Complexity IBC028, Lecture 6

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen
Version: spring 2021

Outline

Three more NP-complete problems

PSPACE

Proving that a problem is NP-complete

To prove that L is NP-complete, we proceed as follows.
(1) Prove that $L \in$ NP: give a pol. algorithm and pol. certificate.
(2) Pick a well-known $L^{\prime} \in N P H$ (NP-hard) and show that $L^{\prime} \leq_{P} L$.

- For showing NP-hardness we have used the following chain of satisfiability reductions.

$$
\text { SAT } \leq_{P} \text { CNF-SAT } \leq_{P} \leq_{3} \text { CNF-SAT } \leq_{P} \text { 3CNF-SAT }
$$

- We have extended this with proofs of NP-hardness of ILP, Clique, VertexCover and 3Color.
- In the book you can find proofs of NP-hardness of Ham-Cycle(Hamiltonian cycle) and of SubsSum (Subset-Sum)
- In this lecture, we will prove NP-hardness of Clique-3Cover,WParse (weighted parsing) and TSP(traveling salesman).

A hierarchy NP-completeness proofs

Some polynomial Reductions to prove NP-hakdness

$$
\text { 3-Cobs } \leq_{p} \text { Clique } 3 \text { Cover }
$$

Vip

$$
\text { SAT } \leqslant Q_{1} \text { QNE-SAT } \leqslant_{T} \leqslant_{3} C N E-S A T \quad \leqslant_{P} 3 Q A F S A T \leqslant_{p} T L P
$$

$$
\begin{aligned}
& \text { in SubsetSum } \leqslant_{p} \text { Parse } \\
&-\leqslant_{p} \text { Clique } \leqslant \text { Vertex Cover } \leqslant_{p} \text { Ham dy de } \leqslant_{r} T S P
\end{aligned}
$$

Clique-3Cover is NP-complete

Definition

Clique-3Cover is the problem of deciding if a graph $G=(V, E)$ is the union of three cliques, that is: $\exists V_{1}, V_{2}, V_{3}\left(V=V_{1} \cup V_{2} \cup V_{3} \wedge\right.$ $V_{1} \cap V_{2}=\emptyset, V_{2} \cap V_{3}=\emptyset, V_{1} \cap V_{3}=\emptyset \wedge \forall i\left(V_{i}\right.$ is a clique $\left.)\right)$.

Theorem

Clique-3Cover is NP-complete

- Clique-3Cover $\in N P$. The sets $\left(V_{1}, V_{2}, V_{3}\right)$ are a certificate.
- We show that 3Color \leq_{P} Clique-3Cover by defining $f(V, E):=(V, \bar{E})$, where $\bar{E}:=\{(u, v) \mid u \neq v \wedge(u, v) \notin E\}$.
- (V, E) is 3-colorable iff (V, \bar{E}) has a clique-3cover, because V_{i} is a clique in $(V, \bar{E}) \Leftrightarrow \forall u, v \in V_{i}(u \neq v \rightarrow(u, v) \in \bar{E})$

$$
\Leftrightarrow \quad \forall u, v \in V_{i}(u=v \vee(u, v) \notin E)
$$

$\Leftrightarrow \quad V_{i}$ can have one color in (V, E).

SubsSum is NP-complete

DEFINITION

SubsSum (S, t) is the problem of deciding, for $S \subseteq_{\text {fin }} \mathbb{N}$ and $t \in \mathbb{N}$, if there is a subset $S^{\prime} \subseteq S$ such that $\Sigma S^{\prime}=t$. Here, $S \subseteq_{\text {fin }} \mathbb{N}$ denotes that S a finite subset of \mathbb{N} and ΣS^{\prime} denotes the sum of all elements in S^{\prime} (also: $\Sigma_{x \in S^{\prime}}$).

We assume the representation of a number $n \in \mathbb{N}$ to be of size $\Theta(\log n)$. This holds for binary or decimal (but for not unary!). For simplicty we now assume decimal representation.

Theorem

SubsSum is NP-complete

- SubsSum \in NP. The certificate is the subset $S^{\prime} \subseteq S$ whose sum is t.
- We can prove SubsSum is NP-hard by showing \leq_{3} CNF-SAT \leq_{P} SubsSum.

SubsSum is NP-hard $\left(\leq_{3}\right.$ CNF-SAT \leq_{P} SubsSum $)$.

