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ACL2(r) is based on Nonstandard Analysis

Rigorous foundations for reasoning about
real, complex, infinitesimal, and infinite
quantities

e [ wo versions of the reals

o Standard Reals: StR

o HyperReals: *R



e Standard Reals: StR

o T he unigue complete ordered field.

Every nonempty subset of StR that is
bounded above has a least upper
bound

o NO non-zero infinitesimal elements

o NoO infinite elements

e HyperReals: *R
o *R is a proper field extension of StR
StR g *R
o Has non-zero infinitesimal elements

o Has infinite elements



x € *R is infinitesimal:
For all positive r € S'R, (|z| < r)

0 is the only infinitesimal in StR

(i-small x) in ACL2(r)

x € *R is finite:
For some r € 'R, (|z| < r)

(i-limited x) in ACL2(r)

r € *R is infinite:
For all r € 'R, (|z| > )

(i-large x) in ACL2(r)

xz,y € *R are infinitely close, x ~ y:
x — y is infinitesimal

(i-close x y) in ACL2(r)



Every (partial) function

f : stRn —_ StRk
has an extension

*f : *Rn — *Rk

such that

o For 1, --- ,xzn €°'R

*f(xla"' 7337?/) :f(xlf" 756?’&)

e Every first-order statement about f true
in 'R is true about *f in *R

Example.
(Vz)[sin?(z) 4+ cos?(z) = 1] is true in StR.

(Vz)[*sin?(z) 4+ *cos?(z) = 1] is true in *R.



Any (partial) function
f . stRn — StRk
IS said to be classical.

e Identify a classical f with its extension *f.

That is, use f for both the original
classical function f and its extension *f.

e Use (Vstz) for (Vx € StR)
i.e. '“for all standard z”

Use (3tx) for (3z € S'R)
l.e. “there is some standard z'

o (Vz)[sin?(z) + cos?(x) = 1] is true in StR
becomes (Vstz)[sin?(z) + cos?(z) = 1]
(is true in *R).

(Vz)[*sin?(z) 4+ *cos?(z) = 1] is true in *R
becomes
(Vz)[sin?(z) 4 cos2(z) = 1] (is true in *R).
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Real Analysis (i.e., calculus)



Continuous Functions

Function f is continuous: Whenever y is
“close” to x, then f(y) is “close” to f(x)

Three proposed definitions:

Traditional-Standard-1

(Vtz) (V°te > 0) (3% > 0)(V°y)
(Jly —z| <d=|f(y) — f(z)] <e)

Traditional-Hyper-1

(Vx) (Ve > 0)(36 > 0)(Vy)
(ly—z| <d=[f(y) — f(z)] <e¢)

NonStandard-1

(Vz)(Vy)(y =z = f(y) = f(z))



For classical f, ACL2(r) verifies that the two
Traditional definitions are equivalent.

Traditional-Standard-1

(V') (Y°te > 0) (3% > 0)(V°y)
(ly —z| <d=[f(y) — f(z)] <e)

Traditional-Hyper-1

(Vx) (Ve > 0)(36 > 0)(Vy)
(ly—z| <d=[f(y) — f(z)] <e)

Classical Examples
f1:*R —— *R defined by fi(z) ==

ACL2(r) verifies that fy satisfies all 3
definitions.



Classical Examples
f> : *R — *R defined by fo(z) = 2

ACL2(r) verifies that f>
e Satisfies both Traditional definitions

e Does not satisfy NonStandard-1

(Vz)(Vy)(y = = = f2(y) = f2(z))

Let * = H be a positive infinite integer.
Lety=H+ %

Then y —z = % is an infinitesimal

but f2(y) — f2(z) =24 ;5 is not an
infinitesimal
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Non-Classical Examples

f3 : *R —— *R defined by

|1 ifzesR
f3(x)_{o IfCC%StR

f3 is not classical:

o (V'z)(fz(x) = 1) is true, but
(Vz)(f3(x) = 1) is false.

ACL2(r) verifies that f3

e Satisfies Traditional-Standard-1
(V') (Yote > 0) (3% > 0)(V°y)

(ly —z[ <6 =1f3(y) — f3(x)] <€)

Both =z & y must be standard, so
| f3(y) — fa(z)| =0
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|1 ifzesR
f3(x)_{o if$§ZStR

e Does not satisfy Traditional-Hyper-1

(Vz) (Ve > 0)(35 > 0)(Vy)
(ly == <o =[f3(y) = f3(@)| <e)

Let x =0 and e=1

Let h be a positive infinitesimal

For any § > 0, let y = min(%,h)

Then y < % < é & y is an infinitesmal
So |f3(y) — f3(x)| =1

e Does not satisfy NonStandard-1

(Vz)(Vy)(y = = = f3(y) = f3(z))

Let =0

Let y = h be an infinitesimal
Then y —x = h is an infinitesimal
but f3(y) — fz3(x) = —1 is not an
infinitesimal
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Non-Classical Examples

fa : "R — *R defined by

0 if 2~ 0
fa(z) =< 1 ifz0Az <1
1+h ifz>1

e h is a positive infinitesimal
e fn is not classical

e f, does not satisfy
Traditional-Standard-1
Let x =0 and e = 1.

