Moessner’'s Theorem: an exercise in coinductive
reasoning in COQ

Robbert Krebbers
Joint work with Louis Parlant and Alexandra Silva

Radboud University Nijmegen

November 12, 2013 @ COIN, CWI, Amsterdam

Moessner's construction (n = 4)

1 2 3 4 5
1 3 6 11
1 4 15
1 16
14 24

6
17
32

7 8 9
24 33
65

81

34

10
43
+68

11 +2
54

Theorem (Moessner's Conjecture/Theorem)

13 14
67 71
175 256
256

44

15
96

This construction gives 17,2" 3" ... starting with any n € N

6

History

1951

1952
1952
1966
2010

2013

Moessner conjectures it
Aus den Sitsungsberichten der Bayerischen Akademie der Wi haft
Math, isch-naturwi: hafiliche Klasse 1951 Nr.3

Eine Bemerkung iiber die Potenzen der natiirlichen
Zahlen
Von Alfred Moessner in Gunzenhausen

Vorgelegt von Herrn O, Perron am 2. Miirz 1951
Perron proves it
Paasche and Salié generalize it
Long generalizes it
Niqui & Rutten present a new and elegant proof
using coinduction

This talk: Niqui & Rutten’s proof formalized in CoQ
and extended to Long and Salié’s generalization

Niqui & Rutten’s proof in a nutshell

Reduce the problem to equivalence of functional programs

» Describe Moessner's construction using stream operations
. 1 2 n—1
Moessner n := % D3> D3--- X D} " nats

» The stream nats'™ is also a functional program

Theorem (Moessner's Theorem)
We have Moessner n = nats'™ for all n € N

Proof.

Using the coinduction principle

Streams in COQ

CoInductive Stream (A : Type) : Type :=
SCons : A — Stream A — Stream A.

Arguments SCons {_} _ _.

Infix ":::" := SComs.

Coinductive types are similar to inductive types:

> The above defines Stream A as the greatest fixpoint of A x —
(whereas 1ist A is the least fixpoint of 1 + A x —)

» Terms of coinductive types can represent infinite objects

» Computation with coinductive types is lazy

Pattern matching

The destructors are implemented using pattern matching

Definition head {A} (s : Stream A) : A :=

match s with x ::: _ = x end.
Definition tail {A} (s : Stream A) : Stream A :=
match s with _ ::: s = s end.

Notation "s ‘" := (tail s).

Corecursive definitions

How to define the constant stream:
X=(x,x,%,...)

Using the CoFixpoint command:

CoFixpoint repeat {A} (x : A) : Stream A := x :::

where "# x" := (repeat x).

#x

Such CoFixpoint definitions should satisfy certain rules

Productivity

To ensure logical consistency:
» Recursive definitions should be terminating
» Corecursive definitions should be productive

Intuitively this means that terms of coinductive types should
always produce a constructor

The definition:

CoFixpoint repeat {A} (x : A) : Stream A := x ::: #x
where "# x" := (repeat x).
always produces the constructor x ::: #x

But, here this would not be the case:

CoFixpoint bad : Stream False := bad.

Problem: productivity is undecidable

Guard condition

Since productivity is undecidable:

» Corecursive definitions should satisfy the guard condition, a
stronger decidable syntactical criterion

» Over simplified, this means that a CoFixpoint definition should
have the following shape (with 0 < n):

CoFixpoint f p : Stream A :=

Ql

X0 s:i: X1 i ... i:iiXp oo f
» Not guarded:

CoFixpoint bad : Stream False := bad.

» Guarded:

CoFixpoint repeat {A} (x : A) : Stream A := x ::: #x
where "# x" := (repeat x).

Stream equality?

We wish to prove that two streams “are equal”
» Co0Q's notion of intensional Leibniz equality = only equates
streams defined using “the same algorithm”

> For example, #(f x) = map £ (#x) is not provable

We use bisimilarity = instead
CoInductive equal {A} (s t : Stream A) : Prop :=
make_equal : head s = head t — s =t¢ — s =t

where "s =t" := (Qequal _ s t).

Bisimilarity is a congruence, and we use COQ's setoid machinery to

enable rewriting using it

Ring operations

We define a ring structure using element-wise operations:

Infix "@ " := (zip_with Z.add).
Infix "©":= (zip_with Z.sub).
Infix "®" := (zip_with Z.mul).

Notation "© s":= (map Z.opp s).

Register that (0,1, ®,®,©) is indeed a ring:

Lemma stream_ring_theory :
ring_theory (#0) (#1) (zip_with Z.add) (zip_with Z.mul)
(zip_with Z.sub) (map Z.opp) equal.
Add Ring stream : stream_ring_theory.

The ring tactic can now solve ring equations over streams:

Lemma foo s t u :
#1 Ot Du) ©s = ©s) ® (s ®u) G#0 O u.
Proof. ring. Qed.

Summing
Niqui & Rutten define the partial sums

Y s = (s(0),s(0) + s(1),s(0) + s(1) + s(2),...)

by (X5)(0) =s(0) and (Xs) =s(0)aXs
The CoQ definition

CoFixpoint Ssum (s : Stream Z) : Stream Z :=
head s ::: #head s @ X s¢
where "’Y’ s" := (Ssum s).

does not satisfy the guard condition due to the call #head s @ _

Our definition uses an accumulator:

CoFixpoint Ssum (i : Z) (s : Stream Z) : Stream Z :=
head s + i ::: Ssum (head s + i) (s¢).

Notation "?X’ s" := (Ssum O s).

