Equivalence of Traditional
and Nonstandard Definitions
of Concepts from Real Analysis

John Cowles

Ruben Gamboa
University of Wyoming



ACL2(r) is based on Nonstandard Analysis

Rigorous foundations for reasoning about
real, complex, infinitesimal, and infinite
quantities

e [ wo versions of the reals

o Standard Reals: StR

o HyperReals: *R



e Standard Reals: StR

o T he unigue complete ordered field.

Every nonempty subset of StR that is
bounded above has a least upper
bound

o NO non-zero infinitesimal elements

o NoO infinite elements

e HyperReals: *R
o *R is a proper field extension of StR
StR g *R
o Has non-zero infinitesimal elements

o Has infinite elements



x € *R is infinitesimal:
For all positive r € S'R, (|z| < r)

0 is the only infinitesimal in StR

(i-small x) in ACL2(r)

x € *R is finite:
For some r € 'R, (|z| < r)

(i-limited x) in ACL2(r)

r € *R is infinite:
For all r € 'R, (|z| > )

(i-large x) in ACL2(r)

xz,y € *R are infinitely close, x ~ y:
x — y is infinitesimal

(i-close x y) in ACL2(r)



Every (partial) function

f : stRn —_ StRk
has an extension

*f : *Rn — *Rk

such that

o For 1, --- ,xzn €°'R

*f(xla"' 7337?/) :f(xlf" 756?’&)

e Every first-order statement about f true
in 'R is true about *f in *R

Example.
(Vz)[sin?(z) 4+ cos?(z) = 1] is true in StR.

(Vz)[*sin?(z) 4+ *cos?(z) = 1] is true in *R.



Any (partial) function
f . stRn — StRk
IS said to be classical.

e Identify a classical f with its extension *f.

That is, use f for both the original
classical function f and its extension *f.

e Use (Vstz) for (Vx € StR)
i.e. '“for all standard z”

Use (3tx) for (3z € S'R)
l.e. “there is some standard z'

o (Vz)[sin?(z) + cos?(x) = 1] is true in StR
becomes (Vstz)[sin?(z) + cos?(z) = 1]
(is true in *R).

(Vz)[*sin?(z) 4+ *cos?(z) = 1] is true in *R
becomes
(Vz)[sin?(z) 4 cos2(z) = 1] (is true in *R).

6



Real Analysis (i.e., calculus)



Continuous Functions

Function f is continuous: Whenever y is
“close” to x, then f(y) is “close” to f(x)

Three proposed definitions:

Traditional-Standard-1

(Vtz) (V°te > 0) (3% > 0)(V°y)
(Jly —z| <d=|f(y) — f(z)] <e)

Traditional-Hyper-1

(Vx) (Ve > 0)(36 > 0)(Vy)
(ly—z| <d=[f(y) — f(z)] <e¢)

NonStandard-1

(Vz)(Vy)(y =z = f(y) = f(z))



For classical f, ACL2(r) verifies that the two
Traditional definitions are equivalent.

Traditional-Standard-1

(V') (Y°te > 0) (3% > 0)(V°y)
(ly —z| <d=[f(y) — f(z)] <e)

Traditional-Hyper-1

(Vx) (Ve > 0)(36 > 0)(Vy)
(ly—z| <d=[f(y) — f(z)] <e)

Classical Examples
f1:*R —— *R defined by fi(z) ==

ACL2(r) verifies that fy satisfies all 3
definitions.



Classical Examples
f> : *R — *R defined by fo(z) = 2

ACL2(r) verifies that f>
e Satisfies both Traditional definitions

e Does not satisfy NonStandard-1

(Vz)(Vy)(y = = = f2(y) = f2(z))

Let * = H be a positive infinite integer.
Lety=H+ %

Then y —z = % is an infinitesimal

but f2(y) — f2(z) =24 ;5 is not an
infinitesimal

10



Non-Classical Examples

f3 : *R —— *R defined by

|1 ifzesR
f3(x)_{o IfCC%StR

f3 is not classical:

o (V'z)(fz(x) = 1) is true, but
(Vz)(f3(x) = 1) is false.

