
Proving with Computer Assistance
Lecture 1.2

Untyped λ-calculus

Herman Geuvers

λ-abstraction

Defining a function

f (x) := x2 + 2

f : x 7→ x2 + 2

g(x , y) := x2 + y + 2

In λ-calculus we use λ-abstraction:

f := λx . x2 + 2

g := λx . λy . x2 + y + 2

▶ distinguish between term with a variable x2 + 2 and the
function λx . x2 + 2 that sends x to x2 + 2.

▶ make explicit which variables are abstracted over.

▶ clearly distinguish between free and bound (occurrences) of
variables.

Application

We have seen the functions f and g :

f := λx . x2 + 2

g := λx . λy . x2 + y + 2

Application:

f (3) no! f 3 or f · 3 or (f 3)

⇒ application is a binary operator which is usually not written.

Giving two arguments:

(g 3) 4 or just g 3 4

because we omit brackets by associating them to the left.

Untyped λ-calculus

Untyped λ-calculus = Variables + λ-abstraction + application

Λ ::= Var | (Λ Λ) | (λVar.Λ)

Notation

M N P denotes (M N)P (so not M (N P))

λxyz .M denotes λx .λy .λz .M (or more precisely λx .(λy .(λz .M)).)

Examples:
- I := λx .x
- K := λx y .x
- S := λx y z .x z(y z)
- ω := λx .x x
- Ω := ω ω

Computing with λ-terms

Computation is done via the β-rule

(λx .x2 + 2) 3 →β 32 + 2

Definition β-equality, written as =β is the term reduction
generated from the β-rule:

(λx .M)P →β M[x := P]

where M[x := P] denotes the substitution of P for all occurrences
of x in M.

That →β is a term reduction means that it is closed under the
term-forming-operators. More precisely we have

M →β M ′

M P →β M ′ P

P →β P ′

M P →β M P ′

M →β M ′

λx .M →β λx .M ′

Examples

Remember I := λx .x , K := λx y .x , S := λx y z .x z(y z),
ω := λx .x x , Ω := ω ω.

IP →β P

KP Q →β . . . →β P

Ω →β Ω

(λx y .y x)P →β λy .y P

(λx y .y x) y
??→β λy .y y

No!
λy .M binds all occurrences of y in M. We cannot just substitute a
term with a free y inside M.

Free and bound variables, alpha-equivalence
▶ λy .M binds all occurrences of y in M.

▶ We distinguish bound variables and free variables in a term:
BV(M) and FV(M).
(Better to say: bound and free occurrences of variables.)

▶ We consider term modulo renaming of bound variables (also
called “modulo α-equality”):

λx .M ≡ λy .M[x := y]

if y does not occur in M.

A more precise definition of →β:

(λx .M)P →β M[x := P]

where the substitution M[x := P] is defined by:
(1) rename the bound variables in M that occur free in P,
obtaining M ′;
(2) replace all free occurrences of x in M ′ by P.

Alpha equivalence

Two terms M,N are α-equal, M ≡ N, in case they can be
obtained from eachother via renaming bound variables.

Examples

λx .λy .x y
??≡ λy .λx .y x

λx .λy .x y
??≡ λx .λy .y x

λx .λy .x y
??≡ λx .λy .y y

λx .λx .x x
??≡ λx .λy .y y

Multi-step reduction and β-equality

▶ ↠β is the transitive reflexived closure of →β.
So M ↠β P iff M β-reduces to P in 0 or more steps.

▶ =β is the transitive, reflexive, symmetric closure of →β.
So =β is the least congruence obtained from =β.

Examples of reductions:

IP →β P

KP Q ↠β P

K IP Q ↠β Q

SKK ↠β I

Ω →β Ω

Is λ-calculus consistent?

Why does λ-calculus “make sense”?
Could it be the case that M =β P for all M,P? (Then λ-calculus
would be inconsistent...)

Theorem λ-calculus satisfies the Church-Rosser property.

Corollary K ̸=β I and so λ-calculus is consistent.

The computational power of λ-calculus

Untyped λ-calculus is Turing complete
Its power lies in the fact that you can solve recursive equations:
Is there a term M such that

M x =β x M x?

Is there a term M such that

M x =β if (Zero x) then 1 else Mult x (M (Pred x))?

Yes, because we have a fixed point combinator:
- Y := λf .(λx .f (x x))(λx .f (x x))
Property:

Y f =β f (Y f)

Untyped λ-calculus (ctd.)
Solving recursive equations using the fixed point combinator:
▶ For M a λ-term, YM is a fixed point of M, that is

M (YM) =β YM

▶ As a consequence, a question like “Is there a λ-term P such
that P x =β x P x P (for all x)?” can be answered affirmative:

Representing data in λ-calculus
Booleans

true := λx y . x

false := λx y . y

ifM thenP elseQ := M P Q

Natural Numbers via the so-called Church Numerals

c0 := λf x .x

c1 := λf x .f x

c2 := λf x .f (f x)

. . .

cn := λf x .f n x

where f n x is an n-times application of f on x .

Then, e.g.

Succ := λn f x .f (n f x)

Zero := λn.n (λy . false) true

	Untyped -calculus crash course

