Moessner's Theorem: an exercise in coinductive reasoning in CoQ

Robbert Krebbers
Joint work with Louis Parlant and Alexandra Silva
Radboud University Nijmegen

November 12, 2013 @ COIN, CWI, Amsterdam

Moessner's construction $(n=4)$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	3	6		11	17	$z 4$		33	43	54		67	71	96	
1	4		15	32			65	108			175	256			
1				16				81				256			
14															
1^{4}										4^{4}					

Theorem (Moessner's Conjecture/Theorem)
This construction gives $1^{n}, 2^{n}, 3^{n}, \ldots$ starting with any $n \in \mathbb{N}$

History

1951 Moessner conjectures it

```
Aus den Sitzungsberichten der Bayerischen Akademie der Wissenschaften
Mathematisch-naturwissenschaftliche Klasse 1951 Nr. 3
```


Eine Bemerkung über die Potenzen der natürlichen Zahlen
 Von Alfred Moessner in Gunzenhausen
 Vorgelegt von Herrn O. Perron am 2. März 1951

1952 Perron proves it
1952 Paasche and Salié generalize it
1966 Long generalizes it
2010 Niqui \& Rutten present a new and elegant proof using coinduction
2013 This talk: Niqui \& Rutten's proof formalized in CoQ and extended to Long and Salié's generalization

Niqui \& Rutten's proof in a nutshell

Reduce the problem to equivalence of functional programs

- Describe Moessner's construction using stream operations

$$
\text { Moessner } n:=\Sigma D_{2}^{1} \Sigma D_{3}^{2} \cdots \Sigma D_{n}^{n-1} \text { nats }
$$

- The stream nats ${ }^{\langle n\rangle}$ is also a functional program

Theorem (Moessner's Theorem)
We have Moessner $n=$ nats $^{\langle n\rangle}$ for all $n \in \mathbb{N}$
Proof.
Using the coinduction principle

Streams in Coq

```
CoInductive Stream (A : Type) : Type :=
    SCons : A }->\mathrm{ Stream A }->\mathrm{ Stream A.
Arguments SCons {_} _ _.
Infix ":::" := SCons.
```

Coinductive types are similar to inductive types:

- The above defines Stream A as the greatest fixpoint of $A \times-$ (whereas list A is the least fixpoint of $1+A \times-$)
- Terms of coinductive types can represent infinite objects
- Computation with coinductive types is lazy

Pattern matching

The destructors are implemented using pattern matching

```
Definition head {A} (s : Stream A) : A :=
    match s with x ::: _ # x end.
Definition tail {A} (s : Stream A) : Stream A :=
    match s with _ ::: s }=>\mathrm{ s end.
Notation "s '" := (tail s).
```


Corecursive definitions

How to define the constant stream:

$$
\bar{x}=(x, x, x, \ldots)
$$

Using the CoFixpoint command:

```
CoFixpoint repeat {A} (x : A) : Stream A := x ::: #x
where "# x" := (repeat x).
```

Such CoFixpoint definitions should satisfy certain rules

Productivity

To ensure logical consistency:

- Recursive definitions should be terminating
- Corecursive definitions should be productive Intuitively this means that terms of coinductive types should always produce a constructor

The definition:

```
CoFixpoint repeat {A} (x : A) : Stream A := x ::: #x
where "# x" := (repeat x).
```

always produces the constructor x :: : \#x
But, here this would not be the case:
CoFixpoint bad : Stream False := bad.

Problem: productivity is undecidable

Guard condition

Since productivity is undecidable:

- Corecursive definitions should satisfy the guard condition, a stronger decidable syntactical criterion
- Over simplified, this means that a CoFixpoint definition should have the following shape (with $0<n$):

```
CoFixpoint f \vec{p : Stream A :=}
    x
```

- Not guarded:

```
CoFixpoint bad : Stream False := bad.
```

- Guarded:

```
CoFixpoint repeat {A} (x : A) : Stream A := x ::: #x
where "# x" := (repeat x).
```


Stream equality?

We wish to prove that two streams "are equal"

- Coq's notion of intensional Leibniz equality = only equates streams defined using "the same algorithm"
- For example, \#(f x) = map f (\#x) is not provable

We use bisimilarity \equiv instead

```
CoInductive equal {A} (s t : Stream A) : Prop :=
    make_equal : head s = head t }->\mp@subsup{\textrm{s}}{}{\prime}\equiv\mp@subsup{\textrm{t}}{}{\prime}->\textrm{s}\equiv\textrm{t
where "s \equivt" := (@equal _ s t).
```

Bisimilarity is a congruence, and we use CoQ's setoid machinery to enable rewriting using it

Ring operations

We define a ring structure using element-wise operations:

```
Infix " }\oplus\mathrm{ " := (zip_with Z.add).
Infix "\ominus":= (zip_with Z.sub).
Infix "\odot" := (zip_with Z.mul).
Notation "Ө s":= (map Z.opp s).
```

Register that $(\overline{0}, \overline{1}, \oplus, \odot, \ominus)$ is indeed a ring:

```
Lemma stream_ring_theory :
    ring_theory (#0) (#1) (zip_with Z.add) (zip_with Z.mul)
    (zip_with Z.sub) (map Z.opp) equal.
```

Add Ring stream : stream_ring_theory.

