Complexity IBC028, Lecture 6

H. Geuvers
Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2024

Outline

Three more NP-complete problems

Extra Topics

PSPACE

How to prove that a problem is NP-complete?

(1) Prove that $A \in \mathbf{N P}$: give a polynomial algorithm f such that f verifies A with polynomial certificates, that is: $x \in A \Longleftrightarrow \exists y \in\{0,1\}^{*}(|y|$ polynomial in $\left.|x| \wedge f(x, y)=1)\right\}$
(2) Pick a well-known decision problem B which you know is NP-hard,
(3) Prove that $B \leq_{P} A$, that is:
give a polynomial function h such that

$$
x \in B \Longleftrightarrow h(x) \in A .
$$

Some NP-complete problems (satisfiability)

SAT

- Given a formula φ, is φ satisfiable?

That is: is there an assignment v such that $v(\varphi)=1$?
CNF

- Given a formula φ in conjunctive normal form, is φ satisfiable?
$\leq{ }_{3} \mathrm{CNF}$
- Given a formula in "at most 3-conjunctive normal form", is it satisfiable?

3CNF

- Given a formula in "exactly 3-conjunctive normal form", is it satisfiable?

Some NP-complete problems (integers)

ILP

- Given an integer linear program, does it have a solution? For example

$$
E:=\left\{\begin{aligned}
x_{1}+3 x_{2}-4 x_{3}+x_{4} & \geq 5 \\
3 x_{1}+x_{2}+4 x_{3}+2 x_{4} & \leq 6 \\
3 x_{1}-2 x_{2}-x_{3}-3 x_{4} & \geq 0
\end{aligned}\right.
$$

Are there $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{Z}$ such that these inequalities hold?

Some NP-complete problems (graphs)

Clique:

- Given a graph $G=(V, E)$ and an integer k, does G have a clique with k vertices?
That is: is there a set $W \subseteq V$ of size k with an edge between each pair of vertices ?
VertexCover
- Given a graph $G=(V, E)$ and an integer k, does G have a vertex cover with k vertices?
That is: is there a set $W \subseteq V$ of size k such that each edge "lands in" a vertex in W ?

3Color

- Given a graph $G=(V, E)$, does G have a 3-coloring? That is: is there a function $c: V \rightarrow\{r, y, b\}$ such that $(v, u) \in E \Rightarrow c(v) \neq c(u)$.

How to prove that a problem is NP-complete?

- In our proofs of NP-hardness we have used the following chain of reductions of satisfiability problems.

$$
\text { CNF-SAT } \leq_{P} \leq_{3} \text { CNF-SAT } \leq_{P} \text { 3CNF-SAT }
$$

- We have extended this with proofs of NP-hardness of ILP, Clique, VertexCover and 3Color.
- For a proof of NP-hardness of Ham-Path (Hamiltonian path), see the note of Niels van der Weide on the webpage, by a reduction: 3CNF-SAT \leq_{p} Ham-Path.
- In this lecture, we will prove NP-hardness of Clique-3Cover, SubsSum (Subset-Sum) WParse (weighted parsing), Ham-Cycle and TSP(traveling salesperson).

A hierarchy of NP-completeness proofs

$$
\text { CNF-SAT } \leqslant_{p} \leqslant_{3} C N E-\text { SAT } \leqslant_{p} \text { C NE SAT } \leqslant_{p} \text { Clique } \leqslant_{p} \text { Vertex Cover }
$$

A hierarchy of NP-completeness proofs: last week
see the note on webpage

$$
\left.S_{p}\right)^{3-C o l o r} \leq_{p} \text { Cliques Cover }
$$

A hierarchy of NP-completeness proofs: this week
see the note on webpage

$$
\text { (Sp) }{ }^{3-C o l o k} \sum_{p} \text { Clique 3 Cover }
$$

$$
\begin{aligned}
& \text { ILP } \\
& \text { Subset Sum } \leqslant_{p} \text { WParse } \\
& \text { Hampath } \leqslant_{p} \text { HamCycle } \leqslant_{p} T S P
\end{aligned}
$$

see the note

Clique-3Cover is NP-complete

DEFINITION

Clique-3Cover is the problem of deciding if a graph $G=(V, E)$ is the union of three cliques, that is: $\exists V_{1}, V_{2}, V_{3}\left(V=V_{1} \cup V_{2} \cup V_{3} \wedge\right.$ $V_{1} \cap V_{2}=\emptyset, V_{2} \cap V_{3}=\emptyset, V_{1} \cap V_{3}=\emptyset \wedge \forall i\left(V_{i}\right.$ is a clique $\left.)\right)$.

