Complexity IBC028, Lecture 6

H. Geuvers

Institute for Computing and Information Sciences Radboud University Nijmegen

Version: spring 2024

Outline

Three more NP-complete problems

Extra Topics

PSPACE

Radboud University Nijmegen 🕅

•

How to prove that a problem is **NP**-complete?

- Prove that A ∈ NP: give a polynomial algorithm f such that f verifies A with polynomial certificates, that is:
 x ∈ A ⇔ ∃y ∈ {0,1}*(|y| polynomial in |x| ∧ f(x, y) = 1)}
- Pick a well-known decision problem B which you know is NP-hard,
- Solution Prove that B ≤_P A, that is: give a polynomial function h such that

$$x \in B \iff h(x) \in A.$$

Some **NP**-complete problems (satisfiability)

SAT

- Given a formula φ , is φ satisfiable? That is: is there an assignment v such that $v(\varphi) = 1$? CNF
- Given a formula φ in conjunctive normal form, is φ satisfiable? $\leq_3 {\rm CNF}$
 - Given a formula in "at most 3-conjunctive normal form", is it satisfiable?

3CNF

• Given a formula in "exactly 3-conjunctive normal form", is it satisfiable?

Some NP-complete problems (integers)

ILP

• Given an integer linear program, does it have a solution? For example

$$E := \begin{cases} x_1 + 3x_2 - 4x_3 + x_4 & \ge 5\\ 3x_1 + x_2 + 4x_3 + 2x_4 & \le 6\\ 3x_1 - 2x_2 - x_3 - 3x_4 & \ge 0 \end{cases}$$

Are there $x_1, x_2, x_3, x_4 \in \mathbb{Z}$ such that these inequalities hold?

Some NP-complete problems (graphs)

Clique:

- Given a graph G = (V, E) and an integer k, does G have a clique with k vertices?
 That is: is there a set W ⊂ V of size k with an edge between
- each pair of vertices ?

VertexCover

Given a graph G = (V, E) and an integer k, does G have a vertex cover with k vertices?
 That is: is there a set W ⊆ V of size k such that each edge "lands in" a vertex in W?

3Color

• Given a graph G = (V, E), does G have a 3-coloring? That is: is there a function $c : V \to \{r, y, b\}$ such that $(v, u) \in E \Rightarrow c(v) \neq c(u)$.

\$

How to prove that a problem is **NP**-complete?

• In our proofs of **NP**-hardness we have used the following chain of reductions of satisfiability problems.

 $CNF-SAT \leq_{P} \leq_{3} CNF-SAT \leq_{P} 3CNF-SAT$

- We have extended this with proofs of NP-hardness of ILP, Clique, VertexCover and 3Color.
- For a proof of NP-hardness of Ham-Path (Hamiltonian path), see the note of Niels van der Weide on the webpage, by a reduction: 3CNF-SAT ≤_P Ham-Path.
- In this lecture, we will prove NP-hardness of Clique-3Cover, SubsSum (Subset-Sum) WParse (weighted parsing), Ham-Cycle and TSP(traveling salesperson).

Radboud University Nijmegen 🐺

A hierarchy of **NP**-completeness proofs

A hierarchy of NP-completeness proofs: last week

A hierarchy of NP-completeness proofs: this week

Clique-3Cover is **NP**-complete

DEFINITION

Clique-3Cover is the problem of deciding if a graph G = (V, E) is the union of three cliques, that is: $\exists V_1, V_2, V_3(V = V_1 \cup V_2 \cup V_3 \land V_1 \cap V_2 = \emptyset, V_2 \cap V_3 = \emptyset, V_1 \cap V_3 = \emptyset \land \forall i(V_i \text{ is a clique})).$

Theorem

Clique-3Cover is NP-complete

- Clique-3Cover \in **NP**. The sets (V_1, V_2, V_3) are a certificate.
- We show that 3Color \leq_P Clique-3Cover by defining $f(V, E) := (V, \overline{E})$, where $\overline{E} := \{(u, v) \mid u \neq v \land (u, v) \notin E\}$.
- (V, E) is 3-colorable iff (V, \overline{E}) has a clique-3cover, because

