
Inductive and Coinductive types with Iteration and Recursion

in a Polymorphic Framework

Herman Geuvers,
Faculty of Mathematics and Computer Science,

University of Nijmegen,
Toernooiveld 1,

6525 ED Nijmegen,
The Netherlands

February 1992

Abstract

We study (extensions of) polymorphic typed lambda calculus from a point of view of how iterative
and recursive functions on inductive types are represented. The inductive types can usually be
understood as initial algebras in a certain category and then recursion can be defined in terms of
iteration. However, in the syntax we often have only weak initiality, which makes the definition
of recursion in terms of iteration inefficient or just impossible. We propose a categorical notion of
(primitive) recursion which can easily be added as computation rule to a typed lambda calculus
and gives us a clear view on what the dual of recursion, corecursion, on coinductive types is. (The
same notion has, independently, been proposed by [Mendler 1991].) We then look at how these
syntactic notions work out in the framework of K-models for polymorphic lambda calculus. It
will turn out that with some quite weak extra assumptions, recursion can be defined in terms of
corecursion and vice versa using polymorphism. This also works syntactically: We shall look at
some slight extensions of polymorphic lambda calculus for which a scheme for either recursion or
corecursion suffices to be able to define the other. As an application of this we look at the Calculus
of Inductive Definitions ([Coquand and Mohring 1990] and [Dowek e.a. 1991]), which reflects our
categorical notion of recursion and we show how to define coinductive types with corecursion in it.

1 Introduction

In this paper we want to look at formalizations of inductive and coinductive types in different typed
lambda calculi, mainly extensions of the polymorphic lambda calculus. It is well-known that in polymor-
phic lambda calculus, many inductive data types can be defined (see e.g.[Böhm and Berarducci 1985]
and [Girard et al. 1989]). In this paper we want to look at how functions on inductive types can be
represented. Therefore, two ways of using the inductive building up of a type to define functions on that
type are being distinguished, the iterative way and the recursive way. An iterative function is defined
by induction on the building up of the type by defining the function value in terms of the previous
values. A recursive function is also defined by induction, but now by defining the function value in
terms of the previous values and the previous inputs. For functions on the natural numbers that is
h : Nat→ A, with h(0) = c, h(n+ 1) = f(h(n)) (for c : A, f : A→ A) is iterative and h : Nat→ A, with
h(0) = c, h(n+ 1) = g(h(n), n) (for c : A, g : A×Nat→ A) is recursive. If one has pairing, the recursive
functions can be defined using just iteration, which was essentially already shown by [Kleene 1936]. But
if we work in a typed lambda calculus where pairing is not surjective, this translation of recursion in
terms of iteration becomes inefficient and sometimes impossible. Moreover, if the calculus also incor-
porates some predicate logic, one would like to use the inductivity in doing proofs, which is not always
straightforward (or just impossible.)

1

This asks for an explicit scheme for recursion in typed lambda calculus, which yields for, say, the natu-
ral numbers the scheme of Gödels T and (if we have predicate logic in the calculus) the induction priciple.
To see how this can be done in general for inductive types, we are going to define a categorical notion of
recursion (just like ’initial algebra’ categorically represents the notion of iteration). One of the trade-offs
is that we can dualize all this to get a notion of corecursion on coinductive types. These categorical
notions of recursion and corecursion have independently been found by Mendler (see [Mendler 1991])
who treats these constructions in Martin-Löf type theory with predicative universes. What we define
as (co)recursive (co)algebras are what Mendler calls ’(co)algebras that admit simple primitive recur-
sion’. We shall always use the term ’recursion’, because, although the function-definition-scheme has a
strong flavour of primitive recursion, one can define a lot more functions in polymorphic lambda calculus
then just the primitive recursive ones. Coinductive types were first described in [Hagino 1987a] and
[Hagino 1987b], with only a scheme for coiteration and without corecursion.

A very surprising result will be that in a polymorphic framework, if we have a notion of recursive
types which reflects our notion of recursive algebra, then we can define corecursive types that correspond
to corecursive coalgebras. By duality, this also works the other way around. This result will be given
semantically and syntactically: For the semantics we look at a slight extension of K-models (defined in
[Reynolds and Plotkin 1990]), which is a very general notion of model for polymorphic lambda calculus,
covering most of the known models. We shall show that if we have recursive T -algebras for every functor
T that is expressible in the syntax, then we have corecursive T -coalgebras for every functor T that is
expressible in the syntax. For the syntax we look at a system of recursive and corecursive types defined
by [Mendler 1987] and show that with either the scheme for recursive types or the scheme for corecursive
types, there is a recursive Φ-algebra and a corecursive Φ-coalgebra in the syntax for every syntactic
functor Φ (where syntactic functors are positive type schemes.) We also look at a syntax with recursive
and corecursive types that straightforwardly represents the categorical notions of recursive algebra and
corecursive coalgebra; for this system it will be shown that either one of the schemes suffices to obtain
the other.

Finally we shall treat the Calculus of Inductive Definitions, as described by [Coquand and Mohring 1990]
and implemented as ’Coq’ by [Dowek e.a. 1991]. This calculus has a scheme for defining inductive types
and we shall show that also coinductive types can be defined with this scheme.

2 The categorical perspective

As said, we shall get our intuitions about inductive and coinductive types from the field of category
theory. The main notions in category theory related to this issue come from [Lambek 1968].

Definition 2.1 Let C be a category, T a functor from C to C.

1. A T -algebra in C is a pair (A, f), with A an object and f : TA→ A.

2. If (A, f) and (B, g) are T -algebra’s, a morphism from (A, f) to (B, g) is a morphism h : A → B
such that the following diagram commutes.

TA
f

> A

Th

∨

=

∨

h

TB
g

> B

3. A T -algebra (A, f) is initial if it is initial in the category of T -algebras, i.e. for every T -algebra
(B, g) there’s a unique h which makes the above diagram commute.

2

In a category with products, coproducts and terminal object, the initial algebra of the functor TX =
1 + X is the natural numbers object, for which we write (Nat,

[
Z,S

]
). The initial algebra of TX =

1 + (A × X) is the object of finite lists over A, (ListA,
[
Nil,Cons

]
). In this paper our pet-example of

an initial algebra will be (Nat,
[
Z,S

]
), which will be used to illustrate the properties we are interested

in. First take a look at how the iterative and recursive functions can be defined on Nat. (The example
immediately generalizes to arbitrary initial algebras.)

Example 2.2 1. For g : 1 + B → B we write g1 for g ◦ in1 : 1 → B and g2 for g ◦ in2 : B → B.
The iteratively defined morphism from g1, g2, Elimg1g2, is defined as the unique morphism h which
makes the diagram commute, i.e. h ◦ Z = g1 and h ◦ S = g2 ◦ h.

2. For g1 : 1→ B, g2 : B×Nat→ B, the recursively defined morphism from g1 and g2 is constructed
as follows.
There exists a unique h which makes the diagram

1 + Nat

[
Z,S

]
> Nat

id + h

∨

=

∨

h

1 + (B × Nat)
〈
[
g1, g2

]
,
[
Z,S ◦ π2

]
〉
> B × Nat

commute. That is h ◦
[
Z,S

]
= 〈

[
g1, g2

]
,
[
Z,S ◦π2

]
〉 ◦ id+h. If we write h1 = π1 ◦h and h2 = π2 ◦h

we have the equalities

h1 ◦ Z = g1,

h1 ◦ S = g2 ◦ h,
h2 ◦ Z = Z,

h2 ◦ S = S ◦ h2.

Now h2 = idNat by uniqueness and also h = 〈h1, h2〉, so

h1 ◦ Z = g1,

h1 ◦ S = g2 ◦ 〈h1, id〉.

So h1 satisfies the recursion equalities and we define

Recg1g2 := h1.

Definition 2.3 Let C be a category, T a functor from C to C.

1. A T -coalgebra in C is a pair (A, f), with A an object and f : A→ TA.

2. If (A, f) and (B, g) are T -coalgebras, a morphism from (B, g) to (A, f) is a morphism h : B → A
such that the following diagram commutes.

B
g

> TB

h

∨

=

∨

Th

A
f

> TA

3

3. A T -coalgebra (A, f) is terminal if it is terminal in the category of T -coalgebras, i.e. for every
coalgebra (B, g) there’s a unique h which makes the above diagram commute.

Our pet example for terminal coalgebras is the one for TX = Nat × X, the object of inifinite lists
of natural numbers, for which we write (Stream, 〈H,T〉). We shall dualize the notions of iterative and
recursive function to get coiterative and corecursive functions to Stream. (Again this example easily
generalizes to the case for arbitrary terminal coalgebras.)

Example 2.4 1. For g : B → Nat×B, write g1 for π1 ◦ g : B → Nat and g2 for π2 ◦ g : B → B. The
coiteratively defined morphism from g1 and g2, Introg1g2 : B → Stream is the (unique) morphism
h for which the diagram commutes. That is, H ◦ h = g1 and T ◦ h = h ◦ g2.
If j is a morphism from Nat to Nat, one can define the morphism from Stream to Stream which
applies f to every point in the stream as Intro(j ◦ H)T . Note that it is not so straightforward to
define (coiteratively) a morphism which replaces the head of a stream by, say, zero. This, however,
can easily be done using corecursion.

2. For g1 : B → Nat, g2 : B → B + Stream, the corecursively defined morphism from g1 and g2,
Corecg1g2 is defined by h ◦ in1, where h is the (unique) morphism which makes the diagram

B + Stream

[
〈g1, g2〉, 〈H, in2 ◦ T〉

]
> Nat× (B + Stream)

h

∨

=

∨

id× h

Stream
〈H,T〉

> Nat× Stream

commute. If we write h1 = h ◦ in1, h2 = h ◦ in2, then we have for h the following equations

H ◦ h2 = H,

T ◦ h2 = h2 ◦ T,
H ◦ h1 = g1,

T ◦ h1 = h ◦ g2.

Now h2 = id by uniqueness and also h =
[
h1, h2

]
, so

H ◦ h1 = g1,

T ◦ h1 =
[
h1, id

]
◦ g2.

These are the equations for corecursion; if g1 : B → Nat and g2 : B → B + Stream, then j : B →
Stream is corecursively defined from g1 and g2 if H ◦ j = g1 and T ◦ j =

[
j, id

]
◦ g2.

The function ZeroH : Stream → Stream which changes the head of a stream into zero can now
be defined as ZeroH := Corec(Z◦!)(in2 ◦ T), where ! is the unique morphism from Stream to 1.
(Informally, Z◦! is of course just λs : Stream.0.)

