Complexity IBC028, Lecture 6

H. Geuvers

Institute for Computing and Information Sciences Radboud University Nijmegen

Version: spring 2021

Three more NP-complete problems

PSPACE

Radboud University Nijmegen 👘

Proving that a problem is NP-complete

To prove that L is NP-complete, we proceed as follows.

- **1** Prove that $L \in NP$: give a pol. algorithm and pol. certificate.
- ❷ Pick a well-known $L' \in NPH$ (NP-hard) and show that $L' \leq_P L$.
- For showing NP-hardness we have used the following chain of satisfiability reductions.

 $\mathsf{SAT} \leq_P \mathsf{CNF}\mathsf{-}\mathsf{SAT} \leq_P \leq_3 \mathsf{CNF}\mathsf{-}\mathsf{SAT} \leq_P \mathsf{3CNF}\mathsf{-}\mathsf{SAT}$

- We have extended this with proofs of NP-hardness of ILP, Clique, VertexCover and 3Color.
- In the book you can find proofs of NP-hardness of Ham-Cycle(Hamiltonian cycle) and of SubsSum (Subset-Sum)
- In this lecture, we will prove NP-hardness of Clique-3Cover,WParse (weighted parsing) and TSP(traveling salesman).

Three more NP-complete problems PSPACE

A hierarchy NP-completeness proofs

Some polynomial Reductions to prove NP-handness 3- Color & aligne 3 Lover SAT & GUF-SAT & & CMF-SAT & JONF-SAT & TLP PSubsetSum 5 WParse -< Clique < Vertex Cover < Ham cycle < TSP H. Geuvers Version: spring 2021 Complexity 5 / 23

Clique-3Cover is NP-complete

DEFINITION

Clique-3Cover is the problem of deciding if a graph G = (V, E) is the union of three cliques, that is: $\exists V_1, V_2, V_3(V = V_1 \cup V_2 \cup V_3 \land V_1 \cap V_2 = \emptyset, V_2 \cap V_3 = \emptyset, V_1 \cap V_3 = \emptyset \land \forall i(V_i \text{ is a clique})).$

Theorem

Clique-3Cover is NP-complete

- Clique-3Cover \in NP. The sets (V_1, V_2, V_3) are a certificate.
- We show that 3Color \leq_P Clique-3Cover by defining $f(V, E) := (V, \overline{E})$, where $\overline{E} := \{(u, v) \mid u \neq v \land (u, v) \notin E\}$.
- (V, E) is 3-colorable iff (V, \overline{E}) has a clique-3cover, because

$$\begin{array}{ll} V_i \text{ is a clique in } (V,\overline{E}) & \Leftrightarrow & \forall u,v \in V_i (u \neq v \to (u,v) \in \overline{E}) \\ & \Leftrightarrow & \forall u,v \in V_i (u = v \lor (u,v) \notin E) \end{array}$$

 \Leftrightarrow V_i can have one color in (V, E).

SubsSum is NP-complete

DEFINITION

SubsSum(S, t) is the problem of deciding, for $S \subseteq_{fin} \mathbb{N}$ and $t \in \mathbb{N}$, if there is a subset $S' \subseteq S$ such that $\Sigma S' = t$. Here, $S \subseteq_{fin} \mathbb{N}$ denotes that S a finite subset of \mathbb{N} and $\Sigma S'$ denotes the sum of all elements in S' (also: $\Sigma_{x \in S'} x$).

We assume the representation of a number $n \in \mathbb{N}$ to be of size $\Theta(\log n)$. This holds for binary or decimal (but for not unary!). For simplicity we now assume decimal representation.

Theorem

SubsSum is NP-complete

- SubsSum ∈ NP. The certificate is the subset S' ⊆ S whose sum is t.
- We can prove SubsSum is NP-hard by showing ≤₃CNF-SAT ≤_P SubsSum.

Three more NP-complete problems

SubsSum is NP-hard (\leq_3 CNF-SAT \leq_P SubsSum).

We define $f : \leq_3 \text{CNF} \to \mathcal{P}_{\text{fin}}(\mathbb{N}) \times \mathbb{N}$ such that $\varphi = \bigwedge_{i=1}^k C_i$ is satisfiable iff for $f(\varphi) = (S, t)$ there is a $S' \subseteq S$ with $\Sigma S' = t$.

- Assume that $\varphi = \bigwedge_{i=1}^{k} C_i$ has *n* atoms $\{x_1, \ldots, x_n\}$.
- Define numbers $p_1, p'_1, \ldots, p_n, p'_n$ (each with n + k digits) by:
 - p_i has: 1 at position *i* and 1 at pos. n + j if x_i occurs in C_j ,
 - p'_i has: 1 at position *i* and 1 at pos. n + j if $\neg x_i$ occurs in C_j ,
 - all other positions in p_i and p'_i are 0.
- Define numbers $s_1, s'_1, \ldots, s_k, s'_k$ (each with n + k digits) by:
 - s_j has 1 at position n + j and for the rest 0,
 - s'_i has 2 at position n + j and for the rest 0.
- Take $S = \{p_i, p'_i \mid i = 1, ..., n\} \cup \{s_j, s'_j \mid j = 1, ..., k\}$ and t = 1...14...4 (*n* times a 1 and *k* times a 4).
- LEMMA: φ is satisfiable iff $\exists S' \subseteq S(\Sigma S' = t)$.

