Complexity IBC028, Lecture 2

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2024

Outline

Recursion tree method

The Master Theorem

Techniques to prove $T(n)=\mathcal{O}(g(n))$ [or $T(n)=\Omega(g(n))$ or $T(n)=\Theta(g(n))]$

There are basically three techniques
(1) Substitution Method:

Choose g and c (and N_{0}) and prove (by induction on n)

$$
T(n) \leq c g(n) \quad\left(\text { for all } n>N_{0}\right)
$$

(2) Recursion Tree method:

Method to find g. And then you still have to prove g is correct using (1)
(3) Master theorem method :

General theorem for patterns of the shape

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n) .
$$

Actually: casting the heuristic method of (2) into a general theorem.

Substitution method

Last week (MergeSort):

Theorem

If $T(n) \leq 2 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\Theta(n)$, then

$$
T(n) \in \mathcal{O}(n \log n)
$$

In fact, the $n \log n$ was an educated guess, which we then proved by induction.

But how do we make an "educated guess"...how do we find the $n \log n$?
Answer: Make a recursion tree!

Recursion Tree method (I)

Example $T(n)=2 T\left(\frac{n}{2}\right)+d n$.

- The height is $\log n$, so there are $\log n+1$ layers
- Per layer: $d n$ cost contribution
- Bottom: \#leaves $=2^{\log n}=n$; cost per leaf $\Theta(1)$.
- Total cost: $d n \log n+n \Theta(1)$
- So we conjecture: $T(n)=\Theta(n \log n)$

Some computation rules with log

For exponent: $\left(b^{x}\right)^{y}=b^{x \cdot y}$ and $b^{x} b^{y}=b^{x+y}$.
By definition:

$$
\log _{b} x=y \Longleftrightarrow b^{y}=x \quad \text { and so } b^{\log _{b} x}=x
$$

Rules for \log

$$
\begin{array}{|rl|l}
\hline \log _{b}(x \cdot y) & =\log _{b} x+\log _{b} y & \log _{b}\left(x^{k}\right) \\
\log _{b}\left(\frac{x}{y}\right) & =k \log _{b} x \\
\log _{b} x-\log _{b} y & \log _{b}\left(\frac{1}{x}\right) & =-\log _{b} x \\
\hline
\end{array}
$$

Changing base:
$\log _{a} x=\log _{a} b \cdot \log _{b} x \quad$ and so $\quad \log _{a} f(n)=\log _{a} b \cdot \log _{b} f(n)$

$$
x^{\log _{c} y}=y^{\log _{c} x} \quad \text { and so } \quad x^{\log _{c} f(n)}=f(n)^{\log _{c} x}
$$

Addition/substraction under log:

$$
\log (x-1) \geq \log x-1 \quad \log x+1 \geq \log (x+1) \quad \text { for } x \geq 2
$$

Recursion Tree method (II)

Question. Given $T(n)=3 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n$, find f with $T(n)=\Theta(f(n))$.

- Height is $\log n$, so $3^{\log n}=n^{\log 3}$ leaves, contributing $\Theta\left(n^{\log 3}\right)$.
- At layer i we have $3^{i} \frac{n}{2^{\prime}}$ contribution.
- Total: $\sum_{i=0}^{\log n}\left(\frac{3}{2}\right)^{i} n=n^{\left(\frac{3}{2}\right)^{\log n+1}-1} \frac{\frac{3}{2}-1}{2} \approx 2 n\left(\frac{3}{2}\right)^{\log n}=2 \cdot 3^{\log n}=2 \cdot n^{\log 3}$.
- So we conjecture: $T(n)=\Theta\left(n^{\log 3}\right)$.