We define $f: \leq{ }_{3}$ CNF $\rightarrow \mathcal{P}_{\text {fin }}(\mathbb{N}) \times \mathbb{N}$ such that $\varphi=\bigwedge_{i=1}^{k} C_{i}$ is satisfiable iff for $f(\varphi)=(S, t)$ there is a $S^{\prime} \subseteq S$ with $\Sigma S^{\prime}=t$.

- Assume that $\varphi=\bigwedge_{i=1}^{k} C_{i}$ has n atoms $\left\{x_{1}, \ldots, x_{n}\right\}$.
- Define numbers $p_{1}, p_{1}^{\prime}, \ldots, p_{n}, p_{n}^{\prime}$ (each with $n+k$ digits) by:
- p_{i} has: 1 at position i and 1 at pos. $n+j$ if x_{i} occurs in C_{j},
- p_{i}^{\prime} has: 1 at position i and 1 at pos. $n+j$ if $\neg x_{i}$ occurs in C_{j},
- all other positions in p_{i} and p_{i}^{\prime} are 0 .
- Define numbers $s_{1}, s_{1}^{\prime}, \ldots, s_{k}, s_{k}^{\prime}$ (each with $n+k$ digits) by:
- s_{j} has 1 at position $n+j$ and for the rest 0 ,
- s_{j}^{\prime} has 2 at position $n+j$ and for the rest 0 .
- Take $S=\left\{p_{i}, p_{i}^{\prime} \mid i=1, \ldots, n\right\} \cup\left\{s_{j}, s_{j}^{\prime} \mid j=1, \ldots, k\right\}$ and $t=1 \ldots 14 \ldots 4$ (n times a 1 and k times a 4).
- Lemma: φ is satisfiable iff $\exists S^{\prime} \subseteq S\left(\Sigma S^{\prime}=t\right)$.

\leq_{3} CNF-SAT \leq_{p} SubsSum: Example

- p_{i} has 1 at position i and at position $n+j$ if x_{i} occurs in C_{j},
- p_{i}^{\prime} has 1 at position i and at position $n+j$ if $\neg x_{i}$ occurs in C_{j}.

	x_{1}	V	$\neg \chi_{2}$	V	$\neg x_{3}$	p_{1}	$\mathrm{n}(=3)$			$k(=4)$			
$\left(C_{1}\right)$							1	0	0	1	0	0	1
$\left(C_{2}\right)$			$\neg \chi_{2}$	v	\times_{3}	p_{1}^{\prime}	1	0	0	0	0	1	0
$\left(C_{3}\right)$	$\neg x_{1}$	\checkmark	x_{2}			p_{2}	0	1	0	0	0	1	0
$\left(C_{4}\right)$	x_{1}	\checkmark		\checkmark	$\neg x_{3}$	p_{2}^{\prime}	0	1	0	1	1	0	1
						p_{3}	0	0	1	0	1	0	0
						p_{3}^{\prime}	0	0	1	1	0	0	

- Basically, the first n colums represent the atoms x_{1}, \ldots, x_{n} and the last k colums represent the clauses C_{1}, \ldots, C_{k}.
- Using a satisfying assignment v for φ, we choose p_{i} or p_{i}^{\prime} for each i (depending on $v\left(x_{i}\right)=1 / 0$).
- Summing up these p 's we get $t^{\prime}=1 \ldots 1 d_{1} \ldots d_{k}$ with $d_{j} \in\{1,2,3\}$, because ≥ 1 literal in each clause is true.
- So we can add specific s_{j} and s_{j}^{\prime} to sum up to $t=1 \ldots 14 \ldots 4$

Parsing and Weighted parsing

- Given a Context Free Grammar (CFG) G and a word w, can we derive Start $\Rightarrow w$?
- This is the Parse-problem.
- Put differently: Is there a parse-tree for w ?
- The Parse problem can be solved in polynomial time. (E.g. CYK-algorithm)

Variant of the problem WParse, is there a weighted parse tree for w of weight k ?

DEFINITION

Given a CFG G where every production rule has a weight, let Start $\stackrel{m}{\Rightarrow} w$ denote that w has a parse tree where the sum of the weights of all production rules is m.
WParse (G, w, k) is the problem Start $\stackrel{k}{\Rightarrow} w$: Is there a parse tree of w with weight k ?