The ring tactic can now solve ring equations over streams:
Lemma foo stu :
$(\# 1 \odot t \oplus u) \odot s \equiv(t \odot s) \oplus(s \odot u) \oplus \# 0 \odot u$. Proof. ring. Qed.

Summing

Niqui \& Rutten define the partial sums

$$
\Sigma s=(s(0), s(0)+s(1), s(0)+s(1)+s(2), \ldots)
$$

$$
\text { by }(\Sigma s)(0)=s(0) \text { and }(\Sigma s)^{\prime}=\overline{s(0)} \oplus \Sigma s^{\prime}
$$

The Coq definition

```
CoFixpoint Ssum (s : Stream Z) : Stream Z :=
    head s ::: #head s }\oplus\Sigmas
where "'\Sigma, s" := (Ssum s).
```

does not satisfy the guard condition due to the call \#head $\mathrm{s} \oplus$ _
Our definition uses an accumulator:

```
CoFixpoint Ssum (i : Z) (s : Stream Z) : Stream Z :=
    head s + i ::: Ssum (head s + i) (s').
Notation "'\Sigma' s" := (Ssum 0 s).
Lemma Ssum_tail s : ( 
```


Dropping

The drop operators $\mathrm{D}_{k}^{i} \mathrm{~s}$, with for example

$$
\mathrm{D}_{3}^{1} s=(s(0), s(2), s(3), s(5), s(6), s(8), \ldots)
$$

are defined as:

```
CoFixpoint Sdrop {A} (i k : nat) (s : Stream A) : Stream A :=
    match i with
    | O # head (s`) ::: D@{k-2,k} s``
    | S i }=>\mathrm{ head s ::: D@{i,k} s`
    end
where "D@{ i , k } s" := (Sdrop i k s).
```

Dropping combined with summing:

```
Definition Ssigma (i k : nat) (s : Stream Z) : Stream Z :=
    \SigmaD@{i,k} s.
Notation "\Sigma@{ i , k } s" := (Ssigma i k s).
```


Formalizing Moessner's Theorem

Niqui \& Rutten formalize Moessner's Theorem as:

$$
\Sigma_{2}^{1} \Sigma_{3}^{2} \cdots \Sigma_{n+1}^{n} \overline{1}=\text { nats }^{\langle n\rangle}
$$

Informally, this works because:

1	1	1	1	1	1	1	1	1	1	1		
1	2	3	4	5	6	7	8	9	10	11	1	
1	3	6		11	17	24		33	43	54		
1	4			15	32			65	108			
1				16				81				
1^{4}				2^{4}				3^{4}				

Formalizing Moessner's Theorem in CoQ

Niqui \& Rutten formalize Moessner's Theorem as:

$$
\Sigma_{2}^{1} \Sigma_{3}^{2} \cdots \Sigma_{n+1}^{n} \overline{1}=\text { nats }^{\langle n\rangle}
$$

In Coq this becomes:

```
Fixpoint Ssigmas (i k n : nat) (s : Stream Z) : Stream Z :=
    match n with
    | O m \Sigma@{i,k} s
    | S n = \Sigma@{i,k} \Sigma@{S i,S k,n} s
    end
where "\Sigma@{ i , k , n } s" := (Ssigmas i k n s).
Theorem Moessner n : \Sigma@{1,2,n} #1 \equiv nats "^ S n.
```


The coinduction principle

Niqui \& Rutten use the coinduction principle:

```
Definition bisimulation {A} (R : relation (Stream A)) : Prop :=
    \foralls t, R s t -> head s = head t ^ R (s') (t').
Lemma bisimulation_equal {A} (R : relation (Stream A)) s t :
    bisimulation R }->\textrm{R}\mathrm{ s t }->\textrm{s}\equiv\textrm{t}
    Bisimilarity, and not Leibniz equality
```

So, we just need to find a bisimulation R with:

$$
\text { R (} \Sigma @\{1,2, n\} \# 1 \text {) (nats }{ }^{\sim} \mathrm{S} n \text {) }
$$