Substitution method

$T(n)=3 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n$.
We prove: $T(n)=\mathcal{O}\left(n^{\log 3}\right)$.
Proof. We need to prove $T(n) \leq c n^{\log 3}$ for appropriately chosen c (for all $n>N$ for some appropriately chosen N)

\[

\]

The induction fails, so we add a linear factor: $T(n) \leq c n^{\log 3}+d n$. We notice that it works for $d=-2$, because we have
$T(n)=3 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n \stackrel{\text { HH }}{\leq} 3\left(c\left(\frac{n}{2}\right)^{\log 3}-2 \frac{n}{2}\right)+n=c n^{\log 3}-3 n+n=c n^{\log 3}-2 n$

Computing the median of an unsorted list

Problem: Given an unsorted list of elements, how to compute the median?
(Median of $A=$ element that has half of the elements of A below it and the other half above it.)
Possible solution:

- First sort the list A, with $|A|=n$.
- Then take the $\left\lfloor\frac{n}{2}\right\rfloor$-th element

This takes $\mathcal{O}(n \log n)$ time.
But it can be done in linear time!
General:
$M(A, k):=$ the k-th element of the sorted version of A.
Then the median of A is $M\left(A, \frac{|A|}{2}\right)$.

Computing the median of a list in linear time (I)

$M(A, k):=$ the k-th element of the sorted version of A.
Let $n=|A|$. For purpose of exposition, we assume $n=5^{p}$ for some p. (If $n<5^{p}$ add 0 s to get $n=5^{p}$.)
(1) Split A randomly in $\frac{n}{5}$ groups of 5 elements
(2) Determine the median of each group of 5 elements.
(3) Determine recursively the median of these $\frac{n}{5}$ medians, say m
(4) Count the number of elements in A that are $\leq m$, say ℓ.

- If $\ell=k$, we are done and m is the output.
- If $\ell>k$, then m is larger than the number we are looking for, so we continue recursively with $M\left(A \backslash A_{\text {high }}, k\right)$
- If $\ell<k$, then m is smaller than the number we are looking for, so we continue recursively with $M\left(A \backslash A_{\text {low }}, k-\left|A_{\text {low }}\right|\right)$.
- Until n is "very small", say $n \leq 10$, then compute the k-th element directly
Q. What exactly are $A_{\text {high }}$ and $A_{\text {low }}$ and how large are they?

Computing the median of a list in linear time (II)

(1) Split A randomly in $\frac{n}{5}$ groups of 5 elements
(2) Determine the median of each group of 5 elements.
(3) Determine recursively the median of these $\frac{n}{5}$ medians, say m
(4) Count the number of elements in A that are $\leq m$, say ℓ.

- If $\ell=k$, we are done and m is the output.
- If $\ell>k$, then m is larger than the number we are looking for, so we continue recursively with $M\left(A \backslash A_{\text {high }}, k\right)$
- If $\ell<k$, then m is smaller than the number we are looking for, so we continue recursively with $M\left(A \backslash A_{\text {low }}, k-3\left\lceil\frac{n}{10}\right\rceil\right)$.
- Until n is "very small", say $n \leq 10$, then compute the k-th element directly
Complexity:

$$
T(n)=T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+\Theta(n)
$$

Note that steps (1), (2) and the first part of (4) are linear in n.

Radboud University Nijmegen

Computing the median of a list in linear time (III)

$$
T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+c n \text { for some } c .
$$

To find the complexity class of T we can make a recursion tree.

- The height is between $\log _{5} n$ and $\log _{\frac{10}{7}} n$, so the number of leaves is approximately $2^{\log _{5} n}=n^{\log _{5} 2}$.
- The layers: $\sum_{i=0}^{? ?}\left(\frac{9}{10}\right)^{i} c n \leq \sum_{i=0}^{\infty}\left(\frac{9}{10}\right)^{i} c n=c n \sum_{i=0}^{\infty}\left(\frac{9}{10}\right)^{i}=10 c n$
- Conjecture $T(n) \leq 10 \mathrm{c} n$.

