Complexity IBC028, Lecture 4

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2024

Outline

Decision Problems
\mathbf{P} and NP

NP-hard and NP-complete

Many algorithmic problems are decision problems

- A Decision Problem is the question whether some input i satisfies a specific property $Q(i)$. Its solution is a yes/no answer.
- Some examples:
- Given a number n, is n prime?
- Given a graph G, does it have a Hamiltonian cycle? (Recall: a Hamiltonian path visits every node exactly once.)
- Given a graph G, does it have an Euler cycle? (Recall: an Euler path visits every edge exactly once.)
- Given a graph G and two points p and q in G, are p and q connected?
- Given a boolean formula φ, is φ satisfiable?
- We can associate a decision problem Q with a language $L_{Q} \subseteq\{0,1\}^{*}$
$w \in L_{Q} \Leftrightarrow w$ is an encoding of a problem for which Q holds.

Encodings of decision problems

- The precise encoding is left implicit.
- We have the usual operations on languages: union, intersection, complement, concatenation, Kleene-star.
$\operatorname{Ham} \subseteq\{0,1\}^{*}$
:= collection of strings w that encode a graph G that has a Hamiltonian cycle
Path $\subseteq\{0,1\}^{*}$
$:=$ collection of strings w that encode $\langle G, p, q, n\rangle$, where G is a graph, $p, q \in G$, such that there is a path from p to q in G with at most n edges

Polynomial Decision Problems

Definition

- The algorithm $f:\{0,1\}^{*} \rightarrow\{0,1\}$ decides $A \subseteq\{0,1\}^{*}$ if $w \in A \Longleftrightarrow f(w)=1$.
- An algorithm f is polynomial if we have for its time complexity T that $T(n)=\mathcal{O}\left(n^{k}\right)$ for some k.
- A decision problem A is polynomial if there is a polynomial algorithm that decides A.

What encoding?

- Data types (graphs, formulas) need to be encoded as 01-strings.
- So: represent the set of graphs/formulas as subsets of $\{0,1\}^{*}$.
- Precisely defining such an encoding is "high effort, little gain".
- We assume an encoding to be "effective"...(it is "easy" to determine that a string w is actually the code of an object we want to talk about: graph, formula, ...)
- We will leave the encodings implicit.

Encodings enc ${ }_{1}$, enc $\mathrm{en}_{2}: S \rightarrow\{0,1\}^{*}$ are polynomially related if there are polynomial functions f and g such that $f\left(\operatorname{enc}_{1}(s)\right)=\operatorname{enc}_{2}(s)$ and $g\left(\mathrm{enc}_{2}(s)\right)=\mathrm{enc}_{1}(s)$ for all $s \in S$.

Lemma For enc ${ }_{1}$, enc c_{2} polynomially related, and $Q \subseteq S$:
$\operatorname{enc}_{1}(Q)$ is polynomial if and only if enc $c_{2}(Q)$ is polynomial.

Examples of Polynomial Decision Problems

- Given $n \in \mathbb{N}$, is n even?
- Given a formula φ, does φ contain a negation?
- Given a graph G and nodes x, y, is there a path from x to y ? (Think of what you learned in Algorithms and Data Structures)
- Given a graph G, does it have an Euler path?
- Given a formula φ, is φ in conjunctive normal form?

A formula is in conjunctive normal form if it is a conjunction of disjunctions of possibly negated atoms
Examples: $(x \vee \neg y) \wedge(x \vee y), \neg x \vee \neg y$
Non-examples: $(x \wedge y) \rightarrow z,(x \wedge y) \vee(x \wedge \neg y)$

Closure operations for Polynomial Decision Problems

A problem is a subset of $\{0,1\}^{*}$. Recall

- $x \in A \cup B$ if and only if $x \in A$ or $x \in B$
- $\bar{A}=\left\{w \in\{0,1\}^{*} \mid w \notin A\right\}$
- $x \in A B$ if there are v, w with $v \in A$ and $w \in B$ and $x=v w$

LEMMA

Polynomial decision problems are closed under complement, intersection, union, concatenation

Proof (two cases)

- If f decides $A \subseteq\{0,1\}^{*}$ in polynomial time, then $g(w):=1-f(w)$ decides \bar{A} in polynomial time.
- If f_{i} decides A_{i} in polynomial time, then $g(w):=\operatorname{sg}\left(f_{1}(w)+f_{2}(w)\right)$ decides $A_{1} \cup A_{2}$ in polynomial time.