ACL2(r) verifies that f3

e Satisfies Traditional-Standard-1
(V') (Yote > 0) (3% > 0)(V°y)

(ly —z[ <6 =1f3(y) — f3(x)] <€)

Both =z & y must be standard, so
| f3(y) — fa(z)| =0

11



|1 ifzesR
f3(x)_{o if$§ZStR

e Does not satisfy Traditional-Hyper-1

(Vz) (Ve > 0)(35 > 0)(Vy)
(ly == <o =[f3(y) = f3(@)| <e)

Let x =0 and e=1

Let h be a positive infinitesimal

For any § > 0, let y = min(%,h)

Then y < % < é & y is an infinitesmal
So |f3(y) — f3(x)| =1

e Does not satisfy NonStandard-1

(Vz)(Vy)(y = = = f3(y) = f3(z))

Let =0

Let y = h be an infinitesimal
Then y —x = h is an infinitesimal
but f3(y) — fz3(x) = —1 is not an
infinitesimal

12



Non-Classical Examples

fa : "R — *R defined by

0 if 2~ 0
fa(z) =< 1 ifz0Az <1
1+h ifz>1

e h is a positive infinitesimal
e fn is not classical

e f, does not satisfy
Traditional-Standard-1
Let x =0 and e = 1.

For any standard 6 > 0O, let y = %.

Then y is standard, |y — x| = % <9,
fa(x) =0, fa(y) =1 or 1+ h, and
| fa(y) — fa(x)| > 1.

13



0 if 2~ 0
fa(z) =4 1 ifz0Az <1
1+h ifz>1

e f, does not satisfy Traditional-Hyper-1
Let x =1 and € = h.
For any § >0, let y =1 — 4. Then
y— x| =9 <4, faly) =1 or 0,
fa(x) =14 h, and [f4(y) — fa(z)| > h.

e f, satisfies NonStandard-1
If y= 0~ z, then f4(y) =0= f4(:13)
If y =~ x but x is not an infinitesimal, then
faly) =1 or 14+ hand fg(x) =1 or 1+ h,

SO fa(x) = fa(y)

14



Recall fo(z) = 22 does not satisfy
NonStandard-1

(Vz)(Vy)(y = = = f2(y) = f2(x))

Let x+ = H be a positive infinite integer.

Lety=H+ %

Then y —z = % is an infinitesimal

but f2(y) — f2(z) =24 - is not an
infinitesimal

Modify NonStandard-1 so that fo(z) = 22
satisfies the new definition.

Require x to be standard real

NonStandard-2

(V) (Vy)(y =z = f(y) = f(2))

15



Continuous Functions

For classical f, ACL2(r) verifies these three
definitions are equivalent.

Traditional-Standard-1

(V') (Y°te > 0) (3% > 0)(V°y)
(ly —z| <d=|f(y) — f(z)] <e)

Traditional-Hyper-1

(Vx) (Ve > 0)(35 > 0)(Vy)
(ly—=z| <d=[f(y) — f(z)] <e¢)

NonStandard-2
(V) (V) (y =z = f(y) = f(x))

16



Modify Traditional-Standard-1 (and
Traditional-Hyper-1) into something
equivalent to NonStandard-1

Rearrange the quantifiers

Traditional-Standard-1

(V') (Yote > 0) (3% > 0)(V°y)
(ly—z| <d=|f(y) — f(z)] <e)

Traditional-Standard-2

(Ve > 0) (36 > 0) (V*'z) (V*'y)
(ly—z| <d=|f(y) — f(z)] <e¢)

17



Uniformly Continuous Functions

For classical f, ACL2(r) verifies these three
definitions are equivalent.

Traditional-Standard-2

(Ve > 0) (36 > 0) (V°tz) (V°ty)
(Jly —z| <d=|f(y) — f(z)] <e)

Traditional-Hyper-2

(Ve > 0)(35 > 0)(Vz)(Vy)
(ly ==z <o =[f(y) = f(z)] <€)

NonStandard-1

(Vz)(Vy)(y =z = f(y) = f(x))

18



For classical f,
the Traditional-hyper definitions are
“purely” classical.

Only classical functions are mentioned in
these definitions: f, <, >, —, | |

Traditional-Hyper-1

(Vx) (Ve > 0)(36 > 0)(Vy)
(ly—z| <d=|f(y) — f(z)| <e)

Traditional-Hyper-2

(Ve > 0)(35 > 0)(Vz) (Vy)
(ly —z| <d=|f(y) — f(z)] <e)

19



For classical f,
the NonStandard definitions are not

“purely” classical

Non-classical functions are mentioned in
these definitions: ~, Vst

NonStandard-1
(Vz)(Vy)(y = = = f(y) = f(=))

NonStandard-2
(V) (V) (y =z = f(y) = f(x))

20



For classical f,
the NonStandard definitions are ‘“simpler”

than Traditional-hyper definitions.

Look at the alternations of the quantifiers.

Traditional-Hyper-2

(Ve > 0)(35 > 0)(Vz)(Vy)
(ly == <o =[f(y) = f(z)] <€)

NonStandard-1
(Vz)(Vy)(y = = = f(y) = f(=))

21



Limits of Functions

lim f(x) =L

r—a

For standard numbers, a and L, and
classical function f, ACL2(r) verifies these
three definitions are equivalent.