For any standard 6 > 0O, let y = %.

Then y is standard, |y — x| = % <9,
fa(x) =0, fa(y) =1 or 1+ h, and
| fa(y) — fa(x)| > 1.
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0 if 2~ 0
fa(z) =4 1 ifz0Az <1
1+h ifz>1

e f, does not satisfy Traditional-Hyper-1
Let x =1 and € = h.
For any § >0, let y =1 — 4. Then
y— x| =9 <4, faly) =1 or 0,
fa(x) =14 h, and [f4(y) — fa(z)| > h.

e f, satisfies NonStandard-1
If y= 0~ z, then f4(y) =0= f4(:13)
If y =~ x but x is not an infinitesimal, then
faly) =1 or 14+ hand fg(x) =1 or 1+ h,

SO fa(x) = fa(y)
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Recall fo(z) = 22 does not satisfy
NonStandard-1

(Vz)(Vy)(y = = = f2(y) = f2(x))

Let x+ = H be a positive infinite integer.

Lety=H+ %

Then y —z = % is an infinitesimal

but f2(y) — f2(z) =24 - is not an
infinitesimal

Modify NonStandard-1 so that fo(z) = 22
satisfies the new definition.

Require x to be standard real

NonStandard-2

(V) (Vy)(y =z = f(y) = f(2))
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Continuous Functions

For classical f, ACL2(r) verifies these three
definitions are equivalent.

Traditional-Standard-1

(V') (Y°te > 0) (3% > 0)(V°y)
(ly —z| <d=|f(y) — f(z)] <e)

Traditional-Hyper-1

(Vx) (Ve > 0)(35 > 0)(Vy)
(ly—=z| <d=[f(y) — f(z)] <e¢)

NonStandard-2
(V) (V) (y =z = f(y) = f(x))
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Modify Traditional-Standard-1 (and
Traditional-Hyper-1) into something
equivalent to NonStandard-1

Rearrange the quantifiers

Traditional-Standard-1

(V') (Yote > 0) (3% > 0)(V°y)
(ly—z| <d=|f(y) — f(z)] <e)

Traditional-Standard-2

(Ve > 0) (36 > 0) (V*'z) (V*'y)
(ly—z| <d=|f(y) — f(z)] <e¢)
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Uniformly Continuous Functions

For classical f, ACL2(r) verifies these three
definitions are equivalent.

Traditional-Standard-2

(Ve > 0) (36 > 0) (V°tz) (V°ty)
(Jly —z| <d=|f(y) — f(z)] <e)

Traditional-Hyper-2

(Ve > 0)(35 > 0)(Vz)(Vy)
(ly ==z <o =[f(y) = f(z)] <€)

NonStandard-1

(Vz)(Vy)(y =z = f(y) = f(x))
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For classical f,
the Traditional-hyper definitions are
“purely” classical.

Only classical functions are mentioned in
these definitions: f, <, >, —, | |

Traditional-Hyper-1

(Vx) (Ve > 0)(36 > 0)(Vy)
(ly—z| <d=|f(y) — f(z)| <e)

Traditional-Hyper-2

(Ve > 0)(35 > 0)(Vz) (Vy)
(ly —z| <d=|f(y) — f(z)] <e)
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For classical f,
the NonStandard definitions are not

“purely” classical

Non-classical functions are mentioned in
these definitions: ~, Vst

NonStandard-1
(Vz)(Vy)(y = = = f(y) = f(=))

NonStandard-2
(V) (V) (y =z = f(y) = f(x))

20



For classical f,
the NonStandard definitions are ‘“simpler”

than Traditional-hyper definitions.

Look at the alternations of the quantifiers.

Traditional-Hyper-2

(Ve > 0)(35 > 0)(Vz)(Vy)
(ly == <o =[f(y) = f(z)] <€)

NonStandard-1
(Vz)(Vy)(y = = = f(y) = f(=))
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Limits of Functions

lim f(x) =L

r—a

For standard numbers, a and L, and
classical function f, ACL2(r) verifies these
three definitions are equivalent.

