Complexity IBC028, Lecture 7

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen
Version: spring 2024

Outline

SAT is NP-complete

Course Overview

Overview of NP-complete problems

$$
\text { CNF-SAT } \leqslant_{p} \leqslant_{3} C N F-S A T \leqslant_{p} 3 C N E S A T \leqslant_{p}^{3-C l o k} \leqslant_{p} \text { Clique } \leqslant_{p} \text { Vertex Cover Cover }
$$

Recap on NP-complete problems I

- NP problems:

NP :=

$$
\begin{aligned}
& \left\{A \subseteq\{0,1\}^{*} \mid \exists f, f\right. \text { polynomial, } \\
& \left.\quad x \in A \Longleftrightarrow \exists y \in\{0,1\}^{*}(|y| \text { polynomial in }|x| \wedge f(x, y)=1)\right\}
\end{aligned}
$$

- We know $\mathbf{P} \subseteq \mathbf{N P}$.
- A big open question is whether $\mathbf{P} \stackrel{?}{=} \mathbf{N} \mathbf{P}$.
- NP-hard problems:

$$
\mathbf{N P H}:=\left\{A \mid \forall X \in \mathbf{N P}\left(X \leq_{P} A\right)\right\}
$$

- NP-complete problems:

NPC := NPH $\cap \mathbf{N P}$

- If one NPH problem is in \mathbf{P}, then all NP problems are in \mathbf{P}. (So NP-hard problems are likely to be the "hardest NP problems.)

Recap on NP-complete problems II

Method for showing that problem A is NP-complete:

- Show that $A \in \mathbf{N P}$. (Usually quite easy.)
- Show that $B \leq_{p} A$ for a problem B that we know to be NP-hard (because then A is NP-hard as well).

So: we have to start from some problem that we prove to be NP-hard!

That problem is SAT (or CNF-SAT)

The Cook Levin Theorem

TheOrem, Cook - Levin, 1971, 1973

SAT is NP-complete
One often follows the proof of Karp 1972, proving that CNF-SAT is NP-complete

Proof

- SAT \in NP: for φ a boolean formula, the certificate is the satisfying assignment $v ; v$ is polynomial in $|\varphi|$ and checking $v(\varphi)=1$ is also polynomial.
- $\operatorname{SAT} \in \mathbf{N P H}$.

This is the hard part...and the main content of the Cook-Levin theorem.

SAT is NP-hard

We need to prove that for all $A \in \mathbf{N P}$,

$$
A \leq_{P} \mathrm{SAT}
$$

That is: for every $A \in \mathbf{N P}$ we should find a polynomial function h_{A} such that

$$
\forall x\left(x \in A \Longleftrightarrow h_{A}(x) \in \mathrm{SAT}\right)
$$

But A can be anything: Ham-Cycle, ILP, VertexCover, and A can be about graphs, integers, points in \mathbb{R}^{2}, \ldots.

What do we know about A ?
$A \in \mathbf{N P}$, so there is a polynomial function f such that

$$
x \in A \Longleftrightarrow \exists y \in\{0,1\}^{*}(|y| \text { polynomial in }|x| \wedge f(x, y)=1)
$$

We will construct a function h that mimicks the function f as a SAT-formula.

SAT is NP-hard

Proof

For every $A \in \mathbf{N P}$ we should find a polynomial h_{A} such that

$$
\forall x\left(x \in A \Longleftrightarrow h_{A}(x) \in \mathrm{SAT}\right)
$$

For $A \in \mathbf{N P}$ there is a polynomial f such that

$$
x \in A \Longleftrightarrow \exists y \in\{0,1\}^{*}(|y| \text { polynomial in }|x| \wedge f(x, y)=1)
$$

The h_{A} we construct will mimick f.

- We use Turing Machines to talk about this f :
- f is given by a polynomial time Turing Machine M.
- h_{A} will mimick the polynomial time Turing Machine M that decides A.

Encoding a Turing Machine as a boolean formula (I)

f is given by a polynomial time Turing Machine $M=(Q, \Sigma, \delta)$ and we have

$$
f(x, y)=1 \Longleftrightarrow M \text { halts in state } q_{F} \text { on input }(x, y)
$$

We will encode the operation of M on (x, y) as a boolean formula.

