Industrial Strength
Documentation for ACL2

Jared Davis
jared@centtech.com

Matt Kaufmann
kaufmann@cs.utexas.edu

mailto:jared@centtech.com

ACL2 Version 1.8 b

&« C A [0 www.cs.utexas.edu/users/moore/acl2/v1-9/acl2-doc-major-topics.htm & d. 7

@ " e BHHEAR®E P FE & D 2 & COx OOwerk CJK (1 Reading [ACL2 Sidekick

Documentation for ACL2 Version 1.9

The ACL2 Documentation is divided into the following Major Topics

e ACL2-TUTORIAL -- tutorial introduction to ACL.2

BDD -- ordered binary decision diagrams with rewriting

BOOKS -- files of ACL2 event forms

BREAK-REWRITE -- the read-eval-print loop entered to monitor rewrite
rules

DOCUMENTATION -- functions that display documentation at the terminal

EVENTS -- functions that extend the logic

HISTORY -- functions that display or change history

' [ACL2 Version 6.3 x

<« C M [www.cs.utexas.edu/users/moore/acl2/ve-3/acl2-doc-m ajor-topics.htm e ‘E:?

@ "' = HHABRB P E &t D = 01X CIWork 1K O Reading [“ ACL2 Sidekick

Documentation for ACL2 Version 6.3

The ACL2 Documentation is divided into the following Major Topics

ABOUT-ACL2 -- about ACL2

ACL2-TUTORIAL -- tutorial introduction to ACL.2

BDD -- ordered binary decision diagrams with rewriting

BOOKS -- files of ACL2 event forms

BREAK-REWRITE -- the read-eval-print loop entered to monitor rewrite
rules

DOCUMENTATION -- functions that display documentation

EVENTS -- functions that extend the logic

I 1995 I 1999 |2003 |2007 |2011 |2013 (oct)

3 XDOC —Top x

I

&« = C AN [www.csutexas.edu/users/moore/acl2/current/combined-manual/?topic=ACL2__ TOP & d 5.

@ "= B AWM P E & D & (3% [CJWork (1K (3 Reading [ACL2 Sidekick

=Top
+ACL2
FArithmetic

+Books /\ /
“+Boolean-reasoning
+Debugging / \

FDocumentation
FHardware-verification
+rInterfacing-tools

“=Macro-libraries User manual for the ACL2 Theorem Prover® and the ACL2 Community Bookst
*Projects

+Proof-automation -

+Regex Introduction

+Std

ST ACL2# is an interactive theorem prover. It combines a Lisp-based programming language for

developing formal models of systems with a reasoning engine that can prove properties about
these models. It has been used to formally verifvi? many interesting systems in academia and
industry.

The ACL2 Community Bookse are the canonical set of open-source libraries ("books") for ACL2.
They include lemma libraries for reasoning in many domains, macro libraries for more quickly
writing and documenting code, interfacing tools for connecting ACL2 to other systems,
productivity tools for better proof automation and debugging, and specialty libraries for areas like

Demo

HKdoc

How to document your books

(the tedious, manual way, for starters)

(include-book “xdoc/top” :dir :system)

(defxdoc str
:short "ACL2 String Library"

:long "<p>This 1s a rudimentary string library
for ACL2.</p>

<p>The functions here are all in logic mode, with
verified guards. In many cases, some effort has
been spent to make them both efficient and relative
straightforward to reason about.</p>

<p>0Ordinarily, t D

@ Docs in Code
(include-book W

1)

<p>The documentation is then available by typing

(include-book “xdoc/top” :dir :system)

(defxdoc str
"ACI® String Library”
"<p>TAis is a rudimentary string library

for ACL2]

<p>The T Lightweight with
verified has
veen spel | oads Quickly (< 0.1 sec) [tottve

straightw

<p>0Ordinarily, to use the library one should run</p

@({
(include-book \"str/top\" :dir :system)

1)

snsNThoa AaciimantFat+imnn 9 +han AavaaT1ahla hy +vind nga

(includg

Standard XML Syntax
(defxdoq

Tags must be balanced! [orary

for é;ii::;;;—‘—————-
<Pp>The functions here are a

verified guards. 1In many case&g, some effort has
been spent to make them both efWNicient and relative

straightforward to reason about.</p>

in logic mode, with

<p>0Ordinarily, to use the library one should run</p

@({
(include-book \"str/top\" :dir :system)

1)

st r‘aightfo rward to rea Ordinarily, to use the library one should run

(include-book "str/top" :dir :system)

<h3>Loading the librat

The documentation is then available by typing : xd
functions are found in the STR package.

