
SAT is NP-complete
Course Overview Radboud University Nijmegen

Complexity IBC028, Lecture 7

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2021

H. Geuvers Version: spring 2021 Complexity 1 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Outline

SAT is NP-complete

Course Overview

H. Geuvers Version: spring 2021 Complexity 2 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

The Cook Levin Theorem

Theorem

SAT is NP-complete

Proof
• SAT ∈ NP: for ϕ a boolean formula, the certificate is the

satisfying assignment v ; v is polynomial in |ϕ| and checking
v(ϕ) = 1 is also polynomial.

• SAT ∈ NPH. For every L ∈ NP we should find a polynomial f
such that

∀x(x ∈ L⇐⇒ f (x) ∈ SAT).

Let L ∈ NP, so there is a polynomial A such that

x ∈ L⇐⇒ ∃y ∈ {0, 1}∗(|y | polynomial in |x | ∧ A(x , y) = 1)

The f we construct will mimick A.

H. Geuvers Version: spring 2021 Complexity 4 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (I)

A is given by a Turing Machine M = (Q,Σ, δ) and we have

A(x , y) = 1⇐⇒ M halts in state qF on input (x , y).

We will encode the operation of M on (x , y) as a boolean formula.
• A configuration of M is given by: a state q and tape content

a1 . . . akak+1 . . . an with q reading ak . We encode this by

a1 . . . akqak+1 . . . an ∈ (Q ∪ Σ)∗

• A is polynomial in |x |, so there is a polynomial P such that
• computation of M on (x , y) takes ≤ P(|x |) steps,
• computation of M on (x , y) uses ≤ P(|x |) symbols on tape.

• Introduce boolean variables to describe the configuration of M
after i steps. Intended meaning:

pi ,j ,a = true ⇐⇒ after i steps, there is an a on position j

• The number of boolean variables is bound by
P|x | × (P|x |+ 1)× (|Σ|+ |Q|), so polynomial in |x |.

H. Geuvers Version: spring 2021 Complexity 5 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (II)

We encode the intended meaning of pi ,j ,a by writing a (vast)
number of boolean formulas.

• For readability, we also use → as a boolean connective.

• We use v(pi ,j ,a) ∈ {true , false} to distinguish the satisfiability
problem we construct from the tape content.

We have three groups of formulas.

1 formulas that describe properties that a tape configuration
should obey

2 formulas describing the transition function δ of the Turing
Machine

3 formulas that describe the initial cofiguration of the Turing
Machine, with input on the tape, and the final accepting
configuration

H. Geuvers Version: spring 2021 Complexity 6 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (III)

(1) Boolean formulas to describe tape configurations∧
i ,j

((
∨

a∈Σ∩Q
pi ,j ,a) ∧

∧
a,b∈Σ∪Q,a 6=b

(¬pi ,j ,a ∨ ¬pi ,j ,b))

• On every i (every time step) each j (every tape location)
holds an a ∈ Σ ∪ Q,

• On every i (every time step) each j (every tape location)
holds at most one a ∈ Σ ∪ Q.

Note that both i and j are bound by P(|x |), so the size of this
formula is polynomial in |x |.

H. Geuvers Version: spring 2021 Complexity 7 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (IV)

(2) Boolean formulas describing the transition function δ.

Suppose that we have δ(q, a) = (q′, b,R).

We add, for every i , j and every c ∈ Σ the formula

(pi ,j ,a ∧ pi ,j+1,q ∧ pi ,j+2,c)→ (pi+1,j ,b ∧ pi+1,j+1,c ∧ pi+1,j+2,q′)

The rest of the tape remains intact so we add, for every d ∈ Σ,
and for every k < j and every k > j + 2 the formula

(pi ,j ,a ∧ pi ,j+1,q ∧ pi ,j+2,c)→ (pi+1,k,d ↔ pi ,k,d)

Note that again, i , j and k are bound by P(|x |), so the size of this
formula is polynomial in |x |.

This is repeated for all transition steps of δ.

H. Geuvers Version: spring 2021 Complexity 8 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (V)

(3) Boolean formulas describing the initial configuration of the
Turing Machine with input x (and certificate y “to be guessed”),
and the accepting condition.

• p0,1,q0

• p0,j+1,0 for all j-positions in x for which xj = 0

• p0,j+1,1 for all j-positions in x for which xj = 1

• p0,|x |+2,M marking the end of input x , for marking symbol M

• p0,|x |+2+j ,0 ∨ p0,|x |+2+j ,1 for all j-positions in y , which should
be either 0 or 1

• p0,j ,t for all other tape positions, for the “blank” symbol t.

• ∨
i ,j pi ,j ,qF describing that M has reached the final state qF .

Note that again, i , j are bound by P(|x |), so the size of this
formula is polynomial in |x |.
H. Geuvers Version: spring 2021 Complexity 9 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (VI)

Given Turing Machine M (that implements algorithm A), and
input x , we denote by f (x) the Boolean formula that is the
conjunction of all the formulas that we have just described.

We have the following:
f (x) ∈ SAT

⇐⇒ the p0,j ,a describe a valid initial configuration
with x as input and some choice for y
and ∀i > 0, the pi ,j ,a describe a configuration of M
after i steps
and

∨
i ,j pi ,j ,qF = true

(at a certain point we arrive at state qF)
⇐⇒ ∃y(M with tape input (x , y) halts in qF)
⇐⇒ ∃y(A(x , y) = 1).