The class \mathbf{P}

DEFINITION

$$
\mathbf{P}:=\left\{A \subseteq\{0,1\}^{*} \mid \quad \exists f, f \text { polynomial, } f \text { decides } A\right\}
$$

- Path $\in \mathbf{P}$, EulerTour $\in \mathbf{P}$,
- Ham $\notin \mathbf{P}$ (...everyone thinks)

For Ham, no polynomial algorithm is known (and it is believed that no polynomial algorithm exists).
But there is a notion of certificate that can be checked in polynomial time.

$$
\begin{aligned}
w \in \operatorname{Ham} \Leftrightarrow & w \text { encodes a graph } G \wedge \\
& \exists y(y \text { encodes a Hamiltonian cycle in } G) .
\end{aligned}
$$

Non-deterministic Polynomial Decision Problems

Definition

- The algorithm f verifies $A \subseteq\{0,1\}^{*}$ if $f:\{0,1\}^{*} \rightarrow\{0,1\}$ and

$$
w \in A \Longleftrightarrow \exists y \in\{0,1\}^{*}(f(w, y)=1)
$$

- $A \subseteq\{0,1\}^{*}$ is non-deterministic polynomial (NP) if there is a polynomial algorithm f that verifies A with polynomial certificates, that is
$w \in A \Longleftrightarrow \exists y \in\{0,1\}^{*}(|y|$ polynomial in $|w| \wedge f(w, y)=1)$.
- Ham is non-deterministic polynomial.
- NonPrime (determining whether a number is not prime) is non-deterministic polynomial.

P and NP

P :=
$\left\{A \subseteq\{0,1\}^{*} \mid \exists f, f\right.$ polynomial, $\left.w \in A \Longleftrightarrow f(w)=1\right\}$
NP :=
$\left\{A \subseteq\{0,1\}^{*} \mid \quad \exists f, f\right.$ polynomial, $w \in A \Longleftrightarrow \exists y \in\{0,1\}^{*}(|y|$ polynomial in $\left.|w| \wedge f(w, y)=1)\right\}$

- $\mathbf{P}=$ the class of polynomial time decision problems.
- $\mathbf{N P}=$ the class of non-deterministic polynomial time decision problems.
- First property: $\mathbf{P} \subseteq \mathbf{N P}$.

Examples of NP Decision Problems

- Given $n \in \mathbb{N}$, is n a composite number?
- Given a formula φ, is φ satisfiable?
- Given a graph G, does G have a Hamiltonian path?
- Given n items with weight w_{i} and value v_{i}. Can we pick items in such a way that the sum of values is at least V and the sum of the weights is at most W ? (Knapsack problem)
- Given an $n^{2} \times n^{2}$ Sudoku, does it have a solution?

Closure operations for NP Decision Problems

LEMMA
NP decision problems are closed under intersection, union, concatenation

Proof of $A, B \in \mathbf{N P}$ implies $A \cap B \in \mathbf{N P}$

Suppose f verifies A and g verifies B. Define

$$
h(x, y):=\text { if } y=\left\langle y_{1}, y_{2}\right\rangle \text { then } f\left(x, y_{1}\right) \cdot g\left(x, y_{2}\right) \text { else } 0 .
$$

We have

- h is polynomial.
- $\exists y(y$ polynomial in $|x| \wedge h(x, y)=1)$ if and only if $\exists y_{1}, y_{2}\left(y_{1}, y_{2}\right.$ polynomial in $\left.|x| \wedge f\left(x, y_{1}\right)=g\left(x, y_{2}\right)=1\right)$ if and only if $x \in A \cap B$.

Open problem: $A \in \mathbf{N P}$

$$
\stackrel{? ?}{\Longrightarrow} \quad \bar{A} \in \mathbf{N P}
$$

What is the non-determinism in NP?

Polynomial $=$ a deterministic Turing Machine M that halts
algorithm for A

Non-
deterministic polynomial algorithm for A
$=$ a non-deterministic Turing Machine M that halts on every input w in a number of steps polynomial in $|w|$ such that $w \in A$ iff $M(w)$ has a computation that halts in q_{f}.

A non-deterministic TM can be turned into a deterministic TM by making choices. The "certificate" is the succesful choice from the list of possible choices.

Polynomial Reducibility

Definition

A_{1} (polynomially) reduces to A_{2}, notation $A_{1} \leq_{P} A_{2}$ if there is a polynomial function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

$$
x \in A_{1} \Longleftrightarrow f(x) \in A_{2}
$$

LEMMA

- \leq_{p} is transitive: if $A \leq_{p} B$ and $B \leq_{p} C$ then $A \leq_{p} C$.
- If $A \leq_{P} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_{P} B$ and $B \in \mathbf{N P}$, then $A \in \mathbf{N P}$.

NP-hard and NP-complete

Definition

- A is called NP-hard if

$$
\forall A^{\prime} \in \mathbf{N P}\left(A^{\prime} \leq_{P} A\right)
$$

That is: all NP-problems can be reduced to A.

- NPH $:=\{A \mid A$ is NP-hard $\}$.
- A is called NP-complete if $A \in \mathbf{N P}$ and A is NP-hard.
- NPC := NP $\cap \mathbf{N P H}$.