<p>0Ordinarily, t

@({
(include-book \"str/top\"

1)

<p>The documentation 1s tpen available
@(':xdoc str'). All the library'

are found in the @('STR') package.</p>

t a trust tag, you may al
enation; see cat for details

If you are willing to ac
for faster string-con

functions

Preprocessor! to accept a tpgust tag, you
P * P('fast-cat’f) book for faste

see @(see cat) for

* reverse can operate on strings or lists, whereas re

F I g htS B |tr0t| * reverse has a tail-recursive definition, which malk

over than the non tail-recursive rewv.

[espite its simple append-based logical definition, rev st

Auto Links!

afinitions and Theorems

Function: rev

@(def rEV) ey | (defun rev (x)

(declare (xargs :guard t))

(mbe :logic (if (consp x)
(append (rev (cdr
nil)

:exec (revappend-without-gua

Theorem: rev-when-not-consp

(defthm rev-when-not-consp

(implies (not (consp x))
(equal (rev x)} nil)))

@ (def rev-when-not-consp)

A\
HKdoc
How to document your books

/

organize and

(the fancy, less tedious way)

(defxdoc flatten
:parents (std/lists)
:short "@(call flatten) appends together the elements of @('x').”
:long "<p>Typically @('x"') is a list of lists that you want

To merge together. For example:</p>

<h3>Definitions and Theorems</h3>
@(def flatten)

@(thm true-listp-of-flatten)
@(thm flatten-when-not-consp)
@(thm flatten-of-cons)

@(thm flatten-of-1list-fix) ...”)

(defund flatten (x)
(declare (xargs :guard t))
(if (consp x)
(append-without-guard (car x) (flatten (cdr x)))
nil))

(encapsulate ()
(local (in-theory (enable flatten)))
(defthm true-listp-of-flatten ...)
(defthm flatten-when-not-consp ...)

c.))

Std/lists

(defxdoc flatten
:parents (std/lists
:short "@(call flat
:long "<p>Typically

To merge together. H

<h3>Definitions and T

@(def flatten)

@(thm true-listp-of-f

@(thm flatten-when-ng

@(thm flatten-of-cong

@(thm flatten-of-1list

(defund flatten (x)
(declare (xargs :gu
(if (consp x)

(append-without
nil))

(encapsulate ()
(local (in-theory (
(defthm true-listp-
(defthm flatten-whe

)

Flatten

[books] /std/lists/flatten.lisp
(flatten x) appends together the elements of x.

Typically x is a list of lists that you want to merge together. For example:

(flatten
-

(abcl23xy z)

“((abc) (123)(xyz)))

This is a "one-level" flatten that does not necessarily produce an atom-listp. For
instance,

(flatten "(((a . 1) (b . 2))
((x . 3) (y . 4)))
=
((a . 1) (b . 2) (x . 3) (y . 4))

Definitions and Theorems

Definition: flatten

(defun flatten (x)
(declare (xargs
(if (consp x)
(append-without-guard (car x)
(flatten (cdr x)))

:guard t))

nil))

Definition: true-listp-of-flatten

(defthm true-listp-of-flatten

(defxdoc flatten
:parents (std/1li
:short "@(call flatt
:long "<p>Typically @('X

To merge together. For examp

appends together the elements of @('x').”
is a list of lists that you want

<h3>Definitions and Theorems</h3>
@(def flatten)

@(thm true-listp-of-flatten)
@(thm flatten-when-not-consp)
@(thm flatten-of-cons)
@(thm flatten-of-1list-fix)

un-DRY!

