
SAT is NP-complete
Course Overview Radboud University Nijmegen

Complexity IBC028, Lecture 7

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2024

H. Geuvers Version: spring 2024 Complexity 1 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Outline

SAT is NP-complete

Course Overview

H. Geuvers Version: spring 2024 Complexity 2 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Overview of NP-complete problems

H. Geuvers Version: spring 2024 Complexity 4 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Recap on NP-complete problems I

• NP problems:

NP :=
{A ⊆ {0, 1}∗ | ∃f , f polynomial,
x ∈ A ⇐⇒ ∃y ∈ {0, 1}∗(|y | polynomial in |x | ∧ f (x , y) = 1)}

• We know P ⊆ NP.
• A big open question is whether P

?
= NP.

• NP-hard problems:

NPH := {A | ∀X ∈ NP(X ≤P A)}
• NP-complete problems:

NPC := NPH ∩NP

• If one NPH problem is in P, then all NP problems are in P.
(So NP-hard problems are likely to be the “hardest NP
problems.)

H. Geuvers Version: spring 2024 Complexity 5 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Recap on NP-complete problems II

Method for showing that problem A is NP-complete:

• Show that A ∈ NP. (Usually quite easy.)

• Show that B ≤P A for a problem B that we know to be
NP-hard (because then A is NP-hard as well).

So: we have to start from some problem that we prove to be
NP-hard!

That problem is SAT (or CNF-SAT)

H. Geuvers Version: spring 2024 Complexity 6 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

The Cook Levin Theorem

Theorem, Cook - Levin, 1971, 1973

SAT is NP-complete

One often follows the proof of Karp 1972, proving that CNF-SAT
is NP-complete

Proof
• SAT ∈ NP: for φ a boolean formula, the certificate is the
satisfying assignment v ; v is polynomial in |φ| and checking
v(φ) = 1 is also polynomial.

• SAT ∈ NPH.
This is the hard part...and the main content of the
Cook-Levin theorem.

H. Geuvers Version: spring 2024 Complexity 7 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

SAT is NP-hard

We need to prove that for all A ∈ NP,

A ≤P SAT.

That is: for every A ∈ NP we should find a polynomial function hA
such that

∀x(x ∈ A ⇐⇒ hA(x) ∈ SAT).

But A can be anything: Ham-Cycle, ILP, VertexCover,
and A can be about graphs, integers, points in R2,

What do we know about A?
A ∈ NP, so there is a polynomial function f such that

x ∈ A ⇐⇒ ∃y ∈ {0, 1}∗(|y | polynomial in |x | ∧ f (x , y) = 1).

We will construct a function h that mimicks the function f as a
SAT-formula.
H. Geuvers Version: spring 2024 Complexity 8 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

SAT is NP-hard

Proof

For every A ∈ NP we should find a polynomial hA such that

∀x(x ∈ A ⇐⇒ hA(x) ∈ SAT).

For A ∈ NP there is a polynomial f such that

x ∈ A ⇐⇒ ∃y ∈ {0, 1}∗(|y | polynomial in |x | ∧ f (x , y) = 1)

The hA we construct will mimick f .

• We use Turing Machines to talk about this f :

• f is given by a polynomial time Turing Machine M.

• hA will mimick the polynomial time Turing Machine M that
decides A.

H. Geuvers Version: spring 2024 Complexity 9 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (I)

f is given by a polynomial time Turing Machine M = (Q,Σ, δ) and
we have

f (x , y) = 1 ⇐⇒ M halts in state qF on input (x , y).

We will encode the operation of M on (x , y) as a boolean formula.

• We take Σ = {0, 1,⊔, . . .}.
• For readability, we also use → as a boolean connective.

• We use v(p) ∈ {true , false} to distinguish the satisfiability
problem we construct from the 0 and 1 as tape content.

• A configuration of M is given by: a state q and tape content
a1 . . . akak+1 . . . an with q reading ak . We encode this by

a1 . . . akqak+1 . . . an ∈ (Q ∪ Σ)∗

H. Geuvers Version: spring 2024 Complexity 10 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (II)

• We introduce boolean variables to describe the configuration
of M after i steps. Intended meaning:

pi ,j ,a = true ⇐⇒ after i steps, there is an a on position j

• We will encode the intended meaning of pi ,j ,a and the
operations of M by writing a (vast) number of boolean
formulas.

H. Geuvers Version: spring 2024 Complexity 11 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (III)

The boolean variables pi ,j ,a should together represent the state of
the Machine M in a computation:

a1 . . . akqak+1 . . . an ∈ (Q ∪ Σ)∗

But the tape is infinite...??