Traditional-Standard-3

(Ve > 0) (3% > 0)(Vtz)
O<|lr—a|l<d=|f(x) —L| <e)

Traditional-Hyper-3

(Ve > 0)(36 > 0)(Vz)
O<|lzr—a|l<d=|f(x) —L| <e)

NonStandard-3
(Vex)((x=aNhx#a)= f(x)~ L)
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The derivative of f is f/

For classical f and f/, ACL2(r) verifies these
two definitions are equivalent.

Traditional-Hyper-4

(Vx) (Ve > 0)(35 > 0)(Vy)

O< |yl <d=
‘f(:c—l—y;—f(az) _ f’(w)‘ < e

NonStandard-4

(V') (V1)

(r1~xANx1F*2x)=>
{ F)=F(2) o f1(g) ]

11—
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Nelson's Theorem 5.6 from his paper
“Internal Set Theory: A New Approach to
Nonstandard Analysis”

Theorem. Let f: 1+~ *R where I is an
interval. If f is differentiable on I, then f’ is

continuous on 1.

Here Nelson means for f to be classical

What about?

. a;z-sin% if x =0
f(x)_{o ) if 2 =0
o N _ [ 2z-sin(2) —cos(2) if x#0
f(x)_{o ) ) if £ =0

f' is not continuous at =0
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The derivative of f is f/

Nelson’s definition differs from
NonStandard-4.
They are not equivalent.

Nelson

(V') (V1) (Va2)

(r1 Tz Ao xR TANT1 FE X0) =
F@2)=f(@1) o /()

L2—T1

NonStandard-4

(V') (V1)

(r1~xNANx1F*x)=>
flx1)=f(z) ()

Tr1—T

Using Nelson’s definition, ACL2(r) verifies
Theorem 5.6
25



ACL2 Functional-Instances allow free-varables
in lambda expressions.

(encapsulate

(((c) => *))

(local (defun

c O
2))
(defthm
int-c->1

(and (integerp (c))
(> (c) 1))))

(defthm
mod-c-thm-1
(implies (and (integerp x)
(not (equal (mod x (c)) 0)))
(equal (mod (- x) (c))
(= (¢) (mod x (c))))))
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Replace constant (c¢) with variable n

(thm
(implies (and (integerp x)
(integerp n)
(>n 1)
(not (equal (mod x n) 0)))
(equal (mod (- x) n)
(- n (mod x n))))
:hints
(("Goal"
:by (:functional-instance
mod-c-thm-1
(c (lambda () (if (and (integerp n)
(>n 1))
n
(c))))))))
;; Free variable n allowed

s in functional instance

Q.E.D.
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Some ACL2(r) Functional-Instances do not
allow free-varables in lambda expressions.

(defstub ;;classical f
f (x) t)

(defthm-std
standardp-f
(implies (standardp x)
(standardp (f x))))

(thm ;;not a theorem
(implies (standardp x)
(standardp (+ x y)))
:hints (("Goal"
:by (:functional-instance
standardp-f
(f (lambda (x)(+ x y)))))))

(thm ;; a theorem
(let ((x 0)
(y (i-large-integer)))
(not (implies (standardp x)
(standardp (+ x y))))))
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(thm ;;not a theorem
(implies (standardp x)

(standardp (+ x y)))
:hints (("Goal"

:by (:functional-instance

standardp-f
(f (lambda (x)(+ x y)))))))

ACL2 Error in ( THM ...): Your functional
substitution contains one or more free

occurrences of the variable Y in its range.

Alas, the formula you wish to functiomnally
instantiate is not a classical formula,
(IMPLIES (STANDARDP X) (STANDARDP (F X))).

Free variables in lambda expressions are
only allowed when the formula to be
instantiated is classical, since these
variables may admit non-standard values,

for which the theorem may be false.
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(encapsulate

((fn1 (x) t) ; ;classical
(fn1’ (x) t) ;;classical
(I1 O t) ;s ;classical
(cl1 O) t)) s ;classical
(defun-sk ; ;non-classical

NonStd-deriv-fni=fn1’ ()

(V'z € 11) (Vz1 € I1)

(r1 Tz A2l #*F )=
fnl(a:l)—fnl(:c) ~ fnl’(az)

Tr1—x

) ;;end defun-sk

(defthm ; ;assume this holds
Thm-NonStd-deriv-fnl=fni’
(NonStd-deriv-fnl=fn1’))

) ;; end encapsulate
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Continue after the encapsulate

(defun ;;classical
clxfnl (x)
(x (c1)(fnl x)))

(defun ; ;classical
clxfnl’ (x)
(x (c1)(fn1’ x)))

(defun-sk ; ;non—-classical
NonStd-deriv-cl*xfnl=ci1*fni1’ ()

(V'z € 11)(Vzq € I1)

(r1=zxANz21 #F2)=>

cl*fnl(ajl)—cj-*fnl(x) ~ clxfnil’ (CU)
11—

) ;;end defun-sk

(defthm
Thm-NonStd-deriv-cl*xfnl=cl*fn1’
(NonStd-deriv-cil*fnl=cl1*fnl’))
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(acl2-1n x) is the natural logarithm of x > O.

