
Proving with Computer Assistance, 2IMF15

Herman Geuvers, TUE

Exercises on Polymorphic type Theory, some answers

1. Recall: ⊥ := ∀α.α, > := ∀α.α→α. In these exercises, the main “clue” is what to instantaite
the ∀α : ∗ quantifier with. This is not made explicit in the Curry system, but the derivations
should make it clear. If not, write down the Chut=rch variant of the same term witrh the
same derivation.

(a) Verify that in Church λ2: λx:>.x>x : >→>.

1 x : ∀α.α→α
2 x> : > → > app, 1

3 x>x : > app, 2

4 λx:>.x>x : > → > λ-rule, 1, 3

(b) Verify that in Curry λ2: λx.xx : >→>

1 x : ∀α.α→α
2 x : > → > app, 1

3 xx : > app, 2

4 λx.x x : > → > λ-rule, 1, 3

(c) Find a type in Curry λ2 for λx.x xx

1 x : ∀α.α→α
2 x : > → > app, 1

3 xx : > app, 2

4 xx : > → > app, 3

5 xxx : > app, 4

6 λx.x xx : > → > λ-rule, 1, 5

OR:

1 x : ⊥
2 x : ⊥ → ⊥ → ⊥ app, 1

3 xx : ⊥ → ⊥ app, 2, 1

4 xxx : ⊥ app, 3, 1

5 λx.x xx : ⊥ → ⊥ λ-rule, 1, 4

(d) Find a type in Curry λ2 for λx.(xx)(xx)

1 x : ⊥
2 x : ⊥ → ⊥ app, 1

3 xx : ⊥ app, 2, 1

4 xx : ⊥ → ⊥ app, 3

5 (xx) (xx) : ⊥ app, 4, 3

6 λx.(xx)(xx) : ⊥ → ⊥ λ-rule, 1, 5

1



2. Let x : > and remember that > := ∀α: ∗ .α→α. Give a type to the term

λy.x y x(λz.z x z)

in λ2 à la Curry and give the typing derivation of your result.

3. Let x : > and remember that > := ∀α: ∗ .α→α.

(a) Give a type to the term
λy.x y x(λz.z x z)

in λ2 à la Curry and give the typing derivation of your result.

1 x : >
2 y : ⊥
3 x : ⊥ → ⊥ app, 1

4 x y : ⊥ app, 3, 2

5 x y : > → ⊥ app, 4

6 x y x : ⊥ app, 4, 1

7 z : ⊥
8 z : > → ⊥ app, 7

9 z x : ⊥ app, 8, 1

10 z x : ⊥ → ⊥ app, 9

11 z x z : ⊥ app, 10, 1

12 λz.z x z : ⊥ → ⊥ λ-rule, 7, 11

13 x y x : (⊥ → ⊥)→ ⊥ app, 6

14 x y x (λz.z x z) : ⊥ app, 13, 12

15 λy.x y x (λz.z x z) : ⊥ → ⊥ λ-rule, 2, 14

(b) Give a type to the term
λy.x y (x(λz.z z))

in λ2 à la Curry. Also give the typing derivation of your result.

4. (a) Define inl : σ → σ + τ
Recall that σ + τ := ∀α.(σ→α)→(τ→α)→α
Answer:

λx : σ. λα. λf : σ→α. λg : τ→α. f x

(b) Define pairing : [−,−] : σ → τ → σ × τ
Recall that σ × τ := ∀α.(σ→τ→α)→α,
Answer:

λx : σ. λy : τ. λα. λh : σ→τ→α. h x y

NB You can only “validate” this definition if you define projections π1 and π2 and show
that π1[a, b] =β a and π2[a, b] =β b. Try to do that. (Here is the definituion of π1:
λz : σ × τ. z σ (λx : σ. λy : τ. x))

(c) Show that the addition function (as defined on the slides) behaves as expected.
Check that for Plus := λn : Nat.λm : Nat.nNatmS, we have

Plus 0 y = y

Plus (S x) y = s (Plusx y)

where S := λn : Nat.λα.λz : α.λf : α→α.f(nα z f).

2



(d) Define leaf : B → TreeA,B and join : TreeA,B and join : TreeA,B → TreeA,B → A →
TreeA,B
Recall that

TreeA,B := ∀α.(B→α)→(A→α→α→α)→α

Now, leaf := λb : B.λα. λf : B→α. λh : A→α→α→α. f b and join is defined as follows:

join := λt1 : TreeA,B . λt2 : TreeA,B . λa : A.

λα. λf : B→α. λh : A→α→α→α. ha(t1αfh)(t2αfh)

Why is this the right answer?

(1) There is a very general way to define the constructors for a data type defined in
λ2, but I haven’t shown that to you. (The general method has first been described in
C. Böhm and A. Berarducci, Automatic synthesis of typed lambda programs on term
algebras. Theoretical Computer Science, 39(2-3):135–153, Aug. 1985.)

(2) Another answer is: Given t1, t2 and a, we have to define a term of type TreeA,B .
This will have the shape

λα. λf : B→α. λh : A→α→α→α.?

with ? : α. We can view h as the “internal” join function and t1αfh is the “internal”
representation of t1 and t2αfh is the “internal” representation of t2, so we need to
apply h to these terms, taking a as the node label.
. . . This works well as an intuition, but I agree that it’s vague . . .

(3) The best answer is: define your destructors and show that they “work” with join.
So: define “left” and “right” and show that left (join a t1 t2) =β t1 and similarly for
“right” and t2.

left := λt : TreeA,B . tTreeA,B leaf (λa : Aλt1, t2 : TreeA,B . t1)

where leaf : B→TreeA,B is the function

λb : B. λα. λf : B→α. λh : A→α→α→α. f b

(e) Give the Tree-iteration scheme for TreeA,B and define h : TreeA,B → Nat that counts
the number of leaves of a tree.
The Tree iteration scheme is: given a type D and f : B→D, g : A→D→D→D, there
is a term k : TreeA,B→D satisfying

k (leaf b) = f b

k (join a t1 t2) = g a (k t1) (k t2)

as a matter of fact k is just λt : TreeA,B .tD f g.

The function h that counts the number of leaves satisfies

h (leaf b) = S 0

h (join a t1 t2) = Plus (h t1) (h t2)

so we can take h := λt : TreeA,B .tNat (λb : B.S 0) (λa : A, λnt, n2 : Nat.Plusn1 n2).

3


