Complexity IBC028, Lecture 7

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2021

Outline

SAT is NP-complete

Course Overview

The Cook Levin Theorem

Theorem

SAT is NP-complete

Proof

- SAT \in NP: for φ a boolean formula, the certificate is the satisfying assignment $v ; v$ is polynomial in $|\varphi|$ and checking $v(\varphi)=1$ is also polynomial.
- SAT \in NPH. For every $L \in$ NP we should find a polynomial f such that

$$
\forall x(x \in L \Longleftrightarrow f(x) \in \text { SAT })
$$

Let $L \in N P$, so there is a polynomial A such that

$$
x \in L \Longleftrightarrow \exists y \in\{0,1\}^{*}(|y| \text { polynomial in }|x| \wedge A(x, y)=1)
$$

The f we construct will mimick A.

Encoding a Turing Machine as a boolean formula (I)

A is given by a Turing Machine $M=(Q, \Sigma, \delta)$ and we have

$$
A(x, y)=1 \Longleftrightarrow M \text { halts in state } q_{F} \text { on input }(x, y) .
$$

We will encode the operation of M on (x, y) as a boolean formula.

- A configuration of M is given by: a state q and tape content $a_{1} \ldots a_{k} a_{k+1} \ldots a_{n}$ with q reading a_{k}. We encode this by

$$
a_{1} \ldots a_{k} q a_{k+1} \ldots a_{n} \in(Q \cup \Sigma)^{*}
$$

- A is polynomial in $|x|$, so there is a polynomial P such that
- computation of M on (x, y) takes $\leq P(|x|)$ steps,
- computation of M on (x, y) uses $\leq P(|x|)$ symbols on tape.
- Introduce boolean variables to describe the configuration of M after i steps. Intended meaning:

$$
p_{i, j, a}=\operatorname{true} \Longleftrightarrow \text { after } i \text { steps, there is an a on position } j
$$

- The number of boolean variables is bound by $P|x| \times(P|x|+1) \times(|\Sigma|+|Q|)$, so polynomial in $|x|$.

Encoding a Turing Machine as a boolean formula (II)

We encode the intended meaning of $p_{i, j, a}$ by writing a (vast) number of boolean formulas.

- For readability, we also use \rightarrow as a boolean connective.
- We use $v\left(p_{i, j, a}\right) \in\{$ true, false $\}$ to distinguish the satisfiability problem we construct from the tape content.

We have three groups of formulas.
(1) formulas that describe properties that a tape configuration should obey
(2) formulas describing the transition function δ of the Turing Machine
(3) formulas that describe the initial cofiguration of the Turing Machine, with input on the tape, and the final accepting configuration

Encoding a Turing Machine as a boolean formula (III)

(1) Boolean formulas to describe tape configurations

$$
\bigwedge_{i, j}\left(\left(\bigvee_{a \in \Sigma \cap Q} p_{i, j, a}\right) \wedge \bigwedge_{a, b \in \Sigma \cup Q, a \neq b}\left(\neg p_{i, j, a} \vee \neg p_{i, j, b}\right)\right)
$$

- On every i (every time step) each j (every tape location) holds an $a \in \Sigma \cup Q$,
- On every i (every time step) each j (every tape location) holds at most one $a \in \Sigma \cup Q$.

Note that both i and j are bound by $P(|x|)$, so the size of this formula is polynomial in $|x|$.

Encoding a Turing Machine as a boolean formula (IV)

(2) Boolean formulas describing the transition function δ.

Suppose that we have $\delta(q, a)=\left(q^{\prime}, b, R\right)$.
We add, for every i, j and every $c \in \Sigma$ the formula

$$
\left(p_{i, j, a} \wedge p_{i, j+1, q} \wedge p_{i, j+2, c}\right) \rightarrow\left(p_{i+1, j, b} \wedge p_{i+1, j+1, c} \wedge p_{i+1, j+2, q^{\prime}}\right)
$$

The rest of the tape remains intact so we add, for every $d \in \Sigma$, and for every $k<j$ and every $k>j+2$ the formula

$$
\left(p_{i, j, a} \wedge p_{i, j+1, q} \wedge p_{i, j+2, c}\right) \rightarrow\left(p_{i+1, k, d} \leftrightarrow p_{i, k, d}\right)
$$

Note that again, i, j and k are bound by $P(|x|)$, so the size of this formula is polynomial in $|x|$.