THEOREM

Clique-3Cover is NP-complete

- Clique-3Cover $\in \mathbf{N P}$. The sets $\left(V_{1}, V_{2}, V_{3}\right)$ are a certificate.
- We show that 3Color \leq_{P} Clique-3Cover by defining $f(V, E):=(V, \bar{E})$, where $\bar{E}:=\{(u, v) \mid u \neq v \wedge(u, v) \notin E\}$.
- (V, E) is 3-colorable iff (V, \bar{E}) has a clique-3cover,because V_{i} is a clique in $(V, \bar{E}) \Leftrightarrow \forall u, v \in V_{i}(u \neq v \rightarrow(u, v) \in \bar{E})$
$\Leftrightarrow \quad \forall u, v \in V_{i}(u=v \vee(u, v) \notin E)$
$\Leftrightarrow \quad V_{i}$ can have one color in (V, E).

Hamiltonian paths

Definition

Let G be a graph. We say that G has a Hamiltonian path if there is a path p in G that crosses every vertex exactly once.

$$
\begin{aligned}
\text { Ham-Path }:=\{(V, E) \mid & \exists v_{1}, \ldots v_{n}\left(V=\left\{v_{1}, \ldots, v_{n}\right\} \wedge\right. \\
& \forall i, j \leq n\left(v_{i}=v_{j} \rightarrow i=j\right) \wedge \\
& \left.\left.\forall i<n\left(v_{i}, v_{i+1}\right) \in E\right)\right\}
\end{aligned}
$$

Below, the blue path is Hamiltonian while the red is not.

NP-completeness

We look at the decision problem Ham-Path

- Given a graph G, does G have a Hamiltonian path?

Theorem

Ham-Path is NP-complete
It can be shown that 3 CNF-SAT \leq_{p} Ham-Path, See note!

Hamiltonian cycle

DEFINITION

Let G be a graph. We say that G has a Hamiltonian cycle if there is a cycle c in G that crosses every vertex exactly once.

$$
\begin{aligned}
\text { Ham-Cycle }:=\{(V, E) \mid & \exists v_{1}, \ldots v_{n}\left(V=\left\{v_{1}, \ldots, v_{n}\right\} \wedge\right. \\
& \forall i, j<n\left(v_{i}=v_{j} \rightarrow i=j\right) \wedge \\
& \left.\left.v_{n}=v_{1} \wedge \forall i<n\left(v_{i}, v_{i+1}\right) \in E\right)\right\}
\end{aligned}
$$

So, a cycle c is written as $v_{1}, v_{2}, \ldots, v_{n}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ and $\left(v_{n}, v_{1}\right) \in E$. For a Hamiltonian cycle: $v_{i} \neq v_{j}$ if $i \neq j$ and every vertex occurs in this cycle.

Ham-Cycle is NP-complete

Theorem

Ham-Cycle is NP-complete
Clearly, Ham-Cycle \in NP.
To prove that Ham-Cycle is NP-hard, we show
Ham-Path \leq_{p} Ham-Cycle.

- Let $G=(V, E)$ be a graph;
- Add a vertex v and connect it to every vertex $u \in V$ an edge;
- Call the resulting graph G^{\prime};
- Lemma
G has a Hamiltonian path iff G^{\prime} has a Hamiltonian cycle

Illustration of the proof

From the construction, we get the following graph

Traveling Salesperson, TSP

Definition

Given a complete graph G, a cost function on the edges c, and an integer k, is there a cycle in G with cost at most k that crosses every vertex?

$$
\begin{aligned}
\mathrm{TSP}:=\{(V, c, k) \mid & c: V \times V \rightarrow \mathbb{Z} \wedge k \in \mathbb{Z} \\
& \wedge \text { there is a cycle with cost at most } k\}
\end{aligned}
$$

Theorem

TSP is NP-complete.
Proof

- TSP $\in \mathbf{N P}$.

The certificate is the cycle (the "tour" of the TSP). That it has cost $\leq k$ can be checked easily in polynomial time.

TSP is NP-hard

- TSP \in NPH. We show Ham-Cycle \leq_{P} TSP.

Define for (V, E) a graph the following tuple (V, c, k), consisting of a complete graph, a $c: V \times V \rightarrow \mathbb{Z}, k \in \mathbb{Z}$.

- $c(u, v):=0$ if $(u, v) \in E$, $c(u, v):=1$ if $(u, v) \notin E$
- $k:=0$

Lemma (V, E) has a Hamiltonian cycle if and only if $(V, V \times V)$ has a tour with cost at most 0
Proof
Check \Rightarrow and \Leftarrow.
Corollary Ham-Cycle \leq_{P} TSP and so: TSP is NP-hard.