Three more NP-complete problems PSPACE

n(=3) k(=4)

≤₃CNF-SAT ≤_P SubsSum: Example

- p_i has 1 at position i and at position n + j if x_i occurs in C_j ,
- p'_i has 1 at position *i* and at position n + j if $\neg x_i$ occurs in C_j .

								(•)		(• • •		
(C_{1})	x_1	\vee	$\neg x_2$	\vee	$\neg x_3$	p_1	1	0	0	1	0	0	1	
(C_{2})			$\neg x_2$	\vee	<i>x</i> 3	p_1'	1	0	0	0	0	1	0	
(C_{3})														
(C_{4})	x_1	\vee	$\neg x_2$	\vee	$\neg x_3$	p'_2	0	1	0	1	1	0	1	
						<i>p</i> 3	0	0	1	0	1	0	0	
						p'_3	0	0	1	1	0	0	1	

- Basically, the first *n* colums represent the atoms x_1, \ldots, x_n and the last *k* colums represent the clauses C_1, \ldots, C_k .
- Using a satisfying assignment v for φ, we choose p_i or p'_i for each i (depending on v(x_i) = 1 / 0).
- Summing up these p's we get $t' = 1 \dots 1d_1 \dots d_k$ with $d_j \in \{1, 2, 3\}$, because ≥ 1 literal in each clause is true.
- So we can add specific s_j and s'_i to sum up to $t = 1 \dots 14 \dots 4$

Parsing and Weighted parsing

- Given a Context Free Grammar (CFG) G and a word w, can we derive Start ⇒ w?
- This is the Parse-problem.
- Put differently: Is there a parse-tree for w?
- The Parse problem can be solved in polynomial time. (E.g. CYK-algorithm)

Variant of the problem WParse, is there a weighted parse tree for w of weight k?

Definition

Given a CFG *G* where every production rule has a weight, let Start $\stackrel{m}{\Rightarrow} w$ denote that *w* has a parse tree where the sum of the weights of all production rules is *m*.

WParse(G, w, k) is the problem Start $\stackrel{k}{\Rightarrow} w$: Is there a parse tree of w with weight k?

Three more NP-complete problems

Example: parsing and weighted parsing

WParse is NP-complete

Theorem

WParse is NP-complete

Proof.

- WParse ∈ NP. The certificate is the parse tree of w with weight k
- We show that WParse is NP-hard by showing SubsSum ≤_P WParse.
 Given S = {s₁,..., s_n} and k ∈ N define the following weighted grammar:
 Start ⁰→ A₁...A_n, A_i ⁰→ B_i, A_i ⁰→ λ, B_i ^{s_i}→ λ.

Then

$$\exists S' \subseteq S(\Sigma S' = k) \qquad \text{iff} \qquad \text{Start} \stackrel{k}{\Rightarrow} \lambda.$$

Ham-Cycle and TSP-complete

Ham-Cycle is the set of graphs containing a Hamiltonian cycle:

$$\begin{array}{ll} \mathsf{Ham-Cycle} := \{(V, E) | & \exists v_1, \dots v_n (V = \{v_1, \dots, v_n\} \land \\ & \forall i, j < n(v_i = v_j \rightarrow i = j) \land \\ & v_n = v_1 \land \forall i < n(v_i, v_{i+1}) \in E) \} \end{array}$$

A variation is Ham-Path the set of graphs containing a Hamiltonian path. Then we drop the $v_n = v_1$ requirement.

Ham-Cycle is NP-complete because (1) it is in NP (check!) and (2) it is NP-hard, because it can be shown (see the book in case you want to see the details) that VertexCover \leq_P Ham-Cycle.

 $\begin{array}{ll} \mathsf{TSP} := \{(V, E, c, k) | & (V, E) \text{ is complete } \land \ c : V \times V \to \mathbb{Z} \land \\ & k \in \mathbb{Z} \land \text{ there is a cycle with cost at most } k \} \end{array}$

THEOREM TSP is NP-complete.

Proof

• TSP \in NP. The certificate is the cycle; That it has cost $\leq k$

can be checked easily

H. Geuvers

Version: spring 2021

TSP is NP-hard

• TSP \in NPH. We show Ham-Cycle \leq_P TSP.

Define for (V, E) a graph the following tuple (V, E', c, k), consisting of a complete graph, a $c : V \times V \rightarrow \mathbb{Z}$, $k \in \mathbb{Z}$.

$$E' = V \times V c(u, v) := 0 \text{ if } (u, v) \in E, c(u, v) := 1 \text{ if } (u, v) \notin E k := 0$$

LEMMA (V, E) has a Hamiltonian cycle if and only if (V, E') has a tour with cost at most 0

Proof

 $\mathsf{Check} \Rightarrow \mathsf{and} \Leftarrow.$

COROLLARY Ham-Cycle \leq_P TSP and so: Ham-Cycle is NP-hard.

