
Combining Bialgebraic Semantics and Equations

Jurriaan Rot Marcello Bonsangue

Leiden University, CWI

COIN, November 2013

Bialgebras for operational semantics

I mathematical approach to structural operational semantics

I abstracts away from specific syntax and behaviour

I generalize (classical) GSOS, behavioural differential equations

Advantages:

I compositional semantics (bisimilarity is a congruence)

I soundness (compatibility) of bisimulation up to context

I . . .

Bialgebras for operational semantics

I mathematical approach to structural operational semantics

I abstracts away from specific syntax and behaviour

I generalize (classical) GSOS, behavioural differential equations

Advantages:

I compositional semantics (bisimilarity is a congruence)

I soundness (compatibility) of bisimulation up to context

I . . .

Structural operational semantics

x
a−→ x ′

x | y
a−→ x ′ | y

y
a−→ y ′

x | y
a−→ x | y ′

can be modeled by an abstract GSOS specification

Σ(F × Id)⇒ FT

where

I F is the behaviour functor

I Σ the signature (polynomial Set endofunctor)

I TX is t ::= x | σ(t1, . . . , tn)

Structural operational semantics

x
a−→ x ′

x | y
a−→ x ′ | y

y
a−→ y ′

x | y
a−→ x | y ′

can be modeled by an abstract GSOS specification

Σ(F × Id)⇒ FT

where

I F is the behaviour functor

I Σ the signature (polynomial Set endofunctor)

I TX is t ::= x | σ(t1, . . . , tn)

Motivating example (1)

!x | x
a−→ t

!x
a−→ t

represents x | x | x | . . .

Problem: not structural

Motivating example (1)

!x | x
a−→ t

!x
a−→ t

represents x | x | x | . . .

Problem: not structural

Motivating example (2)

x
a−→ x ′

x | y
a−→ x ′ | y

x | y = y | x

Problem: how to interpret equations

Motivating example (2)

x
a−→ x ′

x | y
a−→ x ′ | y

x | y = y | x

Problem: how to interpret equations

This research

I These examples do not fit in the GSOS format (directly).

I Goal: interpret these in the bialgebraic framework, with the
nice well-behavedness properties (bisimilarity a congruence,
bisimulation up to context compatible, etc.)

I Method: reduce (monotone) specifications with equations, to
equivalent specifications without them.

This research

I These examples do not fit in the GSOS format (directly).

I Goal: interpret these in the bialgebraic framework, with the
nice well-behavedness properties (bisimilarity a congruence,
bisimulation up to context compatible, etc.)

I Method: reduce (monotone) specifications with equations, to
equivalent specifications without them.

Interpretation of a GSOS specification

A positive GSOS rule:

{xij
aj→ yj}j=1..m

σ(x1, . . . , xn)
c→ t

A model (T∅ set of closed terms):

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff we can deduce it from one of the

rules and the transitions of t1, . . . , tn.

Each GSOS specification has a unique model.

Interpretation of a GSOS specification

A positive GSOS rule:

{xij
aj→ yj}j=1..m

σ(x1, . . . , xn)
c→ t

A model (T∅ set of closed terms):

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff we can deduce it from one of the

rules and the transitions of t1, . . . , tn.

Each GSOS specification has a unique model.

Interpretation of a GSOS specification

A positive GSOS rule:

{xij
aj→ yj}j=1..m

σ(x1, . . . , xn)
c→ t

A model (T∅ set of closed terms):

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff we can deduce it from one of the

rules and the transitions of t1, . . . , tn.

Each GSOS specification has a unique model.

Adding assignment rules

{xij
aj→ yj}j=1..m

σ(x1, . . . , xn)
c→ t

t
a−→ y

σ(x1, . . . , xn)
a−→ y

A model (T∅ set of closed terms):

f : T∅ → P(A× T∅)

such that . . .

σ(t1, . . . , tn)
a−→ t ′ iff either

1. we can deduce it from one of the GSOS rules and the
transitions of t1, . . . , tn.

2. there is an assignment rule from σ to t, and t(t1, . . . , tn)
a−→ t ′.