As usual in categorical definitions, the definitions of initial algebra and terminal coalgebra split up
in two parts, the ’existence part’ (there’s an h such that...) and the ’uniqueness part’ (the h is unique.)
In the following we shall sometimes refer to these two parts of the definition as the existence property
and the uniqueness property .

In the typed lambda calculi that we shall consider, the inductive and coinductive types will not
exactly represent initial algebras and terminal coalgebras. What the systems are lacking is the uniqueness
property for the morphism h in 2.1, respectively 2.3. Algebras, respectively coalgebras, which only satisfy
the existence property are called weakly initial , respectively weakly terminal .

4

Definition 2.5 For T an endofunctor in a category C, The T -algebra, respectively T -coalgebra, (A, f) is
weakly initial, respectively weakly terminal, if for every T -algebra, respectively T -coalgebra, (B, g) there
exists an arrow h that makes the diagram in 2.1, respectively 2.3, commute.

Remark 2.6 The notion of weakly initial algebra is really weaker than that of initial algebra. This can
easily be seen by noticing that in the category Set, (2ω,

[
Z,S

]
) is a weakly initial (λX.1 + X)-algebra,

but also (2ω,
[
Z,S′

]
), with S′(n) = S(n), S′(ω + n) = n is. (On weakly initial algebras, the behaviour of

morphisms is only determined on the standard part of the algebra, that is in seththeoretic terms, those
elements that are constructed by finitely many times applying the constructor f . Real initiality says that
the algebra is standard.)

As we made serious use of the uniqueness property in constructing the recursive and corecursive
functions, it’s interesting to see how much we can do in weak initial algebras and weak terminal coalgebras.
The construction of the iterative and coiterative functions of examples 2.2 and 2.4 can be done in the
same way; we only loose the uniqueness property of the iteratively defined function. The construction
of recursive and corecursive functions in a weak framework is not so straightforward. We shall study
again the examples of natural numbers and streams of natural numbers. Fix a category C, which has
weak products and coproducts. (So we do have e.g. π1 ◦ 〈t1, t2〉 = t1 and

[
t1, t2

]
◦ in1 = t1, but not

〈π1 ◦ t, π2 ◦ t〉 = t and
[
t ◦ in1, t ◦ in2

]
= t.) It will turn out that weak products and coproducts will cause

some extra restrictions on the definability of functions. Therefore we shall also study what happens
if product and coproduct are semi , that is for products 〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 and for coproducts
h ◦

[
f, g

]
=

[
h ◦ f, h ◦ g

]
. The reason for not considering the strong products and coproducts in these

examples is that in the syntax of typed lambda calculi product and coproduct are usually weak or semi.
(The notions of semi product and semi coproduct are taken from [Hayashi 1985].)

Example 2.7 (Recursion on a weak natural numbers object) Let Nat be a weakly initial λX.1+X-algebra.
Consider the diagram in 2.2, where we defined recursion in terms of iteration and let h : Nat→ B×Nat
be some morphism that makes the diagram commute. Then also 〈π1 ◦ h, π2 ◦ h〉 makes the diagram
commute. Write h1 = π1 ◦ h and h2 = π2 ◦ h. We have the following equalities.

h1 ◦ Z = g1,

h1 ◦ S = g2 ◦ h,
h2 ◦ Z = Z,

h2 ◦ S = S ◦ h2.

Nat doesn’t satisfy the uniqueness properties, so not necessarily h2 = idNatbut only

h2 ◦ Sn ◦ Z = Sn ◦ Z

for every n ∈ N, where Sn denotes an n-fold composition of S. Now we would like to deduce

h1 ◦ Z = g1,

h1 ◦ Sn+1 ◦ Z = g2 ◦ 〈h1, id〉 ◦ Sn ◦ Z,

which says that h1 satisfies the recusion equations for the ’standard’ natural numbers.

• For weak products this conclusion is only valid if g2 = k ◦ πi for some k : B → B or k : Nat→ B.
(Note that if g2 = k ◦ π1 for some k : B → B, then h1 is just iteratively defined from g1 and k, so
only the case for g2 = k ◦ π2 gives us really new functions, for instance the predecessor.)

• For semi products this conclusion is only valid for g2 = k ◦ 〈π1, π2〉 for some k : B × Nat → B,
which is not a serious restriction: Just replace g2 by g2 ◦ 〈π1, π2〉.

Example 2.8 (Corecursion on a weak stream object) Let Stream be a weakly terminal λX.Nat × X-
coalgebra. Consider the diagram in 2.4, where we defined corecursion in terms of coiteration and let

5

h : (B+ Stream)→ Stream be some morphism that makes the diagram commute. Write h1 = h ◦ in1 and
h2 = h ◦ in2. We have the following equalities.

H ◦ h2 = H,

T ◦ h2 = h2 ◦ T,
H ◦ h1 = g1,

T ◦ h1 = h ◦ g2.

Now we can not conclude h ◦ in2 = id, because we don’t have uniqueness, but we do have

H ◦ Tn ◦ h2 = H ◦ Tn,

that is h2 is the identity on the ’standard’ part of the stream (those points that can be obtained by finitely
many applications of H or T.) Again we would like to conclude

H ◦ h1 = g1,

H ◦ Tn+1 ◦ h1 = H ◦ Tn ◦
[
h1, id

]
◦ g2,

that is h1 satisfies the corecursion equations for the ’standard’ part of the stream.

• For weak coproducts this conclusion is only valid if g2 = ini ◦ k for some k : B → B or k : B →
Stream. (Note that if g2 = ini ◦ k for some k : B → B, then h1 is just coiteratively defined from g1

and k, so only the case for g2 = in2 ◦ k gives us really new functions, like for instance the function
ZeroH.)

• For semi coproducts this conclusion is only valid if g2 =
[
in1, in2

]
◦k for some k : B → B+Stream.

again this is not a serious restriction: Just replace g2 by
[
in1, in2

]
◦ k.

For the morphism ZeroH : Stream→ Stream which replaces the head by zero, defined in 2.4 by Corec(Z◦!)(in2◦
T), we now have (for either weak or semi coproducts)

H ◦ ZeroH = Z,

H ◦ Tn+1 ◦ ZeroH = H ◦ Tn+1,

so ZeroH works fine on the standard part of the stream. That one can not, in general, define a morphism
ZeroH such that T◦ZeroH = T will be shown later, when we look at these examples inpolymorphic lambda
calculus which is an instance of a category with weakly initial algebras and weakly terminal coalgebras,
semi products and weak coproducts.

Remark 2.9 With strong products and coproducts we would have similar problems in defining recursion
and corecursion. The recursion equations would only be valid for the standard natural numbers and the
corecursion equations would only be valid for the standard part of streams. The only advantage would be
that the g2 : B × Nat→ B, respectively the g2 : B → B + Stream can be taken arbitrarily.

In section 3 the polymorphic lambda calculus will be considered in which inductive and coinductive
types can be defined which correspond to weakly initial algebras and weakly terminal coalgebras. It will
be shown that recursion in that calculus is problematic from a point of view of efficiency. One solution
could be to strengthen the reduction rules to get a stronger (extensional) equality. However, it’s not
possible to add some relatively easy reduction rules to the syntax to obtain the uniqueness property of
initiality and terminality. (We can’t say in an easy way that the only objects of a structure are the
standard ones.) This is because the equality of (primitive) recursive functions can not be decided by an
easy (decidable) equality. We can do something different, namely say that our functions should behave
on the non-standard part as they behave on the standard part. Categorically, this can be obtained by
strengthening the notion of weakly initial algebra and weakly terminal coalgebra a little bit, such that
recursion ’works’. (That is for N, for c : A, g : A×Nat→ A there is a function h : Nat→ A, with h(0) = c
and h(n+ 1) = g(h(n), n).) These new notions will be called recursive algebra and corecursive coalgebra.

6

The definitions are not difficult if one understands what makes it possible to define (co)recursion, in
terms of (co)iteration.

Let in the following C be a category with weak products and weak coproducts and T a functor from
C to C.

Definition 2.10 (A, f) is a recursive T -algebra if (A, f) is a T -algebra and for every g : T (X×A)→ X
there exists an h : A→ X such that the following diagram commutes.

TA
f

> A

T (〈h, id〉)

∨

=

∨

h

T (X ×A)
g

> X

Notice that this is the same as saying that (A, f) is weakly initial and that moreover, in the diagram
for defining recursion in terms of iteration, h2 = id. (See 2.2)

Definition 2.11 (A, f) is a corecursive T -coalgebra if (A, f) is a T -coalgebra and for every g : X →
T (X +A) there exists an h : X → A such that the following diagram commutes.

X
g
> T (X +A)

h

∨

=

∨

T (
[
h, id

]
)

A
f

> TA

Again this is the same as saying that (A, f) is a weakly terminal T -coalgebra and that moreover, in
the diagram for defining corecursion in terms of coiteration, h2 = id. (See 2.4)

When talking about weakly initial or recursive T -algebras and weakly terminal or corecursive T -
coalgebras, it is convenient to denote the h that makes the diagram commute as a function of g. So
we shall denote a weakly initial T -algebra by (A, f,Elim), where Elimg denotes a morphism h in 2.5
that makes the diagram commute. Similarly, we write (A, f, Intro) for a weakly terminal T -coalgebra,
(A, f,Rec) for a recursive T -algebra and (A, f,Corec) for a corecursive T -coalgebra.

Examples 2.12 1. If (Nat,
[
Z,S

]
,Rec) is a recursive λX.1 + X-algebra, Rec is a recursor on Nat:

For
[
g1, g2

]
: 1 + (X × Nat)→ X,

Rec
[
g1, g2

]
◦ Z = g1,

Rec
[
g1, g2

]
◦ S = g2 ◦ 〈Rec

[
g1, g2

]
, id〉,

so Rec
[
g1, g2

]
is the recursively defined function from g1 and g2. We can define P := Rec

[
Z, π2

]
and we have

P ◦ Z = Z,

P ◦ S = id.

2. If (Stream, 〈H,T〉,Corec) is a corecursive λX.Nat × X-coalgebra. Then for 〈g1, g2〉 : X → Nat ×
(X + Stream), the function Corec〈g1, g2〉 satisfies

H ◦ Corec〈g1, g2〉 = g1,

T ◦ Corec〈g1, g2〉 =
[
Corec〈g1, g2〉, id

]
◦ g2,

7

so Corec〈g1, g2〉 is the corecursively defined function from g1 and g2. We can define

ZeroH := Corec〈Z◦!, in2 ◦ T〉

with

H ◦ ZeroH = Z◦!,
T ◦ ZeroH = T.