Lemma Ssum_tail s : (X s)¢ =#head s @& X s°¢.

Dropping
The drop operators D}; s, with for example
D1s = (s(0),5(2),s(3),s(5),s(6),s(8),...)
are defined as:

CoFixpoint Sdrop {A} (i k : nat) (s : Stream A) : Stream A :=
match i with

| 0 = head (s¢) ::: De{k-2,k} s‘°¢
| Si = head s ::: D@{i,k} s°¢
end
where "D@{ i , k } s" := (Sdrop i k s).

Dropping combined with summing:

Definition Ssigma (i k : nat) (s : Stream Z) : Stream Z :=
> De{i,k} s.

Notation "X @{ i , k } s" := (Ssigma i k s).

Formalizing Moessner's Theorem

Niqui & Rutten formalize Moessner's Theorem as:

Informally, this works because:

[G T G T G W T

£ W R

11
3 4
6

*

315250 1T = nats'”

1
5
11
15
16

24

1

6
7

32

[y

1
7
24

1
8

*

1
9
33
65
81

34

1 1 1
10 11 #2
43 54
+68

*

Formalizing Moessner's Theorem in COQ

Niqui & Rutten formalize Moessner’s Theorem as:

¥152...50 1T = nats'”

In Coq this becomes:

Fixpoint Ssigmas (i k n : nat) (s : Stream Z) : Stream Z :=

match n with
| 0 = Ye{i,k} s
| Sn = Xe{i,k} ~e{S i,S k,n} s

end

where "¥@{ i , k , n } s" := (Ssigmas i k n s).

Theorem Moessner n : 2 @{1,2,n} #1 =nats ~~ S n.

The coinduction principle

Niqui & Rutten use the coinduction principle:

Definition bisimulation {A} (R : relation (Stream A)) : Prop :=
Vst,Rst — head s =head t A R (s9) (t9).

Lemma bisimulation_equal {A} (R : relation (Stream A)) s t :
bisimulation R - R s t — s =¢t.

[Bisimilarity, and not Leibniz equality]

So, we just need to find a bisimulation r with:

R (Xe{1,2,n} #1) (nats ~~ S n)

The bisimulation

Inductive Rn : relation (Stream Z) :=
Rn_sigl n : Rn (X @{1,2,n} #1) (nats ~~ S n)
Rn_sig2 n : Rn (X@{0,2,n} #1) (nats ® (#1 @ nats) "~ n)
Rn_refl s : Rn s s
Rn_plus sl s2 t1 t2 :
Rn s1 t1 — Rn s2 t2 — Rn (s1 @ s2) (t1 @ t2)
| Rn_mult n st : Rn st — Rn (#n ©®s) (#n O t)
| Rn_eq s1 s2 t1 t2 :
sl =s2 - t1l =t2 — Rn s1 t1 — Rn s2 t2.

The clause Rn_sigi is the theorem, the others are needed for Rn to
be closed under tails

Differences with Niqui & Rutten:
» Indexes that count from 0 instead of 1
» Need to close Rn under bisimilarity

> Need to close Rn under scalar multiplication (for the
generalization)

The bisimulation

Need to show that Rn s t implies head s = head t
» By induction on the structure of Rn

» Straightforward proofs by induction for each case

Need to show that Rn s t implies Rn (s¢) (t¢)

» Also by induction on the structure of Rn

v

Niqui & Rutten relate the tails to finite sums involving
binomial coefficients

v

These proofs require non-trivial induction loading

v

Details absent in the pen-and-paper proof

Long and Salié’s generalization (n = 4)

a a+d a+2d =3¢ a+4d a+ 5d a+ 6d et a+ 8d
a 2a+d Sz=3d 4a+7d ba+12d Erted Ta+ 26d
a Szd 7a+8d #o==50d 19a + 46d
a 8a+ 8d 27a + 54d
a (a+d)8 (a+2d)27

Theorem (Long and Salié’s generalized Moessner’s Theorem)

Starting from (a,d + a,2d + a, ...), the Moessner construction
gives (a-1""1 (d+a)-2"1 (2d +a)-3"1,...) foranyn e N

Proof of the generalization

We use streams of integers so we have:
Y(a::d)=(a,d+a,2d+a,...)=d©nats®a—d
Now the generalization is a corollary of the original theorem:

¥ "ZﬂiéZ(a i d)
=5} - Xmil(d ©nats B a— d)

=doYy I inats@a—do ;- TN T
=d©nats>™ © 3 — d ©natsITM

= (d ®nats ® a — d) © nats{ ™

=3 (a :Z: E) ® nats<1+m>

Wiedijk's the De Bruijn factor of our proof

| BTEX | Coq
Lines of text 882 758
Compressed size (gzip) | 6272 bytes | 6409 bytes

The De Bruijn factor

moessner_all.tex.gz X]. . 02 = moessner_all.v.gz

The typical De Bruijn factor for formalization of mathematics is 4

Conclusions

Coq's support for coinduction seems different from the textbook
approach, ... but only at first sight

» Standard reasoning principles can easily be proven

v

Setoid and ring support help a lot

v

Most definitions are accepted without modifications

v

CoQ proofs are relatively short

No factual errors in Niqui & Rutten's paper
> They did a good job on presenting definitions and lemmas

» Most proofs were hidden under the carpet

Non-trivial proofs by coinduction can be done in CoQ

Questions

Sources: http://github.com/robbertkrebbers/moessner/

http://github.com/robbertkrebbers/moessner/

