
Master Theorem
Examples of algorithms Radboud University Nijmegen

Complexity IBC028, Lecture 3

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2024

H. Geuvers Version: spring 2024 Complexity 1 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Outline

Master Theorem

Examples of algorithms

H. Geuvers Version: spring 2024 Complexity 2 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Last week: Three techniques to prove complexity

1 Substitution Method:
Choose (guess) f and c (and N0) and prove T (n) ≤ c f (n)
(for n > N0) by induction on n.

2 Recursion Tree method :
Method to estimate f . And then you still have to prove f is
correct using (1)

3 Master theorem method :
General theorem for patterns of the shape

T (n) = aT (
n

b
) + f (n).

This week:

• Using the Master Theorem

• Examples of algorithms and applications of the Master
Theorem

H. Geuvers Version: spring 2024 Complexity 3 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

The Master Theorem

Theorem

Suppose a ≥ 1 and b > 1 and we abbreviate γ := logb a.

T (n) = aT (
n

b
) + f (n).

Then

1 T (n) = Θ(nγ) if f (n) = O(nd) for some d < γ.
f is “relatively small” compared to nγ

2 T (n) = Θ(nγ log n) if f (n) = Θ(nγ).

3 T (n) = Θ(f (n)) if f (n) = Ω(nd) for some d > γ and
∃c < 1 ∃N ∀n > N(a f (nb ) ≤ c f (n)).
f is “relatively large” compared to nγ

H. Geuvers Version: spring 2024 Complexity 5 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

The Master Theorem does not always apply (I)

T (n) = 2T (
n

2
) + n log n.

T (n) = aT (
n

b
) + f (n).

Then, with γ := logb a

1 T (n) = Θ(nγ) if f (n) = O(nd) for some d < γ.

2 T (n) = Θ(nγ log n) if f (n) = Θ(nγ).

3 T (n) = Θ(f (n)) if f (n) = Ω(nd) for some d > γ and
∃c < 1 ∃N ∀n > N(a f (nb ) ≤ c f (n)).

H. Geuvers Version: spring 2024 Complexity 6 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

The Master Theorem does not always apply (II)

T (n) = 2T (
n

2
) + n log n.

We apply the recursion tree method

T (n)

T (n2 )

T (n4 )T (n4 )

T (n2 )

T (n4 )T (n4 )

n log n

2 n
2 log

n
2 = n log n

2

4 n
4 log

n
4 = n log n

4

So we have

T (n) = Σlog n
i=0 n log

n

2i
+ 2log nΘ(1) = Σlog n

i=0 n log
n

2i
+ cn

H. Geuvers Version: spring 2024 Complexity 7 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Example continued

T (n) = 2T (
n

2
) + n log n.

Using the recursion tree method, we have found

T (n) = Σlog n
i=0 n log

n

2i
+ cn

and by some futher computation:

Σlog n
i=0 n log

n

2i
= nΣlog n

i=0 (log n − i)

= n(log2 n − Σlog n
i=0 i)

= n(log2 n − 1

2
(log n(log n + 1))

so we conclude (and this can be proven correct):

T (n) = Θ(n log2 n).

H. Geuvers Version: spring 2024 Complexity 8 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Example Karatsuba multiplication (I)

Multiplying two numbers X and Y of n digits in the “standard”
way takes Θ(n2) steps.
We can do it recursively (assume n is a power of 2):

X =

n/2︷ ︸︸ ︷
a

n/2︷ ︸︸ ︷
b = a 2n/2 + b

Y = c︸ ︷︷ ︸
n/2

d︸ ︷︷ ︸
n/2

= c 2n/2 + d

XY = ac 2n + (ad + bc)2n/2 + bd

We do (recursively) 4 multiplications of numbers of size n
2 , so

T (n) = 4T (
n

2
) +O(n)

So (Master theorem, a = 4, b = 2, case (1)): T (n) = Θ(n2).
But we can do better.
H. Geuvers Version: spring 2024 Complexity 10 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Example Karatsuba multiplication (II)

Karatsuba multication of two numbers X and Y of n digits.
(Assume n is a power of 2.)