Example: parsing and weighted parsing
Example

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow c S \\
& S \rightarrow \lambda
\end{aligned}
$$

$$
S \Rightarrow a<a b b
$$

Example

$$
\begin{aligned}
& S \xrightarrow{2} a S b \\
& S \xrightarrow{3} c S \\
& S \xrightarrow{1} \lambda \\
& S \xrightarrow{8} a c a b b
\end{aligned}
$$

WParse is NP-complete

Theorem

WParse is NP-complete

Proof.

(1) WParse \in NP. The certificate is the parse tree of w with weight k
(2) We show that WParse is NP-hard by showing SubsSum \leq_{P} WParse.
Given $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and $k \in \mathbb{N}$ define the following weighted grammar: Start $\xrightarrow{0} A_{1} \ldots A_{n}, \quad A_{i} \xrightarrow{0} B_{i}, \quad A_{i} \xrightarrow{0} \lambda, \quad B_{i} \xrightarrow{s_{i}} \lambda$. Then

$$
\exists S^{\prime} \subseteq S\left(\Sigma S^{\prime}=k\right) \quad \text { iff } \quad \text { Start } \stackrel{k}{\Rightarrow} \lambda
$$

Ham-Cycle and TSP-complete

Ham-Cycle is the set of graphs containing a Hamiltonian cycle:

$$
\begin{aligned}
\text { Ham-Cycle }:=\{(V, E) \mid & \exists v_{1}, \ldots v_{n}\left(V=\left\{v_{1}, \ldots, v_{n}\right\} \wedge\right. \\
& \forall i, j<n\left(v_{i}=v_{j} \rightarrow i=j\right) \wedge \\
& \left.\left.v_{n}=v_{1} \wedge \forall i<n\left(v_{i}, v_{i+1}\right) \in E\right)\right\}
\end{aligned}
$$

A variation is Ham-Path the set of graphs containing a Hamiltonian path. Then we drop the $v_{n}=v_{1}$ requirement.

Ham-Cycle is NP-complete because (1) it is in NP (check!) and (2) it is NP-hard, because it can be shown (see the book in case you want to see the details) that VertexCover \leq_{p} Ham-Cycle.

$$
\begin{aligned}
\mathrm{TSP}:=\{(V, E, c, k) \mid & (V, E) \text { is complete } \wedge c: V \times V \rightarrow \mathbb{Z} \wedge \\
& k \in \mathbb{Z} \wedge \text { there is a cycle with cost at most } k\}
\end{aligned}
$$

Theorem TSP is NP-complete.
Proof

- TSP \in NP. The certificate is the cycle; That it has cost $\leq k$ can be checked easily

TSP is NP-hard

- TSP \in NPH. We show Ham-Cycle \leq_{p} TSP.

Define for (V, E) a graph the following tuple $\left(V, E^{\prime}, c, k\right)$, consisting of a complete graph, a $c: V \times V \rightarrow \mathbb{Z}, k \in \mathbb{Z}$.

- $E^{\prime}=V \times V$
- $c(u, v):=0$ if $(u, v) \in E$, $c(u, v):=1$ if $(u, v) \notin E$
- $k:=0$

Lemma (V, E) has a Hamiltonian cycle if and only if $\left(V, E^{\prime}\right)$ has a tour with cost at most 0

Proof
Check \Rightarrow and \Leftarrow.
Corollary Ham-Cycle \leq_{P} TSP and so: Ham-Cycle is NP-hard.

Harder then NP

- There are problems that don't have a polynomial checking algorithm, or for which the certificate is not polynomial.
- Example: Two-player games.
- "Is there a winning strategy for player 1?"
- Certificate is typically not polynomial size.

Next natural level: decision algorithms that are polynomially bound on space (memory use), not on time.
Definition
A is a polynomial space algorithm for L if

- A is a deterministic Turing Machine that
- halts on every input w such that
- $w \in L$ iff $A(w)$ halts in q_{f} and
- the size of the tape used in the computation of $A(w)$ is polynomial in $|w|$.

PSPACE

PSPACE :=

$\left\{L \subseteq\{0,1\}^{*} \mid \exists A, A\right.$ polynomial space algorithm, $w \in L \Longleftrightarrow A(w)=1\}$

LEMMA

- $\mathrm{P} \subseteq$ PSPACE

Because in polynomial size time, A uses only polynomial size space.

