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Abstract. This paper presents a proof language based on the work of
Sacerdoti Coen [1,2], Kirchner [3] and Autexier [4] on λ̄μμ̃, a calculus
introduced by Curien and Herbelin [5,6]. Just as λ̄μμ̃ preserves several
proof structures that are identified by the λ-calculus, the proof language
presented here aims to preserve as much proof structure as reasonable;
we call that property being logically saturated. This leads to several ad-
vantages when the language is used as a generic exchange language for
proofs, as well as for other uses.

We equip the calculus with a simple rendering in pseudo-natural lan-
guage that aims to give people tools to read, understand and exchange
terms of the language. We show how this rendering can, at the cost of
some more complexity, be made to produce text that is more natural
and idiomatic, or in the style of a declarative proof language like Isar or
Mizar.

1 Introduction

Effective Mathematical Knowledge Management requires languages for the rep-
resentation of proofs at a level that is aware of the logical reasoning without
committing to the technical details of a proof representation in e.g. a proof as-
sistant or a derivation system. We aim at a proof language that is general enough
to capturase different notions of proofs and that captures the logical structure of
a proof in detail; a language that differentiates distinct proofs, but identifies two
texts that represent the same proof. Such a proof language can be used as a com-
mon ground for interchange between different systems, as a language to speak
about proofs and transformations thereof (e.g. automatic proof enhancement,
rendering into natural language, . . . ).

Another requirement of such a proof language would be to have a nice natu-
ral language-style pretty-printing; the latter transformation ideally being simple
enough to be done in one’s head, so that a term in that language be readable
by itself for someone that knows the language. In this respect, the natural lan-
guage transformation of λ̄μμ̃ in [1] is very attractive: the transformation is purely
structural, and the term is read strictly from left to right. However, it does not
satisfyingly treat the whole calculus and λ̄μμ̃ (as extended to predicate logic in
Fellowship [3]) still identifies proofs we’d like to differentiate.

This paper presents a more discerning extension of λ̄μμ̃ and a basic rendering
of it in pseudo-natural language. We show how the rendering can be enhanced to
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produce text that is more pleasing to read, and sketch how λ̄μμ̃ can be translated
into the input language of proof assistants. The language presented here covers
only implicational logic and disjunction (with an extension to full propositional
logic given in the appendix and in [7]) and only proofs where every step taken
is an atomic step of reasoning. So, seen from the viewpoint of proof assistants,
we only deal with proofs where no automation is used. Naturally, the language
will be extended in future work to address these limitations.

1.1 What Is a Proof?

From a logician’s point of view, a proof is a derivation in a formal system of rules.
From a more general mathematician point of view, it is a text that convinces his
peers, for example a text that convinces that if they would spend enough time,
they would be able to produce a fully formal derivation.

With our view centred on proof assistants, we consider the user input to the
proof assistant to be a good candidate for the right notion of proof. A good test
for the suitability of a candidate proof format is thus how well it captures these
“proof assistant proofs”.

This notion of proof is both coarser and finer than logician’s proofs:

– It is coarser, because it glosses over automation done by the proof assistant;
if the automation procedure changes, and finds a different logician’s proof of
a step done by automation, we still consider it the same proof.

– It is finer, because it separates cases where the same logician’s proof (e.g. a
natural deduction derivation) is produced in different ways, e.g. by a top-
down proof or by a bottom-up proof, or by a proof that is partially top-down
and partially bottom-up.

1.2 Design

Differentiating Power. We have already mentioned that we want our proof
language to distinguish texts that code for different proofs, but identify texts
that code for the same proof. This naturally begs the question: when do two
texts represent different proofs and when do they represent the same proof?

We want to preserve the intentional content of a proof, the story that is
being told. For example, a proof that first establishes A, then B and from these
two concludes C is not the same as a proof that first established B, then A
and then concludes. So we want our language to distinguish the order in which
things happen, and to distinguish a forward-style (bottom-up) proof from a
backward-style (top-down) proof, and to distinguish these from proofs that are
done partially forwards and partially backwards.

As we focus on the logical content of proofs, it seems natural that we identify
texts that vary only by purely linguistic differences. For example, the proofs at
the right differ only linguistically from the corresponding proof at the left:

case 1: A holds . . . either A . . .
case 2: ¬A holds . . . or ¬A . . .
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H: A by B H: A by B
hence C thus C by H

But if the difference comes from application of a different reasoning step, a
different deduction rule, then it is not the same proof and the language should
distinguish them. For example:

we have A→ C ∧B we have A→ C ∧B
in particular we have A→ C that is, we have A→ C (x)
we already established A in lemma 5 and we have B (y)
thus C by lemma 5 and x, we conclude C

The left proof uses a projection (from A∧B, we deduce only A), while the right
proof uses a full decomposition (from A∧B, we deduce both A and B), it is not
the same deduction rule.

