
Complexity exam
with solutions

June 24, 2022

This exam consists of four problems.

Grading. Let p ∈ {0, 1, . . . , 100} denote the number of points earned. Then
the ’raw’ grade b ∈ [1, 10] for this exam is b = 1.5 + p · 8.5/100. The actual,
rounded grade g including the bonus for the weekly assignments is computed
as follows.

Letting a ∈ [0, 10] denote the average of the six weekly assignments,
we have g = round(b′), where

b′ =

{
min(10, b + a/10) if b > 5

b if b ≤ 5

and round(b′) is the number (or the greatest of the two numbers) in
{1.0, 1.5, . . . , 9.5, 10.0 }\{5.5} nearest to b′.

Problem 1 (15 points)

1. Merge sort splits the input array in two parts, and applies itself recur-
sively to these two parts. If we modify merge sort to split the array into
three parts, will this result in a better asymptotic runtime? Briefly explain
why it does, or doesn’t.

2. Bob is assigned a scheduling problem by his boss that he thinks is too
difficult to solve efficiently. Having followed a complexity course, Bob
shows the problem reduces to SAT, and argues that it therefore cannot be
solved efficiently. Are you convinced? Briefly explain your position.

3. Two methods, A and B, are used within a small music streaming com-
pany to index files. Insertion of a new file takes TA(n) = n microseconds
under A, and TB(n) = 100 ·

√
n microseconds under B, where n is the

number of files already present.

(a) Which method is asymptotically faster?

1



(b) Which method would you recommend to the company for indexing
their employment contracts?

(c) Which method would you recommend for indexing their music cat-
alogue?

Solution. 1. The runtime of merge sort can be computed using the Master
theorem: since merge sort recurses twice, a = 2, on inputs of essentially
half the size, b = 2, whose results take linear time to combine, f(n) =
Θ(n), the runtime will be Θ(nlogb(a) log(n)). Splitting the array into three
parts changes a and b to 3, but leaves logb(a) = 1 and Θ(f) unchanged.
(Merging three sorted arrays can be done in linear time by comparing the
heads of the lists and popping the least until the arrays are exhausted.)

Thus, by splitting the input array into three parts, no asymptotic speedup
is gained.

2. No, that the scheduling problem, let us denote it by SCHED, reduces
to SAT, that is, SCHED ≤P SAT, does not imply that SCHED is NP-
complete, or difficult in any sense (for any P-problem reduces to SAT.)

If instead Bob would have established a reduction in the other direction,
SAT ≤P SCHED, then this would have implied that SCHED is NP-hard,
and therefore in general intractable (though specific instances might still
be solvable, perhaps using a SAT-solver via Bob’s original reduction.)

3. (a) Method B is asymptotically faster.

(b) Although method B is asymptotically faster, method A is faster when
n < 10000, for then TA(n) = n ms =

√
n ·
√
n ms <

√
10000 ·

√
n ms =

100 ·
√
n ms = TB(n). Since the number of employment contracts for

our small company will likely not exceed 10000, method A is from
an efficiency standpoint more appropriate.

Grading. Full points are awarded for the reasoning presented here,
or any other convincing argument. One might, for example, argue
that the reduction in maintenance cost when using just one method
at the company (method B) outweighs any gains from using method
A instead of method B for employment contracts.

(c) Since a music catalogue is likely to contain more than 10000 files,
method B is to be recommended.

�

Grading. 5 points are given for every part.

2



Problem 2 (40 points) Let T : N −→ [0,∞) be given with

T (n) = T (dn/2e) + T (dn/4e) for all n ∈ {2, 3, . . . }.

(Note: to get the full marks for this problem, you should deal with ceilings and
base cases of induction proofs rigorously.)

1. Show that T (n) = O(n).

From this point onward, you may assume that T is monotone, i.e., n ≤ m =⇒
T (n) ≤ T (m) for all n,m ∈ N.

2. Show using induction that T (n) ≤ S(n) for all n ∈ N, where the function
S : N→ [0,∞) is recursively defined by, for all n ∈ N,

S(n) =

{
T (n) if n < 2

3S(dn/4e) if n ≥ 2.