 \Leftrightarrow

$$V_i \text{ is a clique in } (V,\overline{E}) \iff \forall u, v \in V_i (u \neq v \to (u, v) \in \overline{E}) \\ \Leftrightarrow \forall u, v \in V_i (u = v \lor (u, v) \notin E)$$

Hamiltonian paths

Definition

Let G be a graph. We say that G has a **Hamiltonian path** if there is a path p in G that crosses every vertex exactly once.

$$\begin{array}{ll} \mathsf{Ham-Path} := \{(V, E) | & \exists v_1, \dots v_n (V = \{v_1, \dots, v_n\} \land \\ & \forall i, j \leq n (v_i = v_j \rightarrow i = j) \land \\ & \forall i < n (v_i, v_{i+1}) \in E) \} \end{array}$$

Below, the blue path is Hamiltonian while the red is not.

NP-completeness

We look at the decision problem Ham-Path

• Given a graph G, does G have a Hamiltonian path?

Theorem

Ham-Path is NP-complete

It can be shown that $3CNF-SAT \leq_P Ham-Path$, See note!

Hamiltonian cycle

DEFINITION

Let G be a graph. We say that G has a **Hamiltonian cycle** if there is a cycle c in G that crosses every vertex exactly once.

$$\begin{array}{ll} \mathsf{Ham-Cycle} := \{(V, E) | & \exists v_1, \dots v_n (V = \{v_1, \dots, v_n\} \land \\ & \forall i, j < n (v_i = v_j \rightarrow i = j) \land \\ & v_n = v_1 \land \forall i < n (v_i, v_{i+1}) \in E) \} \end{array}$$

So, a cycle *c* is written as v_1, v_2, \ldots, v_n such that $(v_i, v_{i+1}) \in E$ and $(v_n, v_1) \in E$. For a Hamiltonian cycle: $v_i \neq v_j$ if $i \neq j$ and every vertex occurs in this cycle.

Ham-Cycle is **NP**-complete

Theorem

Ham-Cycle is NP-complete

Clearly, Ham-Cycle \in **NP**.

To prove that Ham-Cycle is $\boldsymbol{\mathsf{NP}}\text{-hard},$ we show

Ham-Path \leq_P Ham-Cycle.

- Let G = (V, E) be a graph;
- Add a vertex v and connect it to every vertex $u \in V$ an edge;
- Call the resulting graph G';
- Lemma

G has a Hamiltonian path iff G' has a Hamiltonian cycle

Radboud University Nijmegen 🐨

Illustration of the proof

From the construction, we get the following graph

Traveling Salesperson, TSP

DEFINITION

Given a **complete** graph G, a cost function on the edges c, and an integer k, is there a cycle in G with cost at most k that crosses every vertex?

 $\begin{array}{ll} \mathsf{TSP} := \{ (V, c, k) | & c : V \times V \to \mathbb{Z} \land k \in \mathbb{Z} \\ & \land \text{ there is a cycle with cost at most } k \} \end{array}$

Theorem

TSP is NP-complete.

Proof

• TSP ∈ **NP**.

The certificate is the cycle (the "tour" of the TSP). That it has $cost \le k$ can be checked easily in polynomial time.

TSP is **NP**-hard

• TSP \in **NPH**. We show Ham-Cycle \leq_P TSP.

Define for (V, E) a graph the following tuple (V, c, k), consisting of a complete graph, a $c : V \times V \rightarrow \mathbb{Z}$, $k \in \mathbb{Z}$.

•
$$c(u, v) := 0$$
 if $(u, v) \in E$,
 $c(u, v) := 1$ if $(u, v) \notin E$
• $k := 0$

LEMMA (V, E) has a Hamiltonian cycle if and only if $(V, V \times V)$ has a tour with cost at most 0 PROOF Check \Rightarrow and \Leftarrow .

