Extra exercises Lecture 6

May 17, 2021

Exercise 1. For $G=(V, E)$, to decide if G has a Hamilton circuit, $\operatorname{Ham}(G)$, is known to be NP-complete. We haven't proved this in detail in the course, but you may assume it. (NB. A Hamilton circuit is a cyclic path in the graph that visits all vertices exactly once.)

A nearly-Hamilton circuit is a circuit in the graph G that has exactly one vertex occurring twice, and all others occurring exactly once. The problem nearHam (G) is to decide whether G has a nearly-Hamilton circuit.
(a) Give a graph $G=(V, E)$ that has a nearly-Hamilton circuit, but not a Hamilton circuit.
(b) Prove that nearHam is NP-complete.

Exercise 2. We define modified 3CNF formulas, m3CNF, as follows: $\varphi \in m 3 C N F$ if $\varphi \in 3$ CNF and every atom in φ occurs in at most 3 clauses. The problem modified 3CNF-SAT, m3CNF-SAT (φ), is the problem of deciding for a formula $\varphi \in m 3$ CNF whether it is satisfiable or not.
(a) State precisely, in a formula, what m3CNF-SAT means and state precisely what needs to be proven for $m 3 C N F-S A T$ to be NP-complete.
(b) Prove the following equivalence: $\left(\ell \vee A_{i}\right) \wedge\left(\ell \vee A_{j}\right)$ is satisfiable iff $\left(a \vee A_{i}\right) \wedge\left(a \vee A_{j}\right) \wedge(\ell \vee \neg a)$ is satisfiable, for a a fresh atom (where ℓ is a literal and A_{i}, A_{j} are arbitray formulas).
(c) Give a proof of the NP-completeness of $m 3 C N F-S A T$.
$\underline{\text { Hint }}$ Use NP-completeness of 3CNF-SAT and the equivalence in (b)
Exercise 3. For $C \subseteq \mathbb{Z}$, we consider $\operatorname{ILP}(C)$ which is a variant of the integer linear programming problem, ILP, that we have seen in the course. Given a finite set of inequalities of the form

$$
a_{1} x_{1}+\ldots+a_{n} x_{n} \leq c
$$

where $c \in C$ and $a_{1}, \ldots, a_{n} \in \mathbb{Z}$, we ask if there are values $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ such that all inequalities hold. In the course, we have seen that $\operatorname{ILP}(\mathbb{Z})$ is NP-complete.
(a) Give a set $C \subseteq \mathbb{Z}$, with C containing at least two elements, for which ILP (C) is not NP-complete.
(b) Show that for $C=\{-1,1\}$, $\operatorname{ILP}(C)$ is NP-complete.
$\underline{\text { Hint }}$ Add a fresh variable x to each equation to transform an inequality $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq b$ to $a_{1} x_{1}+\ldots+a_{n} x_{n}+a x \leq 1$; add additional equalities for x.