This is repeated for all transition steps of δ.

Encoding a Turing Machine as a boolean formula (V)

(3) Boolean formulas describing the initial configuration of the Turing Machine with input x (and certificate y "to be guessed"), and the accepting condition.

- $p_{0,1, q_{0}}$
- $p_{0, j+1,0}$ for all j-positions in x for which $x_{j}=0$
- $p_{0, j+1,1}$ for all j-positions in x for which $x_{j}=1$
- $p_{0,|x|+2, M}$ marking the end of input x, for marking symbol M
- $p_{0,|x|+2+j, 0} \vee p_{0,|x|+2+j, 1}$ for all j-positions in y, which should be either 0 or 1
- $p_{0, j, \sqcup}$ for all other tape positions, for the "blank" symbol \sqcup.
- $\bigvee_{i, j} p_{i, j, q_{F}}$ describing that M has reached the final state q_{F}.

Note that again, i, j are bound by $P(|x|)$, so the size of this formula is polynomial in $|x|$.

Encoding a Turing Machine as a boolean formula (VI)

Given Turing Machine M (that implements algorithm A), and input x, we denote by $f(x)$ the Boolean formula that is the conjunction of all the formulas that we have just described.

We have the following:

$$
f(x) \in \text { SAT }
$$

$\Longleftrightarrow \quad$ the $p_{0, j, a}$ describe a valid initial configuration with x as input and some choice for y and $\forall i>0$, the $p_{i, j, a}$ describe a configuration of M after i steps
and $\bigvee_{i, j} p_{i, j, q_{F}}=$ true
(at a certain point we arrive at state q_{F})
$\Longleftrightarrow \quad \exists y\left(M\right.$ with tape input (x, y) halts in $\left.q_{F}\right)$
$\Longleftrightarrow \exists y(A(x, y)=1)$.
So: For every $L \in \operatorname{NP}\left(L \leq_{P}\right.$ SAT $)$.
So: SAT \in NPH and so SAT \in NPC.

CNF-SAT is NP-complete

The construction of f in the Cook-Levin proof can be adapted a bit so that $f(x)$ is a CNF-formula.
Steps (1) and (3) already create a CNF. For Step (2):

$$
\left(p_{i, j, a} \wedge p_{i, j+1, q} \wedge p_{i, j+2, c}\right) \rightarrow\left(p_{i+1, j, b} \wedge p_{i+1, j+1, c} \wedge p_{i+1, j+2, q^{\prime}}\right)
$$

is equivalent to the three clauses

$$
\begin{gathered}
\neg p_{i, j, a} \vee \neg p_{i, j+1, q} \vee \neg p_{i, j+2, c} \vee p_{i+1, j, b} \\
\neg p_{i, j, a} \vee \neg p_{i, j+1, q} \vee \neg p_{i, j+2, c} \vee p_{i+1, j+1, c} \\
\neg p_{i, j, a} \vee \neg p_{i, j+1, q} \vee \neg p_{i, j+2, c} \vee p_{i+1, j+2, q^{\prime}} \\
\left(p_{i, j, a} \wedge p_{i, j+1, q} \wedge p_{i, j+2, c}\right) \rightarrow\left(p_{i+1, k, d} \leftrightarrow p_{i, k, d}\right)
\end{gathered}
$$

is equivalent to the two clauses

$$
\begin{aligned}
& \neg p_{i, j, a} \vee \neg p_{i, j+1, q} \vee \neg p_{i, j+2, c} \vee p_{i+1, k, d} \vee \neg p_{i, k, d} \\
& \neg p_{i, j, a} \vee \neg p_{i, j+1, q} \vee \neg p_{i, j+2, c} \vee \neg p_{i+1, k, d} \vee p_{i, k, d}
\end{aligned}
$$

So, for every $L \in N P\left(L \leq_{P} C N F-S A T\right)$ and so: CNF-SAT $\in N P H$.