SubsSum, the subset-sum problem

DEFINITION

SubsSum (S, t) is the problem of deciding, for $S \subseteq_{\text {fin }} \mathbb{N}$ and $t \in \mathbb{N}$, if there is a subset $S^{\prime} \subseteq S$ such that $\sum_{x \in S^{\prime}} x=t$. Here, $S \subseteq_{\text {fin }} \mathbb{N}$ denotes that S is a finite subset of \mathbb{N}.

Example: take $S=\{1,4,6,9,12\}$

- There is a subset with sum 14 , namely $\{1,4,9\}$
- There is no subset with sum 8

We assume the representation of a number $n \in \mathbb{N}$ to be of size $\Theta(\log n)$. This holds for binary or decimal (but for not unary!). For simplicty we now assume decimal representation.

SubsSum is NP-complete

Theorem

SubsSum is NP-complete

- SubsSum \in NP.

The certificate is the subset $S^{\prime} \subseteq S$ whose sum is t.

- We prove SubsSum is NP-hard by showing \leq_{3} CNF-SAT \leq_{p} SubsSum.

We define $f: \leq{ }_{3}$ CNF $\rightarrow \mathcal{P}_{\text {fin }}(\mathbb{N}) \times \mathbb{N}$ such that $\varphi=\bigwedge_{i=1}^{k} C_{i}$ is satisfiable if and only if for $f(\varphi)=(S, t)$ there is a $S^{\prime} \subseteq S$ with $\sum_{x \in S^{\prime}} x=t$.

SubsSum is NP-hard

For the definition of $f: \leq{ }_{3} \mathrm{CNF} \rightarrow \mathcal{P}_{\text {fin }}(\mathbb{N}) \times \mathbb{N}$:

- Assume that $\varphi=\bigwedge_{i=1}^{k} C_{i}$ has n atoms $\left\{x_{1}, \ldots, x_{n}\right\}$.
S will consist of numbers of $n+k$ digits and t will also have $n+k$ digits.
- Define numbers $p_{1}, p_{1}^{\prime}, \ldots, p_{n}, p_{n}^{\prime}$ by:
- p_{i} has: 1 at position i and 1 at pos. $n+j$ if x_{i} occurs in C_{j},
- p_{i}^{\prime} has: 1 at position i and 1 at pos. $n+j$ if $\neg x_{i}$ occurs in C_{j},
- all other positions in p_{i} and p_{i}^{\prime} are 0 .
- Define numbers $s_{1}, s_{1}^{\prime}, \ldots, s_{k}, s_{k}^{\prime}$ by:
- s_{j} has 1 at position $n+j$ and for the rest 0 ,
- s_{j}^{\prime} has 2 at position $n+j$ and for the rest 0 .
- Take $S=\left\{p_{i}, p_{i}^{\prime} \mid i=1, \ldots, n\right\} \cup\left\{s_{j}, s_{j}^{\prime} \mid j=1, \ldots, k\right\}$ and $t=1 \ldots 14 \ldots 4$ (n times a 1 and k times a 4).
- Lemma: φ is satisfiable iff $\exists S^{\prime} \subseteq S\left(\sum_{x \in S^{\prime}} x=t\right)$.

\leq_{3} CNF-SAT \leq_{p} SubsSum: Example

- p_{i} has 1 at position i and at position $n+j$ if x_{i} occurs in C_{j},
- p_{i}^{\prime} has 1 at position i and at position $n+j$ if $\neg x_{i}$ occurs in C_{j}.

	x_{1}	V	$\neg \chi_{2}$	V	$\neg x_{3}$	p_{1}	$\mathrm{n}(=3)$			$k(=4)$			
$\left(C_{1}\right)$							1	0	0	1	0	0	1
$\left(C_{2}\right)$			$\neg x_{2}$	v	\times_{3}	p_{1}^{\prime}	1	0	0	0		1	0
$\left(C_{3}\right)$	$\neg x_{1}$	\checkmark	x_{2}			p_{2}	0	1	0	0	0	1	0
$\left(C_{4}\right)$	x_{1}	\checkmark		\checkmark	$\neg x_{3}$	p_{2}^{\prime}	0	1	0	1	1	0	1
						p_{3}	0	0	1	0	1	0	0
						p_{3}^{\prime}	0	0	1	1	0	0	

