

Complexity IBC028, Lecture 4

H. Geuvers

Institute for Computing and Information Sciences Radboud University Nijmegen

Version: spring 2024

Outline

Decision Problems

P and NP

NP-hard and NP-complete

Many algorithmic problems are decision problems

- A Decision Problem is the question whether some input i satisfies a specific property Q(i). Its solution is a yes/no answer.
- Some examples:
 - Given a number *n*, is *n* prime?
 - Given a graph G, does it have a Hamiltonian cycle?
 (Recall: a Hamiltonian path visits every node exactly once.)
 - Given a graph G, does it have an Euler cycle?
 (Recall: an Euler path visits every edge exactly once.)
 - Given a graph G and two points p and q in G, are p and q connected?
 - Given a boolean formula φ , is φ satisfiable?
- We can associate a decision problem Q with a language $L_Q \subseteq \{0,1\}^*$

 $w \in L_Q \Leftrightarrow w$ is an encoding of a problem for which Q holds.

H. Geuvers Version: spring 2024 Complexity 4 / 26

Encodings of decision problems

- The precise encoding is left implicit.
- We have the usual operations on languages: union, intersection, complement, concatenation, Kleene-star.

Ham $\subseteq \{0,1\}^*$

:= collection of strings w that encode a graph G that has a Hamiltonian cycle

Path $\subseteq \{0,1\}^*$

:= collection of strings w that encode $\langle G, p, q, n \rangle$, where G is a graph, $p, q \in G$, such that there is a path from p to q in G with at most n edges

Polynomial Decision Problems

Definition

- The algorithm $f: \{0,1\}^* \to \{0,1\}$ decides $A \subseteq \{0,1\}^*$ if $w \in A \iff f(w) = 1.$
- An algorithm f is **polynomial** if we have for its time complexity T that $T(n) = \mathcal{O}(n^k)$ for some k.
- A decision problem A is **polynomial** if there is a polynomial algorithm that decides A.

Version: spring 2024 Complexity 6 / 26

What encoding?

- Data types (graphs, formulas) need to be encoded as 01-strings.
- So: represent the set of graphs/formulas as subsets of $\{0,1\}^*$.
- Precisely defining such an encoding is "high effort, little gain".
- We assume an encoding to be "effective" ... (it is "easy" to determine that a string w is actually the code of an object we want to talk about: graph, formula, ...)
- We will leave the encodings implicit.

Encodings enc₁, enc₂: $S \rightarrow \{0,1\}^*$ are **polynomially related** if there are polynomial functions f and g such that $f(\operatorname{enc}_1(s)) = \operatorname{enc}_2(s)$ and $g(\operatorname{enc}_2(s)) = \operatorname{enc}_1(s)$ for all $s \in S$.

LEMMA For enc₁, enc₂ polynomially related, and $Q \subseteq S$: $enc_1(Q)$ is polynomial if and only if $enc_2(Q)$ is polynomial.

Examples of Polynomial Decision Problems

- Given $n \in \mathbb{N}$, is n even?
- Given a formula φ , does φ contain a negation?
- Given a graph G and nodes x, y, is there a path from x to y? (Think of what you learned in Algorithms and Data Structures)
- Given a graph G, does it have an Euler path?
- Given a formula φ , is φ in conjunctive normal form? A formula is in conjunctive normal form if it is a conjunction of disjunctions of possibly negated atoms Examples: $(x \lor \neg y) \land (x \lor y), \neg x \lor \neg y$ Non-examples: $(x \land y) \rightarrow z$, $(x \land y) \lor (x \land \neg y)$

H. Geuvers Version: spring 2024 Complexity 8 / 26

Closure operations for Polynomial Decision Problems

A problem is a subset of $\{0,1\}^*$. Recall

- $x \in A \cup B$ if and only if $x \in A$ or $x \in B$
- $\overline{A} = \{ w \in \{0,1\}^* \mid w \notin A \}$
- $x \in AB$ if there are v, w with $v \in A$ and $w \in B$ and x = vw

LEMMA

Polynomial decision problems are closed under complement, intersection, union, concatenation

Proof (two cases)

- If f decides $A \subseteq \{0,1\}^*$ in polynomial time, then g(w) := 1 f(w) decides \overline{A} in polynomial time.
- If f_i decides A_i in polynomial time, then $g(w) := sg(f_1(w) + f_2(w))$ decides $A_1 \cup A_2$ in polynomial time.

The class P

DEFINITION

$$\mathbf{P} := \{A \subseteq \{0,1\}^* \mid \exists f, f \text{ polynomial, } f \text{ decides } A\}$$

- Path \in **P**, EulerTour \in **P**,
- Ham ∉ P (…everyone thinks)

For Ham, no polynomial algorithm is known (and it is believed that no polynomial algorithm exists).