3 The syntax of polymorphic lambda calculus

We just give the rules to fix our notation and shall not go into the system further, assuming it is
familiar. For convenience we extend the syntax of polymorphic lambda calculus with weak products
and coproducts. (This is of course a conservative extension, because weak products and coproducts
are definable: σ × τ ≡ ∀α.(σ→τ→α)→α and σ + τ ≡ ∀α.(σ→α)→(τ→α)→α.) We shall call the
system F×+, to stress the fact that it is just system F (the polymorphic lambda calculus) as defined in
[Girard et al. 1989]), [Girard 1972] or [Reynolds 1974]) with explicit product and coproduct constructors.

Definition 3.1 1. The set of types of F×+, T, is defined by the following abstract syntax.

T ::= TypVar |T→T |T×T |T + T | ∀TypVar.T

2. The expressions of F×+, T , are defined by the following abstract syntax.

T ::= Var | fstTT | sndTT | inlTT | inrTT |TT |<T, T> | [T, T] |TT |λVar:T.T |ΛTypV ar.T

3. A context is a sequence of declarations x:σ (x ∈ Var and σ ∈ T), where it is assumed that if x:σ
and y:τ are different declarations in the same context, then x 6≡ y.

4. The typing rules for deriving judgements of the form Γ ` M :σ for Γ a context, M an expression
and σ a type, are the following.

• If x:σ is in Γ, then Γ ` x:σ,

• Γ ` fstστ :σ × τ→σ and Γ ` sndστ :σ × τ→τ ,

• Γ ` inlστ :σ→σ + τ and Γ ` inrστ :τ→σ + τ ,

•
Γ `M :σ→τ Γ ` N :σ

Γ `MN :τ

Γ, x:σ `M :τ

Γ ` λx:σ.M :σ→τ

•
Γ `M :∀α.σ

Γ `Mτ :σ[τ/α]
if τ ∈ T.

Γ `M :σ

Γ ` Λα.M :∀α.σ
if α /∈ FTV(Γ).

•
Γ `M :σ→τ Γ ` N :σ→ρ

Γ ` <M,N>:σ→τ × ρ

Γ `M :τ→σ Γ ` N :ρ→σ

Γ ` [M,N]:τ + ρ→σ

FTV denotes the set of free type variables (TypVar.)

5. The one step reduction rules are the following.

• (λx:σ.M)N −→β M [N/x],

• λx:σ.Mx −→η M if x /∈ FV(M),

• (Λα.M)τ −→β M [τ/α],

• fstστ ◦<f1, f2> −→× f1, and sndστ ◦<f1, f2> −→× f2,

• [f1, f2] ◦ inlστ −→+ f1, and [f1, f2] ◦ inrστ −→+ f2.

8

FV denotes the free term variables (Var.) One step reduction, −→, is defined as the union of −→β,
−→η, −→β, −→× and −→+. The relations −→−→ and = are respectively defined as the transitive,
reflexive and the transitive, reflexive, symmetric closure of −→.

Here, t′[t/u] denotes the substitution of t for the variable u in t′. Substitution is done with the usual
care, renaming bound variables such that no free variable becomes bound after substitution.

Type variables will be denoted by the lower case Greek characters α, β and γ, term variables will be
denoted by lower case Roman characters. If there is no ambiguity, the superscripts to fst, snd, inl and inr
will be omitted. The set of expressions typable in the context Γ with type σ is denoted by Term(σ,Γ).

We want to discuss categorical notions like weak initiality in the syntax and therefore define need a
syntactic notion of functor. This will be covered by the (well-known) notion of positive or negative type
scheme.

Definition 3.2 1. A type scheme in F×+ is a type Φ(α) where α marks all occurrences (possibly
none) of α.

2. A type scheme Φ(α) can be positive or negative (but also none of the both), which is defined by
induction on the structure of Φ(α) as follows.

(a) If α /∈ FTV(Φ(α)), then Φ(α) is positive and negative,

(b) if Φ(α) ≡ α then Φ(α) is positive,

(c) if Φ(α) ≡ Φ1(α)→Φ2(α), Φ1(α) is negative and Φ2(α) is positive, then Φ(α) ≡ Φ1(α)→Φ2(α)
is positive,

(d) if Φ(α) ≡ Φ1(α)→Φ2(α), Φ1(α) is positive and Φ2(α) is negative, then Φ(α) ≡ Φ1(α)→Φ2(α)
is negative,

(e) if Φ(α) ≡ ∀β.Φ′(α) and Φ′(α) is positive (resp. negative) then Φ(α) ≡ ∀β.Φ′(α) is positive
(resp. negative),

(f) if Φ(α) ≡ Φ1(α) × Φ2(α) and Φ1(α) is positive (resp. negative) and Φ2(α) is positive (resp.
negative), then Φ(α) ≡ Φ1(α)× Φ2(α) is positive (resp. negative),

(g) if Φ(α) ≡ Φ1(α) + Φ2(α) and Φ1(α) is positive (resp. negative) and Φ2(α) is positive (resp.
negative), then Φ(α) ≡ Φ1(α) + Φ2(α) is positive (resp. negative).

3. A positive (resp. negative) type scheme Φ(α) works covariantly (resp. contravariantly) on a term
f :σ→τ , obtaining a term Φ(f) of type Φ(σ)→Φ(τ) (resp. Φ(τ)→Φ(σ)), by lifting, defined induc-
tively as follows. (Let f :σ→τ .)

(a) If α /∈ FTV(Φ(α)), then Φ(f) := idΦ(α),

(b) if Φ(α) ≡ α then Φ(f) := f ,

(c) if Φ(α) ≡ Φ1(α)→Φ2(α) is positive, then Φ(f) := λx:Φ1(σ)→Φ2(σ).λy:Φ1(τ).Φ2(f)(x(Φ1(f)y))),

(d) if Φ(α) ≡ Φ1(α)→Φ2(α) is negative, then Φ(f) := λx:Φ2(τ)→Φ1(τ).λy:Φ2(σ).Φ1(f)(x(Φ2(f)y))),

(e) if Φ(α) ≡ ∀β.Φ′(α) is positive, then Φ(f) := λx:Φ(σ).λβ.Φ′(f)(xβ),

(f) if Φ(α) ≡ ∀β.Φ′(α) is negative, then Φ(f) := λx:Φ(τ).λβ.Φ′(f)(xβ),

(g) if Φ(α) ≡ Φ1(α)× Φ2(α), then Φ(f) := Φ1(f)× Φ2(f),

(h) if Φ(α) ≡ Φ1(α) + Φ2(α), then Φ(f) := Φ1(f) + Φ2(f),

where, as usual, g × h := <g ◦ fst, h ◦ snd> and g + h := [inl ◦ g, inr ◦ h].

It is easy to check that if a positive or negative type scheme does not contain × and +, then the
lifting preserves identity and composition: Φ(id) = id and if Φ(α) is positive then Φ(f ◦g) = Φ(f)◦Φ(g),
if Φ(α) is negative then Φ(f ◦ g) = Φ(g) ◦ Φ(f). Positive type schemes without × and + can really be
viewed as covariant functors in the syntax of polymorphic lambda calculus and negative type schemes
as contravariant functors. (Consider a syntax with countably many variables of every type and view the
types as objects and the terms of type σ→τ as morphisms from σ to τ .)

The positive type schemes are a syntactic version of covariant functors. Similarly we also have
syntactic versions of weakly initial (terminal) (co)algebras and (co)recorsive (co)algebras.

9

Definition 3.3 Suppose we work in (an extension of) polymorphic lambda calculus where we have fixed
a notation for weak products and coproducts (e.g. the second order definable ones.) Let Φ(α) be a positive
type scheme.

1. The triple (σ0,M0,Elim) is a syntactic weakly initial Φ-algebra if

(a) σ0 ∈ T,

(b) `M0:Φ(σ0)→σ0,

(c) ` Elim:∀β.(Φ(β)→β)→σ0→β,

such that
Elimτg ◦M0 = g ◦ Φ(Elimτg)

for any τ ∈ T and Γ ` g:Φ(τ)→τ .

2. The triple (σ1,M1, Intro) is a syntactic weakly terminal Φ-coalgebra if

(a) σ1 ∈ T,

(b) ` f1:σ1→Φ(σ1),

(c) ` Intro:∀β.(β→Φ(β))→β→σ1,

such that
M1 ◦ Introτg = Φ(Introτg) ◦ g

for any τ ∈ T and Γ ` g:τ→Φ(τ).

3. The triple (σ0,M0,Rec) is a syntactic recursive Φ-algebra if

(a) σ0 ∈ T,

(b) `M0:Φ(σ0)→σ0,

(c) ` Rec:∀β.(Φ(β × σ0)→β)→σ0→β,

such that
Recτg ◦M0 = g ◦ Φ(<Recτg, id>)

for any τ ∈ T and Γ ` g:Φ(τ × σ0)→τ .

4. The triple (σ1,M1,Corec) is a syntactic corecursive Φ-coalgebra if

(a) σ1 ∈ T,

(b) ` f1:σ1→Φ(σ1),

(c) ` Corec:∀β.(β→Φ(β + σ1))→β→σ1,

such that
M1 ◦ Corecτg = Φ([Corecτg, id]) ◦ g

for any τ ∈ T and Γ ` g:τ→Φ(τ + σ1).

We have the following proposition, of which the first part is a syntactic version of a result in
[Reynolds and Plotkin 1990] and the second part is a result of [Wraith 1989]. In fact, the first part of the
proposition says that the algebraic inductive data types can be represented in F×+, which result origi-
nally goes back to [Böhm and Berarducci 1985]. Here we just want to give these representations in short;
for further details one may consult [Böhm and Berarducci 1985], [Leivant 1989] or [Girard et al. 1989].

Proposition 3.4 We work in the system F×+. Let Φ(α) be a positive type scheme. Then

1. There is a syntactic weakly initial Φ-algebra.

2. There is a syntactic weakly terminal Φ-coalgebra.

10

Proof Let Φ(α) be a positive type scheme.

1. Define σ0 := ∀α.(Φ(α)→α)→α, M0 := λx:Φ(σ).λα.λg:Φ(α)→α.g(Φ(Elimαg)x), and Elim :=
λα.λg:Φ(α)→α.λy:σ.yαg. Now (σ0,M0,Elim) is a syntactic weakly initial Φ-algebra.

