Combining Bialgebraic Semantics and Equations

Jurriaan Rot Marcello Bonsangue

Leiden University, CWI

COIN, November 2013

Bialgebras for operational semantics

- mathematical approach to structural operational semantics
- abstracts away from specific syntax and behaviour
- generalize (classical) GSOS, behavioural differential equations

Bialgebras for operational semantics

- mathematical approach to structural operational semantics
- abstracts away from specific syntax and behaviour
- generalize (classical) GSOS, behavioural differential equations

Advantages:

- compositional semantics (bisimilarity is a congruence)
- soundness (compatibility) of bisimulation up to context

▶ ...

Structural operational semantics

$$\frac{x \xrightarrow{a} x'}{x \mid y \xrightarrow{a} x' \mid y} \qquad \frac{y \xrightarrow{a} y'}{x \mid y \xrightarrow{a} x \mid y'}$$

Structural operational semantics

$$\frac{x \xrightarrow{a} x'}{x \mid y \xrightarrow{a} x' \mid y} \qquad \frac{y \xrightarrow{a} y'}{x \mid y \xrightarrow{a} x \mid y'}$$

can be modeled by an abstract GSOS specification

$$\Sigma(F \times \mathsf{Id}) \Rightarrow FT$$

where

- F is the behaviour functor
- Σ the signature (polynomial Set endofunctor)
- TX is $t ::= x \mid \sigma(t_1, \ldots, t_n)$

Motivating example (1)

$$\frac{|x| \times \xrightarrow{a} t}{|x \xrightarrow{a} t}$$

represents $x \mid x \mid x \mid ...$

Motivating example (1)

$$\frac{|x| \times \xrightarrow{a} t}{|x \xrightarrow{a} t}$$

represents $x \mid x \mid x \mid ...$

Problem: not structural

Motivating example (2)

$$\frac{x \xrightarrow{a} x'}{x \mid y \xrightarrow{a} x' \mid y} \qquad x \mid y = y \mid x$$

Motivating example (2)

$$\frac{x \xrightarrow{a} x'}{x \mid y \xrightarrow{a} x' \mid y} \qquad x \mid y = y \mid x$$

Problem: how to interpret equations

This research

- These examples do not fit in the GSOS format (directly).
- Goal: interpret these in the bialgebraic framework, with the nice well-behavedness properties (bisimilarity a congruence, bisimulation up to context compatible, etc.)

This research

- These examples do *not* fit in the GSOS format (directly).
- Goal: interpret these in the bialgebraic framework, with the nice well-behavedness properties (bisimilarity a congruence, bisimulation up to context compatible, etc.)
- Method: reduce (monotone) specifications with equations, to equivalent specifications without them.

Interpretation of a GSOS specification

A positive GSOS rule:

$$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{j=1..m}}{\sigma(x_1,\ldots,x_n) \xrightarrow{c} t}$$

Interpretation of a GSOS specification

A positive GSOS rule:

$$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{j=1..m}}{\sigma(x_1,\ldots,x_n) \xrightarrow{c} t}$$

A model ($T\emptyset$ set of closed terms):

$$f: T\emptyset \to \mathcal{P}(A \times T\emptyset)$$

such that $\sigma(t_1, \ldots, t_n) \xrightarrow{a} t'$ iff we can deduce it from one of the rules and the transitions of t_1, \ldots, t_n .

Interpretation of a GSOS specification

A positive GSOS rule:

$$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{j=1..m}}{\sigma(x_1,\ldots,x_n) \xrightarrow{c} t}$$

A model ($T\emptyset$ set of closed terms):

$$f: T\emptyset \to \mathcal{P}(A \times T\emptyset)$$

such that $\sigma(t_1, \ldots, t_n) \xrightarrow{a} t'$ iff we can deduce it from one of the rules and the transitions of t_1, \ldots, t_n .

Each GSOS specification has a *unique* model.

Adding assignment rules

$$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{j=1..m}}{\sigma(x_1,\ldots,x_n) \xrightarrow{c} t} \qquad \frac{t \xrightarrow{a} y}{\sigma(x_1,\ldots,x_n) \xrightarrow{a} y}$$

A model ($T\emptyset$ set of closed terms):

$$f: T\emptyset \to \mathcal{P}(A \times T\emptyset)$$

such that ...