Saturated System. In the design of a proof language, one usually tries to
make it minimal at the logical level: A deduction rule that can be derived from
others is considered superfluous and is therefore removed. We however, aim for
a language that is saturated : Any step that an author can reasonably see as an
atomic step, as a rule of reasoning that his reader will not doubt, should be a
rule of the language. Any deduction rule that a proof assistant, or a logic, can
reasonably choose as part of its “minimal set” should be a rule of the language.
We don’t claim that our system is the final answer to the quest for a saturated
system, but we think we have come a long way. It should be tested on concrete
proof examples to see whether anything is missing. We now give a pointwise
discussion of the use of a saturated language for proofs.
• When the language is used as a proof interchange language, it allows the lan-
guage to be neutral towards the choices of primitives made by different proof
assistants; the language then is not closer to any one specific family of proof
assistants than to another. By its saturation, it is close to all of them. A prime
example of this is the implementation of classical logic: Some proof assistants
implement intuitionistic logic augmented with an axiom, e.g. excluded middle.
Others, such as PVS, use the reasoning with multiple goals of sequent calculus,
where proving any one of the goals finishes the proof. A proof in one style can
be transformed into the other style mechanically, but this produces a different
proof of the same proposition. A language that provides classical logic solely
through the double negation rule cannot faithfully represent PVS proofs.
• It makes the language particularly well suited to talk about proof manipula-
tions, e.g. an algorithm that transforms proofs from one system into another.
Because the saturated language has the concepts and rules from both systems,
the transformation can be expressed as a transformation of terms of that
language.
• It gives a tool to study and characterise what kinds of proofs a system can han-
dle, because these can be expressed as sublanguage of the saturated language.
•When the language is used as a proof authoring language, it has the advantage
to present all choices in a uniform way, without arbitrary distinction between
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which (in the user’s intuition) atomic step is atomic for the system and which
step is a lemma application. There is no reason the user should have to care
about that distinction.

Taking all this together, imagine a user that wants to work in classical logic,
but is used only to its expression as intuitionistic logic plus double negation
law. He ploughs on with his proof, but his proof assistant keeps track of the
alternative goals he could be proving instead of the goal he is thinking of, and
informing him of that list in a side-window. The user keeps an eye on it, and
notices that this other goal seems easier to prove at this point. He does so. He
doesn’t understand the proof he has written, but he asks the system to trans-
form it into an intuitionistic logic plus excluded middle proof, and he has a proof
he can read and understand. By being based on a saturated logical system, the
proof assistant has made its user’s life easier.

Naturally, the kernel of the proof assistant can still happen in a minimal
system, interpreting the other rules as lemma applications. A next version of
the proof assistant may actually use a different minimal set of rules, and no one
will notice. This is a kind of “abstract datatype” approach to logic: One does
not need to look into the choices the proof assistant has made; one is free to do
the things the logic one works in allows, the system implementing the abstract
signature maps some steps to atomic steps and some others to lemmas, but this
is none of our concern.

Human Factor. The proof language should also cater for human use, which
amounts to the following two criteria.
• Understandability. Expressions of the language should mean something to
a reader, be understandable. This is ensured if the user knows a transformation
to natural language that is simple enough that he can do it in his head, if every
construct of the language has a clear semantics and maps to a concept or a rule
that the reader recognises.
• Flexibility. The language should capture different notions of a human’s nat-
ural language view of a rigorous proof.

2 λ̄μμ̃

The λ̄μμ̃ calculus, which covers implication logic, is made up of three interde-
pendent syntactical categories, namely terms, environments and commands :

Syntax Typing judgement
v ::= x |λx : T.v |μα : T.c Γ � v : T |Δ
e ::= α | v ◦ e | μ̃x : T.c Γ | e : T � Δ

c ::= 〈v e〉 c : (Γ � Δ)

Its typing makes use of a hypothesis context (Γ , which is a set of declarations
{x1 : T1, . . . , xn : Tn} where the Ti are simple types and all xi are different) and
a goal context (Δ, which is a set of declarations {α1 : T1, . . . , αn : Tn} where the
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Ti are simple types and all αi are different). The part between � and | is the
stoup and contains a distinguished nameless formula.