Example:
a.0

a−→0

!a.0|a.0
a−→!a.0|0

!a.0
a−→!a.0 | 0

Adding assignment rules

{xij
aj→ yj}j=1..m

σ(x1, . . . , xn)
c→ t

t
a−→ y

σ(x1, . . . , xn)
a−→ y

A model (T∅ set of closed terms):

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff either

1. we can deduce it from one of the GSOS rules and the
transitions of t1, . . . , tn.

2. there is an assignment rule from σ to t, and t(t1, . . . , tn)
a−→ t ′.

Example:
a.0

a−→0

!a.0|a.0
a−→!a.0|0

!a.0
a−→!a.0 | 0

Adding assignment rules

{xij
aj→ yj}j=1..m

σ(x1, . . . , xn)
c→ t

t
a−→ y

σ(x1, . . . , xn)
a−→ y

A model (T∅ set of closed terms):

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff either

1. we can deduce it from one of the GSOS rules and the
transitions of t1, . . . , tn.

2. there is an assignment rule from σ to t, and t(t1, . . . , tn)
a−→ t ′.

Example:
a.0

a−→0

!a.0|a.0
a−→!a.0|0

!a.0
a−→!a.0 | 0

Interpretation

But: no unique model.

σ(x)
a−→ y

σ(x)
a−→ y

we would like the interpretation to only have finite derivations.

Interpretation: the least model.
For this to exist, we restrict to positive GSOS.

Interpretation

But: no unique model.

σ(x)
a−→ y

σ(x)
a−→ y

we would like the interpretation to only have finite derivations.

Interpretation: the least model.
For this to exist, we restrict to positive GSOS.

Interpretation

But: no unique model.

σ(x)
a−→ y

σ(x)
a−→ y

we would like the interpretation to only have finite derivations.

Interpretation: the least model.
For this to exist, we restrict to positive GSOS.

In general

Given an ordered behaviour functor F :

CJSL

U
��

Set
F //

F̂
;;

Set

Abstract GSOS specification:

ρ : Σ(F × Id)⇒ FT

which is monotone.
Assignment rule:

Σ⇒ T

In general

Given an ordered behaviour functor F :

CJSL

U
��

Set
F //

F̂
;;

Set

Abstract GSOS specification:

ρ : Σ(F × Id)⇒ FT

which is monotone.

Assignment rule:
Σ⇒ T

In general

Given an ordered behaviour functor F :

CJSL

U
��

Set
F //

F̂
;;

Set

Abstract GSOS specification:

ρ : Σ(F × Id)⇒ FT

which is monotone.
Assignment rule:

Σ⇒ T

Intepretation, in general

Monotone abstract GSOS specification:

ρ : Σ(F × Id)⇒ FT

Assignment rule:
Σ⇒ T

Model of spec. ρ and set of assignment rules ∆:

f : T∅ → FT∅

such that . . .

f ◦ ι = Fµ ◦ ρ ◦ Σ〈f , id〉 ∨
∨
d∈∆

f ◦ µ ◦ d

Interpretation: least model.

Intepretation, in general

Monotone abstract GSOS specification:

ρ : Σ(F × Id)⇒ FT

Assignment rule:
Σ⇒ T

Model of spec. ρ and set of assignment rules ∆:

f : T∅ → FT∅

such that

f ◦ ι = Fµ ◦ ρ ◦ Σ〈f , id〉 ∨
∨
d∈∆

f ◦ µ ◦ d

Interpretation: least model.

And now?

Is the interpretation of a specification with assignment rules
well-behaved?

Idea: get rid of the assignment rules by applying one assignment
rule:

(1) add
x

a−→ x ′

!x
a−→!x | x ′

because

x
a−→x ′

!x |x
a−→!x |x ′

!x
a−→!x | x ′

(2) add
x

a−→ x ′

!x
a−→!x | x ′ | x

because

x
a−→x ′

!x
a−→!x |x

!x |x
a−→!x |x ′|x

!x
a−→!x |x ′|x

etc. Use a function ϕ to do this recursive computation:

ϕ(τ) = ρ ∨
∨
d∈∆

(π1 ◦ τ∗ ◦ d) .

And now?

