Proving with Computer Assistance
Lecture 1.2
Untyped A-calculus

Herman Geuvers

A-abstraction

Defining a function

f(x) = x?+2
foo x> x2+2
glx,y) == xX*+y+2

In A\-calculus we use \-abstraction:

= Ax.x?42
g = M AYy.X>4y+2

» distinguish between term with a variable x> 4+ 2 and the
function Ax.x? + 2 that sends x to x% + 2.

P> make explicit which variables are abstracted over.

» clearly distinguish between free and bound (occurrences) of
variables.

Application
We have seen the functions f and g:

= AX.x2 42
g = M AY.X2+y+2

Application:
f(3) no! f3 or f-3 or (f3)

= application is a binary operator which is usually not written.

Giving two arguments:
(g3)4 or just g34

because we omit brackets by associating them to the left.

Untyped A-calculus
Untyped A-calculus = Variables + A-abstraction + application

A = Var | (AN) | (AVar.A)

Notation

MNP denotes (M N)P (so not M (N P))
Axyz.M denotes Ax.\y.Az.M (or more precisely Ax.(Ay.(A\z.M)).)

Examples:
- 1= Axx
-K:=Xxy.x

-S = Myzxz(yz)
- W= AX.XX
-Qi=ww

Computing with \-terms

Computation is done via the S-rule
(Ax.x?+2)3 =532 42

DEFINITION j3-equality, written as =g is the term reduction
generated from the S-rule:

(Ax.M) P =3 M[x := P]

where M[x := P] denotes the substitution of P for all occurrences
of x in M.

That —3 is a term reduction means that it is closed under the
term-forming-operators. More precisely we have

M—>5M/ P—)BP/ M—)gM/
MP =5 MP MP—3MP Ax.M -5 Ax.M

Examples

Remember | := Ax.x, K:= Axy.x, S :== Axy z.x z(y z),
w:i=Ax.xXx, Q =wuw.

1P —45 P
KPQ —>5 ...—>@P
Q —>5 Q

(Mxyyx)P —g Ay.yP
77
(Axy.yx)y —p Ayyy

No!

Ay.M binds all occurrences of y in M. We cannot just substitute a
term with a free y inside M.

Free and bound variables, alpha-equivalence
> A\y.M binds all occurrences of y in M.

» We distinguish bound variables and free variables in a term:
BV(M) and FV(M).
(Better to say: bound and free occurrences of variables.)

» We consider term modulo renaming of bound variables (also
called “modulo a-equality”):

Ax.M = Ay M[x :=y]

if y does not occur in M.
A more precise definition of —g:

(Ax.M) P =3 M[x := P]

where the substitution M[x := P] is defined by:

(1) rename the bound variables in M that occur free in P,
obtaining M’;

(2) replace all free occurrences of x in M’ by P.

Alpha equivalence

Two terms M, N are a-equal, M = N, in case they can be
obtained from eachother via renaming bound variables.

EXAMPLES
AXAY. Xy g AY.AX.y X
AXAY.XY ; AXAY.Y x
AXAY.XY z AXAY.Y Y
AXAX.X X Z AXAy.yy

Multi-step reduction and [-equality

» —»g is the transitive reflexived closure of — 4.
So M —»3 P iff M B-reduces to P in 0 or more steps.
> =g is the transitive, reflexive, symmetric closure of — 3.
So =g is the least congruence obtained from =g.

EXAMPLES of reductions:

1P
KPQ
KIPQ
SKK

—p
B
B

B

QD T

-

Is \-calculus consistent?

Why does A-calculus “make sense”?
Could it be the case that M =3 P for all M, P? (Then A-calculus
would be inconsistent...)

THEOREM A-calculus satisfies the Church-Rosser property.

COROLLARY K #3 | and so A-calculus is consistent.

The computational power of A-calculus

Untyped A-calculus is Turing complete
Its power lies in the fact that you can solve recursive equations:
Is there a term M such that

Mx =g x M x?
Is there a term M such that

M x =g if (Zero x) then 1 else Mult x (M (Pred x))?

Yes, because we have a fixed point combinator:
- Y = ML (Ax.F(xx))(Ax.f(x x))
Property:

Y =5 f(YF)

Untyped A-calculus (ctd.)
Solving recursive equations using the fixed point combinator:
» For M a A-term, Y M is a fixed point of M, that is

M(YM)=3YM

P> As a consequence, a question like “Is there a A-term P such
that Px =g x P x P (for all x)7?" can be answered affirmative:

Representing data in A-calculus

Booleans
true = Mxy.x
false = MAxy.y
if Mthen Pelse@ = MPQ
Natural Numbers via the so-called Church Numerals
o = Mxx
ca = Mxfx
o = Mx.f(fx)
cn = Mx.f"x

where 7 x is an n-times application of f on x.

Then, e.g.

Succ = Anfx.f(nfx)
Zero = An.n(M\y.false) true

	Untyped -calculus crash course

