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Abstract

We describe our software submission to the ECIR 2024 Workshop on Open Web Search [1]. We submit the
query performance prediction toolkit qpptk that comes with 12 performance predictors to substantially
simplify the re-use of those predictors in ad-hoc retrieval experiments. Therefore, we have extended
qpptk so that it can run in TIREx and that it can process arbitrary workloads using ir_datasets and
PyTerrier indices as inputs. We execute qpptk on all 23 test collections in TIREx that have PyTerrier
indices available and make their predictions and the Docker image publicly available. Thereby, subsequent
retrieval experiments can easily re-use the predictions by just downloading a few kilobytes, instead of
having to run the system on their machine (which is still possible, e.g., by executing the Docker image
on new or modified inputs). Our analysis on the 23 test collections highlights predictor performance
variability, emphasizing the importance of standardized baselines and evaluation methods. Openly
sharing predictions aims to enhance research accessibility, promoting broader utilization of query
performance predictors and inspiring the development of novel prediction and evaluation techniques.

1. Introduction

Query Performance Prediction (QPP) is defined as assessing the quality of the query effectiveness
in the absence of relevance judgements [2, 3]. This task is particularly important under three
major aspects. First, it allows for some form of automatic evaluation of the Information Retrieval
(IR) system, thus reducing the cost of collecting highly expensive manual relevance annotations.
Secondly, it can be used as a feature for IR tasks such as reranking, model selection [3, 4], and
rank fusion [5]. From the query perspective, it can be used to carry out query suggestion [3, 4]
or to identify particularly challenging queries, so that the system administrators can operate
failure analysis and enhance the model on those specific queries [3].

While QPP holds significant potential for enhancing IR, its progress faces a major challenge
linked to the evaluation and comparison methodologies employed. Building on discussions
from the recent QPP++ workshop [6], we assert that a fundamental issue in QPP research
lies in the lack of result reproducibility and stability. First of all, most of the traditional QPP
approaches have been designed and tested considering the Query Language Model [7] as the
underlying retrieval engine. Therefore, this might induce a general instability of the models
when considering different retrieval models, especially if they are based on a widely different
rationale, such as neural IR models [8, 9, 10]. This also reflects on the possible instability
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due to the usage of different hyper-parameters for the IR model, different implementations
of it, or different query normalization strategies, such as the stemmer used or stopping list
considered [4, 11, 12]. Secondly, QPP models are typically characterized by one or more
parameters, such as the length of the retrieved list when considering post-retrieval models.
If not properly tuned, such parameters might result in particularly ineffective predictions.
Finally, QPP models are known to operate differently on different collections [2]: using the
wrong QPP for a given collection might lead to low prediction performance and thus to a
generally weak baseline. To summarize, when experimenting with QPP, three major aspects
might substantially impact the performance of (baseline) predictors: the underlying retrieval
model, the hyperparameters of the predictor, and the collection considered. Furthermore, the
same aspects hinder the reproducibility of the QPP: it is not uncommon in the QPP scenario
to observe the same model performing differently from paper to paper. This is often due to
naturally occurring differences in the implementation, but also due to different experimental
settings (i.e., the retrieval model, and/or hyperparameters).

To alleviate these limitations and foster simplified, reproducible and stable experimentation in
QPP, we describe our approach to embed the Query Performance Prediction ToolKit (qpptk) [11,
12, 13] into TIRA [14] / TIREx [15]. This setup allows us to provide a solid and stable set of
baselines for future experiments: when carrying out new experiments, we can ensure that the
implementation and hyper-parameters of the IR models underneath remain the same as they
are archived within TIREx. Secondly, it allows us to test the same QPP over the abundance of
collections that are already available in TIREx. This, in turn, allows us to provide the research
community with a large amount of – already computed – shared baselines for future QPP
experiments. Finally, re-using cached outputs can help fast prototyping: when developing a
new QPP, the practitioner can delegate secondary aspects, such as setting up the IR system or
processing the corpus, to cached TIREx outputs, focusing exclusively on the development of
the QPP. Our implementation is publicly available.1

The remainder of the paper is organized as follows: Section 2 provides the background
on the QPP methods, and describes the main QPP models that have been implemented in
qpptk. Section 3 details how our qpptk component submitted to TIREx can be used to obtain
reproducible QPP results. Section 4 reports our experimental analysis. Finally, section 5 draws
the conclusions and outlines our future work.