COROLLARY Ham-Cycle \leq_P TSP and so: TSP is **NP**-hard.

SubsSum, the subset-sum problem

DEFINITION

SubsSum(S, t) is the problem of deciding, for $S \subseteq_{fin} \mathbb{N}$ and $t \in \mathbb{N}$, if there is a subset $S' \subseteq S$ such that $\sum_{x \in S'} x = t$. Here, $S \subseteq_{fin} \mathbb{N}$ denotes that S is a finite subset of \mathbb{N} .

Example: take $S = \{1, 4, 6, 9, 12\}$

- There is a subset with sum 14, namely $\{1, 4, 9\}$
- There is no subset with sum 8

We assume the representation of a number $n \in \mathbb{N}$ to be of size $\Theta(\log n)$. This holds for binary or decimal (but for not unary!). For simplicity we now assume decimal representation.

SubsSum is NP-complete

THEOREM

SubsSum is NP-complete

• SubsSum \in **NP**.

The certificate is the subset $S' \subseteq S$ whose sum is t.

• We prove SubsSum is NP-hard by showing \leq_3 CNF-SAT \leq_P SubsSum.

We define $f : \leq_3 CNF \to \mathcal{P}_{fin}(\mathbb{N}) \times \mathbb{N}$ such that $\varphi = \bigwedge_{i=1}^k C_i$ is satisfiable if and only if for $f(\varphi) = (S, t)$ there is a $S' \subseteq S$ with $\sum_{x \in S'} x = t$.

•

SubsSum is **NP**-hard

For the definition of $f : \leq_3 \text{CNF} \to \mathcal{P}_{\text{fin}}(\mathbb{N}) \times \mathbb{N}$:

- Assume that φ = Λ^k_{i=1} C_i has n atoms {x₁,..., x_n}.
 S will consist of numbers of n + k digits and t will also have n + k digits.
- Define numbers $p_1, p'_1, \ldots, p_n, p'_n$ by:
 - p_i has: 1 at position i and 1 at pos. n + j if x_i occurs in C_j ,
 - p'_i has: 1 at position *i* and 1 at pos. n + j if $\neg x_i$ occurs in C_j ,
 - all other positions in p_i and p'_i are 0.
- Define numbers $s_1, s'_1, \ldots, s_k, s'_k$ by:
 - s_j has 1 at position n + j and for the rest 0,
 - s'_i has 2 at position n + j and for the rest 0.
- Take $S = \{p_i, p'_i \mid i = 1, ..., n\} \cup \{s_j, s'_j \mid j = 1, ..., k\}$ and $t = 1 \dots 14 \dots 4$ (*n* times a 1 and *k* times a 4).
- LEMMA: φ is satisfiable iff $\exists S' \subseteq S(\sum_{x \in S'} x = t)$.

k(=4)

\leq_3 CNF-SAT \leq_P SubsSum: Example

- p_i has 1 at position i and at position n + i if x_i occurs in C_i ,
- p'_i has 1 at position *i* and at position n + j if $\neg x_j$ occurs in C_j .

n (=3)

 Basically, the first n colums represent the atoms x₁,..., x_n and the last k colums represent the clauses C_1, \ldots, C_k .

- Using a satisfying assignment v for φ , we choose p_i or p'_i for each *i* (depending on $v(x_i) = 1/0$).
- Summing up these p's we get $t' = 1 \dots 1 d_1 \dots d_k$ with $d_i \in \{1, 2, 3\}$, because ≥ 1 literal in each clause is true.
- So we can add specific s_i and s'_i to sum up to $t = 1 \dots 14 \dots 4$

Parsing and Weighted parsing

- Given a Context Free Grammar (CFG) G and a word w, can we derive Start ⇒ w?
- This is the Parse-problem.
- Put differently: Is there a parse-tree for w?
- The Parse problem can be solved in polynomial time. (E.g. CYK-algorithm)

Variant of the problem WParse, is there a weighted parse tree for w of weight k?

