

Jared Davis
jared@centtech.com

Industrial Strength
Documentation for ACL2

Matt Kaufmann
kaufmann@cs.utexas.edu

mailto:jared@centtech.com

1989 1991 1993 1994 (dec)1994 (oct)

1995 1999 2003 2013 (oct)2007 2011

Demo

How to document your books

(the tedious, manual way, for starters)

(include-book “xdoc/top” :dir :system)

(defxdoc str
 :short "ACL2 String Library"
 :long "<p>This is a rudimentary string library
for ACL2.</p>

<p>The functions here are all in logic mode, with
verified guards. In many cases, some effort has
been spent to make them both efficient and relatively
straightforward to reason about.</p>

<p>Ordinarily, to use the library one should run</p>
@({
 (include-book \"str/top\" :dir :system)
})

<p>The documentation is then available by typing

Docs in Code

(include-book “xdoc/top” :dir :system)

(defxdoc str
 :short "ACL2 String Library"
 :long "<p>This is a rudimentary string library
for ACL2.</p>

<p>The functions here are all in logic mode, with
verified guards. In many cases, some effort has
been spent to make them both efficient and relatively
straightforward to reason about.</p>

<p>Ordinarily, to use the library one should run</p>
@({
 (include-book \"str/top\" :dir :system)
})

<p>The documentation is then available by typing

Lightweight

Loads Quickly (< 0.1 sec)

(include-book “xdoc/top” :dir :system)

(defxdoc str
 :short "ACL2 String Library"
 :long "<p>This is a rudimentary string library
for ACL2.</p>

<p>The functions here are all in logic mode, with
verified guards. In many cases, some effort has
been spent to make them both efficient and relatively
straightforward to reason about.</p>

<p>Ordinarily, to use the library one should run</p>
@({
 (include-book \"str/top\" :dir :system)
})

<p>The documentation is then available by typing

Standard XML Syntax

Tags must be balanced!

straightforward to reason about.</p>

<h3>Loading the library</h3>

<p>Ordinarily, to use the library one should run</p>

@({
 (include-book \"str/top\" :dir :system)
})

<p>The documentation is then available by typing
@(':xdoc str'). All of the library's functions
are found in the @('STR') package.</p>

<p>If you are willing to accept a trust tag, you
may also include the @('fast-cat') book for faster
string-concatenation; see @(see cat) for
details.</p> ...”)

Preprocessor!

@(def rev)

@(def rev-when-not-consp)

Fights Bitrot!

Auto Links!

How to document your books

(the fancy, less tedious way)

organize and

(defxdoc flatten
 :parents (std/lists)
 :short "@(call flatten) appends together the elements of @('x').”
 :long "<p>Typically @('x') is a list of lists that you want
To merge together. For example:</p>
...
<h3>Definitions and Theorems</h3>
@(def flatten)
@(thm true-listp-of-flatten)
@(thm flatten-when-not-consp)
@(thm flatten-of-cons)
@(thm flatten-of-list-fix) ...”)

(defund flatten (x)
 (declare (xargs :guard t))
 (if (consp x)
 (append-without-guard (car x) (flatten (cdr x)))
 nil))

(encapsulate ()
 (local (in-theory (enable flatten)))
 (defthm true-listp-of-flatten ...)
 (defthm flatten-when-not-consp ...)
 ...))

(defxdoc flatten
 :parents (std/lists)
 :short "@(call flatten) appends together the elements of @('x').”
 :long "<p>Typically @('x') is a list of lists that you want
To merge together. For example:</p>
...
<h3>Definitions and Theorems</h3>
@(def flatten)
@(thm true-listp-of-flatten)
@(thm flatten-when-not-consp)
@(thm flatten-of-cons)
@(thm flatten-of-list-fix) ...”)

(defund flatten (x)
 (declare (xargs :guard t))
 (if (consp x)
 (append-without-guard (car x) (flatten (cdr x)))
 nil))

(encapsulate ()
 (local (in-theory (enable flatten)))
 (defthm true-listp-of-flatten ...)
 (defthm flatten-when-not-consp ...)
 ...))

un-DRY!

(defxdoc flatten
 :parents (std/lists)
 :short "@(call flatten) appends together the elements of @('x').”
 :long "<p>Typically @('x') is a list of lists that you want
To merge together. For example:</p>
...
<h3>Definitions and Theorems</h3>
@(def flatten)
@(thm true-listp-of-flatten)
@(thm flatten-when-not-consp)
@(thm flatten-of-cons)
@(thm flatten-of-list-fix) ...”)

(defund flatten (x)
 (declare (xargs :guard t))
 (if (consp x)
 (append-without-guard (car x) (flatten (cdr x)))
 nil))

(encapsulate ()
 (local (in-theory (enable flatten)))
 (defthm true-listp-of-flatten ...)
 (defthm flatten-when-not-consp ...)
 ...))