So: For every L ∈ NP(L ≤P SAT).
So: SAT ∈ NPH and so SAT ∈ NPC.

H. Geuvers Version: spring 2021 Complexity 10 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

CNF-SAT is NP-complete

The construction of f in the Cook-Levin proof can be adapted a
bit so that f (x) is a CNF-formula.

Steps (1) and (3) already create a CNF. For Step (2):

(pi ,j ,a ∧ pi ,j+1,q ∧ pi ,j+2,c)→ (pi+1,j ,b ∧ pi+1,j+1,c ∧ pi+1,j+2,q′)

is equivalent to the three clauses

¬pi ,j ,a ∨ ¬pi ,j+1,q ∨ ¬pi ,j+2,c ∨ pi+1,j ,b

¬pi ,j ,a ∨ ¬pi ,j+1,q ∨ ¬pi ,j+2,c ∨ pi+1,j+1,c

¬pi ,j ,a ∨ ¬pi ,j+1,q ∨ ¬pi ,j+2,c ∨ pi+1,j+2,q′

(pi ,j ,a ∧ pi ,j+1,q ∧ pi ,j+2,c)→ (pi+1,k,d ↔ pi ,k,d)

is equivalent to the two clauses

¬pi ,j ,a ∨ ¬pi ,j+1,q ∨ ¬pi ,j+2,c ∨ pi+1,k,d ∨ ¬pi ,k,d
¬pi ,j ,a ∨ ¬pi ,j+1,q ∨ ¬pi ,j+2,c ∨ ¬pi+1,k,d ∨ pi ,k,d

So, for every L ∈ NP(L ≤P CNF-SAT) and so: CNF-SAT ∈ NPH.
H. Geuvers Version: spring 2021 Complexity 11 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Why SAT is important

SAT is NP-complete, but

• nevertheless there are very powerful tools that can solve large
SAT problems (and even a bit more) very quickly

• many decision problems can be cast as a satisfiability problem

H. Geuvers Version: spring 2021 Complexity 12 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Example: Bounded Model Checking

Consider the following algorithm that sorts a triple of booleans.

if a1 > a2 then swap (a1, a2);

if a2 > a3 then swap (a2, a3);

if a1 > a2 then swap (a1, a2)

Question: is this a correct sorting algorithm?
Introduce variables ai ,j as values of ai after j steps (j = 0, 1, 2, 3)
and introduce boolean formulas to denote the steps in the
algorithm. For the first step:

(a1,0 ∧ ¬a2,0) → (a1,1 ↔ a2,0 ∧ a2,1 ↔ a1,0 ∧ a3,1 ↔ a3,0)

¬(a1,0 ∧ ¬a2,0) → (a1,1 ↔ a1,0 ∧ a2,1 ↔ a2,0 ∧ a3,1 ↔ a3,0)

Add a boolean formula that states that the algorithm is incorrect:

(a1,3 ∧ ¬a2,3) ∨ (a2,3 ∧ ¬a3,3)

The conjunction of these formulas is not satisfiable, so the
algorithm is correct.
H. Geuvers Version: spring 2021 Complexity 13 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Course overview(I)

1 Recursive programs

fib(n) = Θ(ϕn) with ϕ = 1+
√

5
2 ≈ 1.618

Application: AVL-trees with k nodes have depth Θ(log k).

2 Divide and Conquer algorithms
If #steps on input of size n is T (n), we have

T (n) = Σsome k,k<nT (k) + f (n)

How to derive a g(n) such that T (n) = O(g(n))?
• Substitution method
• Recursion tree method
• Master Theorem method, especially for T (n) = aT (n

b) + f (n).

Applications:
• Karatsuba multiplication of numbers: Θ(nlog2 3) ≈ Θ(n1.58).
• The median of a list of numbers of length n, in Θ(n).
• Matrix multiplication (and inversion): Θ(nlog2 7) ≈ Θ(n2.8).

H. Geuvers Version: spring 2021 Complexity 15 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Course overview(II)

3 P and NP; NP-hard, NP-complete

P :=
{L ⊆ {0, 1}∗ | ∃A,A polynomial, w ∈ L⇐⇒ A(w) = 1}

NP :=
{L ⊆ {0, 1}∗ | ∃A,A polynomial,
w ∈ L⇐⇒ ∃y ∈ {0, 1}∗(|y | polynomial in |w | ∧ A(w , y) = 1)}
• NPH := {L | ∀L′ ∈ NP(L′ ≤P L)}
• NPC := NP ∩ NPH
• L1 ≤P L2 if
∃ polynomial f : {0, 1}∗ → {0, 1}∗(x ∈ L1 ⇐⇒ f (x) ∈ L2)

• (Theorem) If L′ ≤P L and L′ ∈ NPH, then L ∈ NPH.
• (Theorem) SAT ∈ NPC
• Whole list of NPC-problems

H. Geuvers Version: spring 2021 Complexity 16 / 17

SAT is NP-complete
Course Overview Radboud University Nijmegen

Course overview(III)

• Overview of NPC-problems

4 PSPACE
• Definition of PSPACE-problem, PSPACE-complete
• QBF and variants are PSPACE-complete

H. Geuvers Version: spring 2021 Complexity 17 / 17

	SAT is NP-complete
	Course Overview

