Radboud University Nijmegen %

Complexity IBC028, Lecture 7

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2024

H. Geuvers Version: spring 2024 Complexity 1/25

Radboud University Nijmegen

Outline

SAT is NP-complete

Course Overview

H. Geuvers Version: spring 2024 Complexity 2/25

SAT is NP- Trmerfl =®
AT s NP-complete Radboud University Nijmegen ¥

Overview of NP-complete problems

3-Golog. (C‘/t}m; (;:ng{
Z Pt

Cves, <, QVESAT < 3VE S Iy fex Cove
B ?

\
[\ SooTLe

N Sbssf Sums Wlapse

\T Hanfedl, <I‘ HaV\\CYL/e <PT5P

H. Geuvers Version: spring 2024 Complexity 4/25

SAT is NP-complete

Radboud University Nijmegen @

Recap on NP-complete problems |

® NP problems:
NP =
{AC{0,1}* | 3f,f polynomial,
x € A<= Jdy € {0,1}*(|y| polynomial in x| A f(x,y)=1)}

® \We know P C NP.
® A big open question is whether P ~Z NP
® NP-hard problems:

NPH = {A|VX € NP(X <p A)}
® NP-complete problems:

NPC := NPHN NP

® |f one NPH problem is in P, then all NP problems are in P.
(So NP-hard problems are likely to be the “hardest NP
problems.)

H. Geuvers Version: spring 2024 Complexity 5/25

SAT is NP-complete

Radboud University Nijmegen @

Recap on NP-complete problems Il

Method for showing that problem A is NP-complete:
® Show that A € NP. (Usually quite easy.)

® Show that B <p A for a problem B that we know to be
NP-hard (because then A is NP-hard as well).

So: we have to start from some problem that we prove to be
NP-hard!

That problem is SAT (or CNF-SAT)

H. Geuvers Version: spring 2024 Complexity 6 /25

SAT is NP-complete

The Cook Levin Theorem

Radboud University Nijmege

THEOREM, Cook - Levin, 1971, 1973
SAT is NP-complete

One often follows the proof of Karp 1972, proving that CNF-SAT
is NP-complete

ProOOF

® SAT € NP: for ¢ a boolean formula, the certificate is the
satisfying assignment v; v is polynomial in |¢| and checking
v(¢) = 1 is also polynomial.

e SAT € NPH.
This is the hard part...and the main content of the
Cook-Levin theorem.

H. Geuvers Version: spring 2024 Complexity

7/ 25

SAT is NP-complete

Radboud University Nijmegen @

SAT is NP-hard

We need to prove that for all A € NP,

A <p SAT.

That is: for every A € NP we should find a polynomial function hg
such that
Vx(x € A<= ha(x) € SAT).

But A can be anything: Ham-Cycle, ILP, VertexCover,
and A can be about graphs, integers, points in R?, ...

What do we know about A?
A € NP, so there is a polynomial function f such that

x € A<= Ty € {0,1}*(|y| polynomial in |x| A f(x,y) =1).

We will construct a function h that mimicks the function f as a
SAT-formula.

H. Geuvers Version: spring 2024 Complexity 8/25

SAT is NP-complete Radboud University Nijmege

SAT is NP-hard

PROOF

For every A € NP we should find a polynomial ha such that
Vx(x € A<= ha(x) € SAT).
For A € NP there is a polynomial f such that
x € A< Ty € {0,1}*(|y| polynomial in |x| A f(x,y) =1)

The ha we construct will mimick f.
® We use Turing Machines to talk about this f:
® f is given by a polynomial time Turing Machine M.

® hu will mimick the polynomial time Turing Machine M that
decides A.

H. Geuvers Version: spring 2024 Complexity

SAT is NP-complete

Radboud University Nijmegen @

Encoding a Turing Machine as a boolean formula (1)

f is given by a polynomial time Turing Machine M = (Q, %¥,0) and
we have

f(x,y) =1 <= M halts in state gr on input (x, y).

We will encode the operation of M on (x,y) as a boolean formula.
® We take ¥ = {0,1,LJ,...}.
For readability, we also use — as a boolean connective.

We use v(p) € {true, false} to distinguish the satisfiability
problem we construct from the 0 and 1 as tape content.

A configuration of M is given by: a state g and tape content
aj...akdk+1 - --ap With g reading ax. We encode this by

al...akqakﬂ...ane(QUZ)*

H. Geuvers Version: spring 2024 Complexity 10 / 25

SAT is NP-complete

Radboud University Nijmegen @

Encoding a Turing Machine as a boolean formula (I1)

® We introduce boolean variables to describe the configuration
of M after i steps. Intended meaning:

pij.a = true <= after / steps, there is an a on position j

® We will encode the intended meaning of p;;, and the
operations of M by writing a (vast) number of boolean
formulas.