2. Background

We describe here the predictors implemented within qpptk. According to the classical separation,
predictors are divided into pre- and post-retrieval.

Before introducing the predictors, we provide here the notation adopted in the remainder
of this work. Let 𝑞 be a query and 𝑑 a document belonging to a corpus of documents 𝐶
with |𝐶| = 𝑁 . Without loss of generality, we call 𝑠(𝑞, 𝑑) the score assigned by an arbitrary
ranking model to the document 𝑑 in response to the query 𝑞. We call 𝒟@𝑘 the list of the
top-𝑘 documents retrieved in response to the query. Additionally, given a term 𝑡, we define
𝑓𝑡 = |{𝑑 ∈ 𝐶 : 𝑡 ∈ 𝑑}| the document frequency (i.e., the number of documents the term appears

1Code: https://github.com/Zendelo/QPP-EnhancedEval/tree/qpptk-dev
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in), while 𝑓𝑑,𝑡 = |{𝑤 ∈ 𝑑 : 𝑤 = 𝑡}| is the term frequency (i.e., the number of times the term
appear in document 𝑑).

2.1. Pre-Retrieval Predictors

Pre-retrieval predictors are those predictors that base their prediction based only on the query
tokens and the (indexed) corpus. We implemented three major categories of pre-retrieval
predictors: those based on Inverse Document Frequency (IDF), those relying on Similarity
between the query and the collection (SCQ), and those based on score variability (VAR).

Inverse Document Frequency (IDF)-based Predictors [16, 17] The IDF predictors rely
on computing the IDF for each query term:

𝐼𝐷𝐹 (𝑡) = ln

(︂
1 +

𝑁

𝑓𝑡

)︂
then, this predictor can be instantiated in two ways, either by computing the average IDF
over all query terms (avgIDF) or by computing the maximum IDF (maxIDF) over the query
terms. The rationale is that if the terms have high inverse document frequency, they are highly
characterizing (i.e., they are contained in a few documents and are very specific). Therefore,
it is more likely that documents containing such terms will be relevant, indicating how the
retrieval will perform.

Similarity between a Query and a Collection (SCQ)-based Predictors [16] The term-
wise SCQ score is defined as follows:

𝑆𝐶𝑄(𝑡) = (1 + ln(𝑓𝑐,𝑡)) ·
(︂
1 +

𝑁

𝑓𝑡

)︂
where 𝑓𝑐,𝑡 is the number of times the term appears in the corpus. Once the SCQ has been
computed for each term, it is possible to aggregate it either by summing the SCQ for all the
query terms (SCQ), averaging (avgSCQ), or by computing the maximum (maxSCQ).

Variability (VAR)-Based Predictors [16] To compute the VAR predictors, it is first necessary
to compute the weight 𝑤𝑑,𝑡 of each query term 𝑡 with respect to each document 𝑑 as the TFIDF
score 𝑤𝑑,𝑡 = 1+ ln(𝑓𝑑,𝑡) · 𝐼𝐷𝐹 (𝑡). Called 𝒟𝑡 the set of documents containing 𝑡, the prediction
weight of each term is defined as follows:

𝑉 𝐴𝑅(𝑡) =
∑︁
𝑡∈𝑞

√︃
1

𝑓𝑡

∑︁
𝑑∈𝒟𝑡

(𝑤𝑑,𝑡 − 𝑤𝑡)2

where 𝑤𝑡 is the average weight 𝑤𝑑,𝑡 over the documents in 𝒟𝑡. As for the previous cases,
the VAR score is aggregated over the query terms using either the sum (sumVAR), maximum
(maxVAR), or the average (avgVAR).



