Towards Formal Foundations of Agda's Data Types

Henning Basold Radboud University, Nijmegen and CWI, Amsterdam

Joint work with Herman Geuvers

AIM XXIII 20 April 2016

Outline

- Introduction
- Categorical Mixed Inductive-Coinductive Dependent Types
- Mixed Inductive-Coinductive Dependent Type Theory
- 4 Discussion

Introduction

It bothered me for a while that

- ▶ there is no type theory with arbitrary mixed inductive-coinductive, dependent types.
- people keep hold on coinductive types à la Coq.
- I never understood the difference between term parameters and indices.

That led me to

- extract the categorical principles behind such types.
- build a type theory resembling the categorical principles.

Relation to Agda

- ▶ With some restrictions, the data types of Agda can be directly represented.
- ▶ Not yet treated: polymorphism, sized types, universes.

Example

data
$$Vec (A : Set) : \mathbb{N} \to Set where$$

 $\mathsf{nil} \; : \; \top \to \mathsf{Vec} \; \mathsf{0}$

cons : $(n : \mathbb{N}^{\infty}) \to \mathsf{A} \times \mathsf{Vec} \ n \to \mathsf{Vec} \ (n+1)$

Interpret Vec as set family

- Lists of length *n* over *A*: $A^n = \underbrace{A \times \cdots \times A}_{n \text{ times}}$
- ▶ Vector data type: Vec $A = \{A^n\}_{n \in \mathbb{N}}$
- ▶ $\mathsf{nil} = \{\mathsf{nil}_*\} \colon \{\mathbf{1}\}_{* \in \mathbf{1}} \to \{A^0\}_{* \in \mathbf{1}}$
- ▶ cons = $\{\operatorname{cons}_n\}_{n\in\mathbb{N}}$: $\{A \times A^n\}_{n\in\mathbb{N}} \to \{A^{n+1}\}_{n\in\mathbb{N}}$

Dependent Data Types are Initial/Final Dialgebras

Interpret Vec as set family in $\mathbf{Set}^{\mathbb{N}}$:

- Lists of length *n* over *A*: $A^n = \underbrace{A \times \cdots \times A}_{n \text{ times}}$
- ▶ $nil = {nil_*}: {\bf 1}_{* \in {\bf 1}} \rightarrow {A^0}_{* \in {\bf 1}}$
- ► cons = $\{\operatorname{cons}_n\}_{n\in\mathbb{N}}$: $\{A \times A^n\}_{n\in\mathbb{N}} \to \{A^{n+1}\}_{n\in\mathbb{N}}$

Vectors as dialgebra

Let $F,G:\mathbf{Set}^{\mathbb{N}}\to\mathbf{Set}^{\mathbb{N}}\times\mathbf{Set}^{\mathbb{N}}$ be functors to the product category

$$F(X) = (\{1\}, \{A \times X_n\}_{n \in \mathbb{N}})$$
 and $G(X) = (\{X_0\}, \{X_{n+1}\}_{n \in \mathbb{N}})$

Then (nil, cons) : $F(\text{Vec }A) \rightarrow G(\text{Vec }A)$ is the initial (F,G)-dialgebra.

General Setup

Dependent, inductive data type is an initial dialgebra in a (cloven) fibration $P : \mathbf{E} \to \mathbf{B}$ with

- ▶ Dependencies given by an index $I \in \mathbf{B}$
- ▶ Local dependencies of constructors $J_1, ..., J_n \in \mathbf{B}$
- ▶ Type given as object $A \in \mathbf{E}_I$, i.e., $A \in \mathbf{E}$ with P(A) = I
- A functor

$$F: \mathbf{E}_I \to \mathbf{E}_{J_1} \times \cdots \times \mathbf{E}_{J_n}$$

for the constructor arguments

- Morphisms u_1, \ldots, u_n with $u_k : J_n \to I$ giving the substitutions in the result type of the constructors
- ▶ An initial dialgebra $(c_1, ..., c_n) : F(A) \rightarrow G_u(A)$, where

$$G_u = \langle u_1^*, \cdots, u_n^* \rangle$$

substitutes u_k in a type.

