FINDING A 3-COLORING IS NP-COMPLETE

In this note, we show that 3Color is NP-complete. Let us start by recalling
colorings of graphs

Definition 1. Let G = (V, E) be a graph. A 3-coloring of G is a function ¢ : V' —
{r,b, v} such that for every edge e = {v,w} € E we have c¢(v) # c(w).

A coloring assigns to every vertex a color in such a way, that adjacent vertices
have different colors. For example, the following is a 3-coloring

However, the following is not a 3-coloring, because two adjacent vertices have
the same color.

We define 3Color to be the following decision problem:
Given a graph G, does G have a 3-coloring?
The goal of this note is to prove that 3Color is NP-complete. To do so, we must
show the following two things:
e 3Color € NP.
o 3Color is NP-hard.
Let us start by proving 3Color € NP. So, we prove that we can check in poly-
nomial time whether a function ¢ : V' — {r, b, v} is a 3-coloring.

Proposition 2. 3Color € NP.

Proof. A certificate for this problem is a map ¢ : V' — {r,b, v}, and to verify this
is a 3-coloring, one must check for every edge e = {v, w} if G whether v and w
are assigned a different color. Note that this can be done in linear time, and hence,
3Color € NP. O

It remains to show that 3Color is NP-hard. To prove this is the case, we construct
the following reduction: 3CNF <p 3Color. Since we already know that 3CNF is
NP-hard, this implies that 3Color is NP-hard.
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Suppose that we have a formula ¢ which is in 3-conjunctive normal form. Con-
cretely, this means that ¢ has the following shape

where each ¢; can be written as ;1 V 1; 2 V 9; 3 where each 1); ; is a literal (i.e.,
either an atom a; or a negation —a; of some atom a;). In addition, suppose that the
atoms occurring in this formula are a4, . .., ak.

Our goal is to construct a graph G, such that G, has a 3-coloring if and only if
¢ is satisfiable. We also make sure that GG, can be computed in polynomial time
from . This graph has the following vertices:

e We have nodes True, False, and
e For each atom a; we have nodes @; and =a;.

o For each conjunct ¢; we have nodes x; 1, %; 2, Ti 3, Ti 4, T 5.

Note that since every 1); ; is a literal, we can pick a node @;, or =aj, corresponding
to that literal, and we denote this node by ¢; ;. There are the following edges:

e There is a triangle of edges between True, False, and as follows

Fa.|$2 Tt‘ ue

e For each atom «a;, we have a triangle as follows

a, RSY

e For every conjunct ¢; = ;1 V ¥; 2 V ¢; 3, we have edges as follows
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Hj. ’\/),“ 2 NID(', 3

True

Before we prove that the 3-colorability of this graph coincides with the satis-
fiability of ¢, let us think about what we can say about 3-colorings of this graph.
Suppose that c is a coloring of G,. First, we observe that the nodes True, False,
and get different colors.

Observation 1. If we have a triangle of vertices, then each of those vertices is assigned a
different color.

Proof. This holds because adjacent vertices ae assigned different colors and be-
cause all of the vertices in the triangle are connected. O

In particular, every coloring ¢ maps the nodes True, False, and to differ-
ent values, since we have the following triangle of nodes.

Fa.ls?. Tr we

Because of Observation |1} we can assume without loss of generality that
c¢(True) =b, c(False)=r, ¢ ) =

Lemma 3. We have the following inequalities:

o o@) # v and o(=@) #
o o(@) # o(=m).
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Proof. Again we use that adjacent vertices get different colors. The statement of
both items follow from the following triangle

a, 7Qq

O

Now we can better understand how colorings relate to satisfiability. A coloring
assigns to every literal either the color r or b, where the former represents that
this literal is false while the latter represents this literal is true. In addition, since
c(@;) # c¢(5a;), only one of these two gets mapped to r and the other to b.

Lemma 4. Let @; be any conjunct of p. Then it is not the case that c(;1) = c(;2) =
c(¢ig) =r.

Proof. Suppose, that we actually have that c(;1) = c(¥;2) = c¢(¢s3) = r. To
conclude the lemma, we need to prove a contradiction. Using the fact that adjacent
vertices have different colors, the coloring must look as follows.

b q{)(, 2 i ‘

3
[, 1 l
X
3
y

0 Y ”

X
X;

True

Since z; 5 is adjacent to both 1; ; and True, it gets assigned the color v, and be-
cause z; 4 is adjacent to both True and z; 5, it is colored r. Note that z; 1, x; 2,
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and x; 3 are all adjacent to each other. In addition, each of these three vertices is
adjacent to a red one. Since there are only three colors, it is impossible to assign
colors to z; 1, x; 2, and z; 3 in such a way that we actually get a coloring. As such,
we have reached the desired contradiction. O

Now we prove that 3Color is NP-hard.
Lemma 5. If G, has a 3-coloring, then  is satisfiable.

Proof. Note that from Lemma [3) we can map every atom to a truth value, and as
such, we have a model m. Now we need to show that ¢ holds in m. Concretely,
we need to show that for every ¢;, there is at least one literal that gets mapped to
1 by m. We showed in Lemma [ that it is impossible that all the v; ; get mapped
to false. Hence, ¢ holds in m O

To prove the converse, we use the same ideas but “in the opposite direction”.
Lemma 6. If o is satisfiable, then G, has a 3-coloring.

Proof. Suppose that ¢ is satisfiable, and let m be a model in which ¢ holds. Define
the following 3-coloring on G':
o We set
¢(True) =b, c¢(False) =1, ¢ )=
e If m(a;) = 1, then we set ¢(a;) = b and ¢(5a;) = r, while if m(a;) = 0, we
set ¢(@;) = r and ¢(=a;) = b.
o Letyp; = ;1 Vi 2V, 3 beaconjunct of p. Note that m(p;) = 1, because ¢
holds under m and because ¢ is in conjunctive normal form. We consider
three cases. If m(¢); 2) = 1, then we color the z; ; as follows

IWU, ’jb(., 2 ,\F(‘, 3

I

True
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This coloring allows for ¢; ; and v; 3 to be colored either red or blue.
If m(; 3) = 1, then we color the z; ; as follows

’\F. ’\P(" 2 V)(I, 3

I

True

Again this coloring allows for ¢; ; and v 3 to be colored either red or blue.
Otherwise, we have m(1); 2) = m(3); 3) = 0. Since ¢ is satisfiable, we see
that m(¢;,1) = 1, and then we assign the following colors

Hj_ ,jb{" 2 ,\/)(‘ ' 3

[, 1

)t

True
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Now we can conclude the following.
Theorem 7. 3Color is NP-complete.

Proof. To prove that 3Color is NP-complete, we need to prove two things. First of
all, we need to show that 3Color € NP, which was done in Proposition Second
of all, we had to prove that 3Color is NP-hard. We did that by constructing a
reduction from 3CNF to 3Color. Since we know that 3CNF is NP-hard, this allows
us to conclude that 3Color is NP-hard. The proof that we indeed have such a
reduction, was given in lemmas Lemmas|5|and [} Note that G, can be computed
in linear time, because the amount of vertices and edges in G, depends linearly
on the size of ¢. O

Definition[T]can be adapted to n-colorings for arbitrary n, and we can define the
decision problem nColor analogously. This gives a large number of NP-complete
problems.

Exercise. The decision problem 4Color is NP-complete.
Hint: show that 3Color <p 4Color.

Exercise. For every n > 3, the decision problem nColor is NP-complete.
Hint: use induction and show that nColor <p (n + 1)Color.