X = a b = a 2n/2 + b

Y = c d = c 2n/2 + d

Define

X1 = a+ b X2 = c + d X3 = X1X2

X4 = ac X5 = bd X6 = X3 − X4 − X5

X3 = ac + ad + bc + bd and X6 = ad + bc, so XY can be
obtained using 3 multiplications of numbers of size n/2:

T (n) = 3T (
n

2
) +O(n)

MT, a = 3, b = 2, case (1): T (n) = Θ(nlog2 3) ≈ Θ(n1.584).
NB. In case n is not a power of 2, we add leading zeros.
(Exercise: check that this works and doesn’t change the
complexity class.)
H. Geuvers Version: spring 2024 Complexity 11 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Matrix multiplication

Multiplying two matrices A · B of size n × n (with n a power of 2).

• The “standard” algorithm takes Θ(n3) steps.

• Any algorithm will be Ω(n2).

Recursively: Split A and B into 4 submatrices of order n/2:(
A11 A12

A21 A22

)
·
(
B11 B12

B21 B22

)
=

(
C11 C12

C21 C22

)
where

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

All “administrative steps” are quadratic in n, so we have

T (n) = 8T (
n

2
) + Θ(n2).

Master Theorem (a = 8, b = 2, case (1)): T (n) = Θ(n3).
H. Geuvers Version: spring 2024 Complexity 12 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Strassen Matrix multiplication (I)

Multiplying two matrices can be done in Θ(n2.8) (log2 7 ≈ 2.8).
Split A and B into 4 submatrices of order n/2:(

A11 A12

A21 A22

)
·
(
B11 B12

B21 B22

)
=

(
C11 C12

C21 C22

)
where

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

We always have to compute each of the Cij . Can we do that with
less recursive calls?
Strassen: yes, with 7 calls (in stead of 8)...and a lot of additional
administration.

H. Geuvers Version: spring 2024 Complexity 13 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Strassen Matrix multiplication (II)

Define

S1 = B12 − B22 S2 = A11 + A12 S3 = A21 + A22

S4 = B21 − B11 S5 = A11 + A22 S6 = B11 + B22

S7 = A12 − A22 S8 = B21 + B22 S9 = A11 − A21

S10 = B11 + B12

Define

P1 = A11 · S1 P2 = S2 · B22 P3 = S3 · B11

P4 = A22 · S4 P5 = S5 · S6 P6 = S7 · S8
P7 = S9 · S10

Then

C11 = P5 + P4 − P2 + P6 C12 = P1 + P2

C21 = P3 + P4 C22 = P5 + P1 − P3 − P7

H. Geuvers Version: spring 2024 Complexity 14 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Strassen Matrix multiplication (III)

• Strassen’s algorithm does 7 recursive calls on a matrix of
order n

2 .

• All “administrative steps” are quadratic in n.

We now have
T (n) = 7T (

n

2
) + Θ(n2).

Master Theorem (a = 7, b = 2, log2 7 ≈ 2.8074, case (1)):

T (n) = Θ(nlog 7) ≈ Θ(n2.8).

• Later improvements have been made. e.g. to Θ(n2.3754), but
Strassen is what is usually implemented.

H. Geuvers Version: spring 2024 Complexity 15 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Matrix inversion (I)

Compute the inverse A−1 of a matrix of size n × n. First assume:
AT = A. (This is a serious limitation!) So we can write A as(

B CT

C D

)
Let S := D − CB−1CT . Use standard matrix calculations to show:

A−1 =

(
B−1 + B−1CTS−1CB−1 −B−1CTS−1

−S−1CB−1 S−1

)
So we have expressed A−1 in terms of B−1 and S−1 and standard
matrix operations. We find that

T (n) = 2T (
n

2
) + Θ(nlog 7)

By Master Theorem (a = b = 2, γ = log2 2 = 1 < log 7, case (3)):

T (n) = Θ(nlog 7)

Check the regularity condition!
H. Geuvers Version: spring 2024 Complexity 16 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Matrix inversion (II)

If A is not symmetric we have (by simple matrix calculations)

A−1 = (AT · A)−1 · AT

and (!) AT · A is always symmetric.

Conclusion: A−1 can be computed from an inverse of a symmetric
matrix + matrix multiplications, so it is in Θ(nlog 7).

In case n is not a power of 2, there is a k < n such that n + k is a
power of 2. Apply the algorithm to(

A 0
0 Ik

)−1

=

(
A−1 0
0 Ik

)
This becomes max 2× as large, so still Θ(nlog 7).