- We take $\Sigma=\{0,1, \sqcup, \ldots\}$.
- For readability, we also use \rightarrow as a boolean connective.
- We use $v(p) \in\{$ true, false $\}$ to distinguish the satisfiability problem we construct from the 0 and 1 as tape content.
- A configuration of M is given by: a state q and tape content $a_{1} \ldots a_{k} a_{k+1} \ldots a_{n}$ with q reading a_{k}. We encode this by

$$
a_{1} \ldots a_{k} q a_{k+1} \ldots a_{n} \in(Q \cup \Sigma)^{*}
$$

Encoding a Turing Machine as a boolean formula (II)

- We introduce boolean variables to describe the configuration of M after i steps. Intended meaning:

$$
p_{i, j, a}=\text { true } \Longleftrightarrow \text { after } i \text { steps, there is an } a \text { on position } j
$$

- We will encode the intended meaning of $p_{i, j, a}$ and the operations of M by writing a (vast) number of boolean formulas.

Encoding a Turing Machine as a boolean formula (III)

The boolean variables $p_{i, j, a}$ should together represent the state of the Machine M in a computation:

$$
a_{1} \ldots a_{k} q a_{k+1} \ldots a_{n} \in(Q \cup \Sigma)^{*}
$$

But the tape is infinite...??
We know:
$x \in A \Longleftrightarrow \exists y \in\{0,1\}^{*}(|y|$ polynomial in $|x| \wedge$
M halts in polynomial time in state q_{F} on input $\left.(x, y)\right)$.

- $|y|$ is polynomial in $|x|$, so $|y| \leq c|x|^{k}$ (for some k and c).
- M is polynomial in $|x|+|y|$, so there are ℓ and d such that
- computation of M on (x, y) takes $\leq d(|x|+|y|)^{\ell}$ steps,
- so computation of M on (x, y) uses $\leq d(|x|+|y|)^{\ell}$ symbols on tape.
- So the number of boolean variables is bound by
$\left(d\left(|x|+c|x|^{k}\right)^{\ell} \times\left(d\left(|x|+c|x|^{k}\right)^{\ell} \times(|\Sigma|+|Q|)\right.\right.$, so bound by a polynomial $P(|x|)$.

Encoding a Turing Machine as a boolean formula (IV)

Using the boolean variables $p_{i, j, a}$ we define three groups of formulas.
(1) Boolean formulas that describe properties that a tape configuration should obey,
(2) Boolean formulas describing the transition function δ of the Turing Machine,
(3) Boolean formulas that describe the initial configuration of the Turing Machine, with the input x on the tape, and the final accepting configuration.

Encoding a Turing Machine as a boolean formula (V)

(1) Boolean formulas to describe tape configurations

$$
\bigwedge_{i, j}\left(\left(\bigvee_{a \in \Sigma \cup Q} p_{i, j, a}\right) \wedge \bigwedge_{a, b \in \Sigma \cup Q, a \neq b}\left(\neg p_{i, j, a} \vee \neg p_{i, j, b}\right)\right)
$$

- On every i (every time step) each j (every tape location) holds an $a \in \Sigma \cup Q$,
- On every i (every time step) each j (every tape location) holds at most one $a \in \Sigma \cup Q$.

Note that both i and j are bound by $P(|x|)$, so the size of this formula is polynomial in $|x|$.

Encoding a Turing Machine as a boolean formula (VI)

(2) Boolean formulas describing the transition function δ.

Suppose that we have $\delta(q, a)=\left(q^{\prime}, b, R\right)$.
We add, for every i, j and every $c \in \Sigma$ the formula

$$
\left(p_{i, j, a} \wedge p_{i, j+1, q} \wedge p_{i, j+2, c}\right) \rightarrow\left(p_{i+1, j, b} \wedge p_{i+1, j+1, c} \wedge p_{i+1, j+2, q^{\prime}}\right)
$$

The rest of the tape remains intact so we add, for every $d \in \Sigma$, and for every $k<j$ and every $k>j+2$ the formula

$$
\left(p_{i, j, a} \wedge p_{i, j+1, q} \wedge p_{i, j+2, c}\right) \rightarrow\left(p_{i+1, k, d} \leftrightarrow p_{i, k, d}\right)
$$

Note that again, i, j and k are bound by $P(|x|)$, so the size of this formula is polynomial in $|x|$.

