Proving with Computer Assistance, 2IMF15

Herman Geuvers, TUE

Exercises on Polymorphic type Theory, some answers

- 1. Recall: $\perp := \forall \alpha.\alpha, \top := \forall \alpha.\alpha \rightarrow \alpha$. In these exercises, the main "clue" is what to instantaite the $\forall \alpha : *$ quantifier with. This is not made explicit in the Curry system, but the derivations should make it clear. If not, write down the Chut=rch variant of the same term with the same derivation.
 - (a) Verify that in Church $\lambda 2: \lambda x: \top . x \top x : \top \to \top$.

(b) Verify that in Curry $\lambda 2: \lambda x.xx : \top \rightarrow \top$

(c) Find a type in Curry $\lambda 2$ for $\lambda x.x x x$

OR:

(d) Find a type in Curry $\lambda 2$ for $\lambda x.(x x)(x x)$

2. Let $x : \top$ and remember that $\top := \forall \alpha : * . \alpha \rightarrow \alpha$. Give a type to the term

 $\lambda y.x y x(\lambda z.z x z)$

in $\lambda 2$ à la Curry and give the typing derivation of your result.

3. Let $x : \top$ and remember that $\top := \forall \alpha : * . \alpha \rightarrow \alpha$.

(a) Give a type to the term

$$\lambda y.x y x(\lambda z.z x z)$$

in $\lambda 2$ à la Curry and give the typing derivation of your result.

1	x: op	
2	$y: \perp$	
3	$x:\bot\to\bot$	app, 1
4	$xy: \perp$	$\mathrm{app},3,2$
5	$xy:\top\to\bot$	app, 4
6	$x y x : \bot$	app, 4, 1
7	$z: \bot$	
8	$z: \top \to \bot$	$\mathrm{app},7$
9	$z x : \bot$	$\mathrm{app},8,1$
10	$z x : \bot \to \bot$	app, 9
11	$ z x z : \bot$	app, 10, 1
12	$\lambda z.z x z: \bot \to \bot$	$\lambda\text{-rule},7,11$
13	$xyx:(\bot\to\bot)\to\bot$	app, 6
14	$ x y x (\lambda z. z x z) : \bot$	app, 13, 12
15	$\lambda y.x y x (\lambda z.z x z) : \bot \to \bot$	$\lambda\text{-rule},2,14$

(b) Give a type to the term

 $\lambda y.x y (x(\lambda z.z z))$

in $\lambda 2$ à la Curry. Also give the typing derivation of your result.

- 4. (a) Define inl : $\sigma \to \sigma + \tau$ Recall that $\sigma + \tau := \forall \alpha.(\sigma \to \alpha) \to (\tau \to \alpha) \to \alpha$ Answer:
 - $\lambda x: \sigma.\,\lambda \alpha.\,\lambda f: \sigma {\rightarrow} \alpha.\,\lambda g: \tau {\rightarrow} \alpha.\,f\,x$
 - (b) Define pairing : $[-, -] : \sigma \to \tau \to \sigma \times \tau$ Recall that $\sigma \times \tau := \forall \alpha. (\sigma \to \tau \to \alpha) \to \alpha$, Answer:

$$\lambda x : \sigma. \, \lambda y : \tau. \, \lambda \alpha. \, \lambda h : \sigma \rightarrow \tau \rightarrow \alpha. \, h \, x \, y$$

NB You can only "validate" this definition if you define projections π_1 and π_2 and show that $\pi_1[a,b] =_{\beta} a$ and $\pi_2[a,b] =_{\beta} b$. Try to do that. (Here is the definituion of π_1 : $\lambda z : \sigma \times \tau . z \sigma (\lambda x : \sigma . \lambda y : \tau . x)$)

(c) Show that the addition function (as defined on the slides) behaves as expected. Check that for $\text{Plus} := \lambda n : \text{Nat.}\lambda m : Nat.n \text{Nat} m S$, we have

$$Plus 0 y = y$$

$$Plus (S x) y = s (Plus x y)$$

where $S := \lambda n : \operatorname{Nat} \lambda \alpha . \lambda z : \alpha . \lambda f : \alpha \to \alpha . f(n \alpha z f).$

