
Radboud University Nijmegen

Science Faculty

Exam Complexity IBC028 June 21, 2021, 8.30 – 10.30
The maximum number of points per question is given in the margin. (Maximum 100 points
in total.)
When using well-known results that we have seen in the course, clearly state the
result you are using; you don’t have to prove it again.

1.(20) We have a recursive algorithm whose time complexity T (n) satisfies

T (n) = 7T (n− 2) + 5T (n− 3) + f(n),

with f(n) = Θ(n3). Prove that T (n) = O(3n).
Solution:
We prove T (n) ≤ c3n by induction on n for n sufficiently large (n ≥ N for some N)
and c to be chosen. We have f(n) = Θ(n3), so we may assume we have an N0 and
d > 0 such that f(n) ≤ dn3 for n ≥ N0. Then we have, for n ≥ N0,

T (n) = 7T (n− 2) + 5T (n− 3) + f(n)
IH

≤ 7c3n−2 + 5c3n−3 + dn3

=
7

9
c3n +

5

27
c3n + dn3

=
26

27
c3n + dn3

So T (n) ≤ 26

27
c3n + dn3. For n sufficiently large (and larger than N0), we have

dn3 ≤ 1

27
c3n (because

n3

3n
→ 0 for n → ∞ and so

n3

3n
≤ c

27d
for n sufficiently large).

So we choose c > 0 arbitrarily, say c := 1, and we have T (n) ≤ c3n for n sufficiently
large, so T (n) = O(3n).

2.(20) We have a recursive algorithm that, on an input of size n, does 3i recursive calls on
input of size

n

3
plus additional computations of time complexity Θ(n2). Determine the

time complexity of this algorithm for i = 1, 2, 3, 4.
Solution:
We have T (n) = 3iT (

n

3
) + f(n) with f(n) = Θ(n2). Following the Master theorem

(MT) we get the following: b = 3 in all cases, but a varies:

1



i = 1 Then a = 3, so D = logb a = log3 3 = 1, so f(n) = Ω(nD+ε) for some ε > 0, so we
are in (case 3) of the MT. We check the side condition: af(

n

b
) ≤ cf(n) for some

c < 1 for n sufficiently large. This holds for c = 1/3: 3(
n

3
)2 ≤ 1

3
n2.

So T1 = Θ(n2).

i = 2 Then a = 6, so D = logb a = log3 6 < 2, so f(n) = Ω(nD+ε) for some ε > 0, so we
are in (case 3) of the MT. We check the side condition: af(

n

b
) ≤ cf(n) for some

c < 1 for n sufficiently large. This holds for c =
1

12
: 3(

n

6
)2 ≤ 1

12
n2.

So T2 = Θ(n2).

i = 3 Then a = 9, so D = logb a = log3 9 = 2, so f(n) = Θ(nD), so we are in (case 2) of
the MT.
So T3 = Θ(n2 log n).

i = 4 Then a = 12, so D = logb a = log3 12 > 2, so f(n) = O(nD−ε) for some ε > 0, so
we are in (case 1) of the MT.
So Θ(nlog3 12).

This solves all cases.

3. Suppose we have two algorithms A1 and A2 for which we have bounds on the running
time, given by T1 and T2, respectively for which we know the following (for some
constants c and d).

T1(n) = T1(
⌊n

7

⌋
) + T1(

⌊
2n

7

⌋
) + T1(

⌊
3n

7

⌋
) + cn

T2(n) = T2(
⌊n

2

⌋
) + T2(

⌊n
3

⌋
) + T2(

⌊n
6

⌋
) + dn

(a)(10) Use the recursion tree method to compute an f1 such that algorithm A1 is
Θ(f1(n)). (Subtleties due to rounding may be ignored.)

(b)(10) Use the recursion tree method to compute an f2 such that algorithm A2 is
Θ(f2(n)). (Subtleties due to rounding may be ignored.)

Solution:
T1 is Θ(n), T2 is Θ(n log n):

2



3



See next page

4



4. We have defined the problem not-all-equal-3CNF-SAT, Neq3CNF-SAT(ϕ), as the problem
of deciding for a formula ϕ ∈ 3CNF whether there is an assignment such that in every
clause in ϕ, at least one literal is true and at least one literal is false.
Similarly, we have Neq4CNF-SAT: the problem of deciding for a formula ϕ ∈ 4CNF

whether there is an assignment such that in every clause in ϕ, at least one literal is
true and at least one literal is false.

(a)(10) Describe a procedure to transform a disjunction of 4 literals `1 ∨ `2 ∨ `3 ∨ `4 into
a 3CNF, ϕ, such that

`1 ∨ `2 ∨ `3 ∨ `4 is Neq4-satisfiable if and only if ϕ is Neq3-satisfiable.

Prove that your procedure satisfies this property.

(b)(10) It is given that Neq4CNF-SAT is NP-complete. Prove that Neq3CNF-SAT is
NP-complete.

Solution:

(a) Send `1 ∨ `2 ∨ `3 ∨ `4 to (`1 ∨ `2 ∨ a) ∧ (`3 ∨ `4 ∨ ¬a) for a a fresh atom. We have:

`1∨`2∨`3∨`4 is Neq4-satisfiable if and only if (`1∨`2∨a)∧(`3∨`4∨¬a) is Neq3-satisfiable.

