
FINDING A 3-COLORING IS NP-COMPLETE

In this note, we show that 3Color is NP-complete. Let us start by recalling
colorings of graphs

Definition 1. Let G = (V,E) be a graph. A 3-coloring of G is a function c : V →
{r,b,y} such that for every edge e = {v, w} ∈ E we have c(v) 6= c(w).

A coloring assigns to every vertex a color in such a way, that adjacent vertices
have different colors. For example, the following is a 3-coloring

However, the following is not a 3-coloring, because two adjacent vertices have
the same color.

We define 3Color to be the following decision problem:
Given a graph G, does G have a 3-coloring?

The goal of this note is to prove that 3Color is NP-complete. To do so, we must
show the following two things:

• 3Color ∈ NP.
• 3Color is NP-hard.

Let us start by proving 3Color ∈ NP. So, we prove that we can check in poly-
nomial time whether a function c : V → {r,b,y} is a 3-coloring.

Proposition 2. 3Color ∈ NP.

Proof. A certificate for this problem is a map c : V → {r,b,y}, and to verify this
is a 3-coloring, one must check for every edge e = {v, w} if G whether v and w
are assigned a different color. Note that this can be done in linear time, and hence,
3Color ∈ NP. �

It remains to show that 3Color is NP-hard. To prove this is the case, we construct
the following reduction: 3CNF ≤P 3Color. Since we already know that 3CNF is
NP-hard, this implies that 3Color is NP-hard.
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Suppose that we have a formula ϕ which is in 3-conjunctive normal form. Con-
cretely, this means that ϕ has the following shape

ϕ =

n∧
i=1

ϕi

where each ϕi can be written as ψi,1 ∨ ψi,2 ∨ ψi,3 where each ψi,j is a literal (i.e.,
either an atom ai or a negation ¬ai of some atom ai). In addition, suppose that the
atoms occurring in this formula are a1, . . . , ak.

Our goal is to construct a graph Gϕ such that Gϕ has a 3-coloring if and only if
ϕ is satisfiable. We also make sure that Gϕ can be computed in polynomial time
from ϕ. This graph has the following vertices:

• We have nodes True, False, and Base.
• For each atom ai we have nodes ai and ¬ai.
• For each conjunct ϕi we have nodes xi,1, xi,2, xi,3, xi,4, xi,5.

Note that since every ψi,j is a literal, we can pick a node ak or ¬ak corresponding
to that literal, and we denote this node by ψi,j . There are the following edges:

• There is a triangle of edges between True, False, and Base as follows

• For each atom ai, we have a triangle as follows

• For every conjunct ϕi = ψi,1 ∨ ψi,2 ∨ ψi,3, we have edges as follows



FINDING A 3-COLORING IS NP-COMPLETE 3

Before we prove that the 3-colorability of this graph coincides with the satis-
fiability of ϕ, let us think about what we can say about 3-colorings of this graph.
Suppose that c is a coloring of Gϕ. First, we observe that the nodes True, False,
and Base get different colors.

Observation 1. If we have a triangle of vertices, then each of those vertices is assigned a
different color.

Proof. This holds because adjacent vertices ae assigned different colors and be-
cause all of the vertices in the triangle are connected. �

In particular, every coloring c maps the nodes True, False, and Base to differ-
ent values, since we have the following triangle of nodes.

Because of Observation 1, we can assume without loss of generality that

c(True) = b, c(False) = r, c(Base) = y

Lemma 3. We have the following inequalities:
• c(ai) 6= y and c(¬ai) 6= y.
• c(ai) 6= c(¬ai).
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Proof. Again we use that adjacent vertices get different colors. The statement of
both items follow from the following triangle

�

Now we can better understand how colorings relate to satisfiability. A coloring
assigns to every literal either the color r or b, where the former represents that
this literal is false while the latter represents this literal is true. In addition, since
c(ai) 6= c(¬ai), only one of these two gets mapped to r and the other to b.

Lemma 4. Let ϕi be any conjunct of ϕ. Then it is not the case that c(ψi,1) = c(ψi,2) =
c(ψi,3) = r.

Proof. Suppose, that we actually have that c(ψi,1) = c(ψi,2) = c(ψi,3) = r. To
conclude the lemma, we need to prove a contradiction. Using the fact that adjacent
vertices have different colors, the coloring must look as follows.

Since xi,5 is adjacent to both ψi,1 and True, it gets assigned the color y, and be-
cause xi,4 is adjacent to both True and xi,5, it is colored r. Note that xi,1, xi,2,
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and xi,3 are all adjacent to each other. In addition, each of these three vertices is
adjacent to a red one. Since there are only three colors, it is impossible to assign
colors to xi,1, xi,2, and xi,3 in such a way that we actually get a coloring. As such,
we have reached the desired contradiction. �

Now we prove that 3Color is NP-hard.

Lemma 5. If Gϕ has a 3-coloring, then ϕ is satisfiable.

Proof. Note that from Lemma 3, we can map every atom to a truth value, and as
such, we have a model m. Now we need to show that ϕ holds in m. Concretely,
we need to show that for every ϕi, there is at least one literal that gets mapped to
1 by m. We showed in Lemma 4 that it is impossible that all the ψi,j get mapped
to false. Hence, ϕ holds in m �

To prove the converse, we use the same ideas but “in the opposite direction”.

Lemma 6. If ϕ is satisfiable, then Gϕ has a 3-coloring.

Proof. Suppose that ϕ is satisfiable, and let m be a model in which ϕ holds. Define
the following 3-coloring on Gϕ:

• We set
c(True) = b, c(False) = r, c(Base) = y

• If m(ai) = 1, then we set c(ai) = b and c(¬ai) = r, while if m(ai) = 0, we
set c(ai) = r and c(¬ai) = b.

• Let ϕi = ψi,1∨ψi,2∨ψi,3 be a conjunct of ϕ. Note thatm(ϕi) = 1, because ϕ
holds under m and because ϕ is in conjunctive normal form. We consider
three cases. If m(ψi,2) = 1, then we color the xi,j as follows
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This coloring allows for ψi,1 and ψi,3 to be colored either red or blue.
If m(ψi,3) = 1, then we color the xi,j as follows

Again this coloring allows for ψi,1 and ψi,3 to be colored either red or blue.
Otherwise, we have m(ψi,2) = m(ψi,3) = 0. Since ϕ is satisfiable, we see

that m(ψi,1) = 1, and then we assign the following colors
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�

Now we can conclude the following.

Theorem 7. 3Color is NP-complete.

Proof. To prove that 3Color is NP-complete, we need to prove two things. First of
all, we need to show that 3Color ∈ NP, which was done in Proposition 2. Second
of all, we had to prove that 3Color is NP-hard. We did that by constructing a
reduction from 3CNF to 3Color. Since we know that 3CNF is NP-hard, this allows
us to conclude that 3Color is NP-hard. The proof that we indeed have such a
reduction, was given in lemmas Lemmas 5 and 6. Note that Gϕ can be computed
in linear time, because the amount of vertices and edges in Gϕ depends linearly
on the size of ϕ. �

Definition 1 can be adapted to n-colorings for arbitrary n, and we can define the
decision problem nColor analogously. This gives a large number of NP-complete
problems.

Exercise. The decision problem 4Color is NP-complete.
Hint: show that 3Color ≤P 4Color.

Exercise. For every n ≥ 3, the decision problem nColor is NP-complete.
Hint: use induction and show that nColor ≤P (n+ 1)Color.


