(20)

(20)

Radboud University Nijmegen

Science Faculty

Exam Complexity IBC028 June 21, 2021, 8.30 — 10.30
The maximum number of points per question is given in the margin. (Maximum 100 points
in total.)

When using well-known results that we have seen in the course, clearly state the

result you are using; you don’t have to prove it again.

1.

We have a recursive algorithm whose time complexity T'(n) satisfies
T(n)="7T(n—2)+5T(n—3)+ f(n),

with f(n) = ©(n*). Prove that T'(n) = O(3").

Solution:

We prove T'(n) < ¢3" by induction on n for n sufficiently large (n > N for some N)
and ¢ to be chosen. We have f(n) = O(n*), so we may assume we have an Ny and
d > 0 such that f(n) < dn® for n > Ny. Then we have, for n > Ny,

T(n) TT'(n—2)+5T(n—3)+ f(n)

IH
< 7e3" 2 4 563" 4+ dn?

= gc?)" + 237(:3” + dn?

= 2—703 +dn

26
So T'(n) < 2—703” + dn®. For n sufficiently large (and larger than Np), we have

3

1
dn® < 2—7c3" (because g—n — 0 for n — 0o and so ;Ln < %Z for n sufficiently large).
So we choose ¢ > 0 arbitrarily, say ¢ := 1, and we have T'(n) < ¢3" for n sufficiently

large, so T'(n) = O(3").

We have a recursive algorithm that, on an input of size n, does 3i recursive calls on
input of size 3 plus additional computations of time complexity ©(n). Determine the
time complexity of this algorithm for ¢ = 1,2, 3, 4.

Solution:
We have T'(n) = 3iT(g) + f(n) with f(n) = ©(n?). Following the Master theorem

(MT) we get the following: b = 3 in all cases, but a varies:

1

1=1

Then a = 3, so D = logya = log; 3 = 1, so f(n) = Q(n”*) for some ¢ > 0, so we
are in (case 3) of the MT. We check the side condition: af(%) < c¢f(n) for some
¢ < 1 for n sufficiently large. This holds for ¢ = 1/3: 3(n?.
So Ty = O(n?).

7 <

Wl =

n
3

Then a = 6, so D = logy a = log, 6 < 2, so f(n) = Q(n”*) for some € > 0, so we

are in (case 3) of the MT. We check the side condition: af(%) < c¢f(n) for some
1 1

¢ < 1 for n sufficiently large. This holds for ¢ = 3 3(%)2 < EnQ.

So Ty, = ©(n?).

Then a =9, so D = log,a = log; 9 = 2, so f(n) = ©(n"), so we are in (case 2) of
the MT.

So Ty = ©(n*logn).

Then a = 12, so D = log, a = logy 12 > 2, so f(n) = O(n”~) for some ¢ > 0, so
we are in (case 1) of the MT.

So ©(n'es12),

This solves all cases.

3. Suppose we have two algorithms A; and A, for which we have bounds on the running

time, given by 77 and T3, respectively for which we know the following (for some

constants ¢ and d).

(a)

(b)

Ti(n) = Tl(L;J)+T1(L2$J)+T1({3$J)+cn
o) = 3+ 5]+

Use the recursion tree method to compute an f; such that algorithm A; is

O(f1(n)). (Subtleties due to rounding may be ignored.)

Use the recursion tree method to compute an fy such that algorithm A, is

O(f2(n)). (Subtleties due to rounding may be ignored.)

Solution:
Ty is O(n), Ty is ©(nlogn):

See next page

4. We have defined the problem not-all-equal-3CNF-SAT, Neq3CNF-SAT (¢), as the problem
of deciding for a formula ¢ € 3CNF whether there is an assignment such that in every
clause in ¢, at least one literal is true and at least one literal is false.
Similarly, we have Neq4CNF-SAT: the problem of deciding for a formula ¢ € 4CNF
whether there is an assignment such that in every clause in ¢, at least one literal is

true and at least one literal is false.

(10) (a) Describe a procedure to transform a disjunction of 4 literals ¢1 V ¢y V ¢35 V {4 into
a 3CNF, ¢, such that

01V Uy V U3V Uy is Negd-satisfiable if and only if ¢ is Neq3-satisfiable.

Prove that your procedure satisfies this property.

(10) (b) It is given that NeqdCNF-SAT is NP-complete. Prove that Neq3CNF-SAT is
NP-complete.

Solution:

(a) Send £y V €y VU3V Ly to (U1 VLl Va)A (l3V €y V —a) for a a fresh atom. We have:
01Vl E3V Ly is Negd-satisfiable if and only if (¢1VEaVa)A(l3VE4V—a) is Neg3-satisfiable.

