
Recursion tree method
The Master Theorem Radboud University Nijmegen

Complexity IBC028, Lecture 2

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2024

H. Geuvers Version: spring 2024 Complexity 1 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Outline

Recursion tree method

The Master Theorem

H. Geuvers Version: spring 2024 Complexity 2 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Techniques to prove T (n) = O(g(n))
[or T (n) = Ω(g(n)) or T (n) = Θ(g(n))]

There are basically three techniques

1 Substitution Method:
Choose g and c (and N0) and prove (by induction on n)

T (n) ≤ c g(n) (for all n > N0)

2 Recursion Tree method :
Method to find g . And then you still have to prove g is
correct using (1)

3 Master theorem method :
General theorem for patterns of the shape

T (n) = aT (
n

b
) + f (n).

Actually: casting the heuristic method of (2) into a general
theorem.

H. Geuvers Version: spring 2024 Complexity 3 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Substitution method

Last week (MergeSort):

Theorem

If T (n) ≤ 2T (
⌊
n
2

⌋
) + Θ(n), then

T (n) ∈ O(n log n).

In fact, the n log n was an educated guess, which we then proved
by induction.

But how do we make an “educated guess”...how do we find the
n log n?
Answer: Make a recursion tree!

H. Geuvers Version: spring 2024 Complexity 4 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Recursion Tree method (I)

Example T (n) = 2T (n2) + d n.

T (n)

T (n2)

T (n4)T (n4)

T (n2)

T (n4)T (n4)

d n

2 d n
2 = d n

4 d n
4 = d n

• The height is log n, so there are log n + 1 layers
• Per layer: d n cost contribution
• Bottom: #leaves = 2log n = n; cost per leaf Θ(1).
• Total cost: d n log n + nΘ(1)
• So we conjecture: T (n) = Θ(n log n)

H. Geuvers Version: spring 2024 Complexity 6 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Some computation rules with log

For exponent: (bx)y = bx ·y and bx by = bx+y .
By definition:

logb x = y ⇐⇒ by = x and so blogb x = x

Rules for log

logb(x · y) = logb x + logb y logb(x
k) = k logb x

logb(
x
y) = logb x − logb y logb(

1
x) = − logb x

Changing base:

loga x = loga b · logb x and so loga f (n) = loga b · logb f (n)

x logc y = y logc x and so x logc f (n) = f (n)logc x

Addition/substraction under log:

log(x − 1) ≥ log x − 1 log x + 1 ≥ log(x + 1) for x ≥ 2

H. Geuvers Version: spring 2024 Complexity 7 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Recursion Tree method (II)

Question. Given T (n) = 3T (
⌊
n
2

⌋
) + n, find f with T (n) = Θ(f (n)).

T (n)

T (n2)T (n2)

T (n4)T (n4)T (n4)

T (n2)

n

3 n
2

9 n
4

• Height is log n, so 3log n = nlog 3 leaves, contributing Θ(nlog 3).

• At layer i we have 3i n2i contribution.

• Total: Σlog n
i=0 (

3
2)

i n = n
(3
2)

log n+1−1
3
2−1

≈ 2n(32)
log n = 2 · 3log n = 2 · nlog 3.

• So we conjecture: T (n) = Θ(nlog 3).

H. Geuvers Version: spring 2024 Complexity 8 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Substitution method

T (n) = 3T (
⌊
n
2

⌋
) + n.

We prove: T (n) = O(nlog 3).

Proof. We need to prove T (n) ≤ cnlog 3 for appropriately chosen c
(for all n > N for some appropriately chosen N)

T (n) = 3T (
⌊n
2

⌋
) + n

IH
≤ 3c(

n

2
)log 3 + n

=
3c nlog 3

2log 3
+ n = cnlog 3 + n

??
≤ cnlog 3

The induction fails, so we add a linear factor: T (n) ≤ cnlog 3 + dn.
We notice that it works for d = −2, because we have

T (n) = 3T (
⌊n
2

⌋
)+n

IH
≤ 3(c(

n

2
)log 3−2

n

2
)+n = cnlog 3−3n+n = cnlog 3−2n

H. Geuvers Version: spring 2024 Complexity 9 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Computing the median of an unsorted list

Problem: Given an unsorted list of elements, how to compute the
median?
(Median of A = element that has half of the elements of A below
it and the other half above it.)
Possible solution:

• First sort the list A, with |A| = n.

• Then take the
⌊
n
2

⌋
-th element

This takes O(n log n) time.
But it can be done in linear time!

General:

M(A, k) := the k-th element of the sorted version of A.

Then the median of A is M(A, |A|2).

H. Geuvers Version: spring 2024 Complexity 10 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Computing the median of a list in linear time (I)

M(A, k) := the k-th element of the sorted version of A.

Let n = |A|. For purpose of exposition, we assume n = 5p for some
p. (If n < 5p add 0s to get n = 5p.)