Γ, x : T � x : T |Δ Γ |α : T � α : T, Δ

c : (Γ � α : T, Δ)
Γ � (μα : T.c) : T |Δ

c : (Γ, x : T �Δ)
Γ | (μ̃x : T.c) : T �Δ

Γ � v : T |Δ Γ | e : T � Δ

〈v e〉 : (Γ � Δ)
Γ � v : T |Δ Γ | e : T ′ � Δ

Γ | v ◦ e : T → T ′ � Δ

Γ, x : T � v : T ′ |Δ
Γ � (λx : T.v) : T → T ′ |Δ

Intuitionistic Fragment. Intuitionistic logic is obtained by restricting the use
of environment variables to only the most recently (innermost) bound one.

Definition 1. α is said to be used intuitionistically in c iff it occurs only in
positions where it is the most recently bound environment variable. Equivalently,
no path from the μ that binds α to an occurrence of α traverses a μ.

The three syntactical categories are to be understood as:

term v proves the sequent Γ � T, Δ. T is singled out as the thesis one is cur-
rently working on; switching is allowed, but is an explicit step: a μ captures
the current thesis, gives it a name so that it can be referred back to later
and goes to a “neutral” state where no formula is distinguished.
The natural language rendering of a term v thus naturally is some text that
is a proof of the sequent that types v, with the type of v as focus (current
thesis) at the beginning of the text.

environment e expects (consumes) a proof of T (a term v typed by Γ � v :
T |Δ) and continues further with the proof of sequent Γ, T � Δ, using the v
it has consumed. A μ̃ is the dual of μ; it captures the consumed proof and
gives it a name.
The natural language rendering of an environment thus naturally is a con-
text; that is some text containing a placeholder, a hole, such that if the
placeholder is filled in with a proof of Γ � T, Δ, then the result is a proof of
Γ � Δ. Furthermore, in this paper, the placeholder will, in the spirit of [1],
always be at the very beginning of the rendering.

command combination of a term and an environment (a provider and a con-
sumer) typed by the same Γ , T and Δ into a “closed” whole proving the
sequent Γ � Δ, which is the type of c. The type of commands does not have
a stoup (no singled out formula).
The natural language rendering of the command 〈v e〉 thus naturally is
the rendering of e with the placeholder filled in with the rendering of v. In
this paper, this amounts to the concatenation of the rendering of v and the
rendering of e.

Definition 2. A command whose environment ends in α is said to conclude α.
It ultimately concludes α if it concludes α or ends in a binder (i.e. μ̃x : T.c)
whose binding domain (i.e. c) ultimately concludes α.

For example, 〈v v′ ◦ α〉 concludes α, but 〈v v′ ◦ μ̃y : T. 〈v0 v1 ◦ α〉〉 does not.
The latter ultimately concludes α.
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3 Basic Pseudo-natural Language Rendering

The purpose of this rendering is to be a purely depth-0 structural, left-to-right
reading of λ̄μμ̃ expressions, that is faithful to the proof the expression codes for.
It is the rendering of [1], extended to handle the whole calculus and not only
the intuitionistic fragment. ↪→ is an increase in indentation level and ←↩ a
decrease.

[[x]] := by x [[α]] := ←↩ done proving α

[[λx : T.v]] := assume T (x) [[v]] [[v ◦ e]] := and [[v]] [[e]]
[[μα : T.c]] := thesis T (α) [[μ̃x : T.c]] := we have proven T (x)

↪→ [[c]] [[c]]
[[ 〈v e〉]] := [[v]] [[e]]

Example 1. This term

λxR : P → R.λxP : Q→ S → P.λyS : S.λyQ : Q.μα : R.

〈xP yQ ◦ yS ◦ μ̃yP : P. 〈xR yP ◦ α〉〉
of type (P → R)→ (Q→ S → P )→ S → Q→ R renders as

assume P → R (xR)
assume Q→ S → P (xP )
assume S (yS)
assume Q (yQ)
thesis R (α)

by xP and by yQ and by yS

we have proven P (yP )
by xR and by yP

done proving α

The following term of the same type:

λxR : P → R.λxP : Q→ S → P.λyS : S.λyQ : Q.μα : R.
〈
xR

(
μβ : P. 〈xP yQ ◦ yS ◦ β〉 ) ◦ α

〉

renders as

assume P → R (xR)
assume Q→ S → P (xP )
assume S (yS)
assume Q (yQ)
thesis R (α)

by xR and thesis P (β)
by xP and by yQ and by yS

done proving β
done proving α
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The previous term was a forward (bottom-up) proof, this is backward
(top-down) proof. In this manner, λ̄μμ̃ allows to choose at every step whether
it is done backwards or forwards.

