Complexity IBC028, Lecture 5

H. Geuvers

Institute for Computing and Information Sciences Radboud University Nijmegen

Version: spring 2024

Outline

Proving that a problem is NP-complete

More NP-complete satisfiability problems

Some other **NP**-complete problems

Recap: **P** and **NP**

$\begin{aligned} \mathbf{P} &:= \\ \{A \subseteq \{0,1\}^* \mid \exists f, f \text{ polynomial}, x \in A \iff f(x) = 1 \} \\ \mathbf{NP} &:= \\ \{A \subseteq \{0,1\}^* \mid \exists f, f \text{ polynomial}, \\ x \in A \iff \exists y \in \{0,1\}^* (|y| \text{ polynomial in } |x| \land f(x,y) = 1) \} \end{aligned}$

- **P** = the class of polynomial time decision problems.
- **NP** = the class of non-deterministic polynomial time decision problems.
- Property: $\mathbf{P} \subseteq \mathbf{NP}$ (Open question: $\mathbf{P} \stackrel{??}{=} \mathbf{NP}$.)

Radboud University Nijmegen 🔇

٢

Recap: NP-hard and NP-complete

DEFINITION

A (polynomially) reduces to B, notation $A \leq_P B$ if there is a polynomial function $f : \{0,1\}^* \to \{0,1\}^*$ such that

 $x \in A \iff f(x) \in B$

DEFINITION

- NPH := $\{A \mid \forall X \in NP(X \leq_P A)\}$ A is NP-hard if $A \in NPH$.
- NPC := NP \cap NPH

A is **NP**-complete if $A \in \mathbf{NP}$ and A is **NP**-hard.

Theorem

If $B \in \mathbf{NPH}$ and $B \leq_P A$, then $A \in \mathbf{NPH}$.

SAT

SAT is a known **NP**-complete problem.

- The boolean formulas are built from
 - Atoms, *p*, *q*, *r*, . . .
 - Boolean connectives \land , \lor , \neg (and possibly \rightarrow , \leftrightarrow , \bot , \top).
- A formula φ is satisfiable if there is an assignment with Atoms γ [0, 1] such that $w(\alpha) = 1$ (" α is true in
 - $v : \text{Atoms} \to \{0,1\}$ such that $v(\varphi) = 1$ (" φ is true in v").
- SAT is the problem of deciding whether a boolean formula φ is satisfiable.
- SAT is in NP: the assignment v is the certificate, polynomial in |φ|, and v(φ) = 1 can be decided in polynomial time.
- SAT is in **NPH**. This is the famous Cook-Levin theorem, (showing that every problem in **NP** can be reduced to a SAT-problem; the proof will be given in Lecture 7).

CNF-SAT

CNF-SAT is also NP-complete and will be used more often.

- The boolean formulas are built from atoms, p, q, r, ... and the Boolean connectives ∧, ∨, ¬.
- CNF-SAT: satisfiabilty of conjunctive normal forms (CNF):
 - A CNF is a conjunction of clauses
 - A clause is a disjunction of literals
 - a literal is an atom or a negated atom.
- A CNF-formula φ is satisfiable if there is an assignment
 v : Atoms → {0,1} such that v(φ) = 1 ("φ is true in v").
- CNF-SAT is the problem of deciding if a CNF-formula φ is satisfiable.
- CNF-SAT is in NP: again the assignment v is the certificate.
- That CNF-SAT is in NPH will be shown in Lecture 7, and is a direct corollary of the proof of the Cook-Levin theorem.

Proving that a problem is NP-complete

How to prove that a given problem A is **NP**-complete?

 Prove that A ∈ NP: give a polynomial algorithm f such that f verifies A with polynomial certificates, that is:

 $x \in A \iff \exists y \in \{0,1\}^*(|y| \text{ polynomial in } |x| \land f(x,y) = 1)\}$

- Pick a well-known decision problem B which you know is NP-hard
- **③** Prove that $B \leq_P A$ (and so A is **NP**-hard).

