
Moessner’s Theorem: an exercise in coinductive
reasoning in Coq

Robbert Krebbers
Joint work with Louis Parlant and Alexandra Silva

Radboud University Nijmegen

November 12, 2013 @ COIN, CWI, Amsterdam



Moessner’s construction (n = 4)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 6 11 17 24 33 43 54 67 71 96
1 4 15 32 65 108 175 256
1 16 81 256

14 24 34 44

Theorem (Moessner’s Conjecture/Theorem)

This construction gives 1n, 2n, 3n, . . . starting with any n ∈ N



History

1951 Moessner conjectures it

1952 Perron proves it

1952 Paasche and Salié generalize it

1966 Long generalizes it

2010 Niqui & Rutten present a new and elegant proof
using coinduction

2013 This talk: Niqui & Rutten’s proof formalized in Coq
and extended to Long and Salié’s generalization



Niqui & Rutten’s proof in a nutshell

Reduce the problem to equivalence of functional programs

I Describe Moessner’s construction using stream operations

Moessner n := Σ D1
2 Σ D2

3 · · ·Σ Dn−1
n nats

I The stream nats〈n〉 is also a functional program

Theorem (Moessner’s Theorem)

We have Moessner n = nats〈n〉 for all n ∈ N

Proof.
Using the coinduction principle



Streams in Coq

CoInductive Stream (A : Type) : Type :=

SCons : A → Stream A → Stream A.

Arguments SCons {_} _ _.

Infix ":::" := SCons.

Coinductive types are similar to inductive types:

I The above defines Stream A as the greatest fixpoint of A×−
(whereas list A is the least fixpoint of 1 + A×−)

I Terms of coinductive types can represent infinite objects

I Computation with coinductive types is lazy



Pattern matching

The destructors are implemented using pattern matching

Definition head {A} (s : Stream A) : A :=

match s with x ::: _ ⇒ x end.

Definition tail {A} (s : Stream A) : Stream A :=

match s with _ ::: s ⇒ s end.

Notation "s ‘" := (tail s).



Corecursive definitions

How to define the constant stream:

x = (x , x , x , . . . )

Using the CoFixpoint command:

CoFixpoint repeat {A} (x : A) : Stream A := x ::: #x

where "# x" := (repeat x).

Such CoFixpoint definitions should satisfy certain rules



Productivity

To ensure logical consistency:

I Recursive definitions should be terminating

I Corecursive definitions should be productive

Intuitively this means that terms of coinductive types should
always produce a constructor

The definition:

CoFixpoint repeat {A} (x : A) : Stream A := x ::: #x

where "# x" := (repeat x).

always produces the constructor x ::: #x

But, here this would not be the case:

CoFixpoint bad : Stream False := bad.

Problem: productivity is undecidable



Guard condition

Since productivity is undecidable:

I Corecursive definitions should satisfy the guard condition, a
stronger decidable syntactical criterion

I Over simplified, this means that a CoFixpoint definition should
have the following shape (with 0 < n):

CoFixpoint f ~p : Stream A :=

x0 ::: x1 ::: . . . ::: xn ::: f ~q.

I Not guarded:

CoFixpoint bad : Stream False := bad.

I Guarded:

CoFixpoint repeat {A} (x : A) : Stream A := x ::: #x

where "# x" := (repeat x).



Stream equality?

We wish to prove that two streams “are equal”

I Coq’s notion of intensional Leibniz equality = only equates
streams defined using “the same algorithm”

I For example, #(f x) = map f (#x) is not provable

We use bisimilarity ≡ instead

CoInductive equal {A} (s t : Stream A) : Prop :=

make_equal : head s = head t → s‘ ≡ t‘ → s ≡ t

where "s ≡ t" := (@equal _ s t).

Bisimilarity is a congruence, and we use Coq’s setoid machinery to
enable rewriting using it



Ring operations

We define a ring structure using element-wise operations:

Infix "⊕ " := (zip_with Z.add).

Infix "	":= (zip_with Z.sub).

Infix "� " := (zip_with Z.mul).

Notation "	 s":= (map Z.opp s).

Register that (0, 1,⊕,�,	) is indeed a ring:

Lemma stream_ring_theory :

ring_theory (#0) (#1) (zip_with Z.add) (zip_with Z.mul)

(zip_with Z.sub) (map Z.opp) equal.

Add Ring stream : stream_ring_theory.

The ring tactic can now solve ring equations over streams:

Lemma foo s t u :

(#1 � t ⊕ u) � s ≡ (t � s) ⊕ (s � u) ⊕ #0 � u.

Proof. ring. Qed.



Summing

Niqui & Rutten define the partial sums

Σ s = (s(0), s(0) + s(1), s(0) + s(1) + s(2), . . . )

by (Σ s)(0) = s(0) and (Σ s)′ = s(0)⊕ Σ s ′

The Coq definition

CoFixpoint Ssum (s : Stream Z) : Stream Z :=

head s ::: #head s ⊕ Σ s‘

where "’Σ ’ s" := (Ssum s).

does not satisfy the guard condition due to the call #head s ⊕ _

Our definition uses an accumulator:

CoFixpoint Ssum (i : Z) (s : Stream Z) : Stream Z :=

head s + i ::: Ssum (head s + i) (s‘).

Notation "’Σ ’ s" := (Ssum 0 s).

Lemma Ssum_tail s : (Σ s)‘ ≡ #head s ⊕ Σ s‘.



Dropping
The drop operators Di

k s, with for example

D1
3 s = (s(0), s(2), s(3), s(5), s(6), s(8), . . . )

are defined as:

CoFixpoint Sdrop {A} (i k : nat) (s : Stream A) : Stream A :=

match i with

| O ⇒ head (s‘) ::: D@{k-2,k} s‘‘

| S i ⇒ head s ::: D@{i,k} s‘

end

where "D@{ i , k } s" := (Sdrop i k s).