Adding assignment rules

$$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{j=1..m}}{\sigma(x_1,\ldots,x_n) \xrightarrow{c} t} \qquad \frac{t \xrightarrow{a} y}{\sigma(x_1,\ldots,x_n) \xrightarrow{a} y}$$

A model ($T\emptyset$ set of closed terms):

$$f: T\emptyset
ightarrow \mathcal{P}(A imes T\emptyset)$$

such that $\sigma(t_1, \ldots, t_n) \xrightarrow{a} t'$ iff either

- 1. we can deduce it from one of the GSOS rules and the transitions of t_1, \ldots, t_n .
- 2. there is an assignment rule from σ to t, and $t(t_1, \ldots, t_n) \xrightarrow{a} t'$.

Adding assignment rules

$$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{j=1..m}}{\sigma(x_1,\ldots,x_n) \xrightarrow{c} t} \qquad \frac{t \xrightarrow{a} y}{\sigma(x_1,\ldots,x_n) \xrightarrow{a} y}$$

A model ($T\emptyset$ set of closed terms):

$$f: T\emptyset
ightarrow \mathcal{P}(A imes T\emptyset)$$

such that $\sigma(t_1,\ldots,t_n) \xrightarrow{a} t'$ iff either

1. we can deduce it from one of the GSOS rules and the transitions of t_1, \ldots, t_n .

2. there is an assignment rule from σ to t, and $t(t_1, \ldots, t_n) \xrightarrow{a} t'$. Example:

$$\frac{\stackrel{a.0 \xrightarrow{a} 0}{\longrightarrow 0}}{\stackrel{!a.0|a.0 \xrightarrow{a} !a.0|0}{\longrightarrow !a.0 \mid 0}}$$

Interpretation

But: no unique model.

But: no unique model.

$$\frac{\sigma(x) \xrightarrow{a} y}{\sigma(x) \xrightarrow{a} y}$$

we would like the interpretation to only have *finite* derivations.

But: no unique model.

$$\frac{\sigma(x) \xrightarrow{a} y}{\sigma(x) \xrightarrow{a} y}$$

we would like the interpretation to only have *finite* derivations.

Interpretation: the least model.

For this to exist, we restrict to positive GSOS.

In general

Given an *ordered* behaviour functor *F*:

In general

Given an *ordered* behaviour functor *F*:

Abstract GSOS specification:

$$\rho: \Sigma(F \times \mathsf{Id}) \Rightarrow FT$$

which is monotone.

In general

Given an *ordered* behaviour functor *F*:

Abstract GSOS specification:

$$\rho: \Sigma(F \times \mathsf{Id}) \Rightarrow FT$$

which is *monotone*. *Assignment rule*:

$$\Sigma \Rightarrow T$$

Intepretation, in general

Monotone abstract GSOS specification:

 $\rho: \Sigma(F \times \mathsf{Id}) \Rightarrow FT$

Assignment rule:

$$\Sigma \Rightarrow T$$

Model of spec. ρ and set of assignment rules Δ :

 $f: T\emptyset \to FT\emptyset$

such that ...

Intepretation, in general

Monotone abstract GSOS specification:

 $\rho: \Sigma(F \times \mathsf{Id}) \Rightarrow FT$

Assignment rule:

$$\Sigma \Rightarrow T$$

Model of spec. ρ and set of assignment rules Δ :

 $f: T\emptyset \to FT\emptyset$

such that

$$f \circ \iota = F\mu \circ \rho \circ \Sigma \langle f, \mathsf{id} \rangle \lor \bigvee_{d \in \Delta} f \circ \mu \circ d$$

Interpretation: least model.

Is the interpretation of a specification with assignment rules well-behaved?

Is the interpretation of a specification with assignment rules well-behaved?

Idea: get rid of the assignment rules by applying one assignment rule:

(1) add
$$\frac{x \xrightarrow{a} x'}{|x \xrightarrow{a} |x| x'}$$
 because $\frac{\frac{x \xrightarrow{a} x}{|x|x \xrightarrow{a} |x|x'}}{|x \xrightarrow{a} |x| x'}$

. a . . /

Is the interpretation of a specification with assignment rules well-behaved?