(defund flatten (
(declare (xargs
(if (consp x)

(append-without-guard (car x) (fla
nil))

sguard t))

en (cdr x)))

(encapsulate ()
(local (in-theory (enable flat
(defthm true-listp-of-flatten ...)
(defthm flatten-when-not-consp ...)

c.))

(defsection flatten
:parents (std/lists)

:short "@(call flatten) append
:long "<p>Typically @('x") is
To merge together. For example:

[examplel]
[example2]”

(defund flatten (x)

DRYer
Organizes books

Better :pbt
Indents nicely

(declare (xargs :guard t))

(if (consp x)

(append-without-guard (car x) (flatten (cdr x)))

nil))

(local (in-theory (enal
(defthm true-listp-of--
(defthm flatten-when-n

)

<h3>Definitions and Thg

@(def
@(thm
@(thm
@(thm
@(thm

flatten)

true-listp-of-
flatten-when-no
flatten-of-cons
flatten-of-1list-

How to organize and document
your books \

even better

(with less typing and stuff)

(define vl-annotate-plainargs
((args "plainargs that typically have no @(':dir') or @('
information; we want to annotate them."
vli-plainarglist-p)
(ports "corresponding ports for the submodule”
(and (vl-portlist-p ports)
(same-lengthp args ports)))
(portdecls "port declarations for the submodule"
vl-portdecllist-p)
(palist "precomputed for fast lookups™
(equal palist (vl-portdecl-alist portdecls))))
: returns
(annotated-args "annotated version of @('args'), semantically ¢
but typically has @(':dir') and @(':portname'
vli-plainarglist-p :hyp :fguard)
:parents (argresolve)
:short "Annotates a plain argument list with port names and di
:long "<p>This is a \"best-effort\" process ..."”

(b* (((when (atom args))
nil)
(name (vl-port->name (car ports)))
(expr (vl-port->expr (car ports)))

)

Argresolve

(define vl-annotate-p
((args ~ “plainargs thf ~ Vi-annotate-plainargs
information; s]/centaur/vi/transforns/xf -argresolve. Lis,

vl-plainargli

Annotates a plain argument list with port names and directions.

(ports "correspondin| | e
(and (V-L - po r‘t (Vl-annotate-plainargs args ports portdecls palist)
(same - 'Le annotated-args

(portdecls "port declara Arguments

args — plainargs that typically have no :dir or :portname information;

V-L - po rt d e C -L -L l we want to annotate them.
Guard (vl-plainarglist-p args).
: 1 i
ports — corresponding ports for the submodule.
(pa-l'ls-t precomDUted Guard (and (vl-portlist-p ports) (same-lengthp args ports)).
1 portdecls — port declarations for the submodule.
(eq ua -l' pa-l' 1 St Guard (vl-portdecllist-p portdecls).
. r-e-t urns palist — precomputed for fast lookups.

Guard (equal palist (vl-portdecl-alist portdecls)).

(annotated-args "annotate Returns

b .t .t . annotated-args — annotated version of args, semantically equivalent
u y p 1 but typically has :dir and :portname information.
Type (vl-plainarglist-p annotated-args), given the guard.

vl-plaina
. pa ren 1 S (a rg reso -L ve) This is a "best-effort" process which may fail to add annotations to any or all

arguments. Such failures are expected, so we do not generate any warnings or

.Short "Annotates a plaln errors in response to them.
:'l_ong "<p>ThiS lS a \"bes What causes these failures?

» Not all ports necessarily have a name, so we cannot add a :portname for
every port.

X » The direction of a port may also not be apparent in some cases; see vl-port-
when a t om a rg S direction for details.
nil)

(name (vl-port->name
(eXp r (V-L - po r‘t - >exp r Definition: vl-annotate-plainargs

can)

Definitions and Theorems

(defaggregate vl-loadconfig
:parents (loader)
:short "Options for how to load Verilog modules."

((start-files string-listp
"A list of file names (not module names) that
load; @(see vl-load) begins by trying to reac
lex, and parse the contents of these files."

(start-modnames string-listp
"Instead of (or in addition to) explicitly pr
@('start-files'), you can also provide a lis:
names that you want to load. @(see vl-load)
these modules in the search path, unless the)
loaded while processing the @('start-files')

(search-path string-listp
"A list of directories to search (in order) f«
@Q('start-modnames') that were in the @('star
for <see topic='@(url vl-modulelist-missing)
modules</see>. This 1s similar to \"library
in tools like Verilog-XL and NCVerilog.")