Theorem

If $A \in \mathbf{N P H}$ and $A \leq_{P} B$, then $B \in \mathbf{N P H}$.
Proof: Let $X \in \mathbf{N P}\left(\mathrm{TP}: X \leq B\right.$.) Then $X \leq_{p} A$, and by $A \leq_{p} B$ we conclude $X \leq_{P} B$.

NP-hard and NP-complete problems

How to prove that A is NP-complete?

- First prove that $A \in$ NP: give a polynomial algorithm and a polynomial certificate for each input.
- Pick a well-known $A^{\prime} \in \mathbf{N P H}$ and show that $A^{\prime} \leq_{P} A$.

There are very many known NP-hard problems.

- SAT \in NPH (Cook-Levin, 1970), to be discussed further. In the final lecture we will prove that SAT \in NPH.
- Ham $\in \mathbf{N P H}$ and so is "traveling salesman problem" (TSP)
- "Clique" and "vertex cover" are graph-problems in NPH.

$\mathbf{N L} \subseteq \mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E} \subseteq \mathbf{E X P T I M E} \subseteq$ EXPSPACE

All these inclusions are known; for none of them it is known if they are strict inclusions.

Satisfiability

DEFINITION

The boolean formulas are built from

- Atoms, p, q, r,...
- Boolean connectives \wedge, \vee, \neg (plus possibly $\rightarrow, \leftrightarrow, \perp, \top$).

A formula is satisfiable if we can assign values (from $\{0,1\}$) to the atoms such that the formula is true.
SAT is the problem of deciding if a boolean formula is satisfiable.

- SAT is clearly in NP: The witness is an assignment a : Atoms $\rightarrow\{0,1\}$; it is a simple polynomial (even linear) check whether a makes formula φ true.
- SAT was the first problem shown to be NPH (and thus NP-complete).

Variants of satisfiability I

CNF-SAT:= satisfiabilty of conjunctive normal forms

Definition: Conjunctive Normal Form (CNF)

- A CNF is a conjunction of clauses
- A clause is a disjunction of literals
- a literal is an atom or a negated atom.

Examples of CNF:

- $(p \vee \neg q \vee r \vee \neg s) \wedge(p \vee \neg r) \wedge(q \vee s)$
- $(q \vee p \vee \neg q) \wedge(q \vee \neg p) \wedge(\neg p \vee q)$

Not in CNF:

- $(p \wedge \neg q) \vee(r \wedge \neg s)$
- $((q \rightarrow p) \vee \neg q) \leftrightarrow(q \vee \neg p)$.
- The (seemingly simpler) problem CNF-SAT is also NP-complete.

Putting formulas in CNF

Lemma Every formula φ is equivalent to a formula ψ in CNF. To compute ψ :

- Remove (bi)implications (use $A \rightarrow B \equiv \neg A \vee B$)
- Push negations inside, next to atoms (use $\neg(A \wedge B) \equiv \neg A \vee \neg B$ and $\neg(A \vee B) \equiv \neg A \wedge \neg B)$
- Put in CNF using $(A \wedge B) \vee C \equiv(A \vee C) \wedge(B \vee C)$

NB. This can blow up a formula exponentially!

Variants of satisfiability II

DNF-SAT:= satisfiabilty of disjunctive normal forms

Definition: Disjunctive Normal Form (DNF)

A DNF is a disjunction of conjunctions of literals
Examples of DNF:

- $(p \wedge \neg q \wedge r \wedge \neg s) \vee(p \wedge \neg r) \vee(q \wedge s)$
- $(q \wedge p \wedge \neg q) \vee(q \wedge \neg p) \vee(\neg p \wedge q)$
- The problem DNF-SAT is in \mathbf{P}.

NB. Transforming a formula $\varphi \in$ CNF into DNF may lead to an exponential blow up of φ.

NP and co-NP

DEFINITION

co-NP $:=\{A \mid \bar{A} \in \mathbf{N P}\}$. $(\bar{A}$ is the complement of A. $)$

- Prime (is n is a prime number?), is clearly in co-NP.
- It was already know for some time that Prime $\in \mathbf{N P}$, and in 2002 it has been proven that Prime $\in \mathbf{P}$.
- The (arguably) most well-known example of a co-NP problem is TAUT, deciding if a boolean formula is a tautology.

$$
\varphi \in \text { TAUT } \quad:=a(\varphi)=1 \text { for all assignments } a .
$$

- We have:

$$
\varphi \in \mathrm{TAUT} \quad \Longleftrightarrow \quad \neg \varphi \notin \mathrm{SAT}
$$

so indeed TAUT $\in \mathbf{c o}-\mathbf{N P}$.

- TAUT is also co-NP hard (and therefore co-NP complete): for all $A \in$ co-NP we have $A \leq_{P}$ TAUT.

P and NP and co-NP

The precise relations between $\mathbf{P}, \mathbf{N P}$ and co-NP are a major open question in Computer Science. Most notably:

$$
\mathbf{P} \stackrel{? ?}{=} N P .
$$