3. Show that T (n) = O(nlog4(3)).

4. Show that T (n) = O(nln(ϕ)), where ϕ = 1
2 + 1

2

√
5. (You may use the fact

that ak = Θ(ϕk), where ak is the k-th Fibonacci number.)

Solution. 1. Choose C > 0 such that T (n) ≤ Cn for all n ∈ {1, 2, . . . , 7} (for
example, by defining C := maxn∈{1,...,7} T (n)/n.)

We will prove by strong induction that T (n) ≤ Cn for all n ∈ {1, 2, . . . }.
Let n ∈ {1, 2, . . . } with — the induction hypothesis — T (m) ≤ Cm for
all m ∈ {1, 2, . . . , n−1} be given; we must show that T (n) ≤ Cn. If n < 8,
then T (n) ≤ Cn by choice of C. On the other hand, if n ≥ 8, then:

T (n) = T (dn/2e) + T (dn/4e)
≤ C(dn/2e + dn/4e) by the induction hypothesis
≤ C(n/2 + 1 + n/4 + 1) since dxe ≤ x + 1

= C(3n/4 + 2)

= Cn − C(n/4− 2)

≤ Cn because n ≥ 8.

Whence T (n) ≤ Cn for all n ∈ {1, 2, . . . }. Thus T ∈ O(n).

Common errors. (a) Implicitly using the incorrect estimate dxe ≤ x (in-
stead of e.g. dxe ≤ x + 1.)

(b) Making statements such as “for n = 2, we have T (2) = 2T (1) =
O(n)” where the n inO(n) is a concrete number instead of a variable.

(c) Trying to prove that T (n) ≤ Cn holds for all n ∈ N instead of for
sufficiently large n.

(d) Trying to deduce T (n + 1) ≤ C(n + 1) from T (n) ≤ Cn .

(e) Not being clear about the exact induction hypothesis.

3



(f) Forgetting to address all base cases. For example, not realising for
which n the induction step works, and for which n the estimate must
be established manually.

(g) Applying the recurrence relation for T to n = 0 or n = 1.

(h) Giving an intuitive argument instead of a rigorous proof. E.g., only
drawing a recursion tree and claiming that T (n) = O(n) follows.

(i) Assuming that T (1) = 1 without justification.

(j) Assuming that T is monotone without justification.

2. We prove that T (n) ≤ S(n) using strong induction. Let N ∈ N with
T (n) ≤ S(n) for all n < N be given; we must show that T (N) ≤ S(N).

If N < 2, then T (N) = S(N), by definition of S, so suppose that N ≥ 2.
Then we have

T (N) = T (dN/2e) + T (dN/4e)
= T (ddN/2e /2e) + T (ddN/2e /4e) + T (dN/4e)

by applying the recurrence relation for T twice.

= 2T (dN/4e) + T (dN/8e)

using the formula dx/be = ddxe /be for x ∈ R and b ∈ {1, 2, . . . } (estab-
lished in Exercise 1 of exercise set #2.)

≤ 3T (dN/4e)

since dN/8e ≤ dN/4e, and T is monotone.

≤ 3S(dN/4e) = S(N)

by the induction hypothesis (since dN/4e < N .)

Whence S(n) ≤ T (n) for all n ∈ N.

Common errors. (a) Not addressing all base cases.

(b) Using an estimates such as 3T (dn/4e) ≥ T (n) and 3T (dn/4e) ≥
T (dn/2e) + T (dn/4e) without explanation.

(c) Trying to deduce T (n + 1) ≤ S(n + 1) from T (n) ≤ S(n) instead of
using strong induction.

3. The recurrence relation of S is of the form aS(dn/be) + f(n), where a = 3,
b = 4, and f(n) = 0 = O(n0). Since log4(3) > 0, case I of the Master
theorem applies to S, and yields S(n) = Θ(nlog4(3)). Since T (n) ≤ S(n) =
O(nlog4(3)), we get T (n) = O(nlog4(3)).