(d) Define leaf : $B \to \text{Tree}_{A,B}$ and join : $\text{Tree}_{A,B}$ and join : $\text{Tree}_{A,B} \to \text{Tree}_{A,B} \to A \to \text{Tree}_{A,B}$

Recall that

$$\operatorname{Tree}_{A,B} := \forall \alpha. (B \to \alpha) \to (A \to \alpha \to \alpha \to \alpha) \to \alpha$$

Now, leaf := $\lambda b : B \cdot \lambda \alpha \cdot \lambda f : B \rightarrow \alpha \cdot \lambda h : A \rightarrow \alpha \rightarrow \alpha \rightarrow \alpha \cdot f b$ and join is defined as follows:

join :=
$$\lambda t_1$$
 : Tree_{A,B}. λt_2 : Tree_{A,B}. $\lambda a : A$.
 $\lambda \alpha. \lambda f : B \rightarrow \alpha. \lambda h : A \rightarrow \alpha \rightarrow \alpha \rightarrow \alpha. ha(t_1 \alpha f h)(t_2 \alpha f h)$

Why is this the right answer?

(1) There is a very general way to define the constructors for a data type defined in $\lambda 2$, but I haven't shown that to you. (The general method has first been described in C. Böhm and A. Berarducci, *Automatic synthesis of typed lambda programs on term algebras.* Theoretical Computer Science, 39(2-3):135–153, Aug. 1985.)

(2) Another answer is: Given t_1 , t_2 and a, we have to define a term of type $\text{Tree}_{A,B}$. This will have the shape

$$\lambda \alpha. \lambda f: B \rightarrow \alpha. \lambda h: A \rightarrow \alpha \rightarrow \alpha \rightarrow \alpha.?$$

with ?: α . We can view h as the "internal" join function and $t_1 \alpha f h$ is the "internal" representation of t_1 and $t_2 \alpha f h$ is the "internal" representation of t_2 , so we need to apply h to these terms, taking a as the node label.

 \ldots This works well as an intuition, but I agree that it's vague \ldots

(3) The best answer is: define your destructors and show that they "work" with join. So: define "left" and "right" and show that left (join $a t_1 t_2$) =_{β} t_1 and similarly for "right" and t_2 .

left := λt : Tree_{A,B}. t Tree_{A,B} leaf ($\lambda a : A \lambda t_1, t_2 : \text{Tree}_{A,B}. t_1$)

where leaf : $B \rightarrow \text{Tree}_{A,B}$ is the function

$$\lambda b: B. \lambda \alpha. \lambda f: B \rightarrow \alpha. \lambda h: A \rightarrow \alpha \rightarrow \alpha \rightarrow \alpha. f b$$

(e) Give the Tree-iteration scheme for $\text{Tree}_{A,B}$ and define $h: \text{Tree}_{A,B} \to \text{Nat}$ that counts the number of leaves of a tree.

The Tree iteration scheme is: given a type D and $f: B \rightarrow D, g: A \rightarrow D \rightarrow D \rightarrow D$, there is a term $k: \text{Tree}_{A,B} \rightarrow D$ satisfying

$$k (\text{leaf } b) = f b$$

$$k (\text{join } a t_1 t_2) = g a (k t_1) (k t_2)$$

as a matter of fact k is just λt : Tree_{A,B}.t D f g. The function h that counts the number of leaves satisfies

$$h(\operatorname{leaf} b) = S 0$$

$$h(\operatorname{join} a t_1 t_2) = \operatorname{Plus} (h t_1) (h t_2)$$

so we can take $h := \lambda t$: Tree_{A,B}.t Nat $(\lambda b : B.S 0)$ $(\lambda a : A, \lambda n_t, n_2 :$ Nat.Plus $n_1 n_2)$.