Extra exercises Lecture 6

May 17, 2021

Exercise 1. For G = (V, E), to decide if G has a *Hamilton circuit*, Ham(G), is known to be NP-complete. We haven't proved this in detail in the course, but you may assume it. (NB. A Hamilton circuit is a cyclic path in the graph that visits all vertices exactly once.)

A nearly-Hamilton circuit is a circuit in the graph G that has exactly one vertex occurring twice, and all others occurring exactly once. The problem nearHam(G) is to decide whether G has a nearly-Hamilton circuit.

- (a) Give a graph G = (V, E) that has a nearly-Hamilton circuit, but not a Hamilton circuit.
- (b) Prove that nearHam is NP-complete.

Exercise 2. We define *modified* 3CNF *formulas*, *m*3CNF, as follows: $\varphi \in m$ 3CNF if $\varphi \in 3$ CNF and every atom in φ occurs in at most 3 clauses. The problem *modified* 3CNF-SAT, *m*3CNF-SAT(φ), is the problem of deciding for a formula $\varphi \in m$ 3CNF whether it is satisfiable or not.

- (a) State precisely, in a formula, what m3CNF-SAT means and state precisely what needs to be proven for m3CNF-SAT to be NP-complete.
- (b) Prove the following equivalence: $(\ell \lor A_i) \land (\ell \lor A_j)$ is satisfiable iff $(a \lor A_i) \land (a \lor A_j) \land (\ell \lor \neg a)$ is satisfiable, for a a fresh atom (where ℓ is a literal and A_i , A_j are arbitrary formulas).
- (c) Give a proof of the NP-completeness of m3CNF-SAT. <u>Hint</u> Use NP-completeness of 3CNF-SAT and the equivalence in (b)

Exercise 3. For $C \subseteq \mathbb{Z}$, we consider $\mathsf{ILP}(C)$ which is a variant of the *integer linear programming problem*, ILP , that we have seen in the course. Given a finite set of inequalities of the form

$$a_1x_1 + \ldots + a_nx_n \le c$$

where $c \in C$ and $a_1, \ldots, a_n \in \mathbb{Z}$, we ask if there are values $x_1, \ldots, x_n \in \mathbb{Z}$ such that all inequalities hold. In the course, we have seen that $\mathsf{ILP}(\mathbb{Z})$ is NP-complete.

- (a) Give a set $C \subseteq \mathbb{Z}$, with C containing at least two elements, for which $\mathsf{ILP}(C)$ is not NP-complete.
- (b) Show that for $C = \{-1, 1\}$, $\mathsf{ILP}(C)$ is NP-complete. <u>*Hint*</u> Add a fresh variable x to each equation to transform an inequality $a_1x_1 + \ldots + a_nx_n \leq b$ to $a_1x_1 + \ldots + a_nx_n + ax \leq 1$; add additional equalities for x.