Semantics and Domain theory

Exercises 7

- 1. Show that the untyped λ -term ω (= $\lambda x.xx$) is not typable in PCF. That is: show that there are no τ_1 and τ_2 such that \vdash **fn** $x : \tau_1.xx$: τ_2 .
- 2. (a) Suppose that the term mult: $\mathbf{nat} \to \mathbf{nat} \to \mathbf{nat}$ defines multiplication in PCF. Give a PCF term that defines the exponentiation function exp: $\mathbf{nat} \to \mathbf{nat} \to \mathbf{nat}$. (So $\exp n \, m$ should denote n^m .)
 - (b) Let $p : \mathbf{nat} \to \mathbf{nat}$. Define a term $N : \mathbf{nat}$ that denotes the smallest number n such that p(n) = 0 and $\forall i < n(p(n) > 0)$.
- 3. Show that, if $Q \downarrow_{\tau} V$, then (**fn** $x : \tau$. **fn** $y : \tau . y)PQ \downarrow V$. (NB. V denotes an arbitrary value.)
- 4. To prove that PCF evaluation is deterministic, we prove (in Proposition 5.4.1) that the following set is closed under the rules of Fig.3

$$\{(M, \tau, V) | M \downarrow_{\tau} V \land \forall V'(M \downarrow_{\tau} V' \Rightarrow V = V')\}$$

Show this for the cases of the rules (\downarrow_{if1}) and (\downarrow_{cbn}) . (An alternative way of looking at this is to prove the following:

$$M \Downarrow_{\tau} V \Rightarrow \forall V'(M \Downarrow_{\tau} V' \Rightarrow V = V')$$

by induction on the derivation of $M \Downarrow_{\tau} V$. Do only the cases when the last applied rule is $(\Downarrow_{\text{if}1})$ or $(\Downarrow_{\text{cbn}})$.)

5. Given the definition of plus (Exercise 5.6.3.)

plus =
$$\mathbf{fix}(\mathbf{fn} \ p : \mathbf{nat} \to \mathbf{nat} \to \mathbf{nat}. \mathbf{fn} \ x : \mathbf{nat}. \mathbf{fn} \ y : \mathbf{nat}.$$

if $\mathbf{zero}(y)$ then x else $\mathbf{succ}(p \ x \ \mathbf{pred}(y)))$

Prove (by induction) that

$$\forall m, n \text{(plus } \mathbf{succ}^m(0) \mathbf{succ}^n(0) \downarrow_{\mathbf{nat}} \mathbf{succ}^{m+n}(0))$$

NB. First identify the proper statement that you need and that you can prove relatively easily by induction.