- Basically, the first n colums represent the atoms x_{1}, \ldots, x_{n} and the last k colums represent the clauses C_{1}, \ldots, C_{k}.
- Using a satisfying assignment v for φ, we choose p_{i} or p_{i}^{\prime} for each i (depending on $v\left(x_{i}\right)=1 / 0$).
- Summing up these p^{\prime} s we get $t^{\prime}=1 \ldots 1 d_{1} \ldots d_{k}$ with $d_{j} \in\{1,2,3\}$, because ≥ 1 literal in each clause is true.
- So we can add specific s_{j} and s_{j}^{\prime} to sum up to $t=1 \ldots 14 \ldots 4$

Parsing and Weighted parsing

- Given a Context Free Grammar (CFG) G and a word w, can we derive Start $\Rightarrow w$?
- This is the Parse-problem.
- Put differently: Is there a parse-tree for w ?
- The Parse problem can be solved in polynomial time. (E.g. CYK-algorithm)
Variant of the problem WParse, is there a weighted parse tree for w of weight k ?

DEFINITION

Given a CFG G where every production rule has a weight, let Start $\stackrel{m}{\Rightarrow} w$ denote that w has a parse tree where the sum of the weights of all production rules is m.
WParse (G, w, k) is the problem Start $\stackrel{k}{\Rightarrow} w$: Is there a parse tree of w with weight k ?

Example: parsing and weighted parsing

$$
\begin{aligned}
& \text { Example } \\
& S \rightarrow a 5 b \\
& S \rightarrow c \\
& S \rightarrow \lambda \\
& S \Rightarrow a<a b b \\
& \begin{array}{l}
\begin{array}{l}
\text { Examp } 6 \\
S \xrightarrow{2} a S b \\
S \xrightarrow{3} c S \\
S \xrightarrow{1} \lambda
\end{array} \\
S \xrightarrow{8} a c a b b
\end{array}
\end{aligned}
$$

WParse is NP-complete

Theorem

WParse is NP-complete

Proof.

(1) WParse \in NP.

The certificate is the parse tree of w with weight k
(2) We show that WParse is NP-hard by showing SubsSum \leq_{P} WParse.
Given $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and $k \in \mathbb{N}$ define the following weighted grammar:
Start $\xrightarrow{0} A_{1} \ldots A_{n}, \quad A_{i} \xrightarrow{0} B_{i}, \quad A_{i} \xrightarrow{0} \lambda, \quad B_{i} \xrightarrow{s_{i}} \lambda$.
Then

$$
\exists S^{\prime} \subseteq S\left(\Sigma S^{\prime}=k\right) \quad \text { iff } \quad \text { Start } \stackrel{k}{\Rightarrow} \lambda
$$

Decision problems versus optimization problems

VertexCover

- Given a graph G and an integer k, does G have a vertex cover with k vertices?
- Given a graph G, find the minimal vertex cover of G.

TSP

- Given a complete graph G, a function c, and an integer k, is there a cycle in G with cost at most k ?
- Given a complete graph G and a function c, find a cycle in G with minimal cost.

What does NP-completeness mean for optimization problems?

- Since we know VertexCover and TSP are NP-complete, it will be either difficult or impossible to find efficient algorithms that compute minimal vertex covers or minimal cycles.
- More precisely: If a minimal solution can be computed in polynomial time, then also the decision problem is in \mathbf{P}.
- But what if we do not go for the best solution, but instead for a solution that is good enough?

Example: Finding vertex covers (I)

Let $G=(V, E)$ be a graph.
To compute a vertex cover C of G, we take the following steps

- Let $C:=\emptyset$ and $E^{\prime}:=E$
- While E^{\prime} is not empty
(1) Take any edge (u, v) from E^{\prime}
(2) Take $C:=C \cup\{u, v\}$
(3) Remove every edge from E^{\prime} that touches either u or v.
- output: C

Example: Finding vertex covers (II)

The algorithm is polynomial; it doesn't find the minimal vertex cover...but it is a "decent approximation".

Theorem

The size of the vertex cover computed by the algorithm, is at most twice as large as the size of the minimal vertex cover.

So: while the algorithm does not give the best solution, it gives a solution within reasonable time that may be "good enough" for our purpose.

SAT-solvers

Even though SAT is NP-complete, there are very powerful tools that decide whether a (very large) formula is satisfiable. These are called SAT-solvers.

These have been (and are continuously further) optimized and can now deal with tens of thousands of variables and millions of clauses.
SAT-solvers are the "automation workhorses" of computer science.
Example: negative solution to the "Boolean Pythagorean triples problem".

See: Master Course Automated Theorem Proving.

Harder than NP

- There are problems that don't have a polynomial checking algorithm, or for which the certificate is not polynomial.
- Example: Two-player games.
- "Is there a winning strategy for player 1?"
- Certificate is typically not polynomial size.