The bisimulation

```
Inductive Rn : relation (Stream Z) :=
    | Rn_sig1 n : Rn (\Sigma@{1,2,n} #1) (nats "^ S n)
    | Rn_sig2 n : Rn (\Sigma@{0,2,n} #1) (nats \odot (#1 \oplus nats) ` n n)
    | Rn_refl s : Rn s s
    | Rn_plus s1 s2 t1 t2 :
        Rn s1 t1 }->\textrm{Rn}s2\textrm{t}2->\textrm{Rn}(\textrm{s}1\oplus\textrm{s}2)(\textrm{t}1\oplus\textrm{t}2
    | Rn_mult n s t : Rn s t }->\textrm{Rn}(#\textrm{n}\odot\textrm{s})(#\textrm{n}\odot\textrm{t}
    | Rn_eq s1 s2 t1 t2 :
    s1 \equivs2 }->\textrm{t}1\equiv\textrm{t}2->\textrm{Rn}\textrm{s}1\textrm{t}1->\textrm{Rn}\textrm{s}2\textrm{t}2
```

The clause Rn_sig1 is the theorem, the others are needed for Rn to be closed under tails

Differences with Niqui \& Rutten:

- Indexes that count from 0 instead of 1
- Need to close Rn under bisimilarity
- Need to close Rn under scalar multiplication (for the generalization)

The bisimulation

Need to show that Rn s t implies head $\mathrm{s}=$ head t

- By induction on the structure of Rn
- Straightforward proofs by induction for each case

Need to show that Rn stimplies Rn (s^{\prime})(t^{\prime})

- Also by induction on the structure of Rn
- Niqui \& Rutten relate the tails to finite sums involving binomial coefficients
- These proofs require non-trivial induction loading
- Details absent in the pen-and-paper proof

Long and Salié's generalization $(n=4)$

a	$a+d$	$a+2 d$	$a+3 d$	$a+4 d$	$a+5 d$	$a+6 d$	a+7d	$a+8 d$
a	$2 a+d$	$3 a+3 d$		$4 a+7 d$	$5 a+12 d$	$6 a+18 d$		$7 a+26 d$
a	$3 a+d$			$7 a+8 d$	$12+20 d$			$19 a+46 d$
a				$8 a+8 d$				$27 a+54 d$
a				$(a+d) 8$				$(a+2 d) 27$

Theorem (Long and Salié's generalized Moessner's Theorem)
Starting from ($a, d+a, 2 d+a, \ldots$), the Moessner construction gives $\left(a \cdot 1^{n-1},(d+a) \cdot 2^{n-1},(2 d+a) \cdot 3^{n-1}, \ldots\right)$ for any $n \in \mathbb{N}$

Proof of the generalization

We use streams of integers so we have:

$$
\Sigma(a::: \bar{d}) \equiv(a, d+a, 2 d+a, \ldots) \equiv \bar{d} \odot \text { nats } \oplus \overline{a-d}
$$

Now the generalization is a corollary of the original theorem:

$$
\begin{aligned}
& \Sigma_{2}^{1} \cdots \Sigma_{m+2}^{m+1} \Sigma(a::: \bar{d}) \\
\equiv & \Sigma_{2}^{1} \cdots \Sigma_{m+2}^{m+1}(\bar{d} \odot \text { nats } \oplus \overline{a-d}) \\
\equiv & \bar{d} \odot \Sigma_{2}^{1} \cdots \Sigma_{m+2}^{m+1} \text { nats } \oplus \overline{a-d} \odot \Sigma_{2}^{1} \cdots \Sigma_{m+2}^{m+1} \overline{1} \\
\equiv & \bar{d} \odot \text { nats }^{\langle 2+m\rangle} \oplus \overline{a-d} \odot \text { nats }^{\langle 1+m\rangle} \\
\equiv & \left(\bar{d} \odot \text { nats }^{1} \oplus \overline{a-d}\right) \odot \text { nats }^{\langle 1+m\rangle} \\
\equiv & \Sigma(a:: \bar{d}) \odot \text { nats }^{\langle 1+m\rangle}
\end{aligned}
$$

Wiedijk's the De Bruijn factor of our proof

	AT T_{EX}	COQ
Lines of text	882	758
Compressed size (gzip)	6272 bytes	6409 bytes

The De Bruijn factor

$$
\text { moessner_all.tex.gz } \times 1.02=\text { moessner_all.v.gz }
$$

The typical De Bruijn factor for formalization of mathematics is 4

Conclusions

Coq's support for coinduction seems different from the textbook approach, ... but only at first sight

- Standard reasoning principles can easily be proven
- Setoid and ring support help a lot
- Most definitions are accepted without modifications
- Coq proofs are relatively short

No factual errors in Niqui \& Rutten's paper

- They did a good job on presenting definitions and lemmas
- Most proofs were hidden under the carpet

Non-trivial proofs by coinduction can be done in CoQ

Questions

Sources: http://github.com/robbertkrebbers/moessner/