Phew, an example after this long list

Example (Vectors)

Recall that (nil, cons) : $F(\text{Vec }A) \rightarrow G(\text{Vec }A)$ is the initial initial (F,G)-dialgebra for

$$F(X) = (\{1\}, \{A \times X_n\}_{n \in \mathbb{N}})$$
 and $G(X) = (\{X_0\}, \{X_{n+1}\}_{n \in \mathbb{N}})$

We have $G = G_u$ with

$$u_1 = z : \mathbf{1} \to \mathbb{N}$$
 $z(*) = 0$
 $u_2 = s : \mathbb{N} \to \mathbb{N}$ $s(n) = n + 1$

Giving us

$$u_1^*(X) = \{X_{z(i)}\}_{i \in \mathbf{1}} = \{X_0\}_{i \in \mathbf{1}}$$

$$u_2^*(X) = \{X_{s(n)}\}_{n \in \mathbb{N}} = \{X_{n+1}\}_{n \in \mathbb{N}}$$

Dualise for coinductive data types

- ▶ The functors F and G_u swap roles
- Substitutions in the domain of the destructors
- ► Can block application

Example (Partial Streams)

codata PStr (A : Set) : $\mathbb{N}^{\infty} \to$ Set where

 $\mathsf{hd} : (\mathsf{n} : \mathbb{N}^\infty) \to \mathsf{PStr} (s_\infty \mathsf{n}) \to \mathsf{A}$

 $\mathsf{tl} \; : \; (\mathsf{n} \; : \; \mathbb{N}^\infty) \to \mathsf{PStr} \; (s_\infty \; \mathsf{n}) \to \mathsf{PStr} \; \mathsf{n}$

where \mathbb{N}^{∞} are natural numbers with infinity.

$$G_u, F: \mathbf{P}_{\mathbb{N}^{\infty}} \to \mathbf{P}_{\mathbb{N}^{\infty}} \times \mathbf{P}_{\mathbb{N}^{\infty}}$$

$$G_u = \langle s_{\infty}^*, s_{\infty}^* \rangle$$
 $F = \langle K_A^{\mathbb{N}^{\infty}}, \mathsf{Id} \rangle$

20.04.16

How to obtain models?

Theorem

Dependent, strictly positive data types can be interpreted in a locally Cartesian closed category with dependent products if it has initial algebras for polynomial functors.

Proof ingredients

- Reduce dialgebras to algebras/coalgebras
- ▶ Dependent polynomial functors are closed under taking fixed points
- Fixed points of dependent polynomials can be constructed from non-dependent
- Final coalgebras of polynomials can be constructed from initial algebras

For details see

Dependent Inductive and Coinductive Types are Fibrational Dialgebras, H.B., FICS 2015.

Handling dependencies

Parameter contexts and instantiations

$$\Theta \mid \Gamma_1 \vdash A : \Gamma_2 \rightarrow *,$$

Suppose that $\Gamma_2 = x_1 : B_1, \dots, x_n : B_n$ and $\Gamma_1 \vdash t_k : B_k$, then

$$\Theta \mid \Gamma_1 \vdash A @ t_1 @ \cdots @ t_n : *.$$

Type constructor variables

$$X : \Gamma_2 \rightarrow * | \Gamma_1 \vdash X : \Gamma_2 \rightarrow *,$$

which we can instantiate to

$$X : \Gamma_2 \rightarrow * \mid \Gamma_1 \vdash X @ t_1 @ \cdots @ t_n : *.$$

Forming types

$$\frac{k = 1, \dots, n \qquad \sigma_k : \Gamma_k \to \Gamma \qquad \Theta, X : \Gamma \to * \mid \Gamma_k \vdash A_k : *}{\Theta \mid \emptyset \vdash \rho(X : \Gamma \to *; \overrightarrow{\sigma}; \overrightarrow{A}) : \Gamma \to *}$$