Is the interpretation of a specification with assignment rules
well-behaved?
Idea: get rid of the assignment rules by applying one assignment
rule:

(1) add
x

a−→ x ′

!x
a−→!x | x ′

because

x
a−→x ′

!x |x
a−→!x |x ′

!x
a−→!x | x ′

(2) add
x

a−→ x ′

!x
a−→!x | x ′ | x

because

x
a−→x ′

!x
a−→!x |x

!x |x
a−→!x |x ′|x

!x
a−→!x |x ′|x

etc. Use a function ϕ to do this recursive computation:

ϕ(τ) = ρ ∨
∨
d∈∆

(π1 ◦ τ∗ ◦ d) .

And now?

Is the interpretation of a specification with assignment rules
well-behaved?
Idea: get rid of the assignment rules by applying one assignment
rule:

(1) add
x

a−→ x ′

!x
a−→!x | x ′

because

x
a−→x ′

!x |x
a−→!x |x ′

!x
a−→!x | x ′

(2) add
x

a−→ x ′

!x
a−→!x | x ′ | x

because

x
a−→x ′

!x
a−→!x |x

!x |x
a−→!x |x ′|x

!x
a−→!x |x ′|x

etc.

Use a function ϕ to do this recursive computation:

ϕ(τ) = ρ ∨
∨
d∈∆

(π1 ◦ τ∗ ◦ d) .

And now?

Is the interpretation of a specification with assignment rules
well-behaved?
Idea: get rid of the assignment rules by applying one assignment
rule:

(1) add
x

a−→ x ′

!x
a−→!x | x ′

because

x
a−→x ′

!x |x
a−→!x |x ′

!x
a−→!x | x ′

(2) add
x

a−→ x ′

!x
a−→!x | x ′ | x

because

x
a−→x ′

!x
a−→!x |x

!x |x
a−→!x |x ′|x

!x
a−→!x |x ′|x

etc. Use a function ϕ to do this recursive computation:

ϕ(τ) = ρ ∨
∨
d∈∆

(π1 ◦ τ∗ ◦ d) .

Main result

Theorem
The interpretation of ρ and ∆ coincides with the operational
model of the monotone abstract GSOS specification lfpϕ.

Corollary

Bisimilarity is a congruence on the interpretation of ρ and ∆, and
bisimulation up to context is compatible.

Main result

Theorem
The interpretation of ρ and ∆ coincides with the operational
model of the monotone abstract GSOS specification lfpϕ.

Corollary

Bisimilarity is a congruence on the interpretation of ρ and ∆, and
bisimulation up to context is compatible.

Equations

Second part: adding equations to abstract GSOS.

x
a−→ x ′

x | y
a−→ x ′ | y

x | y = y | x !x = !x | x

Interpreted using structural congruence:

t ≡ u u
a−→ u′ u′ ≡ v

t
a−→ v

≡ is the congruence generated by the equations.

Equations

Second part: adding equations to abstract GSOS.

x
a−→ x ′

x | y
a−→ x ′ | y

x | y = y | x !x = !x | x

Interpreted using structural congruence:

t ≡ u u
a−→ u′ u′ ≡ v

t
a−→ v

≡ is the congruence generated by the equations.

Interpretation: transition systems

The interpretation is the least model

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff either

1. we can deduce it from one of the GSOS rules and the
transitions of t1, . . . , tn

2. σ(t1, . . . , tn) ≡ t and t
a−→ t ′.

Generalizes to interpreting arbitrary monotone GSOS specification
with equations.

Interpretation: transition systems

The interpretation is the least model

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff either

1. we can deduce it from one of the GSOS rules and the
transitions of t1, . . . , tn

2. σ(t1, . . . , tn) ≡ t and t
a−→ t ′.

Generalizes to interpreting arbitrary monotone GSOS specification
with equations.

Interpretation: transition systems

The interpretation is the least model

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff either

1. we can deduce it from one of the GSOS rules and the
transitions of t1, . . . , tn

2. σ(t1, . . . , tn) ≡ t and t
a−→ t ′.

Generalizes to interpreting arbitrary monotone GSOS specification
with equations.

Structural congruence: transition systems

Mousavi, Reniers: Congruence for Structural Congruences.
FoSSaCS 2005.

I treats structural congruences in the context of structural
operational semantics (mainly the tyft/tyxt format)

I provides three different interpretations of structural
congruence

I provides a format for equations which guarantees bisimilarity
to be a congruence (combined with tyft/tyxt)

Structural congruence: transition systems

Mousavi, Reniers: Congruence for Structural Congruences.
FoSSaCS 2005.