Classical Logic. Sequent calculus handles classical logic by allowing a set of
formulas on the right hand side of the �. In terms of ordinary logical arguments,
this means that one maintains a set of goals throughout the reasoning; concluding
any one of these goals concludes the whole proof. In a λ̄μμ̃ term, there is one
goal “in focus” (the one before the stoup) and the other ones are named by
environment variables; we can switch to another goal by using its name. To
show how our extension of the [1] rendering to classical logic works we give as
an example a proof of Peirce’s law, ((P → Q) → P ) → P . This uses the “goal
switching” facility.

λx : (P → Q)→ P.μα : P. 〈x (μβ : P → Q. 〈λy : P.μγ : Q. 〈y α〉 β〉) ◦ α〉
which renders as

assume (P → Q)→ P (x)
thesis: P (α)

by x and thesis P → Q (β)
assume P (y)
thesis: Q (γ)

by y
done proving α

done proving β
done proving α

The classical logic step is the first “done proving α”. Intuitionistically, one would
have to prove γ at this point, but we conclude α instead, which concludes the
whole proof.

4 Enhanced Pseudo-natural Language

We present several enhancements to the basic transformation, that do not break
faithfulness to the proof the expression embodies. In order to keep the presen-
tation simple, we will not discuss the interaction between the enhancements
explicitly, unless there is an interesting or problematic point.

Backwards Proofs. This enhancement, namely replacing “and thesis” by “the
thesis is reduced to”, was already proposed in [1].

[[(μα : T.c) ◦ e]] := the thesis is reduced to T (α)
↪→ [[c]] [[e]]

It makes the intent of backwards proofs much more clear. Read the previous
example again while mentally doing the replacement.
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Intuitionistic Logic. Here, we recognise when single-goal logic (i.e. intuitionis-
tic logic, plus eventually a classical logic axiom) is used and adapt the rendering.
This consists in omitting the “(α)” when rendering a μα : T.c when α is used
intuitionistically in c, combined with these rules; ↵ is a line break.

[[α]] when the innermost parent μ binds α

:= ←↩ done
[[μα : T.c]] when c ultimately concludes α

:= we have to prove T (α)↵ ↪→ [[c]]

With this improvement, our natural language translation gives the same result
as the one in [1] on single-goal (sub)proofs, and also handles multiple-goal proofs.

Announcing Thesis Changes. The basic rendering informs the reader that
what has been proven was not what the reader thinks of as “the current thesis”
only at the end of a subproof. We see that e.g. in “done proving β” or “we have
proven T (x)”. That is essentially inherited from a prefix depth-first left-right
reading of λ̄μμ̃ terms. It enhances the readability of the proof if such changes are
announced at the start of the corresponding subproof, rather than at the end.
This is typically also required in the proof input language of proof assistants.
There are essentially three situations where such a thesis change happens:

Switching to another goal in Δ, a thing that is implicit in the standard se-
quent calculus, but is made explicit by the stoup structure of λ̄μμ̃. This
corresponds to the pattern μα : T.c where c does not ultimately conclude
α (but, say β : T ′). We want to announce the thesis T ′(β), however, in a
pattern like μα : T. 〈v μ̃x : T ′′. 〈v′ c〉〉 we want to delay the announcement
until we are under the μ̃ binder. As a solution, we use a subscript in the
transformation to keep track of the thesis currently active in the natural
language text.

[[ 〈v e〉]]β when e does not conclude β and concludes α

:= we now consider thesis α

[[v]]α[[e]]α
[[μβ : T.c]]α := thesis T (β)↵ ↪→ [[c]]β

This rendering keeps implicit in the natural language text that the active
thesis is the most recently introduced one.

A cut. If the root of the term of a command is a μ, then the basic rendering
already makes the announcement; we just tweak the text a bit:

[[ 〈μα : T.c e〉]] := we now prove T (α)
↪→ [[c]]

[[e]]

As to the pattern 〈λx : T.v e〉, it is dismissed as “bad style”: It is a proof
that does a thesis change, but refuses to announce it; fixing it crosses the



A Logically Saturated Extension of λ̄μμ̃ 413

line of showing a better proof than the one written, not the proof written.
It is suggested to η-expand this term to 〈μα : T. 〈v α〉 e〉, which can be
done programmatically as part of a “proof enhancement” transformation. A
similar thing happens with the pattern v◦e, where the root of v is a recursive
constructor other than μ (e.g. λ), with the same solution.