DEFINITION

Given a CFG *G* where every production rule has a weight, let **Start** $\stackrel{m}{\Rightarrow}$ *w* denote that *w* has a parse tree where the sum of the weights of all production rules is *m*.

WParse(G, w, k) is the problem **Start** $\stackrel{k}{\Rightarrow} w$: Is there a parse tree of w with weight k?

Radboud University Nijmegen 🕅

Example: parsing and weighted parsing

WParse is **NP**-complete

Theorem

WParse is **NP**-complete

Proof.

1 WParse \in **NP**.

The certificate is the parse tree of w with weight k

We show that WParse is NP-hard by showing SubsSum ≤_P WParse.

Given $S = \{s_1, \ldots, s_n\}$ and $k \in \mathbb{N}$ define the following weighted grammar:

Start $\stackrel{0}{\rightarrow} A_1 \dots A_n$, $A_i \stackrel{0}{\rightarrow} B_i$, $A_i \stackrel{0}{\rightarrow} \lambda$, $B_i \stackrel{s_i}{\rightarrow} \lambda$. Then

$$\exists S' \subseteq S(\Sigma S' = k) \quad \text{iff} \quad \text{Start} \stackrel{k}{\Rightarrow} \lambda.$$

Decision problems versus optimization problems

VertexCover

- Given a graph G and an integer k, does G have a vertex cover with k vertices?
- Given a graph G, find the **minimal** vertex cover of G.

TSP

- Given a complete graph G, a function c, and an integer k, is there a cycle in G with cost at most k?
- Given a complete graph G and a function c, find a cycle in G with **minimal** cost.

What does **NP**-completeness mean for optimization problems?

- Since we know VertexCover and TSP are NP-complete, it will be either difficult or impossible to find efficient algorithms that compute minimal vertex covers or minimal cycles.
- More precisely: If a minimal solution can be computed in polynomial time, then also the decision problem is in **P**.
- But what if we do not go for the **best** solution, but instead for a solution that is **good enough**?

Example: Finding vertex covers (I)

Let G = (V, E) be a graph.

To compute a vertex cover C of G, we take the following steps

- Let $C := \emptyset$ and E' := E
- While E' is not empty
 - **1** Take any edge (u, v) from E'
 - **2** Take $C := C \cup \{u, v\}$
 - **3** Remove every edge from E' that touches either u or v.

• output: C

Example: Finding vertex covers (II)

The algorithm is polynomial; it doesn't find the minimal vertex cover...but it is a "decent approximation".

Theorem

The size of the vertex cover computed by the algorithm, is at most twice as large as the size of the minimal vertex cover.

So: while the algorithm does not give the best solution, it gives a solution within reasonable time that may be "good enough" for our purpose.

SAT-solvers

Even though SAT is **NP**-complete, there are very powerful tools that decide whether a (very large) formula is satisfiable. These are called SAT-solvers.

These have been (and are continuously further) optimized and can now deal with tens of thousands of variables and millions of clauses.

SAT-solvers are the "automation workhorses" of computer science.

Example: negative solution to the "Boolean Pythagorean triples problem".

See: Master Course Automated Theorem Proving.

®

Harder than **NP**

- There are problems that don't have a polynomial checking algorithm, or for which the certificate is not polynomial.
- Example: Two-player games.
 - "Is there a winning strategy for player 1?"
 - Certificate is typically not polynomial size.

Next natural level after P (and NP): decision algorithms that are polynomially bound on **space** (memory use), not on time.

DEFINITION

- f is a polynomial space algorithm for A if
 - f is a deterministic Turing Machine that
 - halts on every input w such that
 - $w \in A$ iff f(w) halts in a final state and
 - the size of the tape used in the computation of f(w) is polynomial in |w|.