Common errors. (a) Stating that S(n) = O(nlog4(3)) without explanation.

4



(b) When using the Master theorem, not mentioning which of the three
cases applies.

(c) Statements such as “T (n) = O(...) for n ≥ 2”. (The “n ≥ 2” makes
no sense.)

4. Let a0, a1, . . . denote the Fibonacci numbers, so a0 = 0, a1 = 1, and
ak+2 = ak+1 + ak. Then by repeatedly applying the recurrence relation
for T , one finds that, for all n ∈ N and k ∈ N with

⌈
n/2k−1

⌉
≥ 2, we have

T (n) = ak+1T (
⌈
n/2k

⌉
) + akT (

⌈
n/2k+1

⌉
). (1)

Indeed, for k = 0, (1) holds, because T (n) = 1 · T (n) + 0 · T (dn/2e).

Now suppose that for some k ∈ N (1) holds for all n ∈ N with
⌈
n/2k−1

⌉
≥

2 (the ‘induction hypothesis’), and let n ∈ N with
⌈
n/2k

⌉
≥ 2 be given;

we claim that (1) holds too for n and k + 1. To see this, note that

T (n) = ak+1T (
⌈
n/2k

⌉
) + akT (

⌈
n/2k+1

⌉
),

by the induction hypothesis, which applies since
⌈
n/2k−1

⌉
≥
⌈
n/2k

⌉
≥ 2.

= (ak + ak+1)T (
⌈
n/2k+1

⌉
) + ak+1T (

⌈
n/2k+2

⌉
),

by substituting T (
⌈
n/2k

⌉
) = T (

⌈⌈
n/2k

⌉
/2
⌉
)+T (

⌈⌈
n/2k

⌉
/4
⌉
) = T (

⌈
n/2k+1

⌉
)+

T (
⌈
n/2k+2

⌉
), using here that

⌈
n/2k

⌉
≥ 2.

= ak+2T (
⌈
n/2k+1

⌉
) + ak+1T (

⌈
n/2k+2

⌉
),

by the recurrence relation for ak, and so (1) holds for k + 1 too.

Given n ∈ N with n ≥ 2, define k(n) := bln(n)c. We have⌈
n/2k(n)−1

⌉
≥ n/2blnnc−1 ≥ n/2lnn−1 = 2,

so (1) applies to k(n) and n. Moreover, we have⌈
n/2k(n)+1

⌉
≤
⌈
n/2k(n)

⌉
≤ n/2blnnc + 1 ≤ n/2lnn−1 + 1 = 3,

so T (
⌈
n/2k(n)

⌉
) and T (

⌈
n/2k(n)+1

⌉
) are in O(1).

Note that from the fact that ak = Θ(ϕk) one easily deduces that ak(n) =

Θ(ϕk(n)), because k : {2, 3, . . . } → N has the property that for every K ∈
N there is N ∈ {2, 3, . . . } such that for all n ≥ N , k(n) ≥ K.

Whence ak(n) = Θ(ϕk(n)) = Θ(ϕbln(n)c) = Θ(ϕln(n)). Since similarly,
ak(n)+1 and ak(n)+2 are in Θ(ϕln(n)), and by the previous observation
that T (

⌈
n/2k(n)

⌉
) and T (

⌈
n/2k(n)+1

⌉
) are in O(1), Equation (1) yields

that T (n) = O(ϕln(n)).

Since ϕln(n) = 2ln(n) ln(ϕ) = nln(ϕ), we get T (n) = O(nln(ϕ)). �

Common errors. (a) Only considering n of the form 2k where k ∈ N.

Grading. 10 points are given per part.

5



Problem 3 (25 points) In this exercise, we look at the Knapsack problem.

1. Find three subsets I of {1, 2, 3, 4, 5} such that∑
i∈I

wi ≤ 5 and
∑
i∈I

vi ≥ 12,

where w1 = w2 = w3 = 1, w4 = w5 = 2, v1 = v2 = 3, v3 = 4, and
v4 = v5 = 5.

