Complexity IBC028, Lecture 2

H. Geuvers

Institute for Computing and Information Sciences Radboud University Nijmegen

Version: spring 2024

Outline

Recursion tree method

The Master Theorem

Radboud University Nijmegen 🖑

Techniques to prove T(n) = O(g(n))[or $T(n) = \Omega(g(n))$ or $T(n) = \Theta(g(n))$]

There are basically three techniques

1 Substitution Method:

Choose g and c (and N_0) and prove (by induction on n)

 $T(n) \leq c g(n)$ (for all $n > N_0$)

Recursion Tree method :

Method to find g. And then you still have to prove g is correct using (1)

8 Master theorem method :

General theorem for patterns of the shape

$$T(n) = aT(\frac{n}{b}) + f(n).$$

Actually: casting the heuristic method of (2) into a general theorem.

Substitution method

Last week (MergeSort):

Theorem

If $T(n) \leq 2T(\lfloor \frac{n}{2} \rfloor) + \Theta(n)$, then

 $T(n) \in \mathcal{O}(n \log n).$

In fact, the $n \log n$ was an educated guess, which we then proved by induction.

But how do we make an "educated guess"...how do we find the $n \log n$? Answer: Make a recursion tree!

Recursion Tree method (I)

Example $T(n) = 2T(\frac{n}{2}) + d n$.

- The height is log n, so there are log n + 1 layers
- Per layer: *d n* cost contribution
- Bottom: #leaves = $2^{\log n} = n$; cost per leaf $\Theta(1)$.
- Total cost: $d \ n \log n + n\Theta(1)$
- So we conjecture: $T(n) = \Theta(n \log n)$

Some computation rules with log

For exponent: $(b^x)^y = b^{x \cdot y}$ and $b^x b^y = b^{x+y}$. By definition:

$$\log_b x = y \Longleftrightarrow b^y = x$$

and so
$$b^{\log_b x} = x$$

Rules for log

$$\frac{\log_b(x \cdot y)}{\log_b(\frac{x}{y})} = \frac{\log_b x + \log_b y}{\log_b x - \log_b y} \frac{\log_b(x^k)}{\log_b(\frac{1}{x})} = \frac{k \log_b x}{-\log_b x}$$

and so

Changing base:

$$\log_a x = \log_a b \cdot \log_b x$$

$$\log_a f(n) = \log_a b \cdot \log_b f(n)$$

$$x^{\log_c y} = y^{\log_c x}$$
 and so

$$x^{\log_c f(n)} = f(n)^{\log_c x}$$

Addition/substraction under log:

$$\log(x-1) \ge \log x - 1$$
 $\log x + 1 \ge \log(x+1)$ for $x \ge 2$

Radboud University Nijmegen 🖑

Recursion Tree method (II)

Question. Given $T(n) = 3T(\lfloor \frac{n}{2} \rfloor) + n$, find f with $T(n) = \Theta(f(n))$.

- Height is log *n*, so $3^{\log n} = n^{\log 3}$ leaves, contributing $\Theta(n^{\log 3})$
- At layer *i* we have $3^i \frac{n}{2^i}$ contribution.
- Total: $\sum_{i=0}^{\log n} (\frac{3}{2})^i n = n \frac{(\frac{3}{2})^{\log n+1}-1}{\frac{3}{2}-1} \approx 2n(\frac{3}{2})^{\log n} = 2 \cdot 3^{\log n} = 2 \cdot n^{\log 3}.$
- So we conjecture: $T(n) = \Theta(n^{\log 3})$.

Substitution method

 $T(n) = 3T(\lfloor \frac{n}{2} \rfloor) + n.$ We prove: $T(n) = \mathcal{O}(n^{\log 3}).$

Proof. We need to prove $T(n) \le cn^{\log 3}$ for appropriately chosen c (for all n > N for some appropriately chosen N)

$$T(n) = 3T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

$$\stackrel{IH}{\leq} 3c\left(\frac{n}{2}\right)^{\log 3} + n$$

$$= \frac{3c n^{\log 3}}{2^{\log 3}} + n = cn^{\log 3} + n \stackrel{??}{\leq} cn^{\log 3}$$

The induction fails, so we add a linear factor: $T(n) \le cn^{\log 3} + dn$. We notice that it works for d = -2, because we have

$$T(n) = 3T(\left\lfloor \frac{n}{2} \right\rfloor) + n \stackrel{IH}{\leq} 3(c(\frac{n}{2})^{\log 3} - 2\frac{n}{2}) + n = cn^{\log 3} - 3n + n = cn^{\log 3} - 2n$$

Computing the median of an unsorted list

Problem: Given an unsorted list of elements, how to compute the median?

(Median of A = element that has half of the elements of A below it and the other half above it.)

Possible solution:

- First sort the list A, with |A| = n.
- Then take the $\lfloor \frac{n}{2} \rfloor$ -th element This takes $\mathcal{O}(n \log n)$ time. But it can be done in linear time!

General:

M(A, k) := the k-th element of the sorted version of A.

Then the median of A is $M(A, \frac{|A|}{2})$.

Computing the median of a list in linear time (I)

M(A, k) := the k-th element of the sorted version of A.

Let n = |A|. For purpose of exposition, we assume $n = 5^{p}$ for some p. (If $n < 5^{p}$ add 0s to get $n = 5^{p}$.)

