Combining Bialgebraic Semantics and Equations

Jurriaan Rot Marcello Bonsangue

Leiden University, CWI
COIN, November 2013

Bialgebras for operational semantics

- mathematical approach to structural operational semantics
- abstracts away from specific syntax and behaviour
- generalize (classical) GSOS, behavioural differential equations

Bialgebras for operational semantics

- mathematical approach to structural operational semantics
- abstracts away from specific syntax and behaviour
- generalize (classical) GSOS, behavioural differential equations

Advantages:

- compositional semantics (bisimilarity is a congruence)
- soundness (compatibility) of bisimulation up to context

Structural operational semantics

$$
\frac{x \xrightarrow{a} x^{\prime}}{x\left|y \xrightarrow{a} x^{\prime}\right| y} \quad \frac{y \xrightarrow{a} y^{\prime}}{x|y \xrightarrow{a} x| y^{\prime}}
$$

Structural operational semantics

$$
\frac{x \xrightarrow{a} x^{\prime}}{x\left|y \xrightarrow{a} x^{\prime}\right| y} \quad \frac{y \xrightarrow{a} y^{\prime}}{x|y \xrightarrow{a} x| y^{\prime}}
$$

can be modeled by an abstract GSOS specification

$$
\Sigma(F \times \mathrm{Id}) \Rightarrow F T
$$

where

- F is the behaviour functor
- Σ the signature (polynomial Set endofunctor)
- $T X$ is $t::=x \mid \sigma\left(t_{1}, \ldots, t_{n}\right)$

Motivating example (1)

$$
\frac{!x \mid x \xrightarrow{a} t}{!x \xrightarrow{a} t}
$$

represents $x|x| x \mid \ldots$

Motivating example (1)

$$
\frac{!x \mid x \xrightarrow{a} t}{!x \xrightarrow{a} t}
$$

represents $x|x| x \mid \ldots$

Problem: not structural

Motivating example (2)

$$
\frac{x \xrightarrow{a} x^{\prime}}{x\left|y \xrightarrow{a} x^{\prime}\right| y} \quad x|y=y| x
$$

Motivating example (2)

$$
\frac{x \xrightarrow{a} x^{\prime}}{x\left|y \xrightarrow{a} x^{\prime}\right| y} \quad x|y=y| x
$$

Problem: how to interpret equations

This research

- These examples do not fit in the GSOS format (directly).
- Goal: interpret these in the bialgebraic framework, with the nice well-behavedness properties (bisimilarity a congruence, bisimulation up to context compatible, etc.)

This research

- These examples do not fit in the GSOS format (directly).
- Goal: interpret these in the bialgebraic framework, with the nice well-behavedness properties (bisimilarity a congruence, bisimulation up to context compatible, etc.)
- Method: reduce (monotone) specifications with equations, to equivalent specifications without them.

Interpretation of a GSOS specification

A positive GSOS rule:

$$
\frac{\left\{x_{i_{j}} \xrightarrow{a_{j}} y_{j}\right\}_{j=1 \ldots m}}{\sigma\left(x_{1}, \ldots, x_{n}\right) \xrightarrow{c} t}
$$

Interpretation of a GSOS specification

A positive GSOS rule:

$$
\frac{\left\{x_{i_{j}} \xrightarrow{a_{j}} y_{j}\right\}_{j=1 . . m}}{\sigma\left(x_{1}, \ldots, x_{n}\right) \xrightarrow{c} t}
$$

A model ($T \emptyset$ set of closed terms):

$$
f: T \emptyset \rightarrow \mathcal{P}(A \times T \emptyset)
$$

such that $\sigma\left(t_{1}, \ldots, t_{n}\right) \xrightarrow{a} t^{\prime}$ iff we can deduce it from one of the rules and the transitions of t_{1}, \ldots, t_{n}.

Interpretation of a GSOS specification

A positive GSOS rule:

$$
\frac{\left\{x_{i_{j}} \xrightarrow{a_{j}} y_{j}\right\}_{j=1 . . m}}{\sigma\left(x_{1}, \ldots, x_{n}\right) \xrightarrow{c} t}
$$

A model ($T \emptyset$ set of closed terms):

$$
f: T \emptyset \rightarrow \mathcal{P}(A \times T \emptyset)
$$

such that $\sigma\left(t_{1}, \ldots, t_{n}\right) \xrightarrow{a} t^{\prime}$ iff we can deduce it from one of the rules and the transitions of t_{1}, \ldots, t_{n}.

Each GSOS specification has a unique model.