2.2. Post-Retrieval Predictors

Post-retrieval predictors utilize both the query and the top-k retrieved documents to formulate
their prediction. Among post-retrieval predictors, we recognize three major classes: those based
on the coherence of the retrieved list (e.g., clarity), those based on the distribution of the scores
(e.g., NQC, WIG, SMV), and those relying on the robustness of the results – i.e., how much the
introduction of noise in the query or the collection changes the retrieved ranked list – such as
the UEF framework.

Clarity [17] This represents one of the seminal efforts in the QPP domain. The approach
consists of computing the language model for the first top-𝑘 documents, which we refer to as
𝜃𝒟@𝑘. Then, this language model is compared with the language model of the entire corpus
𝜃𝐶 . The rationale is that the language model for the first top-k is highly divergent from the
language model of the entire collection, then documents are highly coherent internally and this
hints at an effective retrieval. More in detail:

𝐶𝑙𝑎𝑟𝑖𝑡𝑦(𝑞) =
∑︁
𝑤∈𝑉

𝑝(𝑤|𝜃𝒟@𝑘)
𝑝(𝑤|𝜃𝒟@𝑘)

𝑝(𝑤|𝜃𝐶)
,

where 𝑉 is the vocabulary and 𝑝(𝑤|𝜃) is the probability of observing the token 𝑤 according to
𝜃 the language model.

Weighted Information Gain (WIG) [18] This predictor represents one of the first efforts
in utilizing the distribution of the scores for the top-k retrieved documents to determine the
retrieval performance. More in detail, the prediction is given as the average difference between
the score of the top-k documents retrieved and the score that the entire corpus would obtain in
response to the query, which acts as a regularization component.

𝑊𝐼𝐺(𝑞) =
1

𝑘
√︀
|𝑞|

∑︁
𝑑∈𝒟@𝑘

(𝑠(𝑞, 𝑑)− 𝑠(𝑞, 𝐶)) .

Normalized Query Commitment (NQC) [19] This predictor is in line with WIG, with the
main difference that, in this case, the statistic of interest is the variance of the scores of the first
top-k documents, normalized by the score that the entire corpus would obtain in response to
the query:

𝑁𝑄𝐶(𝑞) =

√︁
1
𝑘

∑︀
𝑑∈𝒟@𝑘(𝑠(𝑞, 𝑑)− �̂�𝒟@𝑘)

2

𝑠(𝑞, 𝐶)
,

where �̂�𝒟@𝑘 = 1
𝑘 ·

∑︀
𝑑∈𝒟@𝑘 𝑠(𝑞, 𝑑).

Score Magnitude and Variance (SMV) [20] This QPP combines NQC and WIG, by taking
into account both the magnitude of the scores, as well as their variance and it is defined as
follows:

𝑆𝑀𝑉 (𝑞) =

1
𝑘

∑︀
𝑑∈𝒟@𝑘

(︁
𝑠(𝑞, 𝑑) ·

⃒⃒⃒
ln 𝑠(𝑞,𝑑)

�̂�𝒟@𝑘

⃒⃒⃒)︁
𝑠(𝑞, 𝐶)

.



3. Porting qpptk to TIREx for Simplified QPP Experiments

The qpptk toolkit currently implements eight pre-retrieval and four post-retrieval QPP methods.
Leveraging a PyTerrier index, the toolkit is designed with extensibility in mind, allowing for
easy integration of additional methods. You can access qpptk on GitHub.2 In this work, we
integrate qpptk into the TIREx framework [15].3 We dockerize qpptk so that it can run in the
TIRA sandbox in TIREx and adopt it so that it can use arbitrary inputs from ir_datasets [21]. To
reduce the effort of running performance predictions, we configure qpptk in TIREx so that it
uses the the PyTerrier [22] Indexer that is dockerized in TIRA as previous stage so that it runs
against prebuilt PyTerrier indices which makes its execution faster.