The pattern 〈v v1 ◦ . . . ◦ vn ◦ μ̃x : T.c〉. We can describe the environment
part more succinctly by writing e(μ̃x : T.c): it is an environment that finishes
with μ̃x : T.c and e(·) is that environment with the μ̃ removed and replaced
by a placeholder ·. A rendering would be

[[·]] := ←↩ done
[[ 〈v e(μ̃x : T.c)〉]] := we now prove T (x)

↪→ [[v]] [[e(·)]]
[[c]]

It forms a critical pair with the “detect a cut” rule, resolved with

[[ 〈μα : T.c μ̃x : T.c′〉]] := we now prove T (x, α)
↪→ [[c]]

[[c′]]
[[ 〈μα : T.c e(μ̃x : T ′.c′)〉]] := we now prove T ′ (x)

↪→ we now prove T (α)
↪→ [[c]]
[[e(·)]]

[[c′]]

These rules catch occurrences of μ when its type is not the current thesis in the
text; this allows to enhance the rendering of the other occurrences (those that
capture the current thesis and give it a name):

[[μα : T.c]] := left to prove: T (α)
↪→ [[c]]

Remark 1. The rules introduced here have the big disadvantage that their struc-
tural depth (the depth at which they have to look into an expression before de-
ciding how to render its root) is unbounded. This can be fixed by changing the
syntax a bit, so that in a command the terminal constructors of the environment
are available at depth 1:

E ::= · | v ◦ E all non-terminal environment constructors
e ::= α | μ̃x : T.c all terminal environment constructors
c ::= 〈v E e〉

The meaning of the new syntax command 〈v v1 ◦ . . . ◦ vn ◦ · e〉 is just 〈v v1 ◦ . . .
◦ vn ◦ e〉 The typing rules can be adapted accordingly.
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From Binary to n-ary. ◦ is a binary constructor, but one can recognise se-
quences of it and treat it as an n-ary constructor; this is here combined with
controlling its interaction with term variables and μ more closely:

[[x0 ◦ x1 ◦ · · · ◦ xn ◦ e]] := by x0, x1, . . . , xn−1 and xn [[e]]
[[ 〈x x0 ◦ x1 ◦ · · · ◦ xn ◦ e〉]] := by x, x0, x1, . . . , xn−1 and xn [[e]]

[[(μα0 : T0.c0) ◦ · · · ◦ xj ◦ . . .

· · · ◦ (μαi : Ti.ci) ◦ · · · ◦ e]] := the thesis is reduced to:
• T0 (α0)

↪→ [[c0]]
. . .

• assumption xj

. . .

• Ti (αi)
↪→ [[ci]]

. . .

[[e]]

5 Saturation

There is a variety of alternative ways to handle implication in the calculus in
[6]. In our quest for a saturated calculus, we examine them all and give them a
natural language rendering.
ι2 The first, and the only one we decide to keep as is, is called ι2 in [6], but this
conflicts with another constructor with the same notation; we thus rename it to
λ_ : A, in line with the convention that _ is a special name for “do not bind”:

v ::= . . . |λ_ : A.v
Γ � v : T ′ |Δ

Γ � (λ_ : T.v) : T → T ′ |Δ

[[λ_ : T.v]] := assumption T in thesis is not necessary. [[v]]

If the transformation has access to typing information (e.g. because every ex-
pression is annotated with its type), then one can use:

[[λ_ : T.v]] := it suffices to prove t(v). [[v]]

where t(v) is the type of v. This introduces some redundancy if a μ follows
immediately; this redundancy can be avoided with

[[λ_ : A.μα : B.c]] := it suffices to prove B (α)↵ ↪→ [[c]]
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ι1 As to its companion ι1,

v ::= . . . | ι1(e) Γ | e : A � Δ

Γ � ι1(e) : A→ B |Δ
while the logical step performed is naturally and immediately accepted as admis-
sible, it is not intuitively seen as one atomic step; it is more natural to decompose
it into two steps, namely assuming A and erasing goal B. We thus introduce a
“no binding” version of μ:

v ::= . . . |μ_ : T.c
c : (Γ � Δ)

Γ � (μ_ : T.c) : T |Δ

[[μ_ : T.c]] := we give up on the current thesis ↵ ↪→ [[c]]

This μ_ : T.c has a natural dual in a putative μ̃_ : T.c:

e ::= . . . | μ̃_ : T.c
c : (Γ � Δ)

Γ | (μ̃_ : T.c) : T � Δ

but while μ_ : T.c fulfils a real role (e.g. in λx : Tx.μ_ : ⊥. 〈x β〉, the current
goal ⊥ really is not useful in the rest of the proof; it is thus not useful to bother
to give it a fresh name α to never refer to it later), any instance of μ̃_ : T.c
shows that the proof contains a completely non useful part: it takes the effort
to prove T , but then just throws that result away. 〈x y ◦ μ̃_ : T. . . . 〉 would
correspond to something like “by x and y, we have proven T , but don’t use that
fact in the rest of the proof . . . ”.