This is repeated for all transition steps of δ.

Encoding a Turing Machine as a boolean formula (VII)

(3) Boolean formulas describing the initial configuration of the Turing Machine with input x (and certificate y "to be guessed"), and the accepting condition.

- $p_{0,1, q_{0}}$
- $p_{0, j+1,0}$ for all j-positions in x for which $x_{j}=0$
- $p_{0, j+1,1}$ for all j-positions in x for which $x_{j}=1$
- $p_{0,|x|+2, e}$ marking the end of input x, for marking symbol e
- $p_{0,|x|+2+j, 0} \vee p_{0,|x|+2+j, 1}$ for all j-positions in y, which should be either 0 or 1
- $p_{0, j, \sqcup}$ for all other tape positions, for the "blank" symbol \sqcup.
- $\bigvee_{i, j} p_{i, j, q_{F}}$ describing that M has reached the final state q_{F}.

Note that again, i, j are bound by $P(|x|)$, so the size of this formula is polynomial in $|x|$.

Encoding a Turing Machine as a boolean formula (VIII)

Given Turing Machine M (that implements algorithm f), and input x, we denote by $h_{M}(x)$ the Boolean formula that is the conjunction of all the formulas that we have just described.

We have the following:

$$
h_{M}(x) \in \text { SAT }
$$

$\Longleftrightarrow \quad$ the $p_{0, j, a}$ describe a valid initial configuration with x as input and some choice for y and $\forall i>0$, the $p_{i, j, a}$ describe a configuration of M after i steps
and $\bigvee_{i, j} p_{i, j, q_{F}}=$ true
(at a certain point we arrive at state q_{F})
$\Longleftrightarrow \exists y\left(|y|\right.$ poly. in $|x| \wedge M$ with input (x, y) halts in $\left.q_{F}\right)$ $\Longleftrightarrow \exists y(|y|$ poly. in $|x| \wedge f(x, y)=1)$.

So: For every $A \in \mathbf{N P}\left(A \leq_{P}\right.$ SAT $)$.
So: SAT $\in \mathbf{N P H}$ and so SAT \in NPC.

CNF-SAT is NP-complete

The construction of f in the proof can be adapted a bit so that $f(x)$ is a CNF-formula.
Steps (1) and (3) already create a CNF. For Step (2):

$$
\left(p_{i, j, a} \wedge p_{i, j+1, q} \wedge p_{i, j+2, c}\right) \rightarrow\left(p_{i+1, j, b} \wedge p_{i+1, j+1, c} \wedge p_{i+1, j+2, q^{\prime}}\right)
$$

is equivalent to the three clauses

$$
\begin{gathered}
\neg p_{i, j, a} \vee \neg p_{i, j+1, q} \vee \neg p_{i, j+2, c} \vee p_{i+1, j, b} \\
\neg p_{i, j, a} \vee \neg p_{i, j+1, q} \vee \neg p_{i, j+2, c} \vee p_{i+1, j+1, c} \\
\neg p_{i, j, a} \vee \neg p_{i, j+1, q} \vee \neg p_{i, j+2, c} \vee p_{i+1, j+2, q^{\prime}} \\
\left(p_{i, j, a} \wedge p_{i, j+1, q} \wedge p_{i, j+2, c}\right) \rightarrow\left(p_{i+1, k, d} \leftrightarrow p_{i, k, d}\right)
\end{gathered}
$$

is equivalent to the two clauses

$$
\begin{aligned}
& \neg p_{i, j, a} \vee \neg p_{i, j+1, q} \vee \neg p_{i, j+2, c} \vee p_{i+1, k, d} \vee \neg p_{i, k, d} \\
& \neg p_{i, j, a} \vee \neg p_{i, j+1, q} \vee \neg p_{i, j+2, c} \vee \neg p_{i+1, k, d} \vee p_{i, k, d}
\end{aligned}
$$

So, for every $A \in \mathbf{N P}\left(A \leq_{P} C N F-S A T\right)$ and so: CNF-SAT $\in \mathbf{N P H}$.