I treats structural congruences in the context of structural
operational semantics (mainly the tyft/tyxt format)

I provides three different interpretations of structural
congruence

I provides a format for equations which guarantees bisimilarity
to be a congruence (combined with tyft/tyxt)

Structural congruence: transition systems

Mousavi, Reniers: Congruence for Structural Congruences.
FoSSaCS 2005.

I treats structural congruences in the context of structural
operational semantics (mainly the tyft/tyxt format)

I provides three different interpretations of structural
congruence

I provides a format for equations which guarantees bisimilarity
to be a congruence (combined with tyft/tyxt)

Bisimilarity not a congruence

From (Mousavi, Reniers 2005):

p
a−→ p q

a−→ p
p = σ(q)

then p ∼ q, but σ(p) 6∼ σ(q)

Bisimilarity not a congruence

From (Mousavi, Reniers 2005):

p
a−→ p q

a−→ p
p = σ(q)

then p ∼ q, but σ(p) 6∼ σ(q)

A format

(Mousavi, Reniers 2005) cfsc format (w.r.t an SOS specification);
equations of the form

σ(x1, . . . , xn) = σ′(y1, . . . , yn)

distinct variables, x1, . . . , xn permutation of y1, . . . , yn. Or . . .

σ(x1, . . . , xn) = t

where

I t is a term, variables bound by left-hand side

I x1, . . . , xn distinct

I σ appears nowhere else, in the specification or equations

A format

(Mousavi, Reniers 2005) cfsc format (w.r.t an SOS specification);
equations of the form

σ(x1, . . . , xn) = σ′(y1, . . . , yn)

distinct variables, x1, . . . , xn permutation of y1, . . . , yn. Or

σ(x1, . . . , xn) = t

where

I t is a term, variables bound by left-hand side

I x1, . . . , xn distinct

I σ appears nowhere else, in the specification or equations

A theorem

(Mousavi, Reniers 2005): If the equations are in cfsc format and
the SOS rules in tyft, then bisimilarity is a congruence.

A generalization

Does it also work with monotone abstract GSOS?

Encode equations as assignment rules. Example:

x
a−→ x ′

x | y
a−→ x ′ | y

x | y = y | x !x = !x | x

becomes

x
a−→ x ′

x | y
a−→ x ′ | y

y | x
a−→ t

x | y
a−→ t

!x | x
a−→ t

!x
a−→ t

A generalization

Does it also work with monotone abstract GSOS?

Encode equations as assignment rules. Example:

x
a−→ x ′

x | y
a−→ x ′ | y

x | y = y | x !x = !x | x

becomes

x
a−→ x ′

x | y
a−→ x ′ | y

y | x
a−→ t

x | y
a−→ t

!x | x
a−→ t

!x
a−→ t

Correctness encoding

Suppose E in cfsc format w.r.t. a monotone abstract GSOS
specification ρ. Encode E properly as assignment rules ∆.

Theorem
The interpretation of ρ and E coincides with the interpretation of
ρ and ∆, up to behavioural equivalence.

If F preserves weak pullbacks, then

I bisimilarity is a congruence

I bisimulation up to context and bisimilarity is compatible

Correctness encoding

Suppose E in cfsc format w.r.t. a monotone abstract GSOS
specification ρ. Encode E properly as assignment rules ∆.

Theorem
The interpretation of ρ and E coincides with the interpretation of
ρ and ∆, up to behavioural equivalence.

If F preserves weak pullbacks, then

I bisimilarity is a congruence

I bisimulation up to context and bisimilarity is compatible

Correctness encoding

Suppose E in cfsc format w.r.t. a monotone abstract GSOS
specification ρ. Encode E properly as assignment rules ∆.

Theorem
The interpretation of ρ and E coincides with the interpretation of
ρ and ∆, up to behavioural equivalence.

If F preserves weak pullbacks, then

I bisimilarity is a congruence

I bisimulation up to context and bisimilarity is compatible

Conclusion

I Treatment of assignment rules and equations in cfsc format,
for monotone abstract GSOS.

I Abstract specifications with order: notion of proof/derivations

Some future work:

I More on monotone specifications, lookahead in premises

I Monads with equations (Bonsangue, Hansen, Kurz, Rot:
CALCO 2013)