(defsection flatten
 :parents (std/lists)
 :short "@(call flatten) appends together the elements of @('x').”
 :long "<p>Typically @('x') is a list of lists that you want
To merge together. For example:</p>
[example1]
[example2]”

 (defund flatten (x)
 (declare (xargs :guard t))
 (if (consp x)
 (append-without-guard (car x) (flatten (cdr x)))
 nil))

 (local (in-theory (enable flatten)))
 (defthm true-listp-of-flatten ...)
 (defthm flatten-when-not-consp ...)
 ...)

DRYer
Organizes books
Better :pbt
Indents nicely

 <h3>Definitions and Theorems</h3>
 @(def flatten)
 @(thm true-listp-of-flatten)
 @(thm flatten-when-not-consp)
 @(thm flatten-of-cons)
 @(thm flatten-of-list-fix)

How to organize and document
your books

(with less typing and stuff)

even better

(define vl-annotate-plainargs
 ((args "plainargs that typically have no @(':dir') or @(':portname')
 information; we want to annotate them."
 vl-plainarglist-p)
 (ports "corresponding ports for the submodule"
 (and (vl-portlist-p ports)
 (same-lengthp args ports)))
 (portdecls "port declarations for the submodule"
 vl-portdecllist-p)
 (palist "precomputed for fast lookups"
 (equal palist (vl-portdecl-alist portdecls))))
 :returns
 (annotated-args "annotated version of @('args'), semantically equivalent
 but typically has @(':dir') and @(':portname') information."
 vl-plainarglist-p :hyp :fguard)
 :parents (argresolve)
 :short "Annotates a plain argument list with port names and directions."
 :long "<p>This is a \"best-effort\" process ...”

 (b* (((when (atom args))
 nil)
 (name (vl-port->name (car ports)))
 (expr (vl-port->expr (car ports)))
 ...)

(define vl-annotate-plainargs
 ((args "plainargs that typically have no @(':dir') or @(':portname')
 information; we want to annotate them."
 vl-plainarglist-p)
 (ports "corresponding ports for the submodule"
 (and (vl-portlist-p ports)
 (same-lengthp args ports)))
 (portdecls "port declarations for the submodule"
 vl-portdecllist-p)
 (palist "precomputed for fast lookups"
 (equal palist (vl-portdecl-alist portdecls))))
 :returns
 (annotated-args "annotated version of @('args'), semantically equivalent
 but typically has @(':dir') and @(':portname') information."
 vl-plainarglist-p :hyp :fguard)
 :parents (argresolve)
 :short "Annotates a plain argument list with port names and directions."
 :long "<p>This is a \"best-effort\" process ...”

 (b* (((when (atom args))
 nil)
 (name (vl-port->name (car ports)))
 (expr (vl-port->expr (car ports)))
 ...)

(defaggregate vl-loadconfig
 :parents (loader)
 :short "Options for how to load Verilog modules."

 ((start-files string-listp
 "A list of file names (not module names) that you want to
 load; @(see vl-load) begins by trying to read, preprocess,
 lex, and parse the contents of these files.")

 (start-modnames string-listp
 "Instead of (or in addition to) explicitly providing the
 @('start-files'), you can also provide a list of module
 names that you want to load. @(see vl-load) will look for
 these modules in the search path, unless they happen to get
 loaded while processing the @('start-files').")

 (search-path string-listp
 "A list of directories to search (in order) for modules in
 @('start-modnames') that were in the @('start-files'), and
 for <see topic='@(url vl-modulelist-missing)'>missing
 modules</see>. This is similar to \"library directories\"
 in tools like Verilog-XL and NCVerilog.")
 ...)

(defaggregate vl-loadconfig
 :parents (loader)
 :short "Options for how to load Verilog modules."

 ((start-files string-listp
 "A list of file names (not module names) that you want to
 load; @(see vl-load) begins by trying to read, preprocess,
 lex, and parse the contents of these files.")

 (start-modnames string-listp
 "Instead of (or in addition to) explicitly providing the
 @('start-files'), you can also provide a list of module
 names that you want to load. @(see vl-load) will look for
 these modules in the search path, unless they happen to get
 loaded while processing the @('start-files').")

 (search-path string-listp
 "A list of directories to search (in order) for modules in
 @('start-modnames') that were in the @('start-files'), and
 for <see topic='@(url vl-modulelist-missing)'>missing
 modules</see>. This is similar to \"library directories\"
 in tools like Verilog-XL and NCVerilog.")
 ...)

Macros like these aren't hard.

The full docs are
just a table with
a list of topics.

Documentation as Data

How to get a fancy manual
with your stuff in it

(by the way, it's embeddable)

(include-book “your-books”)
(xdoc::save “./my-manual”)

search

intellisense

[edit source] [add a note]

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