Proof:

(⇒): Suppose v is an Neq4-valuation for `1 ∨ `2 ∨ `3 ∨ `4. There are several cases.

• v(`1) = v(`2) = 1. Then set v(a) = 0, then v is an Neq3-valuation for
`1 ∨ `2 ∨ a and v(¬a) = 1 and (at least) one of `3, `4 has v(`i) = 0, so v is an
Neq3-valuation for `3 ∨ `4 ∨ ¬a as well.

• v(`1) = 0, v(`2) = 1. Then no matter what v(a) is, v is an Neq3-valuation for
`1 ∨ `2 ∨ a. Set v(a) to 0 or 1, depending on v(`3) and v(`4) to make sure that
v is an Neq3-valuation for `3 ∨ `4 ∨ ¬a.

• v(`1) = v(`2) = 0. (This is the “mirror case” of the first.) Then set v(a) = 1,
then v is an Neq3-valuation for `1 ∨ `2 ∨ a and v(¬a) = 0 and (at least) one of
`3, `4 has v(`i) = 1, so v is an Neq3-valuation for `3 ∨ `4 ∨ ¬a as well.

(⇐): Suppose v is an Neq3-valuation for (`1 ∨ `2 ∨ a) ∧ (`3 ∨ `4 ∨ ¬a). There are
two cases.

5



• v(a) = 1. Then v(`1) = 0 or v(`2) = 0. Also v(¬a) = 0, so v(`3) = 1 or
v(`4) = 1. So v is an Neq4-valuation for `1 ∨ `2 ∨ `3 ∨ `4.

• v(a) = 0. Then v(`1) = 1 or v(`2) = 1. Also v(¬a) = 1, so v(`3) = 0 or
v(`4) = 0. So v is an Neq4-valuation for `1 ∨ `2 ∨ `3 ∨ `4.

(b) That Neq3CNF-SAT is in NP follows from the fact that there is a certificate that
can easily be checked to be Neq3-satisfiable in polynomial time:

• The certificate is the assignment v : Atom → {0, 1}.

• Checking the certificate means that we have to check that v is a Neq3 valuation
for a 3CNF, ϕ. That means we have to check for each clause `1∨ `2∨ `3 that at
least one of the literals becomes true and at least one of the literals becomes
false under v. This can easily be checked in polynomial time for a given ϕ.
(Even linear time.)

That Neq3CNF-SAT is NP-Hard is proven by polynomially reducing Neq4CNF-SAT
to Neq3CNF-SAT: Neq4CNF-SAT ≤P Neq3CNF-SAT.

The reduction from Neq4CNF-SAT to Neq3CNF-SAT is given by the polynomial
function f defined as follows.

f(
n∧
i=1

Ci) =
n∧
i=1

f(Ci)

where f(`1 ∨ `2 ∨ `3 ∨ `4) = (`1 ∨ `2 ∨ a) ∧ (`3 ∨ `4 ∨ ¬a) for a a fresh atom (for
every clause Ci a new fresh atom), the procedure indicated in part (a). Then ϕ is
Neq4-satisfiable iff f(ϕ) is Neq3-satisfiable, as has been shown in part (a).

5. Define, for G = (V,E) an undirected graph, the problem “relaxed 3Color”, r3Color(G),
as the problem to decide whether G can be 3-colored where at most one edge can
have both endpoints of the same color and each other edge has two endpoints
with a different color.

(a)(5) Draw a graph that can be “relaxed-3-colored”, but not 3-colored.

(b)(15) Prove that r3Color is NP-complete.
Hint Use the NP-hardness of 3Color; add a simple graph to your graph.

Solution:

6



(a) The simplest graph consists of 4 vertices, a1, a2, a3, a4 that are all connected with
eachother via edges. So, a tetrahedron. Observe that any 3-coloring of a1, a2, a3, a4
has at least 1 edge where the end points have the same color, so it cannot be
3-colored, but if two edges are colored the same, it is relaxed-3-colored.

(b) That r3Color is in NP follows from the fact that there is a certificate that can
easily be checked in polynomial time:

• The certificate is the coloring of the vertices c : V → {r, y, g}.

• Checking the certificate means that we have to check that c is a relaxed-3-
coloring of (V,E). That means we have to check for each edge (v, u) ∈ E
whether c(v) = c(u). There can be at most one edge where (v, u) ∈ E whether
c(v) = c(u). This can easily be checked in polynomial time. (Even linear
time.)

That r3Color is NP-Hard is proven by polynomially reducing: 3Color ≤P r3Color.

The definition of the reducing map f is: f(G) is G with the tetrahedron added
(disconnected from the rest of G, or possibly with one vertex shared.) We need to
prove that (V,E) is 3-colorable if and only if f(V,E) is relaed-3-colorable.

⇒: If (V,E) is 3-colorable, then f(V,E) is relaxed-3-colorable, by coloring the
tetrahedron with 3 colors and one edge having two endpoints with the same color.

⇐: If f(V,E) is relaxed-3-colorable, then in the tetrahedron one edge has two
endpoints with the same color. So the “rest of f(V,E)” is 3-colorable, but that’s
just (V,E). So (V,E) is 3-colorable.

END

7