H. Geuvers Version: spring 2024 Complexity 11 /25

SAT is NP-complete

Radboud University Nijmegen @

Encoding a Turing Machine as a boolean formula (llI)

The boolean variables p; ; , should together represent the state of
the Machine M in a computation:

ai...akqak4+1-.-an € (QUZ)*
But the tape is infinite...??

We know:
x€A <= 3Ty e {0,1}7(|ly| polynomial in |x| A
M halts in polynomial time in state gr on input (x, y)).
* |y| is polynomial in |x|, so |y| < c|x|¥ (for some k and c).
® M is polynomial in |x| + |y|, so there are ¢ and d such that
® computation of M on (x, y) takes < d(|x| + |y|)¢ steps,
® so computation of M on (x, y) uses < d(|x| + |y|)¢ symbols on
tape.
® So the number of boolean variables is bound by
(d(Ix| + clx|*)* x (d(|x| + c|x|*)" x (|| +|Q]), so bound by
a polynomial P(|x|).

H. Geuvers Version: spring 2024 Complexity 12 /25

SAT is NP-complete Radboud University Nijmege

Encoding a Turing Machine as a boolean formula (1V)

Using the boolean variables p; ; , we define three groups of
formulas.

@ Boolean formulas that describe properties that a tape
configuration should obey,

® Boolean formulas describing the transition function § of the
Turing Machine,

© Boolean formulas that describe the initial configuration of
the Turing Machine, with the input x on the tape, and the
final accepting configuration.

H. Geuvers Version: spring 2024 Complexity 13 /25

SAT is NP-complete Q 0 o
Proomplet Radboud University Nijmege

Encoding a Turing Machine as a boolean formula (V)

(1) Boolean formulas to describe tape configurations

ANCN pija)n N\ (pijaV-pijs)

ij aeTuQ 2,bETUQ,ab

® On every i (every time step) each j (every tape location)
holds an a € X U Q,

® On every i (every time step) each j (every tape location)
holds at most one a € ¥ U Q.

Note that both i and j are bound by P(|x|), so the size of this
formula is polynomial in |x].

H. Geuvers Version: spring 2024 Complexity 14 / 25

SAT is NP-complete

Radboud University Nijmegen @

Encoding a Turing Machine as a boolean formula (VI)

(2) Boolean formulas describing the transition function 4.
Suppose that we have §(q,a) = (¢, b, R).

We add, for every i, and every ¢ € ¥ the formula

(Pij,a A Pij+1g A Pija2.c) = (Pit1j.b A Pitlj+le N Pidlj+2,q")

The rest of the tape remains intact so we add, for every d € ¥,
and for every k < j and every k > j + 2 the formula

(Pij.a A\ Pijt1,g A Pijia.c) = (Pitikd < Pikd)

Note that again, 7,/ and k are bound by P(|x|), so the size of this
formula is polynomial in |x].

This is repeated for all transition steps of 4.

H. Geuvers Version: spring 2024 Complexity

SAT is NP-complete Radboud University Nijmege

Encoding a Turing Machine as a boolean formula (VII)

(3) Boolean formulas describing the initial configuration of the
Turing Machine with input x (and certificate y “to be guessed"),
and the accepting condition.

® P0,1,q0

® poj+1,0 for all j-positions in x for which x; = 0

® poji1,1 for all j-positions in x for which x; =1

® po,|x|+2,e Marking the end of input x, for marking symbol e

® Po,|x|+2+j,0 V Po,|x|+2+j,1 for all j-positions in y, which should
be either 0 or 1

® po . for all other tape positions, for the “blank” symbol L.

® \/; Pijqr describing that M has reached the final state q.
Note that again, /i, are bound by P(|x|), so the size of this
formula is polynomial in |x|.

H. Geuvers Version: spring 2024 Complexity 16 / 25

SAT is NP-complete Radboud University Nijmege

Encoding a Turing Machine as a boolean formula (VIII)

Given Turing Machine M (that implements algorithm f), and input
x, we denote by hy(x) the Boolean formula that is the
conjunction of all the formulas that we have just described.

We have the following:
hm(x) € SAT

<= the pg; , describe a valid initial configuration
with x as input and some choice for y
and Vi > 0, the p; j ; describe a configuration of M
after / steps
and \/; ; pij,qr = true
(at a certain point we arrive at state gr)

<= dy(ly| poly. in |x| A M with input (x,y) halts in gF)

< Jy(lyl poly. in [x| A f(x,y) =1).

So: For every A€ NP(A <p SAT).
So: SAT € NPH and so SAT € NPC.

