Self-interpretation in lambda calculus

More on data types

A data type D is a set with some operations (functions) on it.

An k-ary operation is a function $f: D^k \to D$.

Thereby a 0-ary operation $c:D^0\to D$ is identified with a $c\in D$.

A datatype is determined by its operations on D:

$$c_1, \dots, c_{k_0} : D^0 \to D = D$$

 $f_1^1, \dots, f_{k_1}^1 : D^1 \to D$
 $f_1^2, \dots, f_{k_2}^2 : D^2 \to D$

Nat has $z : Nat, s : Nat \rightarrow Nat.$

Tree has 1 : Tree, p : Tree² \rightarrow Tree

Packing and unpacking λ -terms

Given M_1, \ldots, M_k , define

$$\langle M_1, \dots, M_k \rangle := \lambda z.z M_1 \dots M_k$$

Define U_i^k , with $1 \le i \le k$ by

$$U_i^k := \lambda x_1 \dots x_k . x_i$$

Then

$$U_i^k M_1 \dots M_k = M_i$$

$$\langle M_1, \dots, M_k \rangle U_i^k = U_i^k M_1 \dots M_k = M_i$$

Note that $K = U_1^2$

Second translation (Böhm-Piperno-Guerini)

Consider the data type D with

$$c:D, f:D\to D, g:D^2\to D$$

The second coding (also denoted by $\lceil t \rceil$) is

Proposition. There are lambda terms F, G such that

$$F \lceil t \rceil = \lceil f(t) \rceil$$
$$G \lceil t_1 \rceil \lceil t_2 \rceil = \lceil g(t_1, t_2) \rceil$$

PROOF. Take

$$F := \lambda t e.e U_2^3 t e$$

$$G := \lambda t_1 t_2 e.e U_3^3 t_1 t_2 e. \blacksquare$$

THEOREM. Given $A_1, A_2, A_3 \in \Lambda$ there is an $H \in \Lambda$ such that

PROOF. Try $H = \langle \langle B_1, B_2, B_3 \rangle \rangle$.

$$H \lceil c \rceil = \langle \langle B_1, B_2, B_3 \rangle \rangle \lceil c \rceil$$

$$= \lceil c \rceil \langle B_1, B_2, B_3 \rangle$$

$$= \langle B_1, B_2, B_3 \rangle U_1^3 \langle B_1, B_2, B_3 \rangle$$

$$= B_1 \langle B_1, B_2, B_3 \rangle$$

$$= A_1 \langle \langle B_1, B_2, B_3 \rangle \rangle, \qquad \text{if } B_1 := \lambda z. A_1 \langle z \rangle.$$

$$= A_1 H$$

$$H \lceil f(t) \rceil = \langle B_1, B_2, B_3 \rangle U_2^3 \lceil t \rceil \langle B_1, B_2, B_3 \rangle$$

$$= B_2 \lceil t \rceil \langle B_1, B_2, B_3 \rangle$$

$$= B_2 \lceil t \rceil H, \qquad \text{if } B_2 := \lambda tz. A_2 t \langle z \rangle.$$

$$H \lceil g(t_1, t_2) \rceil = A_3 \lceil t_1 \rceil \lceil t_2 \rceil H, \qquad \text{if } B_3 := \lambda t_1 t_2 z. A_3 t_1 t_2 \langle z \rangle. \blacksquare$$

Data type for coding lambda terms

Consider the data type

 $var: D \rightarrow D$

 $\mathtt{app}:\ D\to D\to D$

 $abs: D \rightarrow D$

Define Var, App, Abs as follows

 $\mathrm{Var} \ := \ \lambda x e.e U_1^3 x e$

 $\mathrm{App} \ := \ \lambda xye.eU_2^3xye$

Abs := $\lambda xe.eU_3^3xe$

Coding lambda terms $M \leadsto \lceil M \rceil$ (Mogensen)

THEOREM. There exists a λ -term E such that for all $M \in \Lambda$

$$\mathsf{E}^{\lceil} M^{\rceil} = M$$

PROOF. By recursion we can find an E such that

$$\begin{array}{rcl} \mathsf{E}(\mathsf{Var}\,x) &=& x \\ \mathsf{E}(\mathsf{App}\,m\,n) &=& \mathsf{E}m(\mathsf{E}n) \\ \mathsf{E}(\mathsf{Abs}\,m) &=& \lambda x.\mathsf{E}(mx) \end{array}$$

Then

Filling in the details of E one has (writing $C := \lambda xyz.xzy$)

$$\mathsf{E} = \langle \langle \mathsf{K}, \mathsf{S}, \mathsf{C} \rangle \rangle.$$

Application 1

If you see someone coming out of 'arrivals' in an airport, you cannot determine where he or she comes from.

Similarly, there is no F such that for all $X,Y \in \Lambda$

$$F(XY) = X$$

PROPOSITION. There exists an $F_i \in \Lambda$, $i \in \{1, 2\}$ such that

$$F_i \lceil X_1 X_2 \rceil = \lceil X_i \rceil.$$

PROOF. We do this for i = 1. By recursion there exists F_1 s.t.

$$F_1(\text{App } x_1 \ x_2) = A_2 x_1 x_2 F_1 = x_1, \text{ taking } A_2 = \mathsf{U}_2^3.$$

This suffices.

Lemma. There exists a term Num $\in \Lambda$ such that for all $M \in \Lambda$

$$\operatorname{Num}^{\scriptscriptstyle \lceil} M^{\scriptscriptstyle \rceil} =_\beta {}^{\scriptscriptstyle \lceil {\scriptscriptstyle \Gamma}} M^{\scriptscriptstyle \rceil {\scriptscriptstyle \rceil}}$$

Proof. Use recursion for the lambda calculus data type with

$$egin{array}{lcl} A_1xN &=& ext{App}^ ext{Var}\, X) \ A_2mnN &=& ext{App}(ext{App}^ ext{T}(ext{Var}\, x) \ A_3mN &=& ext{App}^ ext{T}(ext{Abs}(\lambda x.N(mx))) \end{array}$$

SECOND FIXED POINT THEOREM. For all F there is an X with

$$F^{\lceil}X^{\rceil} =_{\beta} X$$

PROOF. Let $W:=\lambda z.F(\operatorname{App}\ z(\operatorname{Num}\ z))$ and $X:=W^{\operatorname{dist}}$. Then

$$\begin{split} X &= W^{\lceil}W^{\rceil} \\ &= F(\texttt{App}^{\lceil}W^{\rceil}(\texttt{Num}^{\lceil}W^{\rceil}) = F(\texttt{App}^{\lceil}W^{\rceil\lceil}W^{\rceil\rceil}) \\ &= F^{\lceil}W^{\lceil}W^{\rceil\rceil} = F^{\lceil}X^{\rceil}. \;\blacksquare \end{split}$$

Application 2*

For a given T there exists a program P such that

$$P\mathbf{c}_k = \mathbf{c}_{k+1},$$
 if k is even, $= T^{\lceil}P^{\rceil}\mathbf{c}_k,$ otherwise.