≤₃CNF-SAT is **NP**-complete

DEFINITION

A conjunctive normal form with \leq 3 literals, \leq_3 CNF, is

- a conjunction of clauses where
- every clause is a disjunction of at most three literals

 $\leq_3 \text{CNF-SAT}$ is the problem of deciding for an $\leq_3 \text{CNF}$ formula whether it is satisfiable.

Theorem

 \leq_3 CNF-SAT is **NP**-complete

Proof

- ≤₃CNF-SAT is NP: an assignment v : Atoms → {0,1} that makes the formula true is the certificate. (Checking is easy.)
- \leq_3 CNF-SAT is **NP**-hard: We prove CNF-SAT $\leq_P \leq_3$ CNF-SAT.

۲

Proof of CNF-SAT $\leq_P \leq_3$ CNF-SAT (I)

We define a function $f:\mathsf{CNF}\to\leq_3\!\mathsf{CNF}$ such that

 φ is satisfiable $\Leftrightarrow f(\varphi)$ is satisfiable.

The definition of f is based on the following Lemma:

Lemma

 $\varphi \wedge \bigvee_{i=1}^{n} \ell_i$ is satisfiable \iff $\varphi \wedge (\ell_1 \vee \ell_2 \vee a) \wedge (\neg a \vee \bigvee_{i=3}^{n} \ell_i)$ is satisfiable, where *a* is a fresh atom.

Proof. \Rightarrow :

\$

Proof of CNF-SAT $\leq_P \leq_3 \text{CNF-SAT}$ (II)

We define a function $f:\mathsf{CNF}\to\leq_3\mathsf{CNF}$ such that

 φ is satisfiable $\Leftrightarrow f(\varphi)$ is satisfiable.

The definition of f is based on the following Lemma:

Lemma

 $\varphi \wedge \bigvee_{i=1}^{n} \ell_i$ is satisfiable \iff $\varphi \wedge (\ell_1 \vee \ell_2 \vee a) \wedge (\neg a \vee \bigvee_{i=3}^{n} \ell_i)$ is satisfiable, where *a* is a fresh atom.

Proof. \Leftarrow :

Proof of CNF-SAT $\leq_P \leq_3$ CNF-SAT (III)

Definition

Define $f(\varphi)$ by recursively replacing in φ every disjunction $\bigvee_{i=1}^{n} \ell_i$ where n > 3 by $(\ell_1 \lor \ell_2 \lor a) \land (\neg a \lor \bigvee_{i=3}^{n} \ell_i)$ for a fresh atom a.

• The function f is polynomial. It doesn't blow up the formula φ : $|f(\varphi)| = O(|\varphi|)$.

• The Lemma (previous slide) proves that φ is satisfiable iff $f(\varphi)$ is satisfiable. Therefore CNF-SAT $\leq_P \leq_3$ CNF-SAT and so \leq_3 CNF-SAT is **NP**-hard. We have already shown \leq_3 CNF-SAT \in **NP**, so \leq_3 CNF-SAT is **NP**-complete.

• NB. One could require that all literals in a clause are different. That isn't needed for the definition of f to function properly, but we will sometimes assume that.

Complexity

3CNF-SAT is **NP**-complete

DEFINITION

A 3CNF is a \leq_3 CNF where every clause is a disjunction of exactly three literals. 3CNF-SAT is the problem of deciding for an 3CNF whether it is satisfiable.

We prove that 3CNF-SAT is **NP**-complete

- 3CNF-SAT \in **NP**. Again, the assignment is the certificate.
- Showing that \leq_3 CNF-SAT \leq_P 3CNF-SAT by defining $f : \leq_3$ CNF \rightarrow 3CNF. Choose fresh atoms a, a', p, q.
 - Add clauses $A = a \lor p \lor q$, $a \lor p \lor \neg q$, $a \lor \neg p \lor q$,
 - $a \lor \neg p \lor \neg q$, and similarly A' for a'.

(Note: $A \wedge A'$ can only be satisfied if v(a) = v(a') = 1.)