PSPACE

PSPACE :=
$$\{A \subseteq \{0,1\}^* \mid \exists f, f \text{ polynomial space algorithm,} w \in A \iff f(w) = 1\}$$

Lemma

• $\mathbf{P} \subseteq \mathbf{PSPACE}$

Because in polynomial size time, f uses only polynomial size space.

• $NP \subseteq PSPACE$

Because if $A = \{w \mid \exists y(y < c | w |^k \land f(w, y) = 1\}$, this can be checked using polynomial size space, by summing up all (exponentially many!) candidate y's and running f(w, y).

NPSPACE

Just like NP, we also have NPSPACE.

DEFINITION

f is a non-deterministic polynomial space algorithm for A if

- *f* is a non-deterministic Turing Machine that
- halts on every input w such that
- $w \in A$ iff f(w) has a computation that halts in a final state,
- the size of the tape used in the computation of f(w) is polynomial in |w|.

SAVITCH' THEOREM

PSPACE = **NPSPACE**

PSPACE-hard and **PSPACE**-complete

DEFINITION

• A is called **PSPACE**-hard if

 $\forall A' \in \mathbf{PSPACE}(A' \leq_P A).$

(All **PSPACE**-problems can be poly. time reduced to A.)

- **PSpaceH** := $\{A \mid A \text{ is } PSPACE-hard\}.$
- A is called PSPACE-complete if A ∈ PSPACE and A is PSPACE-hard.
- **PSpaceC** := **PSPACE** \cap **PSpaceH**.

Theorem

If $A' \leq_P A$ and $A' \in \mathbf{PSpaceH}$, then $A \in \mathbf{PSpaceH}$.

The proof is the same as for **NP**-hard.

H. Geuvers

٢

How to prove that *A* is **PSPACE**-complete?

Just like SAT is the canonical **NP**-hard problem, there is a canonical **PSPACE**-hard problem: **QBF**.

DEFINITION

A quantified boolean formula (QBF) is a boolean formula where we can now also use quantifiers (\forall , \exists) over boolean variables.

QBF is the problem of deciding whether a closed quantified boolean formula φ is true.

QBF is **PSPACE**-complete

Example
$$\varphi = \forall x (\exists y (x \land y)) \lor (\exists z (\neg x \land \neg z))$$

- For x = 1 we can choose y = 1 and for x = 0 we can choose z = 0.
- That is: for all values of x we can choose a case and a value for y (or z) that makes the boolean formula true.
- So φ is true.

Theorem

QBF is **PSPACE**-complete.

- The "certificate" for QBF(φ) is not just a choice of 0 / 1 for every ∃, but a choice depending on the ∀ in front of the ∃.
- The proof that QBF is **PSPACE**-hard uses a translation of Turing Machines to QBF.

Some variations on QBF

- Note that SAT ≤_P QBF: given φ add ∃x in front of φ for all atoms x in φ.
- If we limit QBF to prenex fomulas, that have all quantifiers in front, it is still **PSPACE**-complete.
- If we limit QBF to alternating prenex fomulas, that have alternating ∀/∃ in front, it is still **PSPACE**-complete.
- A "proof" of ∀x₁∃y₁...∀x_n∃y_n(φ) amounts to making n choices, which amounts to a "certificate" of size 2ⁿ.
- A formula like ∀x₁∃y₁...∀x_n∃y_n(φ) can be interpreted as the question for a winning strategy for a two-player game.

Some other **PSPACE**-complete problems

 Strategic games are typically **PSPACE**-complete, like Geography

- Also RushHouR and Sokoban are **PSPACE**-complete.
- Given two regular expression e₁ and e₂, do we have *L*(e₁) = *L*(e₂)? This problem is **PSPACE**-complete.

 Similarly: Equivalence problem for non-deterministic finite
 automata: Given two NFAs over Σ, do they accept the same
 language? (Note: for DFAs this problem is in **P**!)
- The word problem for deterministic context-sensitive grammars is PSPACE-complete. This is the problem whether Start ⇒ w in such a grammar.