H. Geuvers Version: spring 2024 Complexity 17 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Matrix calculations

Some remarks

• If matrix multiplication is Θ(f (n)), then taking the inverse is
also Θ(f (n)).

• One obtains “inverse” from “multiplication”. It can also be
done the other way around:
Given an algorithm for matrix inverse in Θ(f (n)), one can
obtain a matrix multiplication algorithm in Θ(f (n)) byI A 0

0 I B
0 0 I

−1

=

I −A AB
0 I −B
0 0 I



H. Geuvers Version: spring 2024 Complexity 18 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Minimum distance between points

Given n points in R2, determine the minimum distance between
two points.

• Can be done in Θ(n2) steps. (Compute all n2 distances and
determine the minimum.)

• It can also be done in Θ(n log n). We present a divide and
conquer algorithm MinDist.

• Let a set of points P of size n in R2 be given.
We first do some preprocessing:

• sort P according to the x-coordinate: Rx ,
• sort P according to the y -coordinate: Ry ,
• Cost: Θ(n log n).

H. Geuvers Version: spring 2024 Complexity 19 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

MinDist algorithm (I)

MinDist(P) =

if#P ≤ 3 then compare the distances (≤ 3)

else P = P1 ∪ P2, xℓ, #Pi ≤
⌈
#P

2

⌉
∀(x , y) ∈ P1(x ≤ xℓ), ∀(x , y) ∈ P2(x ≥ xℓ)

δ1 := MinDist(P1), δ2 := MinDist(P2)

δ := min(δ1, δ2)

consider P ′ := {(x , y) | xℓ − δ < x < xℓ + δ}
using Ry ↾ P ′ determine, for every i ,

εi := min{d((xi , yi ), (xj , yj) | i < j ≤ i + 7}
δ3 := min{εi | 1 ≤ i ≤ n}
return min(δ3, δ)

H. Geuvers Version: spring 2024 Complexity 20 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

MinDist algorithm (II)

• P = P1 ∪ P2, xℓ, #Pi ≤
⌈
#P
2

⌉
• ∀(x , y) ∈ P1(x ≤ xℓ), ∀(x , y) ∈ P2(x ≥ xℓ)

• δ1 := MinDist(P1), δ2 := MinDist(P2), δ := min(δ1, δ2)

• P ′ := {(x , y) | xℓ − δ < x < xℓ + δ}

H. Geuvers Version: spring 2024 Complexity 21 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

MinDist algorithm (III)

The complexity of MinDist, given a set of points P with #P = n,
T (n) is:

T (n) = 2T (
n

2
) + Θ(n).

This is a well-known equation (but one can also use the Master
Theorem):

T (n) = Θ(n log n).

Together with the preprocessing work (of creating the Rx and Ry

orderings), this yields an algorithm of complexity Θ(n log n).

H. Geuvers Version: spring 2024 Complexity 22 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Proof sketch of the Master Theorem (I)

Suppose a ≥ 1 and b > 1 and T (n) = aT (nb ) + f (n). Then

T (n)

T (nb )

T ( n
b2
)a ×T ( n

b2
)

a ×T (nb )

T ( n
b2
)a ×T ( n

b2
)

f (n)

a f (nb )

a2 f ( n
b2
)

• There are logb n layers

• There are alogb n (= nlogb a) leaves

T (n) = Θ(nlogb a) + Σ
logb n−1
j=0 aj f (

n

bj
).

H. Geuvers Version: spring 2024 Complexity 23 / 24



Master Theorem
Examples of algorithms Radboud University Nijmegen

Proof sketch of the Master Theorem (II)

Let T (n) = aT (nb ) + f (n) (with a ≥ 1, b > 1) and let γ := logb a.

T (n) = Θ(nγ) + Σ
logb n−1
j=0 aj f (

n

bj
).

1 If f (n) = O(nd) for some d < γ, then T (n) = Θ(nγ)
2 If f (n) = Θ(nγ), then T (n) = Θ(nγ log n).
3 If f (n) = Ω(nd) for some d > γ,

and ∃c < 1∃N0 ∀n > N0 (a f (
n
b ) ≤ c f (n), then T (n) = Θ(f (n)).

H. Geuvers Version: spring 2024 Complexity 24 / 24


	Master Theorem
	Examples of algorithms