Next natural level after \mathbf{P} (and NP): decision algorithms that are polynomially bound on space (memory use), not on time.

DEFINITION

f is a polynomial space algorithm for A if

- f is a deterministic Turing Machine that
- halts on every input w such that
- $w \in A$ iff $f(w)$ halts in a final state and
- the size of the tape used in the computation of $f(w)$ is polynomial in $|w|$.

PSPACE

PSPACE :=

$\left\{A \subseteq\{0,1\}^{*} \mid \quad \exists f, f\right.$ polynomial space algorithm, $w \in A \Longleftrightarrow f(w)=1\}$

LEMMA

- $\mathbf{P} \subseteq$ PSPACE

Because in polynomial size time, f uses only polynomial size space.

- NP \subseteq PSPACE

Because if $A=\left\{w \mid \exists y\left(y<c|w|^{k} \wedge f(w, y)=1\right\}\right.$, this can be checked using polynomial size space, by summing up all (exponentially many!) candidate y 's and running $f(w, y)$.

NPSPACE

Just like NP, we also have NPSPACE.

DEFINITION

f is a non-deterministic polynomial space algorithm for A if

- f is a non-deterministic Turing Machine that
- halts on every input w such that
- $w \in A$ iff $f(w)$ has a computation that halts in a final state,
- the size of the tape used in the computation of $f(w)$ is polynomial in $|w|$.

SAVITCH' Theorem

PSPACE = NPSPACE

PSPACE-hard and PSPACE-complete

Definition

- A is called PSPACE-hard if

$$
\forall A^{\prime} \in \operatorname{PSPACE}\left(A^{\prime} \leq_{P} A\right)
$$

(All PSPACE-problems can be poly. time reduced to A.)

- PSpaceH $:=\{A \mid A$ is PSPACE-hard $\}$.
- A is called PSPACE-complete if $A \in$ PSPACE and A is PSPACE-hard.
- PSpaceC $:=$ PSPACE \cap PSpaceH.

Theorem

If $A^{\prime} \leq_{P} A$ and $A^{\prime} \in \mathbf{P S p a c e H}$, then $A \in \mathbf{P S p a c e H}$.
The proof is the same as for NP-hard.

How to prove that A is PSPACE-complete?

Just like SAT is the canonical NP-hard problem, there is a canonical PSPACE-hard problem: QBF.

DEFINITION

A quantified boolean formula (QBF) is a boolean formula where we can now also use quantifiers (\forall, \exists) over boolean variables.

QBF is the problem of deciding whether a closed quantified boolean formula φ is true.

QBF is PSPACE-complete

Example $\quad \varphi=\forall x(\exists y(x \wedge y)) \vee(\exists z(\neg x \wedge \neg z))$

- For $x=1$ we can choose $y=1$ and for $x=0$ we can choose $z=0$.
- That is: for all values of x we can choose a case and a value for y (or z) that makes the boolean formula true.
- So φ is true.

THEOREM

QBF is PSPACE-complete.

- The "certificate" for $\operatorname{QBF}(\varphi)$ is not just a choice of $0 / 1$ for every \exists, but a choice depending on the \forall in front of the \exists.
- The proof that QBF is PSPACE-hard uses a translation of Turing Machines to QBF.

Some variations on QBF

- Note that SAT \leq_{p} QBF: given φ add $\exists x$ in front of φ for all atoms x in φ.
- If we limit QBF to prenex fomulas, that have all quantifiers in front, it is still PSPACE-complete.
- If we limit QBF to alternating prenex fomulas, that have alternating \forall / \exists in front, it is still PSPACE-complete.
- A "proof" of $\forall x_{1} \exists y_{1} \ldots \forall x_{n} \exists y_{n}(\varphi)$ amounts to making n choices, which amounts to a "certificate" of size 2^{n}.
- A formula like $\forall x_{1} \exists y_{1} \ldots \forall x_{n} \exists y_{n}(\varphi)$ can be interpreted as the question for a winning strategy for a two-player game.

Some other PSPACE-complete problems

- Strategic games are typically PSPACE-complete, like Geography

22

- Also RushHouR and Sokoban are PSPACE-complete.
- Given two regular expression e_{1} and e_{2}, do we have $\mathcal{L}\left(e_{1}\right)=\mathcal{L}\left(e_{2}\right)$? This problem is PSPACE-complete. Similarly: Equivalence problem for non-deterministic finite automata: Given two NFAs over Σ, do they accept the same language? (Note: for DFAs this problem is in \mathbf{P} !)
- The word problem for deterministic context-sensitive grammars is PSPACE-complete. This is the problem whether Start $\Rightarrow w$ in such a grammar.