Adding assignment rules

$$
\frac{\left\{x_{i_{j}} \xrightarrow{a_{j}} y_{j}\right\}_{j=1 . . m}}{\sigma\left(x_{1}, \ldots, x_{n}\right) \xrightarrow{c} t} \quad \frac{t \stackrel{a}{\rightarrow} y}{\sigma\left(x_{1}, \ldots, x_{n}\right) \xrightarrow{a} y}
$$

A model ($T \emptyset$ set of closed terms):

$$
f: T \emptyset \rightarrow \mathcal{P}(A \times T \emptyset)
$$

such that ...

Adding assignment rules

$$
\frac{\left\{x_{i_{j}} \xrightarrow{a_{j}} y_{j}\right\}_{j=1 . . m}}{\sigma\left(x_{1}, \ldots, x_{n}\right) \xrightarrow{c} t} \quad \frac{t \xrightarrow{a} y}{\sigma\left(x_{1}, \ldots, x_{n}\right) \xrightarrow{a} y}
$$

A model ($T \emptyset$ set of closed terms):

$$
f: T \emptyset \rightarrow \mathcal{P}(A \times T \emptyset)
$$

such that $\sigma\left(t_{1}, \ldots, t_{n}\right) \xrightarrow{a} t^{\prime}$ iff either

1. we can deduce it from one of the GSOS rules and the transitions of t_{1}, \ldots, t_{n}.
2. there is an assignment rule from σ to t, and $t\left(t_{1}, \ldots, t_{n}\right) \xrightarrow{a} t^{\prime}$.

Adding assignment rules

$$
\frac{\left\{x_{i_{j}} \stackrel{a_{j}}{\rightarrow} y_{j}\right\}_{j=1 . . m}}{\sigma\left(x_{1}, \ldots, x_{n}\right) \xrightarrow{c} t} \quad \frac{t \xrightarrow{a} y}{\sigma\left(x_{1}, \ldots, x_{n}\right) \xrightarrow{a} y}
$$

A model ($T \emptyset$ set of closed terms):

$$
f: T \emptyset \rightarrow \mathcal{P}(A \times T \emptyset)
$$

such that $\sigma\left(t_{1}, \ldots, t_{n}\right) \xrightarrow{a} t^{\prime}$ iff either

1. we can deduce it from one of the GSOS rules and the transitions of t_{1}, \ldots, t_{n}.
2. there is an assignment rule from σ to t, and $t\left(t_{1}, \ldots, t_{n}\right) \xrightarrow{a} t^{\prime}$.

Example:

$$
\frac{\frac{a .0 \xrightarrow{a} 0}{\text { !a. } 0 \mid a .0 \xrightarrow{a}!\text { !a. } 0 \mid 0}}{\text { !a. } 0 \xrightarrow{a}!a .0 \mid 0}
$$

Interpretation

But: no unique model.

Interpretation

But: no unique model.

$$
\frac{\sigma(x) \xrightarrow{a} y}{\sigma(x) \xrightarrow{a} y}
$$

we would like the interpretation to only have finite derivations.

Interpretation

But: no unique model.

$$
\frac{\sigma(x) \xrightarrow{a} y}{\sigma(x) \xrightarrow{a} y}
$$

we would like the interpretation to only have finite derivations.

Interpretation: the least model.
For this to exist, we restrict to positive GSOS.

In general

Given an ordered behaviour functor F :

In general

Given an ordered behaviour functor F :

Abstract GSOS specification:

$$
\rho: \Sigma(F \times \mathrm{Id}) \Rightarrow F T
$$

which is monotone.

In general

Given an ordered behaviour functor F :

Abstract GSOS specification:

$$
\rho: \Sigma(F \times \mathrm{Id}) \Rightarrow F T
$$

which is monotone.
Assignment rule:

$$
\Sigma \Rightarrow T
$$

Intepretation, in general

Monotone abstract GSOS specification:

$$
\rho: \Sigma(F \times \mathrm{Id}) \Rightarrow F T
$$

Assignment rule:

$$
\Sigma \Rightarrow T
$$

Model of spec. ρ and set of assignment rules Δ :

$$
f: T \emptyset \rightarrow F T \emptyset
$$

such that ...

Intepretation, in general

Monotone abstract GSOS specification:

$$
\rho: \Sigma(F \times \mathrm{Id}) \Rightarrow F T
$$

Assignment rule:

$$
\Sigma \Rightarrow T
$$

Model of spec. ρ and set of assignment rules Δ :

$$
f: T \emptyset \rightarrow F T \emptyset
$$

such that

$$
f \circ \iota=F \mu \circ \rho \circ \Sigma\langle f, \text { id }\rangle \vee \bigvee_{d \in \Delta} f \circ \mu \circ d
$$

Interpretation: least model.