But there is a notion of **certificate** that can be checked in polynomial time.

$$w \in \mathsf{Ham} \iff w \text{ encodes a graph } G \land \exists y (y \text{ encodes a Hamiltonian cycle in } G).$$

H. Geuvers Version: spring 2024 Complexity 11/26

Non-deterministic Polynomial Decision Problems

DEFINITION

• The algorithm f verifies $A \subseteq \{0,1\}^*$ if $f: \{0,1\}^* \to \{0,1\}$ and

$$w \in A \iff \exists y \in \{0,1\}^* (f(w,y)=1).$$

• $A \subseteq \{0,1\}^*$ is **non-deterministic polynomial** (NP) if there is a polynomial algorithm f that verifies A with polynomial certificates, that is

$$w \in A \iff \exists y \in \{0,1\}^*(|y| \text{ polynomial in } |w| \land f(w,y) = 1).$$

- Ham is non-deterministic polynomial.
- NonPrime (determining whether a number is not prime) is non-deterministic polynomial.

H. Geuvers Version: spring 2024 Complexity 12 / 26

P and NP

```
\begin{aligned} \mathbf{P} &:= \\ \{A \subseteq \{0,1\}^* \mid \exists f, f \text{ polynomial, } w \in A \Longleftrightarrow f(w) = 1\} \end{aligned}
\begin{aligned} \mathbf{NP} &:= \\ \{A \subseteq \{0,1\}^* \mid \exists f, f \text{ polynomial, } \\ w \in A \Longleftrightarrow \exists y \in \{0,1\}^* (|y| \text{ polynomial in } |w| \land f(w,y) = 1)\} \end{aligned}
```

- **P** = the class of polynomial time decision problems.
- NP = the class of non-deterministic polynomial time decision problems.
- First property: P ⊆ NP.

H. Geuvers Version: spring 2024 Complexity 13 / 26

Examples of **NP** Decision Problems

- Given $n \in \mathbb{N}$, is n a composite number?
- Given a formula φ , is φ satisfiable?
- Given a graph G, does G have a Hamiltonian path?
- Given n items with weight w_i and value v_i . Can we pick items in such a way that the sum of values is at least V and the sum of the weights is at most W? (Knapsack problem)
- Given an $n^2 \times n^2$ Sudoku, does it have a solution?

15 / 26

Closure operations for **NP** Decision Problems

Lemma

NP decision problems are closed under intersection, union, concatenation

Proof of $A, B \in \mathbf{NP}$ implies $A \cap B \in \mathbf{NP}$

Suppose f verifies A and g verifies B. Define

$$h(x,y) := \text{if } y = \langle y_1, y_2 \rangle \text{ then } f(x,y_1) \cdot g(x,y_2) \text{ else } 0.$$

We have

- h is polynomial.
- $\exists y(y \text{ polynomial in } |x| \land h(x,y) = 1)$ if and only if $\exists y_1, y_2(y_1, y_2 \text{ polynomial in } |x| \land f(x, y_1) = g(x, y_2) = 1)$ if and only if $x \in A \cap B$.

Open problem: $A \in \mathbf{NP}$

 $\overline{A} \in \mathbf{NP}$

What is the non-determinism in **NP**?

Polynomial algorithm for *A*

= a deterministic Turing Machine M that halts on every input w in a number of steps polynomial in |w| such that $w \in A$ iff M(w) halts in q_f .

Nondeterministic polynomial algorithm for A a non-deterministic Turing Machine M that halts on every input w in a number of steps polynomial in |w| such that $w \in A$ iff M(w) has a computation that halts in q_f .

A non-deterministic TM can be turned into a deterministic TM by making choices. The "certificate" is the successful choice from the list of possible choices.

Polynomial Reducibility

Definition

 A_1 (polynomially) reduces to A_2 , notation $A_1 <_P A_2$ if there is a polynomial function $f: \{0,1\}^* \to \{0,1\}^*$ such that

$$x \in A_1 \iff f(x) \in A_2$$

$_{ m LEMMA}$

- $<_P$ is transitive: if $A <_P B$ and $B <_P C$ then $A <_P C$.
- If $A \leq_P B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_P B$ and $B \in \mathbf{NP}$, then $A \in \mathbf{NP}$.

Version: spring 2024 Complexity 17 / 26

NP-hard and **NP**-complete

Definition

A is called NP-hard if

$$\forall A' \in \mathbf{NP}(A' \leq_P A).$$

That is: all NP-problems can be reduced to A.

- NPH := {A | A is NP-hard}.
- A is called NP-complete if $A \in \mathbb{NP}$ and A is NP-hard.
- NPC := NP ∩ NPH.

Theorem

If $A \in \mathbf{NPH}$ and $A \leq_P B$, then $B \in \mathbf{NPH}$.