The incorporation of qpptk into TIREx serves multiple purposes. Firstly, it establishes a stable
and reproducible baseline for future QPP experiments. Secondly, it allows the testing of identical
QPP methods across all collections available in TIREx, contributing multiple shared baselines to
the research community. Lastly, it facilitates swift and seamless prototyping. Developers can
focus exclusively on QPP method development and evaluation, delegating secondary tasks like
setting up the IR system or processing the corpus to TIREx.

To use qpptk in TIREx, users must install the TIRA package and execute the following code:4

1 from tira.rest_api_client import Client
2 from tira.third_party_integrations import ensure_pyterrier_is_loaded
3

4 ensure_pyterrier_is_loaded()
5

6 import pyterrier as pt
7

8 tira = Client()
9

10 dataset = 'antique-test-20230107-training'
11 # load the dataset
12 pt_dataset = pt.get_dataset(f"irds:ir-benchmarks/{dataset}")
13

14 # initialize QPP transformer
15 qpp_predictions = tira.pt.transform_queries(
16 'ir-benchmarks/qpptk/all-predictors',
17 dataset)
18 # returns a DataFrame with all the predictions
19 qpp_predictions(pt_dataset.get_topics('query'))

Listing 1: Example of using qpptk within TIREx.

The code in Listing 1 demonstrates how using only a few lines of code, users can access the
TIRA API, load a dataset, and initialize a QPP transformer. The transformer then returns a
DataFrame with all the predictions. This example illustrates the ease of use and the potential of
the TIREx framework in facilitating QPP experiments.

2https://github.com/Zendelo/QPP-EnhancedEval.
3See https://www.tira.io/tirex. Accessed on 28-03-2024.
4Assuming that PyTerrier and ir_datasets are already installed.
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Figure 1: Boxplots detailing the Kendall’s 𝜏 coefficients for various QPP methods. Each boxplot
encapsulates the 𝜏 coefficient’s distribution for the given QPP method across the 23 diverse datasets.

4. Experimental Analysis

In the experimental phase, we perform retrievals using BM25, followed by the application of
qpptk to the 23 test collections within TIREx with PyTerrier indices, covering diverse retrieval
scenarios, such as argumentation [23, 24, 23, 24, 25], web search [26, 27, 28, 29, 30, 31], news
search [32, 33, 34, 35] , question answering [36, 37, 38], and medical domains [39, 40, 41, 42, 43,
44, 45], and the historical Cranfield collection [46, 47]. The retrieval evaluation is conducted
using the Average Precision (AP) metric, in line with prior work on QPP. The initial analysis
involves comparing the outputs of QPP methods through the computation of the Kendall’s 𝜏
correlation coefficient with the AP values per-query. Kendall’s 𝜏 serves as a common metric in
scrutinizing and comparing QPP method performances. The results are presented in Figure 1.
Each cell encapsulates the 𝜏 coefficient’s dispersion for the respective QPP method for the
corresponding dataset. For post-retrieval methods, these boxplots additionally incorporate the
distinct parameters utilized for each method.

The observed boxplots highlight a substantial variation in prediction quality across datasets,
covering a correlation spectrum from -0.25 to 0.5. This outcome underscores the dataset-centric
nature of QPP method performance, aligning with established observations in prior research.5

Given that the correlation coefficients are strongly dependent on the sample, we also make
all the results available on TIREx, enabling anyone to reproduce and extend our analysis with
minimal effort, thus fostering the reproducibility of QPP research.

To investigate the performance of QPP methods in more detail, we present a heatmap in
Figure 2. This heatmap offers a detailed perspective on the Kendall’s 𝜏 coefficients for the
pre-retrieval QPP methods, with each cell denoting the 𝜏 coefficient for a particular QPP method
and dataset.