2. Define σ1 := ∀α.(∀β.(β→Φ(β))→β→α)→α, M1 := λx:σ.x(Φ(σ))(λβ.λg:β→Φ(β).λz:β.Φ(Introβg)(gx)),
and Intro := λα.λg:α→Φ(α).λy:α.λβ.λh:∀(γ.γ→Φ(γ))→γ→β.hαgy. Now (σ0,M0,Elim) is a syn-
tactic weakly terminal Φ-coalgebra.

It is not known whether there are syntactic recursive algebras or syntactic corecursive coalgebras in
F×+. The answer seems to be negative. The well-known definitions of algebraic data-types in F×+

(which are almost the ones defined in the proof above) do in general not allow recursion or corecursion,
as will be illustrated by looking at the examples of natural numbers and streams of natural numbers.
This means that recursion on Nat and corecursion on Stream have to be defined in terms of iteration
on Nat and coiteration on Stream, using the techniques discussed in the Examples 2.7 and 2.8. As was
noticed there, it makes a difference whether product and coproduct are weak or semi, so let’s note the
following fact.

Fact 3.5 The definable coproduct in F×+ is a weak coproduct, but the definable product in F×+ is a
semi product.
(That is, <f, g> ◦ h = <f ◦ h, g ◦ h>, but not h ◦ [f, g] = [h ◦ f, h ◦ g])

Example 3.6 We define recursive functions on the weak initial algebra of natural numbers.
Let (Nat,M0,Elim) be the syntactic weak initial algebra of Φ(α) = 1 + α, as given in the proof of 3.4,
where 1 and + are the second order definable ones. (One can also take the well-known polymorphic Church
numerals, which is a slight modification of our type Nat. The exposition is not essentially different, but
we want to use our categorical understanding of recusion of 2.7.)
So Nat = ∀α((1+α)→α)→α, M0 = λx:1+Nat.λα.λg.g((id+Elimαg)x) and Elim = λα.λg.λy:Nat.yαg.
Now we first define Z := M0 ◦ inl and § := M0 ◦ inr.
Following Example 2.7, we now define Recg = fst◦Elim(τ×Nat)(<g, [Z,S◦snd]>), for g:1+τ×Nat→τ .
If

g = [g1, k ◦<fst, snd>]

for some k:τ ×Nat→τ , we obtain the recursion equalities for Recg:

Recg ◦ Z g1,

Recg ◦ §n+1 ◦ Z = inr ◦ g ◦<Recg, id> ◦ §n ◦ Z.

(See 2.7 for the restriction on the form of g; the product is semi here.) The predecessor is now defined
by taking g = [Z, snd], so P := fst ◦ Elim(τ × Nat)(<[Z, snd], [Z,S ◦ snd]>). Notice that P (St) = t only
for standard natural numbers, i.e. for t = §n(Z∗), with ∗ the unique (closed) term of type 1. Also notice
that P computes the predecessor of a natural number n in a number of steps of order n.

Example 3.7 We define corecursive functions on streams of natural numbers. Take for Stream the
syntactic weakly terminal Φ-coalgebra as in the proof of 3.4, for Φ(α) = Nat × α. So Stream =
∀α.(∀β.(β→(Nat×β))→β→α)→α, M1 = λx:Stream.x(Nat×σ)(λβ.λg:β→Nat×β.λz:β.(id×Introβg)(gx)),
and Intro = λα.λg:α→Nat × α.λy:α.λβ.λh:∀(γ.γ→Nat × γ)→γ→β.hαgy. We can define head and tail
functions by taking H := fst ◦ M1 and T := snd ◦ M1. Following Example 2.8, we now define for
g:τ→Nat × (τ + Stream) Corecg := Intro(τ + Stream)([g,<H, inr ◦ T>]) ◦ inl. As the coproduct is not
semi, but weak (see 2.8), we find that only for g = <g1, in◦k> for ∈ is inr or inl and some k:Stream→B
or k:Stream→Stream we obtain the corecursion equations.

H ◦ Corecg = g1,

T ◦ Corecg = [Corecg, id] ◦ snd ◦ g.

The function that replaces the head of a stream by zero is now defined by ZeroH := Corec<Z, inr ◦T>

11

It is really impossible to define a ’global’ predecessor on the weakly initial natural numbers as de-
scribed above (and similarly for the polymorphic Church numerals.) Also it is impossible to define a
global ZeroH-function on the weakly terminal streams as described above. This is shown in the following
proposition.

Proposition 3.8 1. For Nat = ∀α((1 + α)→α)→α, there is no closed term P :Nat→Nat such that
P (Sx) = x for x a variable.

2. For Stream := ∀β.(∀γ.(γ→Nat)→(γ→γ)→γ→β)→β there is no closed term ZeroH:Stream→Stream
such that T(ZeroHy) = Ty and H(ZeroHy) = 0 for y a variable.

Proof Both cases immediately by the Churh-Rosser property for the system F×+.

One can show in general that the (co)inductive types in system F×+ as defined above do not allow
(co)recursion, i.e. they are weakly initial (terminal) (co)algebras.

4 Recursive algebras and corecursive coalgebras in models of
polymorphic lambda calculus

We now want to study the interrelations between polymorphism, recursive T -algebras and corecursive
T -coalgebras for syntactically definable functors T . We therefore look at a slight extension of the so
called K-models defined by [Reynolds and Plotkin 1990] in which there is a notion of expressible functor .
The original notion of K-model is quite weak and just strong enough to show that there are no Set-
models (See [Reynolds and Plotkin 1990], or [Reynolds 1984], where the result was first discussed.) The
strengthening we propose is very natural, just saying that the type-β-reduction is sound and that we
have some substitution properties. To be able to describe corecursive coalgebras we have to require that
K is not just a ccc, but that it also has coproducts. So let in the following K be a ccc with coproducts.
We first introduce some definitions that will be used later in the model definition.

Definition 4.1 Let A,B,C be objects of K.

1. Define φA,B,C : (A→ CB)→ (A×B → C) by

φA,B,C(g) = ev ◦ (g × id)

and φ−A,B,C : (A×B → C)→ (A→ CB) by

φ−A,B,C(f) = Λ(f)

This gives an isomorphism between the homsets A → CB and A × B → C; φ ◦ φ− = Id and
φ− ◦ φ = Id.

2. From φ we define ψA,B,C : (A→ CB) ' (B → CA) by ψA,B,C(g) = φ−B,A,C(φA,B,C(g) ◦ 〈π2, π1〉) =
Λ(φA,B,C(g) ◦ 〈π2, π1〉). This gives an isomorphism by ψA,B,C ◦ ψB,A,C = Id.

3. If A = 1 we also define the isomorphism kB,C : (1 → CB) ' (B → C) by kB,C(g) = φ(g) ◦ 〈!, id〉
and k−B,C(f) = φ−(f ◦ π2).

Definition 4.2 ([Reynolds and Plotkin 1990]) Given a category K, a type assignment in K is
a mapping from the set TypVar to the objects of the category K. A K-model consists of a triple
(K, [(−)], [[−]]), where

1. K is a cartesian closed category with coproducts.

2. For each type assignment ξ there is a mapping [(−)]ξ from T to the objects of K such that

(a) [(α)]ξ = ξ(α),

12

(b) [(σ→τ)]ξ = [(τ)]
[(σ)]ξ
ξ ,

(c) [(σ × τ)]ξ = [(σ)]ξ × [(τ)]ξ,

(d) [(σ + τ)]ξ = [(σ)]ξ + [(τ)]ξ,

(e) if ξdFTV(σ) = ξ′dFTV(σ), then [(σ)]ξ = [(σ)]ξ′ .

3. For each type assignment ξ, type σ and context Γ = x1:σ1, . . . xn:σn there is a mapping [[−]]
σΓ
ξ from

Term(σ,Γ) to (1× [(σ1)]ξ × . . .× [(σn)]ξ)→ [(σ)]ξ. such that

(a) [[xi]]
σΓ
ξ = π2 ◦ πn−i1 ,

(b) [[fstσ1σ2]]
σ1×σ2→σ1Γ
ξ = Λ(π1 ◦ π2) and [[sndσ1σ2]]

σ1×σ2→σ2Γ
ξ = Λ(π2 ◦ π2),

(c) [[inlσ1σ2]]
σ1→σ1+σ2Γ
ξ = Λ(in1 ◦ π2) and [[inrσ1σ2]]

σ2→σ1+σ2Γ
ξ = Λ(in2 ◦ π2),

(d) if Γ `M :σ→τ and Γ ` N :σ,then [[MN]]
τΓ
ξ = ev ◦ 〈[[M]]

σ→τΓ
ξ , [[N]]

σΓ
ξ 〉,

(e) if Γ, x:σ ` N :τ , then [[λx:σ.M]]
σ→τΓ
ξ = Λ([[M]]

τΓ,x:σ
ξ),

(f) if Γ ` M :ρ→σ and Γ ` N :ρ→τ , then [[<M,N>]]
ρ→σ×τΓ
ξ = φ−(〈φ([[M]]

ρ→σΓ
ξ), φ′([[N]]

ρ→τΓ
ξ)〉),

where φ, φ′ and φ− are the appropriate isomorphisms of 4.1.

(g) if Γ ` M :σ→ρ and Γ ` N :τ→ρ, then [[[M,N]]]
σ+τ→ρΓ
ξ = ψ(

[
ψ′([[M]]

ρ→σΓ
ξ), ψ′′([[N]]

ρ→τΓ
ξ)

]
),

where ψ, ψ′ and ψ′′ are the appropriate isomorphisms of 4.1.

(h) if ξdFTV(σ,Γ) = ξ′dFTV(σ,Γ), then [[M]]
σΓ
ξ = [[M]]

σΓ
ξ′ ,

(i) if Γ(= x1:σ1, . . . , xn:σn) ⊂ Γ′(= y1:τ1, . . . , ym:τm) this gives rise to a canonical morphism

〈π1, πj1 , . . . , πjn〉 : 1 × τ1 × . . . × τm → 1 × σ1 × . . . × σn; now if Γ ` M :σ then [[M]]
σΓ′

ξ =

[[M]]
σΓ
ξ ◦ 〈π1, πj1 , . . . , πjn〉,

(j) if Γ ` (λα.M)σ:τ , then [[(λα.M)σ]]
τΓ
ξ = [[M [σ/α]]]

τΓ
ξ .

(k) if Γ, x:σ `M :τ and Γ ` N :σ, then [[M [N/x]]]
τΓ
ξ = [[M]]

τΓ,x:σ
ξ ◦ 〈id, [[N]]

τΓ
ξ 〉,

(l) if Γ `M :τ ,then[[M [σ/α]]]
τ [σ/α]Γ[σ/α]
ξ = [[M]]

τΓ
ξ(α:=[(σ)]ξ)

.