Proof: Let $X \in \mathbf{NP}$ (TP: $X \leq B$.) Then $X \leq_P A$, and by $A \leq_P B$ we conclude $X \leq_P B$.

NP-hard and NP-complete problems

How to prove that *A* is **NP**-complete?

- First prove that A ∈ NP: give a polynomial algorithm and a polynomial certificate for each input.
- Pick a well-known $A' \in \mathbf{NPH}$ and show that $A' \leq_P A$.

There are very many known **NP**-hard problems.

- SAT ∈ NPH (Cook-Levin, 1970), to be discussed further. In the final lecture we will prove that SAT ∈ NPH.
- Ham ∈ NPH and so is "traveling salesman problem" (TSP)
- "Clique" and "vertex cover" are graph-problems in NPH.

$NL \subset P \subset NP \subset PSPACE \subset EXPTIME \subset EXPSPACE$

All these inclusions are known; for none of them it is known if they are strict inclusions.

Satisfiability

DEFINITION

The boolean formulas are built from

- Atoms, *p*, *q*, *r*, . . .
- Boolean connectives \land , \lor , \neg (plus possibly \rightarrow , \leftrightarrow , \bot , \top).

A formula is **satisfiable** if we can assign values (from $\{0,1\}$) to the atoms such that the formula is true.

SAT is the problem of deciding if a boolean formula is satisfiable.

- SAT is clearly in **NP**: The witness is an assignment a: Atoms $\rightarrow \{0,1\}$; it is a simple polynomial (even linear) check whether a makes formula φ true.
- SAT was the first problem shown to be NPH (and thus NP-complete).

H. Geuvers Version: spring 2024 Complexity 21 / 26

Variants of satisfiability I

CNF-SAT:= satisfiabilty of conjunctive normal forms

Definition: Conjunctive Normal Form (CNF)

- A CNF is a conjunction of clauses
- A clause is a disjunction of literals
- a literal is an atom or a negated atom.

Examples of CNF:

- $(p \lor \neg q \lor r \lor \neg s) \land (p \lor \neg r) \land (q \lor s)$
- $(q \lor p \lor \neg q) \land (q \lor \neg p) \land (\neg p \lor q)$

Not in CNF:

- $(p \land \neg q) \lor (r \land \neg s)$
- $((q \rightarrow p) \lor \neg q) \leftrightarrow (q \lor \neg p).$
- The (seemingly simpler) problem CNF-SAT is also **NP**-complete.

H. Geuvers Version: spring 2024 Complexity 22 / 26

Putting formulas in CNF

LEMMA Every formula φ is equivalent to a formula ψ in CNF. To compute ψ :

- Remove (bi)implications (use $A \rightarrow B \equiv \neg A \lor B$)
- Push negations inside, next to atoms (use $\neg (A \land B) \equiv \neg A \lor \neg B \text{ and } \neg (A \lor B) \equiv \neg A \land \neg B)$
- Put in CNF using $(A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$

NB. This can blow up a formula exponentially!

Variants of satisfiability II

DNF-SAT:= satisfiabilty of disjunctive normal forms

Definition: Disjunctive Normal Form (DNF)

A DNF is a disjunction of conjunctions of literals

Examples of DNF:

- $(p \land \neg q \land r \land \neg s) \lor (p \land \neg r) \lor (q \land s)$
- $(q \land p \land \neg q) \lor (q \land \neg p) \lor (\neg p \land q)$
- The problem DNF-SAT is in P.

NB. Transforming a formula $\varphi \in \mathsf{CNF}$ into DNF may lead to an exponential blow up of φ .

NP and co-NP

DEFINITION

co-NP := $\{A \mid \overline{A} \in \mathbf{NP}\}$. (\overline{A} is the complement of A.)

- Prime (is *n* is a prime number?), is clearly in **co-NP**.
- It was already know for some time that Prime ∈ NP, and in 2002 it has been proven that Prime ∈ P.
- The (arguably) most well-known example of a co-NP problem is TAUT, deciding if a boolean formula is a tautology.

$$\varphi \in \mathsf{TAUT} := a(\varphi) = 1 \text{ for all assignments } a.$$

We have:

$$\varphi \in \mathsf{TAUT} \quad \Longleftrightarrow \quad \neg \varphi \not \in \mathsf{SAT},$$

so indeed TAUT \in **co-NP**.

 TAUT is also co-NP hard (and therefore co-NP complete): for all A ∈ co-NP we have A <_P TAUT.

H. Geuvers Version: spring 2024 Complexity 25 / 26

P and NP and co-NP

The precise relations between **P**, **NP** and **co-NP** are a major open question in Computer Science.

Most notably:

$$P \stackrel{??}{=} NP$$
.