We know:

x ∈ A ⇐⇒ ∃y ∈ {0, 1}∗(|y | polynomial in |x | ∧
M halts in polynomial time in state qF on input (x , y)).

• |y | is polynomial in |x |, so |y | ≤ c |x |k (for some k and c).
• M is polynomial in |x |+ |y |, so there are ℓ and d such that

• computation of M on (x , y) takes ≤ d(|x |+ |y |)ℓ steps,
• so computation of M on (x , y) uses ≤ d(|x |+ |y |)ℓ symbols on

tape.
• So the number of boolean variables is bound by
(d(|x |+ c |x |k)ℓ × (d(|x |+ c |x |k)ℓ × (|Σ|+ |Q|), so bound by
a polynomial P(|x |).

H. Geuvers Version: spring 2024 Complexity 12 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (IV)

Using the boolean variables pi ,j ,a we define three groups of
formulas.

1 Boolean formulas that describe properties that a tape
configuration should obey,

2 Boolean formulas describing the transition function δ of the
Turing Machine,

3 Boolean formulas that describe the initial configuration of
the Turing Machine, with the input x on the tape, and the
final accepting configuration.

H. Geuvers Version: spring 2024 Complexity 13 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (V)

(1) Boolean formulas to describe tape configurations∧
i ,j

((
∨

a∈Σ∪Q
pi ,j ,a) ∧

∧
a,b∈Σ∪Q,a ̸=b

(¬pi ,j ,a ∨ ¬pi ,j ,b))

• On every i (every time step) each j (every tape location)
holds an a ∈ Σ ∪ Q,

• On every i (every time step) each j (every tape location)
holds at most one a ∈ Σ ∪ Q.

Note that both i and j are bound by P(|x |), so the size of this
formula is polynomial in |x |.

H. Geuvers Version: spring 2024 Complexity 14 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (VI)

(2) Boolean formulas describing the transition function δ.

Suppose that we have δ(q, a) = (q′, b,R).

We add, for every i , j and every c ∈ Σ the formula

(pi ,j ,a ∧ pi ,j+1,q ∧ pi ,j+2,c) → (pi+1,j ,b ∧ pi+1,j+1,c ∧ pi+1,j+2,q′)

The rest of the tape remains intact so we add, for every d ∈ Σ,
and for every k < j and every k > j + 2 the formula

(pi ,j ,a ∧ pi ,j+1,q ∧ pi ,j+2,c) → (pi+1,k,d ↔ pi ,k,d)

Note that again, i , j and k are bound by P(|x |), so the size of this
formula is polynomial in |x |.

This is repeated for all transition steps of δ.

H. Geuvers Version: spring 2024 Complexity 15 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (VII)

(3) Boolean formulas describing the initial configuration of the
Turing Machine with input x (and certificate y “to be guessed”),
and the accepting condition.

• p0,1,q0
• p0,j+1,0 for all j-positions in x for which xj = 0

• p0,j+1,1 for all j-positions in x for which xj = 1

• p0,|x |+2,e marking the end of input x , for marking symbol e

• p0,|x |+2+j ,0 ∨ p0,|x |+2+j ,1 for all j-positions in y , which should
be either 0 or 1

• p0,j ,⊔ for all other tape positions, for the “blank” symbol ⊔.
• ∨

i ,j pi ,j ,qF describing that M has reached the final state qF .

Note that again, i , j are bound by P(|x |), so the size of this
formula is polynomial in |x |.
H. Geuvers Version: spring 2024 Complexity 16 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Encoding a Turing Machine as a boolean formula (VIII)

Given Turing Machine M (that implements algorithm f), and input
x , we denote by hM(x) the Boolean formula that is the
conjunction of all the formulas that we have just described.

We have the following:
hM(x) ∈ SAT

⇐⇒ the p0,j ,a describe a valid initial configuration
with x as input and some choice for y
and ∀i > 0, the pi ,j ,a describe a configuration of M
after i steps
and

∨
i ,j pi ,j ,qF = true

(at a certain point we arrive at state qF)
⇐⇒ ∃y(|y | poly. in |x | ∧M with input (x , y) halts in qF)
⇐⇒ ∃y(|y | poly. in |x | ∧ f (x , y) = 1).

So: For every A ∈ NP(A ≤P SAT).
So: SAT ∈ NPH and so SAT ∈ NPC.

H. Geuvers Version: spring 2024 Complexity 17 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

CNF-SAT is NP-complete

The construction of f in the proof can be adapted a bit so that
f (x) is a CNF-formula.

