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Bialgebras for operational semantics

I mathematical approach to structural operational semantics

I abstracts away from specific syntax and behaviour

I generalize (classical) GSOS, behavioural differential equations

Advantages:

I compositional semantics (bisimilarity is a congruence)

I soundness (compatibility) of bisimulation up to context
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Structural operational semantics

x
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a−→ x ′ | y

y
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can be modeled by an abstract GSOS specification

Σ(F × Id)⇒ FT

where

I F is the behaviour functor

I Σ the signature (polynomial Set endofunctor)

I TX is t ::= x | σ(t1, . . . , tn)
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This research

I These examples do not fit in the GSOS format (directly).

I Goal: interpret these in the bialgebraic framework, with the
nice well-behavedness properties (bisimilarity a congruence,
bisimulation up to context compatible, etc.)

I Method: reduce (monotone) specifications with equations, to
equivalent specifications without them.



This research

I These examples do not fit in the GSOS format (directly).

I Goal: interpret these in the bialgebraic framework, with the
nice well-behavedness properties (bisimilarity a congruence,
bisimulation up to context compatible, etc.)

I Method: reduce (monotone) specifications with equations, to
equivalent specifications without them.



Interpretation of a GSOS specification

A positive GSOS rule:

{xij
aj→ yj}j=1..m

σ(x1, . . . , xn)
c→ t

A model (T∅ set of closed terms):

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff we can deduce it from one of the

rules and the transitions of t1, . . . , tn.

Each GSOS specification has a unique model.
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we would like the interpretation to only have finite derivations.

Interpretation: the least model.
For this to exist, we restrict to positive GSOS.
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In general
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Assignment rule:
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And now?

Is the interpretation of a specification with assignment rules
well-behaved?

Idea: get rid of the assignment rules by applying one assignment
rule:
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(π1 ◦ τ∗ ◦ d) .
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Main result

Theorem
The interpretation of ρ and ∆ coincides with the operational
model of the monotone abstract GSOS specification lfpϕ.

Corollary

Bisimilarity is a congruence on the interpretation of ρ and ∆, and
bisimulation up to context is compatible.
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Second part: adding equations to abstract GSOS.
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Interpreted using structural congruence:

t ≡ u u
a−→ u′ u′ ≡ v

t
a−→ v

≡ is the congruence generated by the equations.
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Interpretation: transition systems

The interpretation is the least model

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff either

1. we can deduce it from one of the GSOS rules and the
transitions of t1, . . . , tn
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a−→ t ′.

Generalizes to interpreting arbitrary monotone GSOS specification
with equations.



Interpretation: transition systems

The interpretation is the least model

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff either

1. we can deduce it from one of the GSOS rules and the
transitions of t1, . . . , tn

2. σ(t1, . . . , tn) ≡ t and t
a−→ t ′.

Generalizes to interpreting arbitrary monotone GSOS specification
with equations.



Interpretation: transition systems

The interpretation is the least model

f : T∅ → P(A× T∅)

such that σ(t1, . . . , tn)
a−→ t ′ iff either

1. we can deduce it from one of the GSOS rules and the
transitions of t1, . . . , tn

2. σ(t1, . . . , tn) ≡ t and t
a−→ t ′.

Generalizes to interpreting arbitrary monotone GSOS specification
with equations.



Structural congruence: transition systems

Mousavi, Reniers: Congruence for Structural Congruences.
FoSSaCS 2005.

I treats structural congruences in the context of structural
operational semantics (mainly the tyft/tyxt format)

I provides three different interpretations of structural
congruence

I provides a format for equations which guarantees bisimilarity
to be a congruence (combined with tyft/tyxt)
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A format

(Mousavi, Reniers 2005) cfsc format (w.r.t an SOS specification);
equations of the form

σ(x1, . . . , xn) = σ′(y1, . . . , yn)

distinct variables, x1, . . . , xn permutation of y1, . . . , yn. Or . . .

σ(x1, . . . , xn) = t

where

I t is a term, variables bound by left-hand side

I x1, . . . , xn distinct

I σ appears nowhere else, in the specification or equations
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A theorem

(Mousavi, Reniers 2005): If the equations are in cfsc format and
the SOS rules in tyft, then bisimilarity is a congruence.
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Correctness encoding

Suppose E in cfsc format w.r.t. a monotone abstract GSOS
specification ρ. Encode E properly as assignment rules ∆.

Theorem
The interpretation of ρ and E coincides with the interpretation of
ρ and ∆, up to behavioural equivalence.

If F preserves weak pullbacks, then

I bisimilarity is a congruence

I bisimulation up to context and bisimilarity is compatible
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Conclusion

I Treatment of assignment rules and equations in cfsc format,
for monotone abstract GSOS.

I Abstract specifications with order: notion of proof/derivations

Some future work:

I More on monotone specifications, lookahead in premises

I Monads with equations (Bonsangue, Hansen, Kurz, Rot:
CALCO 2013)


