Proving with Computer Assistance, 2IMF15

Herman Geuvers, TUE

Exercises on Polymorphic type Theory, some answers

1. Recall: 1 :=Va.a, T :=Va.a—a. In these exercises, the main “clue” is what to instantaite
the Vo : * quantifier with. This is not made explicit in the Curry system, but the derivations
should make it clear. If not, write down the Chut=rch variant of the same term witrh the
same derivation.

(a) Verity that in Church A2: Az:T.xTa: T—T.

app, 1

app, 2
A:T.xTxz:T—=T Arule 1,3

1
2
3
4
(b) Verify that in Curry A2: Ax.zx : T—=T

app, 1
app, 2
Ar.xx: T —T  Arule, 1,3

1
2
3
4

(¢) Find a type in Curry A2 for Az.z x z

1 z:Va.a—a

2 x: T —T app, 1

3 zx: T app, 2

4 zx: T =T app, 3

5 zrx: T app, 4

6| Az.xxzz: T —T Arule, 1,5
OR:

1

2 app, 1

3 app, 2, 1

4 app, 3, 1

5| xxzr: L —1 Arule 1,4

(d) Find a type in Curry A2 for Az.(z z)(x x)

1 z: L

2 r:l— 1 app, 1

3 rx: L app, 2, 1
4| |xx: L — L app, 3

50| (zx)(rz): L app, 4, 3

6| Ae.(zx)(zx): L— L  Arule, 1,5



2. Let z : T and remember that T :=Va: x .a—«a. Give a type to the term
Ayxy x(Az.zx z)
in A2 a la Curry and give the typing derivation of your result.
3. Let z : T and remember that T := Va: * .a—a.

(a) Give a type to the term
My.xy x(Az.zxz)

in A2 a la Curry and give the typing derivation of your result.

1 |z:T

2 y: L

3 rz:l—1 app, 1

4 zy: L app, 3, 2

5 zy: T — L app, 4

6 zyx: L app, 4, 1

7 z: 1l

8 z: T — L app, 7

9 zx: L app, 8, 1

10 zx:l — L1 app, 9

11 zxz: L app, 10, 1
12 Azzxz: L — L A-rule, 7, 11
Bllzyz:(L—>L1)—>1 app, 6

4| |zyz(Azzzz): L app, 13, 12
15 | Adyzyx (Az.zzz): L— 1L Arule, 2, 14

(b) Give a type to the term
Ay.xy (z(Nz.2 2))

in A2 a la Curry. Also give the typing derivation of your result.

4. (a) Defineinl:o — o+ 71
Recall that o + 7 := Va.(c—a)—=(T—a)—a

Answer:
Ax o AaAf ro—=a g T—a. fx
(b) Define pairing : [—,—]:0 =27 >0 X T
Recall that o X 7 := Va.(c=»7—a)—a,
Answer:

Ax o ANy T Aa. M o—T—ahay

NB You can only “validate” this definition if you define projections 7, and 7o and show
that m1[a,b] =3 a and msa,b] =5 b. Try to do that. (Here is the definituion of :
Az:oXT.zo(Ax:0. My T.7))

(c¢) Show that the addition function (as defined on the slides) behaves as expected.
Check that for Plus := An : Nat.Am : Nat.n Natm S, we have

PlusOy = y
Plus(Sz)y = s(Pluszy)

where S := An : Nat.  da. Az : aAf :a—a.f(naz f).



(d) Define leaf : B — Treea p and join : Trees p and join : Trees p — Treeap — A —

Trees B
Recall that
Treey p := Va.(B—a)—(A—a—a—a)—a

Now, leaf := Ab: B.Aa. A\f : B—a. Ah : A—wa—a—a. f b and join is defined as follows:

join = Xty : Treey p. Ao : Trees p. Aa : A.
Aa. Af 1 B—a. Ah : A—wa—a—a.ha(tiafh)(taafh)

Why is this the right answer?

(1) There is a very general way to define the constructors for a data type defined in
A2, but I haven’t shown that to you. (The general method has first been described in
C. Bohm and A. Berarducci, Automatic synthesis of typed lambda programs on term
algebras. Theoretical Computer Science, 39(2-3):135-153, Aug. 1985.)

(2) Another answer is: Given ¢1, to and a, we have to define a term of type Treea, p.
This will have the shape

Aa. Af : B—»a. \h i Ama—a—a.?

with 7 : . We can view h as the “internal” join function and ¢« fh is the “internal”
representation of ¢; and fsafh is the “internal” representation of to, so we need to
apply h to these terms, taking a as the node label.

... This works well as an intuition, but I agree that it’s vague ...

(3) The best answer is: define your destructors and show that they “work” with join.
So: define “left” and “right” and show that left (joinat; t2) =g ¢1 and similarly for
“right” and ts.

left := At : Treea p.t Treey pleaf (Aa : A Xty,to : Treeq . t1)
where leaf : B—Treey p is the function

Ab: B.da. Af: B—a. Ah: A—»a—a—a. fb

Give the Tree-iteration scheme for Tree4 p and define h : Tree4 g — Nat that counts
the number of leaves of a tree.

The Tree iteration scheme is: given a type D and f : B—D, g : A»D—D— D, there
is a term k : Treey p—D satisfying

k(leafb) = fb
k(joinatita) = ga(kty) (kta)

as a matter of fact k is just A\t : Treey .t D f g.
The function A that counts the number of leaves satisfies

h(leafb) = SO
h(joinatity) = Plus(hty) (hts)

so we can take h := At : Trees p.tNat (Ab: B.S0) (Aa: A, Ang, no : Nat.Plusng na).