H. Geuvers Version: spring 2024 Complexity 17 / 25

SAT is NP-complete Radboud University Nijmege

CNF-SAT is NP-complete

The construction of f in the proof can be adapted a bit so that
f(x) is a CNF-formula.

Steps (1) and (3) already create a CNF. For Step (2):

(Pija A Pijt1,g A Piji2.c) = (Pit1jb A Pirljtie A Pitijt2,q)
is equivalent to the three clauses
“Pij,a V TPij+1,q Y TPij+2,c V Pitljb
“Pij,a V TPij+1,q Y Pij+2,c V Pitlj+l,c
TPij,a V TPij+1,g Y TPij+2,c V Pitljr2,q
(Pij,a A Pijiig A Pijr2.c) = (Pit1kd < Pikd)
is equivalent to the two clauses
“Pij,a V TPij+1,q V TPij+2,c V Pitl,k,d V TPik,d
“Pij,a V TPij+1,q YV TPij+2,c VY TPit1kd V Pik,d
So, for every A € NP(A <p CNF-SAT) and so: CNF-SAT € NPH.

H. Geuvers Version: spring 2024 Complexity 18 / 25

SAT is NP-complete Radboud University Nijmegen &

Why SAT is important

SAT is NP-complete, but
® nevertheless there are very powerful tools that can solve large
SAT problems (and even a bit more) very quickly
® many decision problems can be cast as a satisfiability problem

H. Geuvers Version: spring 2024 Complexity 19 / 25

SAT is NP- Trmerfl o
AT s NP-complete Radboud University Nijmegen

Example: Bounded Model Checking

Consider the following algorithm that sorts a triple of booleans.

if a; > a then swap(ay,a);
if a, > a3 then swap(ap,as);
if a; > a, then swap (31, 82)
Question: is this a correct sorting algorithm?
Introduce variables a; ; as values of aj after i steps (i = 0,1,2,3)
and introduce boolean formulas to denote the steps in the
algorithm. For the first step:
(a01 A—ag2) — (a1 4> ap2Nai2 <> a1 Aais < as)
—(a0,1 A ma02) — (a11 ¢ @01 A a2 <> a2 A a1z < ao3)
Add a boolean formula that states that the algorithm is incorrect:
(331 A maz2) V(as2 A —as3)

The conjunction of these formulas is not satisfiable, so the
algorithm is correct.

H. Geuvers Version: spring 2024 Complexity 20 / 25

Course Overview Radboud University Nijmegen &

Course overview(l)

1 Divide and Conquer algorithms
If #steps on input of size nis T(n), we have

T(n) = Lsome k,k<n T(k)+ f(n)

2 How to derive a g(n) such that T(n) = O(g(n))?
(or Q(g(n)). ©(g(n)))
® Substitution method
® Recursion tree method
® Master Theorem method, for T(n) = aT(3)+ f(n).
3 Example algorithms:
* Karatsuba multiplication of numbers: ©(n'°823) ~ ©(n!-8).
® The median of a list of numbers of length n, in ©(n).
® Matrix multiplication (and inversion): ©(n'°€27) ~ ©(n*8).

H. Geuvers Version: spring 2024 Complexity 22 /25

Radboud University Nijmegen @

Course Overview

Course overview(|l)

4 P and NP
P .=
{AC{0,1}*| 3f,f polynomial, w € A<= f(w) =1}

NP :=
{AC{0,1}*| 3f,f polynomial,
w € A<= Jy € {0,1}*(|y| polynomial in |w| A f(w,y)=1)}

5 NP-hard, NP-complete and reductions.
* NPH = {A|VX € NP(X <p A)}
® NPC:=NPNNPH
° A <pAif
3 polynomial £ : {0,1}* — {0,1}*(x € A; < f(x) € A2)
® (Theorem) If and A € NPH and A <p B, then B € NPH.
(Theorem) SAT € NPC

H. Geuvers Version: spring 2024 Complexity 23 /25

Course Overview Radboud University Nijmege

Course overview(l11)

6

® Whole list of NPC-problems:

H. Geuvers

ol \(P C/.'fm Gover

CUP-S#T < S, WESAT < 3OE SAT <, Cligne <, Vewtex Cover
S

\\f. S;\é sed Suw{? W fgp_sz

\Y Hanfedl, éf Ha"‘\cyc/e {PTSP

Version: spring 2024 Complexity

24 / 25

Course Overview Radboud University Nijmege

Course overview(IV)

7 PSPACE

® Definition of PSPACE-problem, PSPACE-complete
® QBF and variants are PSPACE-complete

H. Geuvers Version: spring 2024 Complexity

	SAT is NP-complete
	Course Overview