And now?

Is the interpretation of a specification with assignment rules well-behaved?

And now?

Is the interpretation of a specification with assignment rules well-behaved?
Idea: get rid of the assignment rules by applying one assignment rule:
(1) add $\quad \frac{x^{a} \rightarrow x^{\prime}}{!x \xrightarrow{a}!x \mid x^{\prime}} \quad$ because $\quad \frac{\frac{x^{a} \rightarrow x^{\prime}}{!x\left|x^{a}!x\right| x^{\prime}}}{!x \xrightarrow{a}!x \mid x^{\prime}}$

And now?

Is the interpretation of a specification with assignment rules well-behaved?
Idea: get rid of the assignment rules by applying one assignment rule:

$$
\begin{array}{ccc}
\text { (1) add } & \frac{x \xrightarrow{a} x^{\prime}}{!x \xrightarrow{a}!x \mid x^{\prime}} & \text { because }
\end{array} \frac{\frac{x^{a} \rightarrow x^{\prime}}{!x\left|x^{a}!x\right| x^{\prime}}}{!x \xrightarrow{a}!x \mid x^{\prime}}
$$

etc.

And now?

Is the interpretation of a specification with assignment rules well-behaved?
Idea: get rid of the assignment rules by applying one assignment rule:

$$
\begin{array}{ccc}
\text { (1) add } & \frac{x \xrightarrow{a} x^{\prime}}{!x \xrightarrow{a}!x \mid x^{\prime}} & \text { because }
\end{array} \frac{\frac{x^{a} \rightarrow x^{\prime}}{!x\left|x^{a}!x\right| x^{\prime}}}{!x \xrightarrow{a}!x \mid x^{\prime}}
$$

etc. Use a function φ to do this recursive computation:

$$
\varphi(\tau)=\rho \vee \bigvee_{d \in \Delta}\left(\pi_{1} \circ \tau^{*} \circ d\right)
$$

Main result

Theorem
The interpretation of ρ and Δ coincides with the operational model of the monotone abstract GSOS specification Ifp φ.

Main result

Theorem
The interpretation of ρ and Δ coincides with the operational model of the monotone abstract GSOS specification Ifp φ.

Corollary

Bisimilarity is a congruence on the interpretation of ρ and Δ, and bisimulation up to context is compatible.

Equations

Second part: adding equations to abstract GSOS.

$$
\left.\frac{x \xrightarrow{a} x^{\prime}}{x\left|y \xrightarrow{a} x^{\prime}\right| y} \quad x|y=y| x \quad!x=!x \right\rvert\, x
$$

Equations

Second part: adding equations to abstract GSOS.

$$
\left.\frac{x \xrightarrow{a} x^{\prime}}{x\left|y \xrightarrow{a} x^{\prime}\right| y} \quad x|y=y| x \quad!x=!x \right\rvert\, x
$$

Interpreted using structural congruence:

$$
\frac{t \equiv u \quad u \xrightarrow{a} u^{\prime} \quad u^{\prime} \equiv v}{t \xrightarrow{a} v}
$$

\equiv is the congruence generated by the equations.

Interpretation: transition systems

The interpretation is the least model

$$
f: T \emptyset \rightarrow \mathcal{P}(A \times T \emptyset)
$$

such that $\sigma\left(t_{1}, \ldots, t_{n}\right) \xrightarrow{a} t^{\prime}$ iff either

1. we can deduce it from one of the GSOS rules and the transitions of t_{1}, \ldots, t_{n}

Interpretation: transition systems

The interpretation is the least model

$$
f: T \emptyset \rightarrow \mathcal{P}(A \times T \emptyset)
$$

such that $\sigma\left(t_{1}, \ldots, t_{n}\right) \xrightarrow{a} t^{\prime}$ iff either

1. we can deduce it from one of the GSOS rules and the transitions of t_{1}, \ldots, t_{n}
2. $\sigma\left(t_{1}, \ldots, t_{n}\right) \equiv t$ and $t \xrightarrow{a} t^{\prime}$.

Interpretation: transition systems

The interpretation is the least model

$$
f: T \emptyset \rightarrow \mathcal{P}(A \times T \emptyset)
$$

such that $\sigma\left(t_{1}, \ldots, t_{n}\right) \xrightarrow{a} t^{\prime}$ iff either

1. we can deduce it from one of the GSOS rules and the transitions of t_{1}, \ldots, t_{n}
2. $\sigma\left(t_{1}, \ldots, t_{n}\right) \equiv t$ and $t \xrightarrow{a} t^{\prime}$.