The derivative of (acl2-1n x) is %:
(defun-sk ; ;non-classical

NonStd-deriv-1n=1/x ()

(Vstz > 0)(Vx1 > 0)

(r1~xANx] #2)=>
acl2-1n(z7)—acl2-1n(x) _ 1

Tr1—2x

8|

) ;;end defun-sk

(defthm
Thm-NonStd-deriv-1ln=1/x’
(NonStd-deriv-1ln=1/x))
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(log2 x) is the logarithm, base 2, of x > 0.
Use acl2-1n to define log2

(defun
log2 (x)
(/ (acl2-1n x) (acl2-1n 2)))

1 .
(acl2-In 2)-x°

The derivative of (log2 x) is

(defun-sk ; ;non—-classical
NonStd-deriv-log2 ()

(Vstz > 0)(Vz1 > 0)

(1 ~xNx1F*Ex)=>
log2(z1)—1log2(zx) _ 1

11— ™ (acl2-In 2)-x

) ;;end defun-sk

; ;Use Functional-Instance to prove
(defthm
Thm-NonStd-deriv-log2
(NonStd-deriv-log2))
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; ;Use Functional-Instance to prove
(defthm
Thm-NonStd-deriv-log?2
(NonStd-deriv-log2)
:hints
(("Goal™"
:by
(:functional-instance
Thm-NonStd-deriv-cl*fnl=cl*fnl’
(fn1 acl2-1n)
(fn1’> (lambda (x)(/ x)))
(I1 (Interval O +infinity))
(cl1 (lambda () (/ (acl2-1n 2))))
(c1*fnl log?2)
(c1*fnl1’ (lambda (x)
(/ (x (acl2-1n 2)
x))))

))))
The lambda expressions have no free variables
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The functional substitution

(fn1 acl2-1n)
(fn1’ (lambda (x) (/ x)))
(I1 (Interval O +infinity))
(c1 (lambda () (/ (acl2-1n 2))))
(c1*fnl log2)
(c1*fnl1’ (lambda (x)
(/ (x (acl2-1n 2)
x))))

The functional-instance of this statement

(V'z € 11)(Vzq € I1)

(r1~xANx1£*x)=>
cl*fnl(xq)—cl*xfnl(x)

Tr1—T

~ c1*fnl’(x) ]
IS this statement

(Vstz > 0)(Vx1 > 0)

(ri1 Tz ANzl F )=
log2(z1)—1log2(zx) _ 1
T1—x ™ (acl2-In 2)-x
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(log b x) is the logarithm, base b > 1, of
x > 0.

Use acl2-1n to define log
(defun

log (b x)
(/ (acl2-1n x) (acl2-1n b)))

1 .
(acl2-In b)-x~"

The derivative of (log b x) is

(defun-sk ; ;non—-classical
NonStd-deriv-log (b)

(VStz > 0)(Vx1 > 0)

(r1=zAx1FZ2xAb>1) =
log(b z1)—1log(b =) _ 1

x1—T ™ (acl2-In b)-x

) ;;end defun-sk

; ;Use Functional-Instance to prove
(defthm
Thm-NonStd-deriv-log
(NonStd-deriv-log b))
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; ;Use Functional-Instance to prove
(defthm
Thm-NonStd-deriv-log
(NonStd-deriv-log)
:hints
(("Goal"
:by
(:functional-instance
Thm-NonStd-deriv-cl*fnl=cl*xfnl’

(c1 (lambda ()
(if (and (realp b) (< 1 b))
(/ (acl2-1n b))
(/ (acl2-1n 2)))))
(c1*fnl (lambda (x)
(if (and (realp b) (< 1 b))
(log b x)
(log 2 x))))

))))
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The lambda expressions in the previous slide
have free variable b, so ACL2(r) will not
permit this functional-instance, because
NonStd-deriv-log iSs not classical.

However, ACL2(r) will permit the equivalent
result using the traditional hyper definition
(Traditional-Hyper-4), because that does
not use any non-classical terms (e.g., x).
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