Idea: get rid of the assignment rules by applying one assignment rule:

(1) add
$$\frac{x \xrightarrow{a} x'}{|x \xrightarrow{a} |x| x'}$$
 because $\frac{x \xrightarrow{x \to x}}{|x|x \xrightarrow{a} |x|x'}}{|x \xrightarrow{a} |x| x'}$
(2) add $\frac{x \xrightarrow{a} x'}{|x \xrightarrow{a} |x| x' |x}$ because $\frac{\frac{x \xrightarrow{a} x'}{|x \xrightarrow{a} |x| x}}{\frac{|x|x \xrightarrow{a} |x| x' |x}{|x \xrightarrow{a} |x| x' |x}}$

. a . . /

etc.

Is the interpretation of a specification with assignment rules well-behaved?

Idea: get rid of the assignment rules by applying one assignment rule:

(1) add
$$\frac{x \xrightarrow{a} x'}{|x \xrightarrow{a} |x| x'}$$
 because $\frac{x \xrightarrow{a} x'}{|x|x \xrightarrow{a} |x|x'}}{|x \xrightarrow{a} |x| x'}$
(2) add $\frac{x \xrightarrow{a} x'}{|x \xrightarrow{a} |x| x' |x}$ because $\frac{\frac{x \xrightarrow{a} x'}{|x \xrightarrow{a} |x| x}}{\frac{|x|x \xrightarrow{a} |x| x'|x}{|x \xrightarrow{a} |x| x' |x}}$

а, ,

etc. Use a function φ to do this recursive computation:

$$\varphi(\tau) = \rho \lor \bigvee_{d \in \Delta} (\pi_1 \circ \tau^* \circ d).$$

Main result

Theorem

The interpretation of ρ and Δ coincides with the operational model of the monotone abstract GSOS specification lfp φ .

Main result

Theorem

The interpretation of ρ and Δ coincides with the operational model of the monotone abstract GSOS specification lfp φ .

Corollary

Bisimilarity is a congruence on the interpretation of ρ and Δ , and bisimulation up to context is compatible.

Equations

Second part: adding equations to abstract GSOS.

$$\frac{x \xrightarrow{a} x'}{x \mid y \xrightarrow{a} x' \mid y} \quad x \mid y = y \mid x \qquad \qquad !x = !x \mid x$$

Equations

Second part: adding equations to abstract GSOS.

$$\frac{x \xrightarrow{a} x'}{x \mid y \xrightarrow{a} x' \mid y} \quad x \mid y = y \mid x \qquad \qquad !x = !x \mid x$$

Interpreted using structural congruence:

$$\frac{t \equiv u \qquad u \stackrel{a}{\rightarrow} u' \qquad u' \equiv v}{t \stackrel{a}{\rightarrow} v}$$

 \equiv is the congruence generated by the equations.

Interpretation: transition systems

The *interpretation* is the least model

$$f: T\emptyset \to \mathcal{P}(A \times T\emptyset)$$

such that $\sigma(t_1, \ldots, t_n) \xrightarrow{a} t'$ iff either

1. we can deduce it from one of the GSOS rules and the transitions of t_1, \ldots, t_n

Interpretation: transition systems

The *interpretation* is the least model

$$f: T\emptyset \to \mathcal{P}(A \times T\emptyset)$$

such that $\sigma(t_1,\ldots,t_n) \xrightarrow{a} t'$ iff either

1. we can deduce it from one of the GSOS rules and the transitions of t_1, \ldots, t_n

2.
$$\sigma(t_1,\ldots,t_n) \equiv t \text{ and } t \xrightarrow{a} t'$$
.

Interpretation: transition systems

The *interpretation* is the least model

$$f: T\emptyset \to \mathcal{P}(A \times T\emptyset)$$

such that $\sigma(t_1,\ldots,t_n) \xrightarrow{a} t'$ iff either

1. we can deduce it from one of the GSOS rules and the transitions of t_1, \ldots, t_n

2.
$$\sigma(t_1,\ldots,t_n) \equiv t \text{ and } t \xrightarrow{a} t'$$
.