Furthermore, ι1 is an instance of a bigger problem in the context of the rest
of the natural language translation: term constructors that syntactically recurse
into the environment category do not fit well. We have not found a nice phrase
that turns what follows (which, being the translation of an environment, con-
sumes a proof) into something which provides a proof. The best we could do was
a rather weak and unnatural “the other goals follow from A↵ [[e]]”, which had to
be combined with changing the translation for μ̃x : T.c to “we can now assume
T ↵ [[c]]”, because e.g. in the expression ι1(μ̃x : A.c) of type A → B, A has not
been proven, but assumed, so “we have proven” does not fit anymore. It makes
the translation of μ̃ in other situations weaker, but not wrong:

〈μα : T. . . . μ̃x : T. . . . 〉

thesis T (α)
. . .

done proving α
we can now assume T (x)
. . .

A construct that has no good natural language rendering cannot be a natural
proof step for vernacular proofs and is thus not necessary to form a saturated
system.
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λ(x : A, α : B).c naturally feels like two steps and is advantageously replaced
by λx : A.μα : B.c.

v ::= . . . |λ(x : A, α : B).e
c : (Γ, x : A � α : B, Δ)

Γ � (λ(x : A, α : B).c) : A→ B |Δ
λα : B takes an environment as argument, which raises the problems already
discussed.

v ::= . . . |λα : B.e
Γ | e : A � α : B, Δ

Γ � (λα : B.e) : A→ B |Δ
[[λα : B.e]] := we now prove B, which follows from A

6 Link to Proof Assistants

We here succinctly treat the transformation of intuitionistic-logic λ̄μμ̃ terms (not
the extended calculus) to Isar proofs by way of an example. A transformation into
Mizar is similar (except that Mizar can only do forward steps, no backward step).
Also a transformation into PVS has been designed, but it is less direct. Both
are not included here for lack of space. All these translations have been tested
by evaluating them manually on a few examples and having the corresponding
prover accept the result. It should be noted that not all λ̄μμ̃ terms can be mapped
faithfully to an Isar proof: there are proof constructs in our saturated system that
Isar cannot capture. We could syntactically single out the λ̄μμ̃ terms that map
to an Isar proof, but we take a different approach by describing a transformation
of λ̄μμ̃ terms. The terms that are invariant under this transformation are the
ones corresponding to Isar proofs.
Replace any pattern in the left column by the one in the right column:

〈v · · · ◦ (λx : T.v′) ◦ . . . 〉 〈v · · · ◦ (μα : Tα. 〈λx : T.v′ α〉) ◦ . . . 〉
〈λx : T.v v0 ◦ . . . 〉 〈λx : T.v μ̃y : T ′. 〈x v0 ◦ . . . 〉〉
〈v · · · ◦ (μα : Tα.c) ◦ x ◦ . . . 〉 〈v · · · ◦ (μα : Tα.c) ◦ (μβ : Tβ. 〈x β〉) ◦ . . . 〉
〈μα : Tα.c e〉 c{α := e}
λx : T.x′ λx : T.μα : T ′. 〈x α〉

Most of these transformation rules are interesting by themselves and fall under
“the pattern on the left is bad proof style”, but others have their origins in
idiosyncrasies of Isar.

We do not deal here with mapping Isar proofs to λ̄μμ̃, but we claim that any
Isar proof that does not use automation can be mapped faithfully to λ̄μμ̃. The
Isar commands not used by the transformation below are mostly either syntactic
sugar or logically equivalent to a basic command that we do use, or are concerned
with automation.

The transformation follows. The purpose of cl is to count the lambdas in a
term; we don’t spell out its definition. We use the alternate syntax of page 413
for clarity.
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[[μα : Tα. 〈v E μ̃x : Tx.c〉]] := have x : T [[ 〈v E α〉]]
[[μα : Tα.c]]

[[μα : T.c]] := show T [[c]]
[[λx : T.v]] := assume x : T [[v]]

[[ 〈x y0 ◦ · · · ◦ yn−1 ◦ · α〉]] := by (rule mp, ...(n times)..., rule mp,

fact x, fact y0, ..., fact yn−1)

[[ 〈x y0 ◦ · · · ◦ yn−1 ◦ v0 ◦ · · · ◦ vp−1 ◦ · α〉]] :=
proof (rule mp, ...(n + p times)..., rule mp,

fact x, fact y0, ..., fact yn−1) ↪→
[[v0]]
. . .
[[vp−1]] ←↩

qed
[[ 〈v · α〉]] :=

proof (rule impI, ...cl(v) times..., rule impI) ↪→
[[v]] ←↩

qed

In the rule for [[μα : Tα. 〈v E μ̃x : Tx.c〉]], 〈v E α〉 is not well-typed (the α may
be unbound or of the wrong type), but that doesn’t matter, because the ‘name’
α is never used in the Isar output (it translates to qed). One can vary on this
translation, producing different Isar proofs – that we claim have the same logical
structure.