(defaggreg

Loader

:parents (

:short "Op
((start-f1
(start-mo
(search-p

Vi-loadconfig-p

[books]/centaur/vl/loader/loader.lisp
Options for how to load Verilog modules.
(vl-loadconfig-p x) is a defaggregate of the following fields.

e start-files — A list of file names (not module names) that you want to load;
vl-load begins by trying to read, preprocess, lex, and parse the contents of
these files.

Invariant (string-listp start-files).

» start-modnames — Instead of (or in addition to) explicitly providing the
start-files, you can also provide a list of module names that you want to
load. vl-load will look for these modules in the search path, unless they
happen to get loaded while processing the start-files.

Invariant (string-listp start-modnames).

e search-path — A list of directories to search (in order) for modules in
start-modnames that were in the start-files, and for missing modules. This
is similar to "library directories" in tools like Verilog-XL. and NCVerilog.

Invariant (string-listp search-path).

e search-exts — List of file extensions to search (in order) to find files in the
search-path. The default is ("v"), meaning that only files like foo.v are
considered.

Invariant (string-listp search-exts).

e include-dirs — A list of directories that will be searched (in order) when

at
eda(

pr
1s1
d)

he

I).

modules</see>. This 1s similar to \"library

in tools like Verilog-XL and NCVerilog.")

Macros like these aren't hard.

Documentation as Data

The full docs are
just a table with
a list of topics.

HKdoc

How to get a fancy manual
with your stuff In it

(include-book “your-books”)
(xdoc::save “./my-manual”)

(by the way, it's embeddable)

=Top
FACL2
FACLZcn
FArthmetic
“+Boolean-reasoning
+(86
+Debugging
dHardware-verification
“Interfacing-tools
#+1u-top
“Macro-libraries
+Metasm
+Mmx-top
+Proof-automation
+Regex
Std
Str
FUc
FXdoc
+Xib
rXval

jump to .

HKdoc

Current status of efforts to formally verify parts of Centaur's processor design.

Introduction

A far-off goal for this work could be: prove that the whole chip praperly implements

the X86 specification. For now we are addressing pieces of the problem like

* The Verilog for execution units (FADD, MMX, ...)

e Certain microcode routines (so-far mostly arithmetic).

Here's a big picture of how we relate these Verilog modules and microcode

routines to the X86 spec. Everything green is in the ACL2 theorem prover®.

Raading
Inspaction

Hardwars Bstractions
i ode WstrucDans.

Microcode
Behavior
. ’.-'

Machine State
Model

Micraingtructicn
Specifications

L

Logic Designers ;
i 4
Gurssmork

Reverse Engineering

'\

GL. ESEM, 5Tws

: g
J i T
Sizes, Flags.. Listimg

Unit Leval Londer
GL, ESIM, 5TV

masterisp
Wl [

=
=
A

enjoyr

€ > C A £ hitps://code.google.c
@ v & B K B [ACL2 Sidekick i

Z2-books/
& D B 31X CJWork CJK (CJ Reading P

jared.c.davis@gmai

acl2-books

Libraries for the ACL2 Theorem Prov

Project Home | Downloads Wiki [ssues Source Administer

Summary Feople

Project Information ACL2 Cﬂmmunity Bﬂﬂks

¢ Starred by 14 users

: The Community Books are the canonical collection of open-source libraries for the ACLZ th
Froject feeds

Google

search .

Google Search I'm Feeling Lucky

Intellisense

STl Default.aspy™

fff <reference path="ASPxScriptIntelliSense.js" /> Lingulstics

functicn OnGridRowClick(s, e) {
var gridInstance = ASPxClientGridView.Cast(s);
gridInstance.DeleteRowByKey(

Void DeleteRowByKey(key)

Deletes a row with the specified key value,

[——

key: An ocbject that uniquely identifies the row.

3 Follow LA Lo
9% &

[edit source] [add a note] e T T

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