- Replace every clause c with two literals by $c \vee \neg a$.
- Replace every clause c with one literal by $c \vee \neg a \vee \neg a'$.
- Then φ is satisfiable iff $f(\varphi)$ is satisfiable.

•

Satisfiability problems that are NP-complete

- We have seen that SAT, CNF-SAT, ≤₃CNF-SAT and 3CNF-SAT are NP-complete. (Proof for SAT, CNF-SAT in Lecture 7.)
- This has been proven by showing that they are in NP (easy) and by showing that they are NP-hard (the real work).
- For showing NP-hardness we have used the following chain of reductions.

$CNF-SAT \leq_P \leq_3 CNF-SAT \leq_P 3CNF-SAT$

• Not all satisfiability problem are **NP**-hard! For example, 2CNF-SAT is polynomial.

(2CNF-SAT is the problem of deciding satisfiability of CNFs where every clause has exactly 2 literals.)

There are also lots of other ("real") problems that are $\ensuremath{\text{NP}}\xspace$ -complete.

H. Geuvers

ILP is NP-complete (I)

DEFINITION

Integer Linear Programming, ILP is the problem of deciding if a finite set of inequalities with coefficients in \mathbb{Z} has a solution in \mathbb{Z} .

Example with 2 variables

$$E := \begin{cases} x_1 + 3x_2 &\geq 5\\ 3x_1 + x_2 &\leq 6\\ 3x_1 - 2x_2 &\geq 0 \end{cases}$$

NB. Has solutions in $\mathbb R,$ but not in $\mathbb Z$

THEOREM

ILP is **NP**-complete

NB. The problem of finding solutions in $\ensuremath{\mathbb{R}}$ is polynomial!

H. Geuvers

ILP is NP-complete (II)

Theorem

ILP is **NP**-complete

- ILP ∈ NP. A certificate is a tuple of integers (r₁,..., r_n) that we substitue for x₁,..., x_n and check that E holds.
- We show that 3CNF-SAT ≤_P ILP by defining for φ ∈ 3CNF with boolean atoms x₁,..., x_n a set of inequalities E_φ such that φ is satisfiable iff E_φ has a solution in Z.
- Add $x_i \ge 0$ and $x_i \le 1$ to E_{φ} .
- For every clause ℓ₁ ∨ ℓ₂ ∨ ℓ₃, add ℓ₁ + ℓ₂ + ℓ₃ ≥ 1 to E_φ, where we replace negative literals ¬x_i by 1 − x_i.
- We now have

 φ is satisfiable $\iff E_{\varphi}$ has a solution (in \mathbb{Z}).

• Concluson: $3CNF-SAT \leq_P ILP$ and so ILP is **NP**-complete.

Clique is NP-complete

DEFINITION

Given an undirected graph G = (V, E) and a number k, is there a clique of size k in G? A clique is a set of points $W \subseteq V$ such that each pair of points in W is connected.

Clique(G, k) is the problem of deciding whether there is clique of size k in G, that is

$$\exists W \subseteq V(\#W = k \land \forall u, v \in W(u \neq v \rightarrow (u, v) \in E)).$$

Theorem

Clique is NP-complete.

- Clique ∈ NP. The certificate is the subset W ⊆ V that forms a k-clique. Checking whether W constitutes a k-clique can easily be done in polynomial time.
- We prove Clique is **NP**-hard by showing 3CNF-SAT ≤_P Clique.

Clique is **NP**-hard (I)

We define $f : 3CNF \to Graphs$ such that $\varphi = \bigwedge_{i=1}^{k} C_i$ is satisfiable iff $f(\varphi)$ has a k-clique. (Assume atoms occurs uniquely in a clause.)

- We write C_i = ℓⁱ₁ ∨ ℓⁱ₂ ∨ ℓⁱ₃ for each clause in φ (i = 1...k).
- $f(\varphi)$ is a graph with 3k vertices; each vertex corresponds with a literal ℓ_p^i (i = 1, ..., k, p = 1, 2, 3) in φ .
- The edges in f(φ) are as follows. There is an edge between ℓⁱ_p and ℓ^j_q iff i ≠ j ∧ ℓⁱ_p ≠ ¬ℓ^j_q.