Why SAT is important

SAT is NP-complete, but

- nevertheless there are very powerful tools that can solve large SAT problems (and even a bit more) very quickly
- many decision problems can be cast as a satisfiability problem

Example: Bounded Model Checking

Consider the following algorithm that sorts a triple of booleans.

$$
\begin{array}{lll}
\text { if } & a_{1}>a_{2} & \text { then } \\
\text { if } & a_{2}>a_{3} & \text { then } \\
\text { if } & \operatorname{swap}\left(a_{2}\right) \\
\text { if } & \left.a_{1}\right) \\
\text { in }
\end{array}
$$

Question: is this a correct sorting algorithm?
Introduce variables $a_{i, j}$ as values of a_{i} after j steps $(j=0,1,2,3)$ and introduce boolean formulas to denote the steps in the algorithm. For the first step:

$$
\begin{aligned}
&\left(a_{1,0} \wedge \neg a_{2,0}\right) \rightarrow\left(a_{1,1} \leftrightarrow a_{2,0} \wedge a_{2,1} \leftrightarrow a_{1,0} \wedge a_{3,1} \leftrightarrow a_{3,0}\right) \\
& \neg\left(a_{1,0} \wedge \neg a_{2,0}\right) \rightarrow \\
&\left(a_{1,1} \leftrightarrow a_{1,0} \wedge a_{2,1} \leftrightarrow a_{2,0} \wedge a_{3,1} \leftrightarrow a_{3,0}\right)
\end{aligned}
$$

Add a boolean formula that states that the algorithm is incorrect:

$$
\left(a_{1,3} \wedge \neg a_{2,3}\right) \vee\left(a_{2,3} \wedge \neg a_{3,3}\right)
$$

The conjunction of these formulas is not satisfiable, so the algorithm is correct.

Course overview(I)

1 Recursive programs
$\mathrm{fib}(n)=\Theta\left(\varphi^{n}\right)$ with $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.618$
Application: AVL-trees with k nodes have depth $\Theta(\log k)$.
2 Divide and Conquer algorithms
If \#steps on input of size n is $T(n)$, we have

$$
T(n)=\Sigma_{\text {some } k, k<n} T(k)+f(n)
$$

How to derive a $g(n)$ such that $T(n)=\mathcal{O}(g(n))$?

- Substitution method
- Recursion tree method
- Master Theorem method, especially for $T(n)=a T\left(\frac{n}{b}\right)+f(n)$.

Applications:

- Karatsuba multiplication of numbers: $\Theta\left(n^{\log _{2} 3}\right) \approx \Theta\left(n^{1.58}\right)$.
- The median of a list of numbers of length n, in $\Theta(n)$.
- Matrix multiplication (and inversion): $\Theta\left(n^{\log _{2} 7}\right) \approx \Theta\left(n^{2.8}\right)$.

Course overview(II)

3 P and NP; NP-hard, NP-complete

```
\(\mathrm{P}:=\)
\(\left\{L \subseteq\{0,1\}^{*} \mid \exists A, A\right.\) polynomial, \(\left.w \in L \Longleftrightarrow A(w)=1\right\}\)
NP :=
\(\left\{L \subseteq\{0,1\}^{*} \mid \quad \exists A, A\right.\) polynomial,
\(w \in L \Longleftrightarrow \exists y \in\{0,1\}^{*}(|y|\) polynomial in \(\left.|w| \wedge A(w, y)=1)\right\}\)
- NPH \(:=\left\{L \mid \forall L^{\prime} \in \operatorname{NP}\left(L^{\prime} \leq_{P} L\right)\right\}\)
- NPC :=NP \(\cap\) NPH
- \(L_{1} \leq_{P} L_{2}\) if
\(\exists\) polynomial \(f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}\left(x \in L_{1} \Longleftrightarrow f(x) \in L_{2}\right)\)
- (Theorem) If \(L^{\prime} \leq_{p} L\) and \(L^{\prime} \in N P H\), then \(L \in\) NPH.
- (Theorem) SAT \(\in\) NPC
- Whole list of NPC-problems
```

Course overview(III)

- Overview of NPC-problems
\qquad
4 PSPACE
- Definition of PSPACE-problem, PSPACE-complete
- QBF and variants are PSPACE-complete