If there is no ambiguity, all sub- and superscripts will be omitted.

To compute with K-models we give, without proof, some properties of the interpretation function.

Lemma 4.3 1. For ` h:σ→µ, ` g:τ→µ and ` l:µ→ρ, k([[l ◦ [h, g]]]ξ) = k([[[l ◦ h, l ◦ g]]]ξ).

2. For ` h:µ→σ, ` g:µ→τ and ` l:ρ→µ, k([[<h, g> ◦ l]]ξ) = k([[<h ◦ l, g ◦ l>]]ξ).

3. k([[idσ + idτ]]ξ) = k([[idσ+τ]]ξ) = id[(σ+τ)]ξ
.

4. k([[idσ × idτ]]ξ) = k([[idσ×τ]]ξ) = id[(σ×τ)]ξ

This lemma states that, although the syntactic product and coproduct are weak, they behave as
semi-product and semi-coproduct under the interpretation. The Lemma implies that [[. . . [h, g] ◦ l . . .]]ξ =
[[. . . [h ◦ l, g ◦ l] . . .]]ξ, [[. . . idσ + idτ . . .]]ξ = [[. . . idσ+τ . . .]]ξ and so forth.

5 Expressibility of functors and (co)recursive (co)algebras in
K-models

Definition 5.1 ([Reynolds and Plotkin 1990]) Given a K-model (K, [(−)], [[−]]), a (covariant) func-
tor F : K → K is expressible if there is a positive type scheme Φ(α) such that

13

1. For each σ ∈ T
[(Φ(σ))]ξ = F ([(σ)]ξ).

2. For each σ, τ ∈ T and Γ `M :σ→τ

k([[Φ(M)]]
Φ(σ)→Φ(τ)Γ
ξ ◦ f) = F (k′([[M]]

σ→τΓ
ξ ◦ f)),

for any f : 1→ 1× [(σ1)]ξ × . . .× [(σn)]ξ (if Γ = x1:σ1, . . . xn:σn) where k and k′ are the appropriate
isomorphisms of 4.1.

For expressible functors in a K-model we also have a notion of expressible weakly initial algebra
(terminal coalgebra) and expressible recursive algebra (corecursive coalgebra.)

Definition 5.2 Let M be a K-model and F a functor expressible by Φ in M.

1. The triple (A, f,Elim) is an expressible weakly initial F -algebra if there is a closed type σ, a closed
term M :Φ(σ)→σ and a closed term h:∀α.(Φ(α)→α)→σ→α such that

(a) [(σ)]ξ = A,

(b) k([[M]]) = f ,

(c) for all g:F (B)→B, Elimg = k([[hαy]]ξ(α:=B) ◦ 〈id, k−(g)〉).

2. The pair (A, f, Intro) is an expressible weakly terminal F -coalgebra if there is a closed type σ, a
closed term M :σ→Φ(σ) and a closed term h:∀α.(α→Φ(α))→α→σ such that

(a) [(σ)]ξ = A,

(b) k([[M]]) = f ,

(c) for all g:B→F (B), Introg = k([[hαy]]ξ(α:=B) ◦ 〈id, k−(g)〉).

3. The pair (A, f,Rec) is an expressible recursive F -algebra if there is a closed type σ, a closed term
M :Φ(σ)→σ and a closed term h:∀α.(Φ(α× σ)→α)→σ→α such that

(a) [(σ)]ξ = A,

(b) k([[M]]) = f ,

(c) for all g:F (B ×A)→B, Recg = k([[hαy]]ξ(α:=B) ◦ 〈id, k−(g)〉).

4. The pair (A, f,Corec) is an expressible corecursive F -coalgebra if there is a closed type σ, a closed
term M :σ→Φ(σ) and a closed term h:∀α.(α→Φ(α+ σ))→α→σ such that

(a) [(σ)]ξ = A,

(b) k([[M]]) = f ,

(c) for all g:B→F (B +A), Corecg = k([[hαy]]ξ(α:=B) ◦ 〈id, k−(g)〉).

In all these cases we say that the weakly initial (terminal) (co)algebra or (co)recursive (co)algebra is
expressed by (σ,M, h).

Lemma 5.3 Let the functor F be expressed by Φ in the K-model M. Then

1. If (σ0,M0, h0) expresses a weakly initial F -algebra, then

[[h0τy ◦M0]]
y:Φ(τ)→τ

= [[y ◦ Φ(h0τy)]]
y:Φ(τ)→τ

.

2. If (σ1,M1, h1) expresses a weakly terminal F -coalgebra, then

[[M1 ◦ h1τy]]
y:τ→Φ(τ)

= [[Φ(h1τy) ◦ y]]
y:τ→Φ(τ)

.

14

3. If (σ0,M0, h0) expresses a recursive F -algebra, then

[[h0τy ◦M0]]
y:Φ(τ×σ)→τ

= [[y ◦ Φ(<h0τy, id>)]]
y:Φ(τ×σ)→τ

.

4. If (σ1,M1, h1) expresses a corecursive F -coalgebra, then

[[M1 ◦ h1τy]]
y:τ→Φ(τ+σ)

= [[Φ([h1τy, id]) ◦ y]]
y:τ→Φ(τ+σ)

.

Proof Just by writing out the definitions, using the properties of the interpretation, like the ones in
Lemma 4.3

The following proposition states the existence of expressible weakly initial F -algebras and expressible
weakly terminal F -coalgebras in a K-model for an expressible functor F . The first part was shown by
[Reynolds and Plotkin 1990] and the second part follows from a similar argument, using the work of
[Wraith 1989]. The proposition follows immediately from Proposition 3.4: If F is expressed by the type
scheme Φ and Φ has a syntactic weakly initial algebra (σ,M, h), then the the interpretation of (σ,M, h)
in M is a weakly initial algebra expressible by (σ,M, h).

Proposition 5.4 Let M be a K-model and F an expressible functor in M.

1. M has an expressible weakly initial F -algebra,

2. M has an expressible weakly terminal F -coalgebra.

In general, K-models need not have all recursive algebras and all corecursive coalgebras, but we do
have the following, which is our central Theorem, linking recursive algebras with corecursive coalgebras
via polymorphism.

Theorem 5.5 Let M be a K-model.Then the following two statements are equivalent.

1. All expressible functors F have an expressible corecursive F -coalgebra.

2. All expressible functors F have an expressible recursive F -algebra.

Proof The proof falls in two parts. First assume that all expressible functors have an expressible
corecursive coalgebra. We show that if F is expressed by Φ, then also

T (X) = [(∀β.(Φ(β × α)→β)→β))](α:=X)

is expressible. From the expressible corecursive T -coalgebra (A, f1,Corec) we define an expressible re-
cursive F -algebra, with the same object A as carrier.
Then assume that all expressible functors have an expressible recursive algebra. Now if F is an expressible
functor, then also

T (X) = [(∃β.(β→Φ(β + α))× β)](α:=X)

is expressible. From the expressible recursive T -algebra (A, f0,Rec) we define an expressible corecur-
sive F -coalgebra, with the same object A as carrier. (Note that ∃β.(β→Φ(β + α)) × β is defined by
∀γ.(∀β.(β→Φ(β + α)× β)→γ)→γ.)
Only the first part will be done in some more detail; for the second part we only show how to define the
expressible corecursive F -coalgebra from the recursive T -algebra. To check that what we define really
satisfies the requirements is quite similar to the first case.
Let’s now suppose that all expressible functors have an expressible corecursive coalgebra and let F be a
functor, expressible by Φ. Now

T (X) = [(∀β.(Φ(β × α)→β)→β))](α:=X)

is expressible by Θ, given by
Θ(α) = ∀β.(Φ(β × α)→β)→β)

For f :σ→τ we have

Θ(f) = λx:Θ(σ).λβ.λh:Φ(β × τ)→β.xβ(λy:Φ(β × σ).h(Φ(id× f)y)).

Now T has an expressible corecursive coalgebra, say (A, f1,Corec), expressed by (σ,M1, h1). That is

15

1. A = [(σ)]

2. f1 = k([[M1]])

3. Corecg = k([[h1αy]](α:=X) ◦ 〈id, k−(g)〉) for any g:X → T (X +A).

We define

h0 := λα.λg:Φ(α× σ)→α.λx:σ.M1xαg,

M0 := h1(Φσ)(λz:Φ(σ).λβ.λh:Φ(β × Φ(σ))→β.h(Φ(<h0β(h ◦ Φ(id× inr)), inr>)z)).

Now we claim that (σ,M0, h0) expresses a recursive F -algebra, namely (A, f0,Rec), where f0 := k([[M0]])
and Recg = k([[h0αy]](α:=X)◦〈id, k−(g)〉) for any g:F (X×A)→ X. By definition (A, f0,Rec) is expressed

by (σ,M0, h0). That (A, f0,Rec) is a recursive F -algebra is shown as follows. Let g:F (X ×A)→ X.

Recg ◦ f0 = k([[h0αy]]
y:Φ(α×σ)→α
(α:=X) ◦ 〈id, k−(g)〉) ◦ k([[M0]])

= k([[h0αy ◦M0]]
y:Φ(α×σ)→α
(α:=X) ◦ 〈id, k−(g)〉)

writing g1 for (λz:Φ(σ).λβ.λh:Φ(β × Φ(σ))→β.h(Φ(<h0β(h ◦ Φ(id× inr)), inr>)z))

= k([[λx:Φ(σ).M1(h1(Φσ)g1x)αy]]
y:Φ(α×σ)→α
(α:=X) ◦ 〈id, k−(g)〉)

= k([[λx:Φ(σ).Θ(
[
h1(Φσ)g1, id

]
)(g1x)αy]]

y:Φ(α×σ)→α
(α:=X) ◦ 〈id, k−(g)〉)

= k([[y ◦ Φ(<h0αy, id>)]]
y:Φ(α×σ)→α
(α:=X) ◦ 〈id, k−(g)〉)

= g ◦ F (〈Rec(g), id〉)

Here the Lemmas 4.3 and 5.3 are of course heavily used.
Let’s now suppose that all expressible functors have an expressible recursive algebra and let F be a
functor, expressible by Φ. Now

T (X) = [(∀γ.(∀β.(β→Φ(β + α)× β)→γ)→γ)](α:=X)

is expressible by Θ, given by

Θ(α) = ∀γ.(∀β.(β→Φ(β + α)× β)→γ)→γ.