- ▶ $n \in \mathbb{N}$
- ▶ $\sigma_k : \Gamma_k \to \Gamma$ substitution of terms in context Γ_k for variables in Γ
- $ightharpoonup A_k$ type with extra free variable

Example (Vectors) data $Vec (A : Set) : \mathbb{N} \to Set where$ nil $\cdot \top \rightarrow \text{Vec } 0$ cons: $(n : \mathbb{N}^{\infty}) \to A \times \text{Vec } n \to \text{Vec } (n+1)$ Vec $A := \mu(X : \Gamma \rightarrow *; (\sigma_1, \sigma_2); (\mathbf{1}, A \times X \otimes k))$ $\Gamma = n$: Nat and $\Gamma_1 = \emptyset$ and $\Gamma_2 = k$: Nat $\sigma_1 = (0) : \Gamma_1 \to (n : Nat)$ and $\sigma_2 = (s \otimes k) : \Gamma_2 \to (n : Nat)$ $X: (n: \mathsf{Nat}) \to * | \Gamma_1 \vdash \mathbf{1} : *$ $X: (n: Nat) \rightarrow * | \Gamma_2 \vdash A \times X \otimes k : *$

Examples II/II

- ▶ П is a coinductive type
- Existential quantification is its dual
- ► All of intuitionistic predicate logic can be represented
- Partial streams

16

Forming terms

For inductive types

$$\frac{\vdash \mu(X : \Gamma \to * ; \overrightarrow{\sigma}; \overrightarrow{A}) : \Gamma \to * \qquad 1 \leq k \leq n}{\vdash \alpha_k^{\mu(X : \Gamma \to * ; \overrightarrow{\sigma}; \overrightarrow{A})} : (\Gamma_k, y : A_k[\mu/X]) \to \mu @ \sigma_k}$$
(Ind-I)
$$\vdash C : \Gamma \to * \qquad \Delta, \Gamma_k, y_k : A_k[C/X] \vdash g_k : (C @ \sigma_k) \qquad \forall k = 1, \dots, n$$

$$\Delta \vdash \text{rec } \overrightarrow{(\Gamma_k, y_k)} . \overrightarrow{g_k} : (\Gamma, y : \mu @ \text{id}_{\Gamma}) \to C @ \text{id}_{\Gamma}$$

Dual for coinductive types

$$\frac{\vdash \nu(X : \Gamma \to * ; \overrightarrow{\sigma}; \overrightarrow{A}) : \Gamma \to * \qquad 1 \leq k \leq n}{\vdash \xi_k^{\nu(X : \Gamma \to * ; \overrightarrow{\sigma}; \overrightarrow{A})} : (\Gamma_k, y : \nu @ \sigma_k) \to A_k[\nu/X]}$$

$$\vdash C : \Gamma \to * \qquad \Delta, \Gamma_k, y_k : (C @ \sigma_k) \vdash g_k : A_k[C/X] \qquad \forall k = 1, \dots, n}$$

$$\Delta \vdash \operatorname{corec} (\overline{(\Gamma_k, y_k) : g_k} : (\Gamma, y : C @ \operatorname{id}_{\Gamma}) \to \nu @ \operatorname{id}_{\Gamma}$$

17

Computations

Reduction

- Defined as closure of contraction relation
- Essentially follows homomorphism diagrams
- Preserves types

Theorem

The reduction relation is strongly normalising.

For details see

► 'Type Theory based on Dependent Inductive and Coinductive Types', H.B. and Herman Geuvers, in LICS'16, 2016.

20.04.16

18

Partial implementation in Agda

Missing

- Missing features: polymorphism, sized types, universes.
- Missing in SN proof: induction.
- Translation of Agda's terms need to deal with (co)patterns
- Sized types Some first steps for the categorical logic

Future

- Bisimilarity can be defined canoncially for function space this is extensionality
- Use this to obtain an OTT or treat like HITs
- ► For the category theorists: generalise to programming on finitary functors (even more general: accessible)

20

Thank you very much for your attention!