Even for ordinary algebra, this is not usually the case. But it is usually
the case that the rules are correct except that the system fails to check the pre-
conditions. That is, the semantics of algebra is understood – but systems fail to
implement the rules in a semantically correct way. Up until now, the semantics
of limits has not been properly understood, and so the behavior of computer
algebra systems did not even have a standard against which implementations
could be measured. In using intervals as answers to limits, Mathematica has
ventured into uncharted territory. We are now providing maps.

Our work, being completely rigorous, and based on simple set theory, is also
completely formal.4 Therefore computer-checking the theory from this paper
is possible, and the resulting formalization would not only be an interesting
exercise, but also probably could be used to make the prover automatically
evaluate more limits. In another direction, this material is suitable for inclusion
in an undergraduate real-analysis course, and the distinctions between different
types of limits that it makes are suitable for inclusion in calculus books. In
particular, calculus books need no longer steer away from calculations involving
infinity. Simple rules for manipulating infinity can be given and the justifications
omitted, as is usually the case now when the justifications involve epsilon-delta
arguments.

References

1. Beeson, M., Mathpert Calculus Assistant. This software program (now known as
MathXpert) was published in July, 1997 by Mathpert Systems, Santa Clara, CA,
and is commercially available from <http://www.mathxpert.com/>.

4 Rigorous implies that the concepts and theorems have a clear meaning and the
theorems can be correctly proved. Formal implies that the concepts can be defined
and the theorems proved in terms of set theory (or some other foundational theory
of mathematics).

The meaning of infinity in calculus and computer algebra systems 13

2. Beeson, M., Design Principles of Mathpert: Software to support education in al-
gebra and calculus, in: Kajler, N. (ed.) Computer-Human Interaction in Symbolic

Computation, Texts and Monographs in Symbolic Computation, Springer-Verlag,
Berlin/Heidelberg/New York (1998), pp. 89-115.

3. Beeson, M. MathXpert: un logiciel pour aider les élèves apprendre les mathématiques

par l’action, to appear in Sciences et Techniques Educatives. An English translation
of this article under the title MathXpert: learning mathematics in the twenty-first

century is available at
<http://www.mathcs.sjsu.edu/faculty/beeson/Pubs/pubs.html>.

4. Beeson, M., Using nonstandard analysis to verify the correctness of computations,
International Journal of Foundations of Computer Science, 6 (3) (1995), pp. 299-
338.

5. K. Kuratowski. Topology, volume 1. Academic Press, New York, London, 1966.
6. M. Monagan, K. Geddes, K. Heal, G. Labahn, and S. Vorkoetter. Maple V Pro-

gramming Guide for Release 5. Springer-Verlag, Berlin/Heidelberg, 1997.
7. B. Sims. Fundamentals of Topology. MacMillan, New York, 1976.
8. Stewart. Calculus, 3rd edition, Brooks-Cole, Pacific Grove, CA 1995.
9. S. Wolfram. The Mathematica book. Cambridge University Press, Cambridge, 1996.