Why SAT is important

SAT is NP-complete, but

- nevertheless there are very powerful tools that can solve large SAT problems (and even a bit more) very quickly
- many decision problems can be cast as a satisfiability problem

Example: Bounded Model Checking

Consider the following algorithm that sorts a triple of booleans.

$$
\begin{array}{ll}
\text { if } & a_{1}>a_{2} \\
\text { if } & a_{2}>a_{3}
\end{array} \text { then } \operatorname{swap}\left(a_{1}, a_{2}\right) ;
$$

Question: is this a correct sorting algorithm? Introduce variables $a_{i, j}$ as values of a_{j} after i steps ($i=0,1,2,3$) and introduce boolean formulas to denote the steps in the algorithm. For the first step:

$$
\begin{aligned}
&\left(a_{0,1} \wedge \neg a_{0,2}\right) \rightarrow\left(a_{1,1} \leftrightarrow a_{0,2} \wedge a_{1,2} \leftrightarrow a_{0,1} \wedge a_{1,3} \leftrightarrow a_{0,3}\right) \\
& \neg\left(a_{0,1} \wedge \neg a_{0,2}\right) \rightarrow \\
&\left(a_{1,1} \leftrightarrow a_{0,1} \wedge a_{1,2} \leftrightarrow a_{0,2} \wedge a_{1,3} \leftrightarrow a_{0,3}\right)
\end{aligned}
$$

Add a boolean formula that states that the algorithm is incorrect:

$$
\left(a_{3,1} \wedge \neg a_{3,2}\right) \vee\left(a_{3,2} \wedge \neg a_{3,3}\right)
$$

The conjunction of these formulas is not satisfiable, so the algorithm is correct.

Course overview(I)

1 Divide and Conquer algorithms
If \#steps on input of size n is $T(n)$, we have

$$
T(n)=\Sigma_{\text {some } k, k<n} T(k)+f(n)
$$

2 How to derive a $g(n)$ such that $T(n)=\mathcal{O}(g(n))$? (or $\Omega(g(n)), \Theta(g(n)))$

- Substitution method
- Recursion tree method
- Master Theorem method, for $T(n)=a T\left(\frac{n}{b}\right)+f(n)$.

3 Example algorithms:

- Karatsuba multiplication of numbers: $\Theta\left(n^{\log _{2} 3}\right) \approx \Theta\left(n^{1.58}\right)$.
- The median of a list of numbers of length n, in $\Theta(n)$.
- Matrix multiplication (and inversion): $\Theta\left(n^{\log _{2} 7}\right) \approx \Theta\left(n^{2.8}\right)$.

Course overview(II)

$4 \mathbf{P}$ and $\mathbf{N P}$
P:=
$\left\{A \subseteq\{0,1\}^{*} \mid \quad \exists f, f\right.$ polynomial, $\left.w \in A \Longleftrightarrow f(w)=1\right\}$
NP :=
$\left\{A \subseteq\{0,1\}^{*} \mid \quad \exists f, f\right.$ polynomial, $w \in A \Longleftrightarrow \exists y \in\{0,1\}^{*}(|y|$ polynomial in $\left.|w| \wedge f(w, y)=1)\right\}$

5 NP-hard, NP-complete and reductions.

- NPH $:=\left\{A \mid \forall X \in \mathbf{N P}\left(X \leq_{P} A\right)\right\}$
- NPC := NP $\cap \mathbf{N P H}$
- $A_{1} \leq_{p} A_{2}$ if
\exists polynomial $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}\left(x \in A_{1} \Longleftrightarrow f(x) \in A_{2}\right)$
- (Theorem) If and $A \in \mathbf{N P H}$ and $A \leq_{p} B$, then $B \in \mathbf{N P H}$.
- (Theorem) SAT \in NPC

Course overview(III)
6

- Whole list of NPC-problems:

$$
\text { CNF-SAT } \leqslant_{p} \leqslant_{3} \text { CNE-SAT } \leqslant_{p} \text { 3CNESAT } \leqslant_{p} \text { Clique } \leqslant_{p} \text { Vertex Cover }
$$

Course overview(IV)

7 PSPACE

- Definition of PSPACE-problem, PSPACE-complete
- QBF and variants are PSPACE-complete