Claim: if φ has satisfying assignment v, then $f(\varphi)$ has a k-clique. Proof:

From each clause we choose a literal ℓ_p^i for which $v(\ell_p^i) = 1$. This gives us a *k*-clique in the graph $f(\varphi)$.

Clique is **NP**-hard (I)

We define $f : 3CNF \to Graphs$ such that $\varphi = \bigwedge_{i=1}^{k} C_i$ is satisfiable iff $f(\varphi)$ has a k-clique. (Assume atoms occurs uniquely in a clause.)

- We write $C_i = \ell_1^i \lor \ell_2^i \lor \ell_3^i$ for each clause in φ $(i = 1 \dots k)$.
- $f(\varphi)$ is a graph with 3k vertices; each vertex corresponds with a literal ℓ_p^i (i = 1, ..., k, p = 1, 2, 3) in φ .
- The edges in $f(\varphi)$ are as follows. There is an edge between ℓ_p^i and ℓ_q^j iff $i \neq j \land \ell_p^i \neq \neg \ell_q^j$.

Claim: if $f(\varphi)$ has a k-clique W, then φ is satisfiable. Proof:

- A k-clique W, contains exactly one literal from each clause.
- If $\ell_p^i \in W$, then its negation does not occur in W.
- So a clique W gives us a v : Atoms $(\varphi) \rightarrow \{0,1\}$ that makes φ true.

VertexCover is **NP**-complete

DEFINITION

Given an undirected graph G = (V, E) and a number k, is there a vertex cover of size k in G?

A vertex cover is a set of points $W \subseteq V$ such that each edge has an endpoint (or both) in W.

VertexCover(G, k) is the problem of deciding whether there is a vertex cover of size k in G, that is

$$\exists W \subseteq V (|W| = k \land \forall (u, v) \in E(u \in W \lor v \in W)$$

Theorem

VertexCover is NP-complete

Proof. (1) VertexCover \in **NP**. The certificate is the subset $W \subseteq V$ that forms a vertex cover of size k. (2) We will now prove that VertexCover is **NP**-hard. H. Geuvers Version: spring 2024 Complexity 2

22 / 24

VertexCover is **NP**-hard

We prove Clique \leq_P VertexCover. We define $f : Graphs \rightarrow Graphs$ such that

G = (V, E) has a k-clique $\iff f(G)$ has a (|V| - k)-vertex cover. Define $f(V, E) := (V, \overline{E})$ where

 $\overline{E} := \{(u,v) \mid u \neq v \land (u,v) \notin E\}.$

Claim: (V, E) has a clique of size k iff (V, \overline{E}) has a vertex cover of size |V| - k. Proof.

 $\begin{array}{lll} W \text{ is a clique in } (V,E) & \Leftrightarrow & \forall (u,v) \in W \times W (u \neq v \to (u,v) \in E) \\ & \Leftrightarrow & \forall u \neq v ((u,v) \notin W \times W \lor (u,v) \in E) \\ & \Leftrightarrow & \forall (u,v) \in \overline{E} (u \in V \setminus W \lor v \in V \setminus W) \\ & \Leftrightarrow & V \setminus W \text{ is a vertex cover in } (V,\overline{E}) \end{array}$

3Color is NP-complete

DEFINITION

3Color: given an undirected graph G = (V, E), is there a **3-coloring** of G, that is, a map $c : V \to \{r, y, b\}$ such that $\forall (u, v) \in E(c(u) \neq c(v))$.

THEOREM

3Color is NP-complete

Proof.

- 3Color ∈ NP. The certificate is the map c : V → {r, y, b}. Checking that, for a given c, we have ∀(u, v) ∈ E (c(u) ≠ c(v)) can be done in polynomial time.
- We prove that 3Color is NP-hard by proving 3CNF-SAT ≤_P 3Color. The construction of
 - $f: 3CNF \rightarrow Graphs$ will be done on the board, and also see

the separate note on the webpage.