Traditional-Standard-3

(Ve > 0) (3% > 0)(Vtz)
O<|lr—a|l<d=|f(x) —L| <e)

Traditional-Hyper-3

(Ve > 0)(36 > 0)(Vz)
O<|lzr—a|l<d=|f(x) —L| <e)

NonStandard-3
(Vex)((x=aNhx#a)= f(x)~ L)

22



The derivative of f is f/

For classical f and f/, ACL2(r) verifies these
two definitions are equivalent.

Traditional-Hyper-4

(Vx) (Ve > 0)(35 > 0)(Vy)

O< |yl <d=
‘f(:c—l—y;—f(az) _ f’(w)‘ < e

NonStandard-4

(V') (V1)

(r1~xANx1F*2x)=>
{ F)=F(2) o f1(g) ]

11—

23



Nelson's Theorem 5.6 from his paper
“Internal Set Theory: A New Approach to
Nonstandard Analysis”

Theorem. Let f: 1+~ *R where I is an
interval. If f is differentiable on I, then f’ is

continuous on 1.

Here Nelson means for f to be classical

What about?

. a;z-sin% if x =0
f(x)_{o ) if 2 =0
o N _ [ 2z-sin(2) —cos(2) if x#0
f(x)_{o ) ) if £ =0

f' is not continuous at =0

24



The derivative of f is f/

Nelson’s definition differs from
NonStandard-4.
They are not equivalent.

Nelson

(V') (V1) (Va2)

(r1 Tz Ao xR TANT1 FE X0) =
F@2)=f(@1) o /()

L2—T1

NonStandard-4

(V') (V1)

(r1~xNANx1F*x)=>
flx1)=f(z) ()

Tr1—T

Using Nelson’s definition, ACL2(r) verifies
Theorem 5.6
25



ACL2 Functional-Instances allow free-varables
in lambda expressions.

(encapsulate

(((c) => *))

(local (defun

c O
2))
(defthm
int-c->1

(and (integerp (c))
(> (c) 1))))

(defthm
mod-c-thm-1
(implies (and (integerp x)
(not (equal (mod x (c)) 0)))
(equal (mod (- x) (c))
(= (¢) (mod x (c))))))

26



Replace constant (c¢) with variable n

(thm
(implies (and (integerp x)
(integerp n)
(>n 1)
(not (equal (mod x n) 0)))
(equal (mod (- x) n)
(- n (mod x n))))
:hints
(("Goal"
:by (:functional-instance
mod-c-thm-1
(c (lambda () (if (and (integerp n)
(>n 1))
n
(c))))))))
;; Free variable n allowed

s in functional instance

Q.E.D.
27



Some ACL2(r) Functional-Instances do not
allow free-varables in lambda expressions.

(defstub ;;classical f
f (x) t)

(defthm-std
standardp-f
(implies (standardp x)
(standardp (f x))))

(thm ;;not a theorem
(implies (standardp x)
(standardp (+ x y)))
:hints (("Goal"
:by (:functional-instance
standardp-f
(f (lambda (x)(+ x y)))))))

(thm ;; a theorem
(let ((x 0)
(y (i-large-integer)))
(not (implies (standardp x)
(standardp (+ x y))))))

28



(thm ;;not a theorem
(implies (standardp x)

(standardp (+ x y)))
:hints (("Goal"

:by (:functional-instance

standardp-f
(f (lambda (x)(+ x y)))))))

ACL2 Error in ( THM ...): Your functional
substitution contains one or more free

occurrences of the variable Y in its range.

Alas, the formula you wish to functiomnally
instantiate is not a classical formula,
(IMPLIES (STANDARDP X) (STANDARDP (F X))).

Free variables in lambda expressions are
only allowed when the formula to be
instantiated is classical, since these
variables may admit non-standard values,

for which the theorem may be false.

29



(encapsulate

((fn1 (x) t) ; ;classical
(fn1’ (x) t) ;;classical
(I1 O t) ;s ;classical
(cl1 O) t)) s ;classical
(defun-sk ; ;non-classical

NonStd-deriv-fni=fn1’ ()

(V'z € 11) (Vz1 € I1)

(r1 Tz A2l #*F )=
fnl(a:l)—fnl(:c) ~ fnl’(az)

Tr1—x

) ;;end defun-sk

(defthm ; ;assume this holds
Thm-NonStd-deriv-fnl=fni’
(NonStd-deriv-fnl=fn1’))

) ;; end encapsulate

30



Continue after the encapsulate

(defun ;;classical
clxfnl (x)
(x (c1)(fnl x)))

(defun ; ;classical
clxfnl’ (x)
(x (c1)(fn1’ x)))

(defun-sk ; ;non—-classical
NonStd-deriv-cl*xfnl=ci1*fni1’ ()

(V'z € 11)(Vzq € I1)

(r1=zxANz21 #F2)=>

cl*fnl(ajl)—cj-*fnl(x) ~ clxfnil’ (CU)
11—

) ;;end defun-sk

(defthm
Thm-NonStd-deriv-cl*xfnl=cl*fn1’
(NonStd-deriv-cil*fnl=cl1*fnl’))
31



(acl2-1n x) is the natural logarithm of x > O.