Proof:
(=): Suppose v is an Negd-valuation for ¢; V ¢y V €3V {4. There are several cases.

e v(f;) = v(ly) = 1. Then set v(a) = 0, then v is an Neg3-valuation for
0V Uy Va and v(—a) = 1 and (at least) one of (3, /4 has v(¢;) = 0, so v is an
Neqg3-valuation for /3 V ¢4V —a as well.

e v(f1) =0, v(f3) = 1. Then no matter what v(a) is, v is an Neg3-valuation for
0V Uy Va. Set v(a) to 0 or 1, depending on v(¢3) and v(¢4) to make sure that
v is an Neg3-valuation for /5 V ¢, V —a.

e v(l1) =wv(ly) = 0. (This is the “mirror case” of the first.) Then set v(a) = 1,
then v is an Neg3-valuation for ¢; V ¢5 V a and v(—a) = 0 and (at least) one of
l3, 04 has v({¢;) = 1, so v is an Neg3-valuation for /3 V ¢, V —a as well.

(«<): Suppose v is an Neg3-valuation for (¢1 V ¢35V a) A (¢3V €4,V —a). There are

two cases.

(5)
(15)

e v(a) = 1. Then v(¢;) = 0 or v(ly) = 0. Also v(—a) = 0, so v(f3) = 1 or
v(¢y) = 1. So v is an Neg4-valuation for ¢; V ly V l3 V {4.
e v(a) = 0. Then v(¢;) =1 or v(fy) = 1. Also v(—a) = 1, so v(f3) = 0 or
v(¢y) = 0. So v is an Neg4-valuation for ¢; V ly V l3V {4.
(b) That Neq3CNF-SAT is in NP follows from the fact that there is a certificate that
can easily be checked to be Neg3-satisfiable in polynomial time:
e The certificate is the assignment v : Atom — {0,1}.

e Checking the certificate means that we have to check that v is a Neq3 valuation
for a 3CNF, ¢. That means we have to check for each clause ¢; V ¢5V {3 that at
least one of the literals becomes true and at least one of the literals becomes
false under v. This can easily be checked in polynomial time for a given .

(Even linear time.)
That Neqg3CNF-SAT is NP-Hard is proven by polynomially reducing Neq4CNF-SAT
to Neq3CNF-SAT: NeqdCNF-SAT <p Neq3CNF-SAT.
The reduction from Neq4dCNF-SAT to Neq3CNF-SAT is given by the polynomial

function f defined as follows.

where f(l3 VoV U3V L) = (01 VIV a)A U3V LV —a) for a a fresh atom (for
every clause C; a new fresh atom), the procedure indicated in part (a). Then ¢ is

Neqg4-satisfiable iff f(y) is Neg3-satisfiable, as has been shown in part (a).

5. Define, for G = (V, E') an undirected graph, the problem “relaxed 3Color”, r3Color(G),
as the problem to decide whether G can be 3-colored where at most one edge can
have both endpoints of the same color and each other edge has two endpoints

with a different color.

(a) Draw a graph that can be “relaxed-3-colored”, but not 3-colored.

(b) Prove that r3Color is NP-complete.
Hint Use the NP-hardness of 3Color; add a simple graph to your graph.

Solution:

(a)

The simplest graph consists of 4 vertices, aq, as, az, as that are all connected with
eachother via edges. So, a tetrahedron. Observe that any 3-coloring of a1, as, as, a4
has at least 1 edge where the end points have the same color, so it cannot be

3-colored, but if two edges are colored the same, it is relaxed-3-colored.

That r3Color is in NP follows from the fact that there is a certificate that can

easily be checked in polynomial time:

e The certificate is the coloring of the vertices ¢ : V' — {r,y, g}.

e Checking the certificate means that we have to check that c is a relaxed-3-
coloring of (V| E). That means we have to check for each edge (v,u) € E
whether ¢(v) = ¢(u). There can be at most one edge where (v, u) € E whether
¢(v) = ¢(u). This can easily be checked in polynomial time. (Even linear

time.)
That r3Color is NP-Hard is proven by polynomially reducing: 3Color <p r3Color.
The definition of the reducing map f is: f(G) is G with the tetrahedron added

(disconnected from the rest of G, or possibly with one vertex shared.) We need to
prove that (V, E) is 3-colorable if and only if f(V, F) is relaed-3-colorable.

=: If (V| E) is 3-colorable, then f(V,FE) is relaxed-3-colorable, by coloring the

tetrahedron with 3 colors and one edge having two endpoints with the same color.

«<: If f(V, F) is relaxed-3-colorable, then in the tetrahedron one edge has two
endpoints with the same color. So the “rest of f(V, E)” is 3-colorable, but that’s
just (V, E). So (V, E) is 3-colorable.

END