Computing the median of a list in linear time (IV)

$$
T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+c n
$$

From the recursion tree method we conjecture that $T(n) \leq 10 c n$.
Proof by induction on n

- For small n, it is correct. (Possibly choose a larger c.)
- For larger n :

$$
\begin{aligned}
T(n) & \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+c n \\
& \text { IH } \\
& \leq 10 c\left(\frac{n}{5}\right)+10 c\left(\frac{7 n}{10}\right)+c n \\
& =2 c n+7 c n+c n \\
& =10 c n
\end{aligned}
$$

So $T(n)=\mathcal{O}(n)$, and so M is linear in the length of the input list.

Master Theorem

TheOrem

Suppose $a \geq 1$ and $b>1$ and we abbreviate $\gamma:=\log _{b} a$.

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Then
(1) $T(n)=\Theta\left(n^{\gamma}\right)$ if $f(n)=\mathcal{O}\left(n^{d}\right)$ for some $d<\gamma$. f is "relatively small" compared to n^{γ}
(2) $T(n)=\Theta\left(n^{\gamma} \log n\right)$ if $f(n)=\Theta\left(n^{\gamma}\right)$.
E.g. the Mergesort case
(3) $T(n)=\Theta(f(n))$ if $f(n)=\Omega\left(n^{d}\right)$ for some $d>\gamma$ and $\exists c \in(0,1) \exists N \forall n>N\left(a f\left(\frac{n}{b}\right) \leq c f(n)\right)$. f is "relatively large" compared to n^{γ}

Using the Master Theorem (I)

$$
T(n)=9 T\left(\frac{n}{3}\right)+n
$$

TheOrem (with $\gamma=\log _{b} a$)

(1) $T(n)=\Theta\left(n^{\gamma}\right)$ if $f(n)=\mathcal{O}\left(n^{d}\right)$ for some $d<\gamma$.
(2) $T(n)=\Theta\left(n^{\gamma} \log n\right)$ if $f(n)=\Theta\left(n^{\gamma}\right)$.
(3) $T(n)=\Theta(f(n))$ if $f(n)=\Omega\left(n^{d}\right)$ for some $d>\gamma$ and

$$
\exists c \in(0,1) \exists N \forall n>N\left(a f\left(\frac{n}{b}\right) \leq c f(n)\right) .
$$

Now, $a=9$ and $b=3$, so $\gamma=\log _{b} a=\log _{3} 9=2$.
Also $f(n)=n=\mathcal{O}(n)=\mathcal{O}\left(n^{1}\right)$ and $1<2=\gamma$.
So case (1) of the Master Theorem applies and we have

$$
T(n)=\Theta\left(n^{2}\right)
$$

Using the Master Theorem (II)

THEOREM (with $\gamma=\log _{b} a$)

(1) $T(n)=\Theta\left(n^{\gamma}\right)$ if $f(n)=\mathcal{O}\left(n^{d}\right)$ for some $d<\gamma$.
(2) $T(n)=\Theta\left(n^{\gamma} \log n\right)$ if $f(n)=\Theta\left(n^{\gamma}\right)$.
(3) $T(n)=\Theta(f(n))$ if $f(n)=\Omega\left(n^{d}\right)$ for some $d>\gamma$ and

$$
\exists c \in(0,1) \exists N \forall n>N\left(a f\left(\frac{n}{b}\right) \leq c f(n)\right) \text {. }
$$

$$
T(n)=9 T\left(\frac{n}{4}\right)+n^{2} .
$$

Now, $a=9$ and $b=4$, so $\gamma=\log _{b} a=\log _{4} 9 \approx 1.584$.
Also $f(n)=n^{2}=\Omega\left(n^{2}\right)$ and $2>\gamma$.
So case (3) of the Master Theorem applies and we have

$$
T(n)=\Theta\left(n^{2}\right)
$$

We need an extra check:
$\exists c \in(0,1) \exists N \forall n \geq N\left(a f\left(\frac{n}{b}\right) \leq c f(n)\right) ? ?$
That is: $9\left(\frac{n}{4}\right)^{2} \leq c n^{2}$, so take $c:=\frac{9}{16}$ and this is ok.