The derivative of (acl2-1n x) is %:
(defun-sk ; ;non-classical

NonStd-deriv-1n=1/x ()

(Vstz > 0)(Vx1 > 0)

(r1~xANx] #2)=>
acl2-1n(z7)—acl2-1n(x) _ 1

Tr1—2x

8|

) ;;end defun-sk

(defthm
Thm-NonStd-deriv-1ln=1/x’
(NonStd-deriv-1ln=1/x))

32



(log2 x) is the logarithm, base 2, of x > 0.
Use acl2-1n to define log2

(defun
log2 (x)
(/ (acl2-1n x) (acl2-1n 2)))

1 .
(acl2-In 2)-x°

The derivative of (log2 x) is

(defun-sk ; ;non—-classical
NonStd-deriv-log2 ()

(Vstz > 0)(Vz1 > 0)

(1 ~xNx1F*Ex)=>
log2(z1)—1log2(zx) _ 1

11— ™ (acl2-In 2)-x

) ;;end defun-sk

; ;Use Functional-Instance to prove
(defthm
Thm-NonStd-deriv-log2
(NonStd-deriv-log2))

33



; ;Use Functional-Instance to prove
(defthm
Thm-NonStd-deriv-log?2
(NonStd-deriv-log2)
:hints
(("Goal™"
:by
(:functional-instance
Thm-NonStd-deriv-cl*fnl=cl*fnl’
(fn1 acl2-1n)
(fn1’> (lambda (x)(/ x)))
(I1 (Interval O +infinity))
(cl1 (lambda () (/ (acl2-1n 2))))
(c1*fnl log?2)
(c1*fnl1’ (lambda (x)
(/ (x (acl2-1n 2)
x))))

))))
The lambda expressions have no free variables
34



The functional substitution

(fn1 acl2-1n)
(fn1’ (lambda (x) (/ x)))
(I1 (Interval O +infinity))
(c1 (lambda () (/ (acl2-1n 2))))
(c1*fnl log2)
(c1*fnl1’ (lambda (x)
(/ (x (acl2-1n 2)
x))))

The functional-instance of this statement

(V'z € 11)(Vzq € I1)

(r1~xANx1£*x)=>
cl*fnl(xq)—cl*xfnl(x)

Tr1—T

~ c1*fnl’(x) ]
IS this statement

(Vstz > 0)(Vx1 > 0)

(ri1 Tz ANzl F )=
log2(z1)—1log2(zx) _ 1
T1—x ™ (acl2-In 2)-x

35



(log b x) is the logarithm, base b > 1, of
x > 0.

Use acl2-1n to define log
(defun

log (b x)
(/ (acl2-1n x) (acl2-1n b)))

1 .
(acl2-In b)-x~"

The derivative of (log b x) is

(defun-sk ; ;non—-classical
NonStd-deriv-log (b)

(VStz > 0)(Vx1 > 0)

(r1=zAx1FZ2xAb>1) =
log(b z1)—1log(b =) _ 1

x1—T ™ (acl2-In b)-x

) ;;end defun-sk

; ;Use Functional-Instance to prove
(defthm
Thm-NonStd-deriv-log
(NonStd-deriv-log b))

36



; ;Use Functional-Instance to prove
(defthm
Thm-NonStd-deriv-log
(NonStd-deriv-log)
:hints
(("Goal"
:by
(:functional-instance
Thm-NonStd-deriv-cl*fnl=cl*xfnl’

(c1 (lambda ()
(if (and (realp b) (< 1 b))
(/ (acl2-1n b))
(/ (acl2-1n 2)))))
(c1*fnl (lambda (x)
(if (and (realp b) (< 1 b))
(log b x)
(log 2 x))))

))))

37



The lambda expressions in the previous slide
have free variable b, so ACL2(r) will not
permit this functional-instance, because
NonStd-deriv-log iSs not classical.

However, ACL2(r) will permit the equivalent
result using the traditional hyper definition
(Traditional-Hyper-4), because that does
not use any non-classical terms (e.g., x).

38