7 Disjunction

As an example to extension to propositional logic, we briefly treat disjunction;
again these constructs are catalogued in [6]; the natural language rendering is
ours:

v ::= . . . | ι1,2(v) | [α : A, β : B].c |λ1,2α : A.v

e ::= . . . | [e, e]

Γ � v : T |Δ
Γ � ι1(v) : T ∨ T ′ |Δ

Γ � v : T ′ |Δ
Γ � ι2(v) : T ∨ T ′ |Δ

c : (Γ � β : T ′, α : T, Δ)
Γ � ([α : T, β : T ′].c) : T ∨ T ′ |Δ

Γ | e : T � Δ Γ | e′ : T ′ � Δ

Γ | [e, e′] : T ∨ T ′ � Δ

Γ � v : T ′ |α : T, Δ

Γ � (λ1α : T.v) : T ∨ T ′ |Δ
Γ � v : T |α : T ′, Δ

Γ � (λ2α : T ′.v) : T ∨ T ′ |Δ
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[[ι1(v)]] := it suffices to prove the left part of the disjunction [[v]]
[[ι2(v)]] := it suffices to prove the right part of the disjunction [[v]]

[[λ1,2α : A.v]] := keeping in mind that we may prove A (α), [[v]]

[[[α : A, β : B].c]] := thesis A (α) or B (β) [[[e, e′]]] := either
↪→ [[c]] ↪→ [[e]]

or
↪→ [[e′]] ←↩

Many of the improvements of section 4 apply to disjunction mutadis mutandis.
This is further detailed in [7], but here are a few examples:

– [α : A, β : B] is a μ-like construct; the definitions and extended rules that
deal with μ should thus deal also with it, suitably adapted. For example, the
“backwards proofs” enhancement:

[[([α : A, β : B].c) ◦ e]] := the thesis is reduced to T (α) or T’ (β)
↪→ [[c]] [[e]]

Similarly, the definition of “α is used intuitionistically in c” has to be changed
to “no path from the μ that binds α to an occurrence of α traverses a μ or
a [·, ·]”. In particular, if α is bound by a [·, ·], it is not used intuitionistically;
[·, ·] is an inherently non-intuitionistic construct.

– λ1,2, ι1,2 and [e, e′] benefit particularly strongly from typing information:

[[ι1,2(v)]] := it suffices to prove t(v) [[[e, e′]]] := either t(e)
[[v]] ↪→ [[e]]

[[λ1α : A.(v)]] := keeping in mind we may prove A (α), or t(e′)
we proceed with the proof of t(v) ↪→ [[e′]] ←↩

– Just as sequences of ◦ can be collected in an emulation of n-ary implication,
sequences of ι1, ι2 can be collected in an emulation of n-ary disjunction.

The introduction of [·, ·] has interesting consequences for the enhanced ren-
dering: there is not anymore unicity of the terminal environment constructor
(the first environment constructor that does not syntactically recurse back into
category e). For example, [. . . α, . . . μ̃x : T.c].

Definition 3. If all terminal environment constructors of an environment e are
the same (the same α or μ̃x : T.c with the same x and the same T), then e is said
to terminate uniformly in that constructor. Similarly, e (ultimately) uniformly
concludes α if all its branches (ultimately) conclude α.
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The adaptation to that situation is to then defer the decisions (on commands)
that depend on the terminals of the environment, when these are not uniform.
For example, the “announce thesis changes” enhancement:

[[[e, e′]]]β := either t(e) ↪→
if e does not conclude β and uniformly concludes α

we now consider thesis α

[[e]]α
else if e terminates uniformly in μ̃x : T.c

we now prove T (x)
↪→ [[e(·)]]β

[[c]]β
else

[[e]]β
end if
or t(e′) ↪→
the same for e′

←↩

Similarly, in the alternative syntax of remark 1 page 413, a command now needs
to take a list of es whose length matches the number of ·s in the E.

8 Future Work

There are several directions in which this can be taken further. The most obvious
is extending, with the same concern for saturation, to some predicate logic. The
second glaring need is that the problem of capturing automation in theorem
provers needs to be addressed for the language to be really functional in practise
as a proof interchange language. A natural idea is to store as part of the term a
witness provided by the automation, which would be used to produce a proof in
a system whose automation is weaker. Alas, it may not be practical or possible to
get a witness from some provers’ automation (no access to its source code, prover
not structured in De Bruijn criterion conformant way (that is the automation is
not already forced to provide a witness to a kernel), . . . ).