For f :σ → τ we have

Θ(f) = λx:Θ(σ).λγ.λh:∀β.(β→Φ(β + τ)× β)→γ.xγ(λβ.λy:β→Φ(β + σ)× β.hβ<Φ(id + f) ◦ y1, y2>),

where y1 denotes fsty and y2 denotes sndy. There is an expressible recursive T -algebra, say (A, f0,Rec),
expressed by (σ,M0, h0), so we have

1. A = [(σ)]

2. f0 = k([[M0]])

3. Recg = k([[h0αy]](α:=X) ◦ 〈id, k−(g)〉) for any g:T (X ×A)→ X.

Now define

h1 := λα.λg:α→Φ(α+ σ).λx:α.M0(λγ.λh:∀β.(β→Φ(β + σ)× β)→γ.hα<g, x>),

M1 := h0(Φ(σ))(λz:Θ(Φ(σ)× σ).z(Φ(σ)(λγ.λp.Φ([h1β(Φ(id + snd) ◦ p1, snd])(p1p2))),

where p:(β→Φ(β+ (Φ(σ)× σ)))× β, p1 and p2 abbreviate fstp and sndp. The triple (σ,M1h1) expresses
a corecursive F -coalgebra.

16

6 Syntax for recursive algebras and corecursive coalgebras

In fact, what Theorem 5.5 boils down to is the syntactic interdefinability of recursive algebras and
corecursive coalgebras in a polymorphic typed lambda calculus. To make that precise we shall define
an extension of F×+, which includes a syntactical formalization of recursive algebras and corecursive
coalgebras, and show that one can define recursive algebras in terms of corecursive coalgebras and vice
versa. We have not studied the proof theory of this syntax but we do want to describe the system, as it
makes clear what is going on in the proof of 5.5.
We then want to relate Theorem 5.5 to a system of recursive (and corecursive) types described by
[Mendler 1987]. The syntax there is a bit too weak to define the recursive types in terms of the corecursive
types (or the other way around), but we show that in K-models of this syntax we do have recursive
algebras and corecursive coalgebras for all expressible functors. This is done by showing that the system
has syntactic recursive Φ-algebras and syntactic corecursive Φ-coalgebras for every positive type scheme
Φ. (See Definition 3.3.)

Definition 6.1 The system F×+
(co)rec is the system F×+ extended with the following.

1. The set of types T is extended with µα.Φ(α) and να.Φ(α), for Φ(α) a positive type scheme.

2. For µα.Φ(α) and να.Φ(α) we have the extra constants

Inµ : Φ(µ)→µ Recµ : ∀α.(Φ(α× µ)→α)→µ→α,
Outν : ν→Φ(ν) Corecν : ∀α.(α→Φ(α+ ν))→α→ν.

3. Reduction rules for µ and ν:

Recτg(Inx) −→µ g(Φ(<Recτg, id>)x),

Out(Corecτgx) −→ν Φ([Corecτg, id])(gx).

4. Extra reduction rules for × and +:

[inl, inr] −→+ id,

<fst, snd> −→× id,

f ◦ [g, h] −→+ [f ◦ g, f ◦ h],

<g, h> ◦ f −→× <g ◦ f, h ◦ f>.

(µ abbreviates µα.Φ(α) and ν abbreviates να.Φ(α).)

Note that with these extra reduction rules for product and coproduct, all positive type schemes
become covariant functors and all negative type schemes become contravariant functors. (See the remark
before 3.3.)
We can give the following syntactical formulation of Theorem 5.5 in this new system F×+

(co)rec.

Proposition 6.2 In F×+
(co)rec we can define ν, Out and Corec in terms of µ, In and Rec and vice versa.

Proof Suppose we only have the rules for µ, In and Rec and let Φ be a positive type scheme. Define

Θ(α) := ∀γ.(∀β.(β→Φ(β + α)× β)→γ)→γ,
σ := µα.Θ(α),

Corec := λα.λg:α→Φ(α+ σ).λx:α.Inσ(λγ.λh:∀β.(β→Φ(β + σ)× β)→γ.hα<g, x>),

Out := Recσ(Φ(σ))(λz:Θ(Φ(σ)× σ).z(Φ(σ))(λγ.λp.Φ([h1β(Φ(id + snd) ◦ p1, snd])(p1p2))),

17

where p1 and p2 abbreviate fstp and sndp. Then

Out(Corecτgx) −→−→ Φ([Corecτg, id])(gx)).

The other way around, suppose we only have rules for ν, Out and Corec and let Φ be a positive type
scheme. Define

Θ(α) = ∀β.(Φ(β × α)→β)→β,
σ := να.Θ(α),

Rec := λαλg:Φ(α× σ)→α.λx:σ.Outσxαg,

In := Corecσ(Φ(σ))(λz:Φ(σ).λβ.λh:Φ(β × Φ(σ))→β.h(Φ(<h0β(h ◦ Φ(id× inr)), inr>)z)).

Then
Recτg(Inx) −→−→ g(Φ(<Recτg, id>)x).

We now want to look at the system of recursive types, as defined by [Mendler 1987], let’s call it
F(CO)REC . (The system also has corecursive types.)

Definition 6.3 ([Mendler 1987]) The system F(CO)REC is defined by adding to the polymorphic lambda
calculus the following.

1. The set of types T is extended with µα.Φ(α) and να.Φ(α), for Φ(α) a positive type scheme.

2. For µα.Φ(α) and να.Φ(α) we have the extra constants

Inµ : Φ(µ)→µ Rµ : ∀β.(∀γ.(γ→µ)→(γ→β)→Φ(γ)→β)→µ→β,
Outν : ν→Φ(ν) Ων : ∀β.(∀γ.(ν→γ)→(β→γ)→β→Φ(γ))→β→ν.

3. Reduction rules for µ and ν:

Rµτg(Inµx) −→µ gµ(idµ)(Rµτg)x),

Outν(Ωντgx) −→ν gν(idν)(Ωντg)x.

(µ abbreviates µα.Φ(α) and ν abbreviates να.Φ(α).)

In [Mendler 1987] it is shown that this system satisfies a lot of nice properties, like strong normaliza-
tion and confluence of the reduction relation.

Definition 6.4 The system F(CO)REC with only the rules for µ will be called FREC and similarly,
F(CO)REC with only the rules for ν will be called FCOREC .

We now want to show that in K-models of FREC , all expressible functors have a recursive algebra
(and hence a corecursive coalgebra) and that in K-models of FCOREC , all expressible functors have a
corecursive coalgebra (and hence a recursive algebra.) First the (straightforward) definition of K-model
for FREC , respectively FCOREC .

Definition 6.5 1. A K-model for polymorphic lambda calculus M is a model for FREC if for every
positive type scheme Φ and object valuation ξ, there are

(a) an object Aξ,

(b) a morphism Inξ : 1→ A
[(Φ(α))]ξ(α:=Aξ)

ξ ,

(c) a morphism Rξ : 1→ [(∀β.(∀γ.(γ→α)→(γ→β)→Φ(γ)→β)→α→β)]ξ(α:=Aξ)
,

18

such that Aξ, Inξ and Rξ only depend on ξdFTV (Φ) and

ev ◦ 〈ev ◦ 〈[[zβ]]ξ(α:=Aξ)
◦ 〈id,Rξ〉, g〉, ev ◦ 〈Inξ, b〉〉 =

ev ◦ 〈ev ◦ 〈ev ◦ 〈[[yα]]ξ(α=Aξ)
◦ 〈k−(id), g〉, id〉, ev ◦ 〈[[zβ]]ξ(α:=Aξ)

◦ 〈id,Rξ〉, g〉〉, b〉

for any g : 1→ [(∀γ.(γ→α)→(γ→β)→Φ(γ)→β)]ξ, b : 1→ Aξ and ξ with ξ(α) = Aξ.

2. A K-model for polymorphic lambda calculus M is a model for FCOREC if for every positive type
scheme Φ and object valuation ξ, there are

(a) an object Aξ,

(b) a morphism Outξ : 1→ [(Φ(α))]
Aξ
ξ(α:=Aξ)

,

(c) a morphism Ωξ : 1→ [(∀β.(∀γ.(α→γ)→(β→γ)→β→Φ(γ))→β→α)]ξ(α=Aξ)
,

such that Aξ, Outξ and Ωξ only depend on ξdFTV (Φ) and

ev ◦ 〈Outξ, ev ◦ 〈ev ◦ 〈[[zβ]]ξ(α:=Aξ)
◦ 〈id,Ωξ〉, g〉, b〉〉 =

ev ◦ 〈ev ◦ 〈ev ◦ 〈[[yα]]ξ(α=Aξ)
◦ 〈id, g〉, id〉, ev ◦ 〈[[zβ]]ξ(α:=Aξ)

◦ 〈id,Ωξ〉, g〉〉, b〉

for any g : 1→ [(∀γ.(α→γ)→(β→γ)→β→Φ(γ))]ξ and b : 1→ ξ(β).

Mendlers system has all syntactic recursive algebras and syntactic corecursive coalgebras.

Proposition 6.6 For every positive type scheme Φ(α)

1. FREC has a syntactic recursive Φ-algebra.

2. FCOREC has a syntactic corecursive Φ-coalgebra.

Proof 1. Take σ0 = µα.Φ(α), M0 = In and Rec = λβ.λg:Φ(β×σ0)→β.Rβ(λα.λf :α→σ0.λk:α→β.g◦
Φ(<k, f>)).

2. Take σ1 = να.Φ(α), M1 = Out and Corec = λβ.λg:β→Φ(β+σ1).Ωβ(λα.λf :σ1→α.λk:β→α.Φ([k, f])◦
g).

This Proposition implies that if one also adds the stronger equality rules for × and + (of 6.1) to
the syntax of FREC and FCOREC , then in both systems one has all syntactic recursive algebras and all
syntactic corecursive coalgebras. From that we easily obtain the following.

Corollary 6.7 Let F be an expressible functor in polymorphic lambda calculus. Then all K-models
for either FREC or FCOREC have an expressible recursive F -algebra and an expressible corecursive F -
coalgebra.

In view of Definition 3.3, also Theorem 5.5 can be formulated syntactically as follows.

Proposition 6.8 Suppose we work in an extension of polymorphic lambda calculus in which we have a
notion of product and coproduct for which the stronger rules of 6.1 are valid. Then the following are
equivalent.

1. There is a syntactic recursive Φ-algebra for every positive type scheme Φ.

2. There is a syntactic corecursive Φ-coalgebra for every positive type scheme Φ.

19

The proof is by defining a syntactic recursive Φ-algebra in terms of a suitable syntactic corecursive
Θ-coalgebra and vice versa, just as is done semantically in the proof of Theorem 5.5 and syntactically in
the proof of Proposition 6.2. In fact it is much easier then in 5.5 to check everything here.