Generalizes to interpreting arbitrary monotone GSOS specification with equations.

Structural congruence: transition systems

Mousavi, Reniers: Congruence for Structural Congruences. FoSSaCS 2005.

 treats structural congruences in the context of structural operational semantics (mainly the tyft/tyxt format) Structural congruence: transition systems

Mousavi, Reniers: Congruence for Structural Congruences. FoSSaCS 2005.

- treats structural congruences in the context of structural operational semantics (mainly the tyft/tyxt format)
- provides three different interpretations of structural congruence

Structural congruence: transition systems

Mousavi, Reniers: Congruence for Structural Congruences. FoSSaCS 2005.

- treats structural congruences in the context of structural operational semantics (mainly the tyft/tyxt format)
- provides three different interpretations of structural congruence
- provides a format for equations which guarantees bisimilarity to be a congruence (combined with tyft/tyxt)

Bisimilarity not a congruence

From (Mousavi, Reniers 2005):

$$\frac{1}{p \xrightarrow{a} p}$$
 $\frac{1}{q \xrightarrow{a} p}$ $p = \sigma(q)$

Bisimilarity not a congruence

From (Mousavi, Reniers 2005):

$$rac{\overline{p} \stackrel{a}{ o} p}{ o} rac{\overline{q} \stackrel{a}{ o} p}{ o} p \qquad p = \sigma(q)$$
then $p \sim q$, but $\sigma(p)
eq \sigma(q)$

A format

(Mousavi, Reniers 2005) cfsc format (w.r.t an SOS specification); equations of the form

$$\sigma(x_1,\ldots,x_n)=\sigma'(y_1,\ldots,y_n)$$

distinct variables, x_1, \ldots, x_n permutation of y_1, \ldots, y_n . Or ...

A format

(Mousavi, Reniers 2005) cfsc format (w.r.t an SOS specification); equations of the form

$$\sigma(x_1,\ldots,x_n)=\sigma'(y_1,\ldots,y_n)$$

distinct variables, x_1, \ldots, x_n permutation of y_1, \ldots, y_n . Or

$$\sigma(x_1,\ldots,x_n)=t$$

where

- t is a term, variables bound by left-hand side
- x_1, \ldots, x_n distinct
- $\blacktriangleright~\sigma$ appears nowhere else, in the specification or equations

A theorem

(Mousavi, Reniers 2005): If the equations are in cfsc format and the SOS rules in tyft, then bisimilarity is a congruence.

A generalization

Does it also work with monotone abstract GSOS?

A generalization

Does it also work with monotone abstract GSOS?

Encode equations as assignment rules. Example:

$$\frac{x \xrightarrow{a} x'}{x \mid y \xrightarrow{a} x' \mid y} \quad x \mid y = y \mid x \qquad \qquad !x = !x \mid x$$

becomes

$$\frac{x \xrightarrow{a} x'}{x \mid y \xrightarrow{a} x' \mid y} \qquad \frac{y \mid x \xrightarrow{a} t}{x \mid y \xrightarrow{a} t} \qquad \frac{|x \mid x \xrightarrow{a} t}{|x \xrightarrow{a} t}$$

Suppose *E* in cfsc format w.r.t. a monotone abstract GSOS specification ρ . Encode *E* properly as assignment rules Δ .

Suppose *E* in cfsc format w.r.t. a monotone abstract GSOS specification ρ . Encode *E* properly as assignment rules Δ .

Theorem

The interpretation of ρ and E coincides with the interpretation of ρ and Δ , up to behavioural equivalence.

Suppose *E* in cfsc format w.r.t. a monotone abstract GSOS specification ρ . Encode *E* properly as assignment rules Δ .

Theorem

The interpretation of ρ and E coincides with the interpretation of ρ and Δ , up to behavioural equivalence.

- If F preserves weak pullbacks, then
 - bisimilarity is a congruence
 - bisimulation up to context and bisimilarity is compatible

Conclusion

- Treatment of assignment rules and equations in cfsc format, for *monotone* abstract GSOS.
- Abstract specifications with order: notion of proof/derivations

Some future work:

- More on monotone specifications, lookahead in premises
- Monads with equations (Bonsangue, Hansen, Kurz, Rot: CALCO 2013)