- NP \subseteq PSPACE

Because if $L=\left\{w \mid \exists y\left(y<c|w|^{k} \wedge A(w, y)=1\right\}\right.$, this can be checked using polynomial size space, by summing up all (exponentially many!) candidate y 's and running $A(w, y)$.

NPSPACE

Just like NP, we also have NPSPACE.
Definition
A is a non-deterministic polynomial space algorithm for L if

- A is a non-deterministic Turing Machine that
- halts on every input w such that
- $w \in L$ iff $A(w)$ has a computation that halts in q_{f} and
- the size of the tape used in the computation of $A(w)$ is polynomial in $|w|$.

SAVITCH' Theorem

PSPACE $=$ NPSPACE

PSPACE-hard and PSPACE-complete

DEFINITION

- L is called PSPACE-hard if

$$
\forall L^{\prime} \in \operatorname{PSPACE}\left(L^{\prime} \leq_{P} L\right)
$$

That is: all PSPACE-problems can be polynomial time reduced to L.

- PSpaceH $:=\{L \mid L$ is PSPACE-hard $\}$.
- L is called PSPACE-complete if $L \in$ PSPACE and L is PSPACE-hard.
- PSpaceC := PSPACE \cap PSpaceH.

Theorem

If $L^{\prime} \leq_{P} L$ and $L^{\prime} \in \mathrm{PSpaceH}$, then $L \in \mathrm{PSpaceH}$.
The proof is the same as for NP-hard.

How to prove that L is PSPACE-complete?

- First prove that $L \in$ PSPACE: give an algorithm that uses polynomial space for each input.
- Then: pick a well-known $L^{\prime} \in P S p a c e H$ and show $L^{\prime} \leq_{P} L$.

Just like SAT is the canonical NP-hard problem, there is a canonical PSPACE-hard problem: QBF.

Definition

A quantified boolean formula (QBF) is a boolean formula where we can now also use quantifiers (\forall, \exists) over boolean variables. QBF is the problem of deciding whether a closed quantified boolean formula φ is true.

QBF is PSPACE-complete

Example $\quad \varphi=\forall x(\exists y(x \wedge y)) \vee(\exists z(\neg x \wedge \neg z))$

- For $x=0$ we can choose $y=1$ and for $x=1$ we can choose $z=0$.
- That is: for all values of x we can choose a case and a value for y (or z) that makes the boolean formula true.
- So φ is true.

THEOREM

QBF is PSPACE-complete.
NB.

- The "certificate" for $\operatorname{QBF}(\varphi)$ is not just a choice of $0 / 1$ for every \exists, but a choice depending on the \forall in front of the \exists.
- The proof that QBF is PSPACE-hard uses a translation of Turing Machines to QBF.

Some variations on QBF

- Note that SAT \leq_{p} QBF: given φ add $\exists x$ in front of φ for all atoms x in φ.
- If we limit QBF to prenex fomulas, that have all quantifiers in front, it is still PSPACE-complete.
- If we limit QBF to alternating prenex fomulas, that have alternating \forall / \exists in front, it is still PSPACE-complete.
- If we limit the "body" of the QBF to be a 3CNF, it is still PSPACE-complete.
- A "proof" of $\forall x_{1} \exists y_{1} \ldots \forall x_{n} \exists y_{n}(\varphi)$ amounts to making n choices, which amounts to a "certificate" of size 2^{n}.
- A formula like $\forall x_{1} \exists y_{1} \ldots \forall x_{n} \exists y_{n}(\varphi)$ can be interpreted as the question for a winning strategy for a two-player game.

Some other PSPACE-complete problems

- Strategic games are typically PSPACE-complete, like Geography

- Also RushHouR and Sokoban are PSPACE-complete.
- Given two regular expression e_{1} and e_{2}, do we have $\mathcal{L}\left(e_{1}\right)=\mathcal{L}\left(e_{2}\right)$? This problem is PSPACE-complete. Similarly: Equivalence problem for non-deterministic finite automata: Given two NFAs over Σ, do they accept the same language? (Note: for DFAs this problem is in P!)
- The word problem for deterministic context-sensitive grammars is PSPACE-complete. This is the problem whether Start $\Rightarrow w$ in such a grammar.