It doesn’t seem possible to define the µ-types in terms of the ν-types in F(CO)REC , nor to define the
system FCOREC in a system with syntactic (co)recursive (co)algebras, for example in the system F×+

corec.
When one attempts to do so it becomes clear what is needed to obtain a result like Theorem 5.5 or
Proposition 6.2 for F(CO)REC , or to obtain the reverse result of 6.6 (defining the µ-types (ν-types) of
FCOREC in terms of syntactic (co)recursive (co)algebras.)

First one needs the extra equalities for × and +, as given by the reduction rules in Definition 6.1. But
more imporantly, what seems to be necessary is that for all f : σ→α and g : ∀β.(β→σ)→(β→α)→Φ(β)→α,

gσ(idσ)f = g(τ × σ)snd fst ◦ Φ(<f, idσ>)

and for all f : α→σ and g : ∀β.(σ→β)→(α→β)→α→Φ(β),

gσ(idσ)f = Φ([f, idσ]) ◦ g(τ + σ)inr inl

In the syntax this is certainly not valid in general, but there is a class of models of polymorphic
lambda calculus in which these equations are valid, namely those in which polymorphic terms of type
∀α.Ψ1(α)→Ψ2(α) are (or maybe better ’act as’) dinatural transformations (where Ψ1 and Ψ2 are type
schemes, not necessarily positive.) We shall not go into this matter here, as this would require us to
introduce a totally new topic; for more on dinatural transformations and their interest in polymorphic
lambda calculus, see [Bainbridge et al. 1990]. Here we just want to mention the fact that if M is a
K-model of polymorphic lambda calculus in which polymorphic terms act as dinatural transformations,
then M is a model for FREC if and only if M is a model for FCOREC .

7 The Calculus of Inductive Definitions

The formalisations of inductive and coinductive types we’ve been looking at so far are done in a calculus,
a formal system for building terms, but not proofs. We now want to look at a type system in which
one can also do logic to see how the (co)inductive types (should) behave there. The first candidate
system to study is of course the Calculus of Constructions (CC) (see [Coquand and Huet 1988]), because
it already includes all the inductive and coinductive types via the representations in system F, and it
also includes a kind of higher order predicate logic. Now, besides that we can define the (co)iterative
and (co)recursive functions on the (co)inductive types there are two extra requirements for (co)inductive
types in a logical system. First, one would like the induction principle to be provable, that is e.g. for
natural numbers, (P0 &∀y ∈ N(Py → P (Sy))) → (∀x ∈ N(Px)) is provable for any predicate P on
N. Second, one would like to prove that the inductive types are not trivial, that is e.g. for the natural
numbers, 0 6= S0 is provable. However, in CC the induction principle is not provable: N is just the
weakly initial algebra of polymorphic Church numerals, as in system F, and one would have to relativise
all formulas about N to the set of inductive natural numbers. Also 0 6= S0 is not provable because the
equality in the system (Leibniz’ equality) is too weak: From 0 = S0 alone it’s not possible to obtain
a contradiction. To meet these requirements, the Calculus of Inductive Definitions has been defined
([Coquand and Mohring 1990]) and implemented ([Dowek e.a. 1991]). This system is set up in a similar
way as F×+

(co)rec and F(CO)REC :There is a scheme for introducing new types, which come together with

new constants and reduction rules. A fundamental extension is that now a proof by induction is done by
the same scheme as a recursive function. Applying the techniques that have been used in the previous
sections, the coinductive types can be defined in terms of the inductive ones. Before giving the syntax
we want to turn to category.

Suppose C is a category in which the Calculus of Constructions can be interpreted in such a way
that small types become objects. Suppose C also interprets small Σ types, i.e. the calculus with
Σx:A.B(x):Prop for A:Prop, B(x):Prop(x:A). One can in fact just think of the term model for the
Calculus of Constructions with strong small Σ types. The Σ types are used to interpret proofs by
induction in terms of iteration, just as products are used to interpret recursion in terms of iteration. We

20

first treat the example for Nat. In the following we shall be very informal with categorical notations, not
distinguishing for example between f :Πx:Nat.Px→P (Sx) and x:Nat, y:Px ` f(x, y):P (Sx).

Example 7.1 Let Nat be the polymorphic Church numerals in the Calculus of Constructions. (In fact
any weakly initial λX.1+X-algebra will do.) and P :Nat→Prop. Then for f0:P0 and f1:Πx:Nat.Px→P (Sx)
we have that there’s a term h for which the diagram

1 + Nat

[
Z,S

]
> Nat

id + h

∨

=

∨

h

1 + (Σx:Nat.Px)
〈
[
Z, S ◦ π1

]
,
[
f0, λz.f1(π1z)(π2z)

]
〉
> Σx:Nat.Px

commutes. Now, we would like to write h = 〈h1, h2〉 and h1 = id (which equations hold if Nat is initial),
because then we have

h2 : Πx:Nat.Px.

To establish this we do not really need Nat to be an initial algebra; it suffices if Nat is recursive. (Recall
that a recursive λX.1 +X-algebra arose by requiring that in the weak initiality diagram, h1 = id.)

The general pattern is now as follows. Let T be a strictly positive operator from Prop to Prop, that
is X /∈ FV (T (X)) or T (X) = Π~y:~Y .X with X /∈ FV (~Y). We assume that T is in the original Calculus
of Constructions, so it does not contain Σ-types. Note that such a T preserves composition (and if we
would add the η-rule also identities.) The pair (A, f) is a recursive T -algebra in CCΣ if

1. A:Prop, intro:TA→A,

2. for any P :(A→Prop), if g:(Πx:TA.T (P)x→P (introx)) there is a term h:(Πx:A.Px) such that the
diagram

TA
intro

> A

T (〈id, h〉)

∨

=

∨

〈id, h〉

T (Σx:A.Px)
〈intro ◦ T (π1), λz.g(T (π1)z)(T (π2)z)〉

> Σx:A.Px

commutes. Here the lifting of P :X→Prop to a predicate T (P):TX→Prop is defined by taking

for TX = Π~y:~Y .X, T (P) = λz:TX.Π~y:~Y .P (z~y). The lifting of a dependent function h:Πz:X.Pz,

T (h) is then defined as a function of type Πz:TX.T (P)z by taking for TX = Π~y:~Y .X, T (h) =

λz:TX.λ~y:~Y .h(z~y).

The equality rules that arise from the commutativity of the diagram above are

id ◦ intro = intro ◦ T (π1) ◦ T (〈id, h〉),
h ◦ intro = λy.g(T (π1)y)(T (π2)y) ◦ T (〈id, h〉).

The first equation is always valid and the second can be rewritten to

h ◦ intro = λy.gy(T (h)y).

(We are only concerned with strictly positive operators, because for operators T for which T (X) does
not contain X, or T (X) contains X, but not strictly positively, these definitions do not make sense. For

21

example if T is a positive operator and P happens to be a constant function (so h is not really type
dependent function, but of type A→B), then the two possible definitions of T (h) are not the same.)

With these intuitions in mind, we now want to give the syntax of the calculus of inductive definitions.
In fact this is one possible construction, because there are different ones depending on what underlying
type system we start with. Our objective here is to get a typed lambda calculus which unifies constructive
higher order predicate logic with a calculus of inductive types, so at this point we don’t bother about
program extraction. Also we want to avoid elements, depending on proofs and sets depending on elements
to keep the system transparent. The system defined below is a subsystem of the one implemented as
Coq. (See [Dowek e.a. 1991])

Definition 7.2 The Pure Type System λHOPP (Higher Order Predicate logic with Polymorphic sets) is
defined by the following specification.

S = Set,Prop,Types,Typep,

A = Set : Types,Prop : Typep,

R = (Set,Set), (Types,Set), (Set,Typep), (Typep,Typep),

(Prop,Prop), (Set,Prop), (Typep,Prop).

The part concerning Set and Types is system F ; the rules (Set ,Typep) and (Typep ,Typep) extend this
with a higher order language and the rules with Prop give the logic (implication, first order quantification
and higher order quantification.) We could also have started with sytem Fω in stead of F , but this
extension is not necessary for what we want to do.

Definition 7.3 ([Coquand and Mohring 1990]) 1. For Φ a set, proposition or type in λHOPP

and X a variable of the same sort, X is strictly positive in Φ if X /∈ FV (Φ) or if Φ = Π~y:~Y .X

with X /∈ FV (~Y). (We view Φ as a type scheme and to stress that we sometimes write Φ(X).If
there’s no ambiguity w.r.t. the variable X, we just say that Φ is strictly positive.)

2. For Φ(X) = Π~y:~Y .X strictly positive and P (x):s(x:B) we define the lifting of P along Φ,

Φ[P](x):s(x:Φ(B)), by Φ[P](x) := Π~y:~Y .P (x~y).)

3. For Φ(X) = Π~y:~Y .X strictly positive, P (x):s(x:B) and f :Πx:B.P (x), we define the lifting of f

along Φ, Φ[f]:Πx:Φ(B).Φ[P](x) by Φ[f] := λx:Φ(B).Π~y:~Y .f(x~y).)

Definition 7.4 1. The scheme Θ(X) of type Set is a constructor if Θ(X) = Π~x: ~Φ(X).X, with all
Φi(X) strictly positive.

2. Let Θ:s be a constructor with Φi1 , . . . ,Φip the strictly positive operators in Θ in which X occurs.
For P (z):s′(z:A) we define Θ[P](z):s′(z:Θ(A)) by

Θ[P](z) := Π~x : ~Φ(A).Φi1 [P](xi1)→ . . .→Φip [P](xip)→P (z~x).

Definition 7.5 The inductive type scheme for forming new propositions, sets and types is the following.
Let Θ1(X), . . . ,Θn(X) be constructors, then we have

1. a new set µX.[Θ1, . . . ,Θn], usually abbreviated to µ,

2. new constants introi : Θi(µ) for every 1 ≤ i ≤ n,

3. a new derivation rule

Γ, z:µ ` P (z) : s Γ ` f1 : Θ1[P](intro1) . . .Γ ` fn : Θn[P](intron)

Γ ` Recf1 . . . fn : (Πz:µ.P (z))

22

4. a new reduction rule

Recf1 . . . fn(introit1 . . . tm) −→ fit1 . . . tm(Φi1 [R]ti1) . . . (Φip [R]tip),

where Θi = Π~x: ~Φ(X).X and Φi1 . . .Φip are those Φ in which X really occurs. Recf1 . . . fn is
abbreviated to R.