2. Show that the following decision problem, known as the 0–1-Knapsack
problem, is NP-complete:

Given k, V,W, v1, . . . , vk, w1, . . . , wk ∈ N, is there a subset I of
{1, . . . , k}with

∑
i∈I wi ≤W and

∑
i∈I vi ≥ V ?

Solution. Three subsets that satisfy the requirements of 1 are

{1, 4, 5}, {2, 4, 5}, {3, 4, 5}

To show that this problem is NP-complete, we first show that it’s in NP.
A certificate here is a set I , so it is a list of natural numbers. We can verify a
solution as follows:

1. Check whether every element in I is in {0, . . . , k}

2. Add all the vi where i ∈ I and check whether their sum is at least V

3. Add all the wi where i ∈ I and check whether their sum is at most W

Each of these steps can be done in polynomial time, and thus verification can
be done in polynomial time.

To show that it’s NP-hard, we show how to reduce SubsSum to this prob-
lem. Suppose, that S ⊆ N is a finite subset of natural numbers and let t ∈ N.
Write S = {s1, . . . , sk}, and define

• wi = si

• vi = si

• W = t

• V = t

Note that this construction is done in polynomial time.
Suppose we have a subset I of S such that∑

i∈I
wi ≤W and

∑
i∈I

vi ≥ V

If we recall the definitions, then we observe∑
i∈I

si ≤ t and
∑
i∈I

si ≥ t

6



Hence, we have
∑

i∈I si = t, and thus this is a solution of the subset problem.
Suppose, we have a subset I of S such that∑

i∈I
si = t

Hence, ∑
i∈I

si ≤ t and
∑
i∈I

si ≥ t

If we recall the definitions, then we get∑
i∈I

vi ≤ V and
∑
i∈I

wi ≥W

Hence, we have the desired reduction. �

Grading. Points are given as follows

• If the subsets given in 1 satisfy the requirements, 5 points are given.

• 5 points are given for the proof that it is NP.

• 10 points are given for the correct function for the reduction

• 5 points are given for proof that it is indeed a reduction

At most 10 points are given if the Knapsack problem is used for the re-
duction. The Knapsack problem was not one of the problems from the lec-
tures/assignments. If the reduction is done in the wrong way around (for ex-
ample, showing that the problem reduces to SAT), then at most 10 points are
given. 3 points are deducted if there’s not enough detail.

Problem 4 (20 points) Consider the following situation. We have a finite set
S of students and a finite set C of courses, and a relation R(s, c) that indicates
whether student s follows course c. Courses can be scheduled in three time
slots: 10:45–12:30, 13:45–15:30 and 15:45–17:30.

A schedule assigns to every course a time slot, and a schedule is called
good if no student has a scheduling conflict.

Show that the following problem is NP-complete.

Given S, C and R as before, is there a good schedule?

Hint: use 3Color.

Solution. A certificate to this problem is a schedule, so pairs of courses and
time slots. To verify whether it is good, we check for every student whether
they have a scheduling conflict. This can be done in polynomial time, so it is in
NP.

To show that it is NP-hard, we show that 3Color reduces to this problem.
Given a graph G, define

• C is the set of vertices of G

7



• S is the set of edges of G

• We say that R(s, c) for s ∈ S and c ∈ C if the node c lies on the edge s.

Time slots represent colours, for example 10:45-12:30 is red, 13:45-15:30 is blue,
and 15:45-17:30 is purple. If we have a 3-colouring of G, we get a good schedule
for the C, S, and R described above. The time slot assigned to a course is the
color assigned to the corresponding vertex. In addition, if we have a good
schedule for the C, S, and R described above, we get a 3-colouring of G. The
colours assigned to a vertex are the time slots assigned to the corresponding
course. Hence, we constructed the desired reduction. �

Grading. Points are given as follows

• 5 points are given for the proof that it is NP.

• 10 points are given for the correct function for the reduction

• 5 points are given for proof that it is indeed a reduction

8