Harder then NP

- There are problems that don't have a polynomial checking algorithm, or for which the certificate is not polynomial.
- Example: Two-player games.
 - "Is there a winning strategy for player 1?"
 - Certificate is typically not polynomial size.

Next natural level: decision algorithms that are polynomially bound on **space** (memory use), not on time.

Definition

- A is a polynomial space algorithm for L if
 - A is a deterministic Turing Machine that
 - halts on every input w such that
 - $w \in L$ iff A(w) halts in q_f and
 - the size of the tape used in the computation of A(w) is polynomial in |w|.

PSPACE

$$\begin{array}{l} \mathsf{PSPACE} := \\ \{L \subseteq \{0,1\}^* \mid \ \exists A, A \text{ polynomial space algorithm,} \\ w \in L \Longleftrightarrow A(w) = 1\} \end{array}$$

Lemma

• $P \subseteq PSPACE$

Because in polynomial size time, A uses only polynomial size space.

• NP \subseteq PSPACE

Because if $L = \{w \mid \exists y(y < c | w |^k \land A(w, y) = 1\}$, this can be checked using polynomial size space, by summing up all (exponentially many!) candidate y's and running A(w, y).

NPSPACE

Just like NP, we also have NPSPACE. DEFINITION

A is a non-deterministic polynomial space algorithm for L if

- A is a non-deterministic Turing Machine that
- halts on every input w such that
- $w \in L$ iff A(w) has a computation that halts in q_f and
- the size of the tape used in the computation of A(w) is polynomial in |w|.

SAVITCH' THEOREM

$\mathsf{PSPACE} = \mathsf{NPSPACE}$

PSPACE-hard and PSPACE-complete

DEFINITION

• L is called PSPACE-hard if

```
\forall L' \in \mathsf{PSPACE}(L' \leq_P L).
```

That is: all PSPACE-problems can be polynomial time reduced to L.

- $PSpaceH := \{L \mid L \text{ is } PSPACE-hard\}.$
- *L* is called PSPACE-complete if *L* ∈ PSPACE and *L* is PSPACE-hard.
- $\mathsf{PSpaceC} := \mathsf{PSPACE} \cap \mathsf{PSpaceH}.$

Theorem

If $L' \leq_P L$ and $L' \in \mathsf{PSpaceH}$, then $L \in \mathsf{PSpaceH}$.

The proof is the same as for NP-hard.

H. Geuvers

How to prove that *L* is PSPACE-complete?

- First prove that *L* ∈ PSPACE: give an algorithm that uses polynomial space for each input.
- Then: pick a well-known $L' \in \mathsf{PSpaceH}$ and show $L' \leq_P L$.

Just like SAT is the canonical NP-hard problem, there is a canonical PSPACE-hard problem: **QBF**.

DEFINITION

A **quantified boolean formula** (QBF) is a boolean formula where we can now also use quantifiers (\forall , \exists) over boolean variables. QBF is the problem of deciding whether a closed quantified boolean formula φ is true.

QBF is PSPACE-complete

Example
$$\varphi = \forall x (\exists y (x \land y)) \lor (\exists z (\neg x \land \neg z))$$

- For x = 0 we can choose y = 1 and for x = 1 we can choose z = 0.
- That is: for all values of x we can choose a case and a value for y (or z) that makes the boolean formula true.
- So φ is true.

Theorem

QBF is PSPACE-complete.

NB.

- The "certificate" for QBF(φ) is not just a choice of 0 / 1 for every ∃, but a choice depending on the ∀ in front of the ∃.
- The proof that QBF is PSPACE-hard uses a translation of Turing Machines to QBF.

H. Geuvers

Version: spring 2021

Some variations on QBF

- Note that SAT ≤_P QBF: given φ add ∃x in front of φ for all atoms x in φ.
- If we limit QBF to prenex fomulas, that have all quantifiers in front, it is still PSPACE-complete.
- If we limit QBF to alternating prenex fomulas, that have alternating ∀/∃ in front, it is still PSPACE-complete.
- If we limit the "body" of the QBF to be a 3CNF, it is still PSPACE-complete.
- A "proof" of ∀x₁∃y₁...∀x_n∃y_n(φ) amounts to making n choices, which amounts to a "certificate" of size 2ⁿ.
- A formula like ∀x₁∃y₁...∀x_n∃y_n(φ) can be interpreted as the question for a winning strategy for a two-player game.

Three more NP-complete problems PSPACE

Some other PSPACE-complete problems

 Strategic games are typically PSPACE-complete, like Geography

- Also RushHouR and Sokoban are PSPACE-complete.
- Given two regular expression e₁ and e₂, do we have *L*(e₁) = *L*(e₂)? This problem is PSPACE-complete.

 Similarly: Equivalence problem for non-deterministic finite
 automata: Given two NFAs over Σ, do they accept the same
 language? (Note: for DFAs this problem is in P!)
- The word problem for deterministic context-sensitive grammars is PSPACE-complete. This is the problem whether Start ⇒ w in such a grammar.