We have to say what possible sorts s we allow in the rules. In the derivation rule we allow s ∈ {Set,Prop},
for µ:Set. The type µ can be formed if Θ(X) : Set for X:Set.

Definition 7.6 λHOPPI is the system λHOPP with the inductive type scheme as given above.

Example 7.7 The inductive type of natural numbers is now

Nat := µX.[X,X→X],

which comes with the constants 0:Nat and S:Nat→Nat, the derivation rule

Γ, x:Nat ` P (x) : Prop/Set Γ ` f1 : P (0) Γ ` f2 : Πx:Nat.P (x)→P (Sx)

Γ ` Recf1f2 : Πx:Nat.P (x)

and the reduction rules

Recf1f20 −→ f1, Recf1f2(Sx) −→ f2x(Recf1f2x).

Another example is
A+B := µX.[A→X,B→X],

which comes with intro1:A→A+B, intro2:B→A+B and for f1:Πx:A.P (intro1x), f2:Πx:B.P (intro2x),
Recf1f2:Πx:A+B.P (x)

We can not (as in [Coquand and Mohring 1990]) define the type Σx:A.Qx := µX.[Πx:A.Qx→X] (a
strong sigma type), for A:Set, Q:A→Prop, because we haven’t allowed Qx→X to be formed. This would
require the rule (Prop, Set), but then we get elements of sets depending on proofs, which we don’t want
at this point. We can define the sigma type ΣY :Set.B(Y) by µX.[ΠY :Set.B(Y)→X], which has only a
second projection.

We now want to show how to define coinductive types with corecursion using the inductive types
scheme. Applying the translations of coinductive types in terms of inductive types of the previous
sections, the following seems reasonable.

Definition 7.8 For Φ a strictly positive operator, we define the coinductive type from Φ by

νY.Φ(Y) := µX.[ΠY :Set.(Y→Φ(Y +X))→Y→X].

(νY.Φ(Y) is usually abbreviated by ν.)

Now an inductively defined set Y + X occurs in the constructor Θ, so we have to say what Θ[P] is
in this new case. We are done if we define Φ[P] : Φ(A)→Set/Prop for ΦX = Y + X. To do that we
extend the underlying system λHOPP with the rule (Set,Types) and we allow, in the derivation rule
for the recursive function on Y + X (for Y,X:Set) s to be Typep or Types. Now, if P :A→Prop take
Φ[P] := Rec(λz:Y.>)P , which is formed by

Γ, t:Y +A ` Prop : Typep Γ ` λy:Y.> : Y→Prop Γ ` P : A→Prop

Γ ` Rec(λz:Y.>)P : Y +A→Prop

Here > : Prop denotes Πα : Prop.α→α. If P :A→Set, take Φ[P] := Rec(λz:Y.1)P , which is formed by

23

Γ, t:Y +A ` Set : Types Γ ` λy:Y.1 : Y→Set Γ ` P : A→Set

Γ ` Rec(λz:Y.1)P : Y +A→Set

Here 1:Set denotes the set µX[X].
For Φ(X) a strictly positive operator, write Φ′Y (X) for Y→Φ(Y + X). Then the coinductive type

νX.Φ(X) := µX.[ΠY :Set.Φ′Y (X)→Y→X] comes together with

intro : ΠY : Set.Φ′Y (ν)→Y→ν

and the rule

Γ, z:ν ` P (z) : Prop/Set Γ ` f : ΠY :Set.Πy1:Φ′Y (ν).Πy2:Y.Φ′Y [P]y1→P (introY y1y2)

Γ ` Recf : Πz:ν.P (z)

We treat the example for Stream to show that this type really enjoys corecursion.

Example 7.9 Define

Stream := µX.[ΠY :Set.(Y→Nat)→(Y→Y +X)→Y→X].

Then
intro : ΠY :Set.(Y→Nat)→(Y→Y + Stream)→Y→Stream

and
Γ, z:Stream ` P :s Γ ` f : ΠY.Πy1:Y→Nat.Πy2:Y→Y + Stream.Πy3:Y.(Φ′Y [P](y2))→P (introY y1y2y3)

Γ ` Recf : Πz:Stream.P,
where s is Set or Prop, Φ′Y [P](y2) is defined as Πy:Y.rec(λz.I)P (y2y) with rec the recursor for the
inductive type Y + Stream and I is 1 or >, depending on s. The reduction rule is

Recf(introY y1y2y3) −→ fY y1y2y3(Φ′Y [Recf]y2),

where Φ′Y [Recf] := λz:Y→Y +Stream.λy:Y.rec(λx.!)(Recf)(zy) (The term ! is the unique term of either
1:Set or >:Prop.) Define now

H := Rec(λY y1y2y3y.y1y3) : Stream→Nat,

T := Rec(λY y1y2y3y.
[
introY y1y2, id

]
(y2y3)) : Stream→Stream,

which satisfy T(introY y1y2y3) −→−→
[
introY y1y2, id

]
(y2y3) and H(introY y1y2y3) −→−→ y1y3, the equa-

tion rules for corecursion. The function ZeroH, which replaces the head of a stream by 0 is defined by
ZeroH := intro Stream(λs.0)(λs.inr(Ts)).

With the previous example, we can also construct proofs of Πx:Stream.P z (if P :Stream→Prop.) It is
not clear to what can be done with this feature, as we don’t have any examples of proofs of propositions
which essentially use this scheme. A y:Φ′Y [P](y2) gives for y2 = inl ◦ h a proof of Πy′:Y.> and for
y2 = inr ◦ h a proof of Πy′:Y.P (hy′).

A proof of ΠY.Πy1:Y→Nat.Πy2:Y→Y +Stream.Πy3:Y.(Φ′Y [P](y2))→P (introY y1y2y3) is saying that
P holds for all coiterative streams and, for any y1:Y→Nat, h:Y→Stream, y3:Y if P holds for any possible
stream hy′, then P holds for introY y1(inr ◦ h)y3. This seems to make sense, but, as already remarked,
we don’t have any examples of the use of this.

Discussion

We have described general categorical notions of recursion and corecursion, which seem to capture
quite well our intuitive understanding of the concepts. It would be interesting to see which models of
(polymorphic) typed lambda calculus, that do not have all initial algebras and terminal coalgebras, do
have recursive algebras and corecursive coalgebras. It has been shown that in the realm of polymorphism,
recursion and corecursion can be translated in each other, which raises the question whether there is one
more general concept from which both recursion and corecursion are derivatives (using polymorphism.)
In the last section we have applied this to a system in which also proofs by induction are done using the
recursion scheme. It’s not clear whether the dualization gives us a scheme for proofs ’by coinduction’
and if so, whether this really yields something new.

24

Acknowledgements

We would like to thank Bart Jacobs for the numerous discussions on the subject, Christine Paulin-
Mohring for explaining the Calculus of Inductive Definitions, Nax Mendler for pointing out his work on
the subject and Thorsten Altenkirch pointing out the work of G. Wraith.

References

[Bainbridge et al. 1990] E.S. Bainbridge, P.J. Freyd, A. Scedrov and P.J. Scott, Functorial
polymorphism, Theor. Comp. Sc., 70, pp 35-64.

[Böhm and Berarducci 1985] C. Böhm and A. Berarducci, Automatic synthesis of typed Λ-programs
on term algebras Theor. Comput. Science, 39, pp 135-154.

[Coquand and Huet 1988] Th. Coquand and G. Huet, The calculus of constructions, Information and
Computation, 76, pp 95-120.

[Coquand and Mohring 1990] Inductively defined types, In P. Matrin-Löf and G. Mints editors.
COLOG-88 : International conference on computer logic, LNCS 417.

[Dowek e.a. 1991] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Paulin-Mohring, B. Werner, The Coq
proof assistant version 5.6, user’s guide. INRIA Rocquencourt - CNRS ENS Lyon.

[Girard 1972] J.Y. Girard, Interprétation foctionelle et élimination des coupures dans l’arithmétique
d’ordre supérieur. Ph.D. thesis, Université Paris VII.

[Girard et al. 1989] J.Y. Girard, Y. Lafont and P. Taylor, Proofs and types, Camb. Tracts in
Theoretical Computer Science 7, Cambridge University Press.

[Hagino 1987a] T. Hagino, A categorical programming language, Ph. D. thesis, University of
Edinburgh.

[Hagino 1987b] T. Hagino, A typed lambda calculus with categorical type constructions. In D.H. Pitt,
A. Poigné and D.E. Rydeheard, editors. Category Theory and Computer Science, LNCS 283 pp
140-157.

[Hayashi 1985] S. Hayashi, Adjunction of semifunctors: categorical structures in nonextensional lambda
calculus. Theor. Comp. Sc.41, pp 95-104.

[Kleene 1936] S.C. Kleene, λ-definability and recursiveness. Duke Math. J. 2, pp 340-353.

[Lambek 1968] J. Lambek, A fixed point theorem for complete categories. Mathematisches Zeitschrift
103 pp 151-161.

[Leivant 1989] D. Leivant, Contracting proofs to programs. In P. Odifreddi, editor. Logic in Computer
Science, Academic Press, pp 279-327.

[Mendler 1987] N.P. Mendler, Inductive types and type constraints in second-order lambda calculus.
Proceedings of the Second Symposium of Logic in Computer Science. Ithaca, N.Y., IEEE, pp 30-36.

[Mendler 1991] N.P. Mendler, Predicative type universes and primitive recursion. Proceedings of the
Sixth Annual IEEE Symposium on Logic in Computer Science. Amsterdam, The Netherlands,
IEEE, pp 173-184

[Reynolds 1974] J.C. Reynolds, Towards a theory of type structure. Proceedings, Colloque sur la
Programmation LNCS 19 pp 408-425.

[Reynolds 1984] J.C. Reynolds, Polymorphism is not set-theoretic. In G. Kahn, D.B. MacQueen and
G.D. Plotkin, editors. Semantics of Data Types, LNCS 173 pp145-156.

25

[Reynolds and Plotkin 1990] J.C. Reynolds and G.D. Plotkin, On functors expressible in the
polymorphic lambda calculus. In G. Huet, editor. Logical Foundations of Functional Programming,
In ’The UT Year of Programming Series’, Austin, Texas, pp 127-152.

[Wraith 1989] G.C. Wraith, A note on categorical datatypes In D.H. Pitt, A. Poigné and D.E.
Rydeheard, editors. Category Theory and Computer Science, LNCS 389 pp 118-127.

26