Generalizes to interpreting arbitrary monotone GSOS specification with equations.

Structural congruence: transition systems

Mousavi, Reniers: Congruence for Structural Congruences. FoSSaCS 2005.

- treats structural congruences in the context of structural operational semantics (mainly the tyft/tyxt format)

Structural congruence: transition systems

Mousavi, Reniers: Congruence for Structural Congruences. FoSSaCS 2005.

- treats structural congruences in the context of structural operational semantics (mainly the tyft/tyxt format)
- provides three different interpretations of structural congruence

Structural congruence: transition systems

Mousavi, Reniers: Congruence for Structural Congruences. FoSSaCS 2005.

- treats structural congruences in the context of structural operational semantics (mainly the tyft/tyxt format)
- provides three different interpretations of structural congruence
- provides a format for equations which guarantees bisimilarity to be a congruence (combined with tyft/tyxt)

Bisimilarity not a congruence

From (Mousavi, Reniers 2005):

$$
\overline{p \xrightarrow{a} p} \quad \overline{q \xrightarrow{a} p} \quad p=\sigma(q)
$$

Bisimilarity not a congruence

From (Mousavi, Reniers 2005):

$$
\overline{p \xrightarrow{a} p} \quad \overline{q \xrightarrow{a} p} \quad p=\sigma(q)
$$

then $p \sim q$, but $\sigma(p) \nsim \sigma(q)$

A format

(Mousavi, Reniers 2005) cfsc format (w.r.t an SOS specification); equations of the form

$$
\sigma\left(x_{1}, \ldots, x_{n}\right)=\sigma^{\prime}\left(y_{1}, \ldots, y_{n}\right)
$$

distinct variables, x_{1}, \ldots, x_{n} permutation of y_{1}, \ldots, y_{n}. Or \ldots

A format

(Mousavi, Reniers 2005) cfsc format (w.r.t an SOS specification); equations of the form

$$
\sigma\left(x_{1}, \ldots, x_{n}\right)=\sigma^{\prime}\left(y_{1}, \ldots, y_{n}\right)
$$

distinct variables, x_{1}, \ldots, x_{n} permutation of y_{1}, \ldots, y_{n}. Or

$$
\sigma\left(x_{1}, \ldots, x_{n}\right)=t
$$

where

- t is a term, variables bound by left-hand side
- x_{1}, \ldots, x_{n} distinct
- σ appears nowhere else, in the specification or equations

A theorem

(Mousavi, Reniers 2005): If the equations are in cfsc format and the SOS rules in tyft, then bisimilarity is a congruence.

A generalization

Does it also work with monotone abstract GSOS?

A generalization

Does it also work with monotone abstract GSOS?

Encode equations as assignment rules. Example:

$$
\left.\frac{x \xrightarrow{a} x^{\prime}}{x\left|y \xrightarrow{a} x^{\prime}\right| y} \quad x|y=y| x \quad!x=!x \right\rvert\, x
$$

becomes

$$
\frac{x \xrightarrow{a} x^{\prime}}{x\left|y \xrightarrow{a} x^{\prime}\right| y} \quad \frac{y \mid x \xrightarrow{a} t}{x \mid y \xrightarrow{a} t} \quad \frac{!x \mid x \xrightarrow{a} t}{!x \xrightarrow{a} t}
$$

Correctness encoding

Suppose E in cfsc format w.r.t. a monotone abstract GSOS specification ρ. Encode E properly as assignment rules Δ.

Correctness encoding

Suppose E in cfsc format w.r.t. a monotone abstract GSOS specification ρ. Encode E properly as assignment rules Δ.

Theorem
The interpretation of ρ and E coincides with the interpretation of ρ and Δ, up to behavioural equivalence.

Correctness encoding

Suppose E in cfsc format w.r.t. a monotone abstract GSOS specification ρ. Encode E properly as assignment rules Δ.

Theorem
The interpretation of ρ and E coincides with the interpretation of ρ and Δ, up to behavioural equivalence.
If F preserves weak pullbacks, then

- bisimilarity is a congruence
- bisimulation up to context and bisimilarity is compatible

Conclusion

- Treatment of assignment rules and equations in cfsc format, for monotone abstract GSOS.
- Abstract specifications with order: notion of proof/derivations

Some future work:

- More on monotone specifications, lookahead in premises
- Monads with equations (Bonsangue, Hansen, Kurz, Rot: CALCO 2013)