- **1** Split A randomly in $\frac{n}{5}$ groups of 5 elements
- 2 Determine the median of each group of 5 elements.
- **3** Determine recursively the median of these $\frac{n}{5}$ medians, say m
- **4** Count the number of elements in A that are $\leq m$, say ℓ .
 - If $\ell = k$, we are done and *m* is the output.
 - If ℓ > k, then m is larger than the number we are looking for, so we continue recursively with M(A \ A_{high}, k)
 - If ℓ < k, then m is smaller than the number we are looking for, so we continue recursively with M(A \ A_{low}, k − |A_{low}|).
 - Until n is "very small", say n ≤ 10, then compute the k-th element directly

Q. What exactly are $A_{\rm high}$ and $A_{\rm low}$ and how large are they?

H. Geuvers

Computing the median of a list in linear time (II)

- **1** Split A randomly in $\frac{n}{5}$ groups of 5 elements
- 2 Determine the median of each group of 5 elements.
- **3** Determine recursively the median of these $\frac{n}{5}$ medians, say m
- **4** Count the number of elements in A that are $\leq m$, say ℓ .
 - If $\ell = k$, we are done and *m* is the output.
 - If l > k, then m is larger than the number we are looking for, so we continue recursively with M(A \ A_{high}, k)
 - If l < k, then m is smaller than the number we are looking for, so we continue recursively with M(A \ A_{low}, k 3 [n/10]).
 - Until *n* is "very small", say $n \leq 10$, then compute the *k*-th element directly

Complexity:

$$T(n) = T(\frac{n}{5}) + T(\frac{7n}{10}) + \Theta(n).$$

Note that steps (1), (2) and the first part of (4) are linear in n.

Computing the median of a list in linear time (III)

$$T(n) \leq T(rac{n}{5}) + T(rac{7n}{10}) + cn$$
 for some c .

To find the complexity class of T we can make a recursion tree.

- The height is between $\log_5 n$ and $\log_{\frac{10}{7}} n$, so the number of leaves is approximately $2^{\log_5 n} = n^{\log_5 2}$.
- The layers: $\sum_{i=0}^{??} (\frac{9}{10})^i c n \le \sum_{i=0}^{\infty} (\frac{9}{10})^i c n = c n \sum_{i=0}^{\infty} (\frac{9}{10})^i = 10 c n$
- Conjecture $T(n) \leq 10 c n$.

Radboud University Nijmegen 🖤

Computing the median of a list in linear time (IV)

$$T(n) \leq T(\frac{n}{5}) + T(\frac{7n}{10}) + cn.$$

From the recursion tree method we conjecture that $T(n) \le 10 c n$.

Proof by induction on n

- For small *n*, it is correct. (Possibly choose a larger *c*.)
- For larger n:

$$T(n) \leq T(\frac{n}{5}) + T(\frac{7n}{10}) + cn$$

$$\stackrel{\text{IH}}{\leq} 10 c(\frac{n}{5}) + 10 c(\frac{7n}{10}) + cn$$

$$= 2 c n + 7 c n + c n$$

$$= 10 c n$$

So T(n) = O(n), and so M is linear in the length of the input list.

Master Theorem

Theorem

Suppose $a \ge 1$ and b > 1 and we abbreviate $\gamma := \log_b a$.

$$T(n) = aT(\frac{n}{b}) + f(n).$$

Then

Radboud University Nijmegen 🖑

Using the Master Theorem (I)

$$T(n) = 9T(\frac{n}{3}) + n$$

THEOREM (with $\gamma = \log_b a$)

1 $T(n) = \Theta(n^{\gamma})$ if $f(n) = \mathcal{O}(n^d)$ for some $d < \gamma$.

2
$$T(n) = \Theta(n^{\gamma} \log n)$$
 if $f(n) = \Theta(n^{\gamma})$.

3 $T(n) = \Theta(f(n))$ if $f(n) = \Omega(n^d)$ for some $d > \gamma$ and $\exists c \in (0, 1) \exists N \forall n > N(a f(\frac{n}{b}) \leq c f(n)).$

Now, a = 9 and b = 3, so $\gamma = \log_b a = \log_3 9 = 2$. Also $f(n) = n = \mathcal{O}(n) = \mathcal{O}(n^1)$ and $1 < 2 = \gamma$. So case (1) of the Master Theorem applies and we have

$$T(n) = \Theta(n^2).$$

Radboud University Nijmegen 🖑

Using the Master Theorem (II)

THEOREM (with $\gamma = \log_b a$)

1
$$T(n) = \Theta(n^{\gamma})$$
 if $f(n) = \mathcal{O}(n^d)$ for some $d < \gamma$.

2
$$T(n) = \Theta(n^{\gamma} \log n)$$
 if $f(n) = \Theta(n^{\gamma})$.

3 $T(n) = \Theta(f(n))$ if $f(n) = \Omega(n^d)$ for some $d > \gamma$ and $\exists c \in (0,1) \exists N \forall n > N(af(\frac{n}{b}) \leq cf(n)).$

$$T(n) = 9T(\frac{n}{4}) + n^2$$

Now, a = 9 and b = 4, so $\gamma = log_b a = log_4 9 \approx 1.584$. Also $f(n) = n^2 = \Omega(n^2)$ and $2 > \gamma$.

So case (3) of the Master Theorem applies and we have

$$T(n) = \Theta(n^2).$$

We need an extra check: $\exists c \in (0,1) \exists N \forall n \ge N(a f(\frac{n}{b}) \le c f(n))$?? That is: $9(\frac{n}{4})^2 \le cn^2$, so take $c := \frac{9}{16}$ and this is ok.