Dropping combined with summing:

Definition Ssigma (i k : nat) (s : Stream Z) : Stream Z :=

Σ D@{i,k} s.

Notation "Σ @{ i , k } s" := (Ssigma i k s).



Formalizing Moessner’s Theorem

Niqui & Rutten formalize Moessner’s Theorem as:

Σ1
2 Σ2

3 · · ·Σn
n+1 1 = nats

〈n〉

Informally, this works because:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12
1 3 6 11 17 24 33 43 54
1 4 15 32 65 108
1 16 81

14 24 34



Formalizing Moessner’s Theorem in Coq

Niqui & Rutten formalize Moessner’s Theorem as:

Σ1
2 Σ2

3 · · ·Σn
n+1 1 = nats

〈n〉

In Coq this becomes:

Fixpoint Ssigmas (i k n : nat) (s : Stream Z) : Stream Z :=

match n with

| O ⇒ Σ @{i,k} s

| S n ⇒ Σ @{i,k} Σ @{S i,S k,n} s

end

where "Σ @{ i , k , n } s" := (Ssigmas i k n s).

Theorem Moessner n : Σ @{1,2,n} #1 ≡ nats ^^ S n.



The coinduction principle

Niqui & Rutten use the coinduction principle:

Definition bisimulation {A} (R : relation (Stream A)) : Prop :=

∀ s t, R s t → head s = head t ∧ R (s‘) (t‘).

Lemma bisimulation_equal {A} (R : relation (Stream A)) s t :

bisimulation R → R s t → s ≡ t.

Bisimilarity, and not Leibniz equality

So, we just need to find a bisimulation R with:

R (Σ @{1,2,n} #1) (nats ^^ S n)



The bisimulation

Inductive Rn : relation (Stream Z) :=

| Rn_sig1 n : Rn (Σ @{1,2,n} #1) (nats ^^ S n)

| Rn_sig2 n : Rn (Σ @{0,2,n} #1) (nats � (#1 ⊕ nats) ^^ n)

| Rn_refl s : Rn s s

| Rn_plus s1 s2 t1 t2 :

Rn s1 t1 → Rn s2 t2 → Rn (s1 ⊕ s2) (t1 ⊕ t2)

| Rn_mult n s t : Rn s t → Rn (#n � s) (#n � t)

| Rn_eq s1 s2 t1 t2 :

s1 ≡ s2 → t1 ≡ t2 → Rn s1 t1 → Rn s2 t2.

The clause Rn_sig1 is the theorem, the others are needed for Rn to
be closed under tails

Differences with Niqui & Rutten:

I Indexes that count from 0 instead of 1

I Need to close Rn under bisimilarity

I Need to close Rn under scalar multiplication (for the
generalization)



The bisimulation

Need to show that Rn s t implies head s = head t

I By induction on the structure of Rn

I Straightforward proofs by induction for each case

Need to show that Rn s t implies Rn (s‘)(t‘)

I Also by induction on the structure of Rn

I Niqui & Rutten relate the tails to finite sums involving
binomial coefficients

I These proofs require non-trivial induction loading

I Details absent in the pen-and-paper proof



Long and Salié’s generalization (n = 4)

a a+ d a+ 2d a+ 3d a+ 4d a+ 5d a+ 6d a+ 7d a+ 8d
a 2a+ d 3a+ 3d 4a+ 7d 5a+ 12d 6a+ 18d 7a+ 26d
a 3a+ d 7a+ 8d 12 + 20d 19a+ 46d
a 8a+ 8d 27a+ 54d

a (a+ d)8 (a+ 2d)27

Theorem (Long and Salié’s generalized Moessner’s Theorem)

Starting from (a, d + a, 2d + a, . . . ), the Moessner construction
gives (a · 1n−1, (d + a) · 2n−1, (2d + a) · 3n−1, . . . ) for any n ∈ N



Proof of the generalization

We use streams of integers so we have:

Σ (a ::: d) ≡ (a, d + a, 2d + a, . . . ) ≡ d � nats⊕ a− d

Now the generalization is a corollary of the original theorem:

Σ1
2 · · ·Σm+1

m+2 Σ (a ::: d)

≡ Σ1
2 · · ·Σm+1

m+2 (d � nats⊕ a− d)

≡ d � Σ1
2 · · ·Σm+1

m+2 nats⊕ a− d � Σ1
2 · · ·Σm+1

m+2 1

≡ d � nats
〈2+m〉 ⊕ a− d � nats

〈1+m〉

≡ (d � nats⊕ a− d)� nats
〈1+m〉

≡ Σ (a ::: d)� nats
〈1+m〉



Wiedijk’s the De Bruijn factor of our proof

LATEX Coq

Lines of text 882 758
Compressed size (gzip) 6272 bytes 6409 bytes

The De Bruijn factor

moessner all.tex.gz×1.02 = moessner all.v.gz

The typical De Bruijn factor for formalization of mathematics is 4



Conclusions

Coq’s support for coinduction seems different from the textbook
approach, . . . but only at first sight

I Standard reasoning principles can easily be proven

I Setoid and ring support help a lot

I Most definitions are accepted without modifications

I Coq proofs are relatively short

No factual errors in Niqui & Rutten’s paper

I They did a good job on presenting definitions and lemmas

I Most proofs were hidden under the carpet

Non-trivial proofs by coinduction can be done in Coq



Questions

Sources: http://github.com/robbertkrebbers/moessner/

http://github.com/robbertkrebbers/moessner/