Steps (1) and (3) already create a CNF. For Step (2):

(pi ,j ,a ∧ pi ,j+1,q ∧ pi ,j+2,c) → (pi+1,j ,b ∧ pi+1,j+1,c ∧ pi+1,j+2,q′)

is equivalent to the three clauses

¬pi ,j ,a ∨ ¬pi ,j+1,q ∨ ¬pi ,j+2,c ∨ pi+1,j ,b

¬pi ,j ,a ∨ ¬pi ,j+1,q ∨ ¬pi ,j+2,c ∨ pi+1,j+1,c

¬pi ,j ,a ∨ ¬pi ,j+1,q ∨ ¬pi ,j+2,c ∨ pi+1,j+2,q′

(pi ,j ,a ∧ pi ,j+1,q ∧ pi ,j+2,c) → (pi+1,k,d ↔ pi ,k,d)

is equivalent to the two clauses

¬pi ,j ,a ∨ ¬pi ,j+1,q ∨ ¬pi ,j+2,c ∨ pi+1,k,d ∨ ¬pi ,k,d
¬pi ,j ,a ∨ ¬pi ,j+1,q ∨ ¬pi ,j+2,c ∨ ¬pi+1,k,d ∨ pi ,k,d

So, for every A ∈ NP(A ≤P CNF-SAT) and so: CNF-SAT ∈ NPH.
H. Geuvers Version: spring 2024 Complexity 18 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Why SAT is important

SAT is NP-complete, but

• nevertheless there are very powerful tools that can solve large
SAT problems (and even a bit more) very quickly

• many decision problems can be cast as a satisfiability problem

H. Geuvers Version: spring 2024 Complexity 19 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Example: Bounded Model Checking

Consider the following algorithm that sorts a triple of booleans.

if a1 > a2 then swap (a1, a2);

if a2 > a3 then swap (a2, a3);

if a1 > a2 then swap (a1, a2)

Question: is this a correct sorting algorithm?
Introduce variables ai ,j as values of aj after i steps (i = 0, 1, 2, 3)
and introduce boolean formulas to denote the steps in the
algorithm. For the first step:

(a0,1 ∧ ¬a0,2) → (a1,1 ↔ a0,2 ∧ a1,2 ↔ a0,1 ∧ a1,3 ↔ a0,3)

¬(a0,1 ∧ ¬a0,2) → (a1,1 ↔ a0,1 ∧ a1,2 ↔ a0,2 ∧ a1,3 ↔ a0,3)

Add a boolean formula that states that the algorithm is incorrect:

(a3,1 ∧ ¬a3,2) ∨ (a3,2 ∧ ¬a3,3)

The conjunction of these formulas is not satisfiable, so the
algorithm is correct.
H. Geuvers Version: spring 2024 Complexity 20 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Course overview(I)

1 Divide and Conquer algorithms
If #steps on input of size n is T (n), we have

T (n) = Σsome k,k<nT (k) + f (n)

2 How to derive a g(n) such that T (n) = O(g(n))?
(or Ω(g(n)), Θ(g(n)))

• Substitution method
• Recursion tree method
• Master Theorem method, for T (n) = aT (nb) + f (n).

3 Example algorithms:
• Karatsuba multiplication of numbers: Θ(nlog2 3) ≈ Θ(n1.58).
• The median of a list of numbers of length n, in Θ(n).
• Matrix multiplication (and inversion): Θ(nlog2 7) ≈ Θ(n2.8).

H. Geuvers Version: spring 2024 Complexity 22 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Course overview(II)

4 P and NP
P :=
{A ⊆ {0, 1}∗ | ∃f , f polynomial, w ∈ A ⇐⇒ f (w) = 1}

NP :=
{A ⊆ {0, 1}∗ | ∃f , f polynomial,
w ∈ A ⇐⇒ ∃y ∈ {0, 1}∗(|y | polynomial in |w | ∧ f (w , y) = 1)}

5 NP-hard, NP-complete and reductions.
• NPH := {A | ∀X ∈ NP(X ≤P A)}
• NPC := NP ∩NPH
• A1 ≤P A2 if

∃ polynomial f : {0, 1}∗ → {0, 1}∗(x ∈ A1 ⇐⇒ f (x) ∈ A2)
• (Theorem) If and A ∈ NPH and A ≤P B, then B ∈ NPH.
• (Theorem) SAT ∈ NPC

H. Geuvers Version: spring 2024 Complexity 23 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Course overview(III)

6
• Whole list of NPC-problems:

H. Geuvers Version: spring 2024 Complexity 24 / 25

SAT is NP-complete
Course Overview Radboud University Nijmegen

Course overview(IV)

7 PSPACE
• Definition of PSPACE-problem, PSPACE-complete
• QBF and variants are PSPACE-complete

H. Geuvers Version: spring 2024 Complexity 25 / 25

	SAT is NP-complete
	Course Overview