Also, our calculus is not completely saturated in its treatment of classical
logic; one can convincingly argue that e.g. De Morgan laws and classical decom-
position of disjunction tend to be considered as valid atomic deduction steps in
the vernacular; a saturated calculus should thus have constructs for them.

The proof of the pudding being in the eating, we will concretely implement the
transformations from and to various proof languages (various proof assistants,
but also e.g. a standard sequent calculus); this would find a natural place as part
of a proof assistant.



420 L.E. Mamane, H. Geuvers, and J. McKinna

On a more theoretical side, our natural language rendering has an underlying
concept of structure of a natural language proof, which (when restricted to single-
goal logic) is quite close to the structure of declarative proof languages like Mizar
or Isar. But, in particular in its notion of active thesis, and when a change of it
needs to be explicitly announced (i.e. always), it is not in complete agreement
with the structure of proofs in LKμμ̃ (sequent calculus with ‘stoup’, basically just
λ̄μμ̃ without term/expression/command information). One would like changes
in the active thesis to be characterised as either a cut, or an explicit active thesis
change. We will thus define a sequent calculus whose notion of cut matches the
notion of introducing an arbitrary new thesis (a forward step) in our natural
language, and that matches the natural language’s need for an explicit switch
action between the theses. Restricting the hypothesis-creating children of a left
introduction rule to a left introduction rule or an axiom may be the main thing
needed to achieve the former. It would then be interesting to study proof intent
conserving transformations between that calculus, LKμμ̃, standard stoup-free
sequent calculus and other proof formats.
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A Basic Propositional Logic

v ::= . . . |(v, v)|λ¬x : A.v|� |TE(T )|DN(v)
e ::= . . . |π1,2[e]|(x : A, y : B).c|λ1,2x : A.e|¬[v]|� |DN(e)

Γ � v : T |Δ Γ � v′ : T ′|Δ
Γ � (v, v′) : T ∧ T ′|Δ

c : (Γ, x : T, x′ : T ′ � Δ)
Γ |((x : T, x′ : T ′).c) : T ∧ T ′ � Δ

Γ, x : T |e : T ′ � Δ

Γ |(λ1x : T.e) : T ∧ T ′ � Δ

Γ, x : T ′|e : T � Δ

Γ |(λ2x : T ′.e) : T ∧ T ′ � Δ

Γ |e : T � Δ

Γ |π1[e] : T ∧ T ′ � Δ

Γ |e : T ′ � Δ

Γ |π2[e] : T ∧ T ′ � Δ

Γ, x : T � v : ⊥|Δ
Γ � (λ¬x : T.v) : ¬T |Δ

Γ � � : �|Δ
Γ � v : T |Δ

Γ |¬[v] : ¬T � Δ Γ |� : ⊥ � Δ

Γ � TE(P ) : P ∨ ¬P |Δ
Γ � v : ¬¬T |Δ

Γ � DN(v) : T |Δ
Γ |e : T � Δ

Γ |DN(e) : ¬¬T � Δ

[[(x : A, y : B).c]] := we have proven A (x) and B (y)
[[c]]

[[λ1,2x : T.e]] := we have proven T (x) and [[e]]
[[ DN(v)]] := proof by contradiction
[[DN(e)]] := and by double negation elimination

[[(v, v′)]] := • [[v]] [[π1,2[e]]] := in particular [[e]]
• [[v′]]

[[[α : A, β : B].c]] := thesis A (α) or B (β) [[¬[v]]] := and [[v]]
↪→ [[c]] ←↩ done (ECQ)

[[[e, e′]]] := either [[�]] := true
↪→ [[e]] [[�]] := ←↩ done (EFQ)

or [[λ¬x : A.v]] := assume A (x) [[v]]
↪→ [[e′]] ←↩ [[ TE(T )]] := by TE

ECQ is an abbreviation for “ex contradictione (sequitur) quodlibet” (from a
contradiction, anything follows), EFQ for “ex falso (sequitur) quodlibet” (from
falsehood, anything follows) and TE for “(principium) tertii exclusi” (principle
of excluded middle).

Again, some natural language rendering enhancements apply mutatis mu-
tandis; others need to be adapted. For example, dually to what happens with
disjunction, (x : A, y : B).c is a μ̃-like construct and the enhancements that deal
with μ̃ need to similarly deal with it. Also, the definition of “e concludes α” has
to be changed so that e.g. � and ¬[v] conclude α for any α.
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