1 Split A randomly in n
5 groups of 5 elements

2 Determine the median of each group of 5 elements.

3 Determine recursively the median of these n
5 medians, say m

4 Count the number of elements in A that are ≤ m, say ℓ.
• If ℓ = k , we are done and m is the output.
• If ℓ > k , then m is larger than the number we are looking for,

so we continue recursively with M(A \ Ahigh, k)
• If ℓ < k , then m is smaller than the number we are looking for,

so we continue recursively with M(A \ Alow, k − |Alow|).
• Until n is “very small”, say n ≤ 10, then compute the k-th

element directly

Q. What exactly are Ahigh and Alow and how large are they?
H. Geuvers Version: spring 2024 Complexity 11 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Computing the median of a list in linear time (II)

1 Split A randomly in n
5 groups of 5 elements

2 Determine the median of each group of 5 elements.

3 Determine recursively the median of these n
5 medians, say m

4 Count the number of elements in A that are ≤ m, say ℓ.
• If ℓ = k , we are done and m is the output.
• If ℓ > k , then m is larger than the number we are looking for,

so we continue recursively with M(A \ Ahigh, k)
• If ℓ < k , then m is smaller than the number we are looking for,

so we continue recursively with M(A \ Alow, k − 3
⌈

n
10

⌉
).

• Until n is “very small”, say n ≤ 10, then compute the k-th
element directly

Complexity:

T (n) = T (
n

5
) + T (

7n

10
) + Θ(n).

Note that steps (1), (2) and the first part of (4) are linear in n.

H. Geuvers Version: spring 2024 Complexity 12 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Computing the median of a list in linear time (III)

T (n) ≤ T (
n

5
) + T (

7n

10
) + cn for some c .

To find the complexity class of T we can make a recursion tree.

T (n)

T (7n10)

T (49n100)T (7n50)

T (n5)

T (7n50)T (n
25)

c n

9
10 c n

(9
10)

2 c n

• The height is between log5 n and log 10
7
n, so the number of leaves is

approximately 2log5 n = nlog5 2.

• The layers: Σ??
i=0(

9
10)

i c n ≤ Σ∞
i=0(

9
10)

i c n = c nΣ∞
i=0(

9
10)

i = 10 c n

• Conjecture T (n) ≤ 10 c n.

H. Geuvers Version: spring 2024 Complexity 13 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Computing the median of a list in linear time (IV)

T (n) ≤ T (
n

5
) + T (

7n

10
) + cn.

From the recursion tree method we conjecture that T (n) ≤ 10 c n.

Proof by induction on n

• For small n, it is correct. (Possibly choose a larger c .)

• For larger n:

T (n) ≤ T (
n

5
) + T (

7n

10
) + cn

IH
≤ 10 c (

n

5
) + 10 c (

7n

10
) + c n

= 2 c n + 7 c n + c n

= 10 c n

So T (n) = O(n), and so M is linear in the length of the input list.
H. Geuvers Version: spring 2024 Complexity 14 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Master Theorem

Theorem

Suppose a ≥ 1 and b > 1 and we abbreviate γ := logb a.

T (n) = aT (
n

b
) + f (n).

Then

1 T (n) = Θ(nγ) if f (n) = O(nd) for some d < γ.
f is “relatively small” compared to nγ

2 T (n) = Θ(nγ log n) if f (n) = Θ(nγ).
E.g. the Mergesort case

3 T (n) = Θ(f (n)) if f (n) = Ω(nd) for some d > γ and
∃c ∈ (0, 1)∃N ∀n > N(a f (nb) ≤ c f (n)).

f is “relatively large” compared to nγ

H. Geuvers Version: spring 2024 Complexity 16 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Using the Master Theorem (I)

T (n) = 9T (
n

3
) + n

Theorem (with γ = logb a)

1 T (n) = Θ(nγ) if f (n) = O(nd) for some d < γ.

2 T (n) = Θ(nγ log n) if f (n) = Θ(nγ).

3 T (n) = Θ(f (n)) if f (n) = Ω(nd) for some d > γ and
∃c ∈ (0, 1)∃N ∀n > N(a f (nb) ≤ c f (n)).

Now, a = 9 and b = 3, so γ = logb a = log3 9 = 2.
Also f (n) = n = O(n) = O(n1) and 1 < 2 = γ.
So case (1) of the Master Theorem applies and we have

T (n) = Θ(n2).

H. Geuvers Version: spring 2024 Complexity 17 / 18

Recursion tree method
The Master Theorem Radboud University Nijmegen

Using the Master Theorem (II)

Theorem (with γ = logb a)

1 T (n) = Θ(nγ) if f (n) = O(nd) for some d < γ.

2 T (n) = Θ(nγ log n) if f (n) = Θ(nγ).

3 T (n) = Θ(f (n)) if f (n) = Ω(nd) for some d > γ and
∃c ∈ (0, 1)∃N ∀n > N(a f (nb) ≤ c f (n)).

T (n) = 9T (
n

4
) + n2.

Now, a = 9 and b = 4, so γ = logba = log4 9 ≈ 1.584.
Also f (n) = n2 = Ω(n2) and 2 > γ.
So case (3) of the Master Theorem applies and we have

T (n) = Θ(n2).

We need an extra check:
∃c ∈ (0, 1)∃N ∀n ≥ N(a f (nb) ≤ c f (n))??
That is: 9(n4)

2 ≤ cn2, so take c := 9
16 and this is ok.

H. Geuvers Version: spring 2024 Complexity 18 / 18

	Recursion tree method
	The Master Theorem