The heatmap visually illustrates the performance variations of QPP methods across the
diverse datasets. Our observation from the heatmap highlights the dataset-centric nature of QPP
method performance – no single method consistently outperforms others across all datasets.
However, certain methods demonstrate superior performance on average, such as MaxVAR,
AvgVAR and MaxSCQ. Notably, the pre-retrieval QPP methods operate independently of the
retrieval model, making the prediction values agnostic to the retrieval model used. Nevertheless,
it is essential to recognize that the correlation is measured with the retrieval model, introducing a
dependency on the retrieval model employed. Consequently, direct comparisons across different
publications are challenging unless the same index, retrieval model, and associated components

5See https://github.com/chauff/QPP-Overview, accessed on 28-03-2024.
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Figure 2: Heatmap illustrating the Kendall’s 𝜏 coefficients for the pre-retrieval QPP methods. Each cell
denotes the 𝜏 coefficient for a specific QPP method and dataset.

are employed consistently.
To further demonstrate the potential of qpptk@TIREx for the community, we conduct a com-

prehensive ANalysis Of the VAriance (ANOVA) on the pre-retrieval QPP methods, employing
10 different retrieval models (rankers) and 23 diverse datasets. The rankers include BM25, LGD,
PL2, TF-IDF, ANCE-Cosine, ColBERT, SBERT, MonoT5-3b, MonoT5-Base and DirichletLM. We
randomly sample 30 queries from each dataset, reflecting the maximum number available across
all datasets. We then compute sARE error values for each query across all datasets and rankers,6

utilizing them for the ANOVA analysis. The results, presented in Table 1, reveal that the ranker,
dataset, and QPP factors are all statistically significant, indicating that at least one of the levels
of each factor has a statistically significant effect on the prediction quality. The effect sizes are
small, with the dataset factor having the largest effect size on prediction quality. The inter-
action effects Ranker:Dataset and Dataset:QPP are also significant, with Dataset:QPP having
the most substantial effect size. This underscores the dependency of pre-retrieval QPP method
performance on the dataset, with the influence of the retrieval model being dataset-specific.

6Similarly to correlation, the values are computed per each combination of dataset, ranker, and QPP method.



Table 1

ANOVA analysis of the pre-retrieval QPP methods. The table presents the degrees of freedom (DF), sum
of squares (SS), mean square (MS), F-statistic (F), p-value (PR(>F)), and the effect size (𝜔2) for the ranker,
dataset, and QPP factors. Note, that 𝜔2 is ill-defined for non-significant effects.

DF SS MS F PR(>F) 𝜔2

Ranker 9 6.290 0.699 14.025 <0.001 0.002
Dataset 22 23.247 1.057 21.206 <0.001 0.008
QPP 7 4.260 0.609 12.214 <0.001 0.001
Ranker:Dataset 198 26.832 0.136 2.720 <0.001 0.006
Ranker:QPP 63 1.344 0.021 0.428 1.000 -0.001
Dataset:QPP 154 33.808 0.220 4.406 <0.001 0.010
Residual 52117 2596.945 0.050

The Ranker:QPP interaction, however, is not found to be significant by itself.

5. Conclusion and Future Work

This paper introduces the qpptk toolkit, encompassing a diverse array of pre-retrieval and
post-retrieval QPP methods. We present the integration of qpptk into TIREx, to simplify rapid
and efficient experimentation with QPP methods.

The integration helps to establish stable and reproducible baselines for forthcoming QPP
experiments, testing identical QPP methods across all available TIREx collections, and contribut-
ing multiple shared baselines to the research community. Currently, available QPP methods in
qpptk include eight pre-retrieval methods and four post-retrieval methods, with the potential
for further expansion. Moving forward, our future work involves expanding the qpptk toolkit
to incorporate additional QPP methods and enhancing its integration into TIREx. All code
and data used in this work are accessible on GitHub and Zenodo,7 encouraging the research
community to utilize and build upon our contributions.
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