
Assembling four Open Web Search Components
TU Dresden at WOWS 2024

Linda Erben1,†, Maria Hampel1,†, Malte-Christian Kuns1,†, Vincent Melisch1,†,
Per Natzschka1,†, Wilhelm Pertsch1,†, Lina Razouk1,†, Reiner Stolle1,†,
Robert Thomas Thoss1,†, Tuan Giang Trinh1,†, Julius Gonsior2,⇤ and Anja Reusch2,⇤

1Technische Universität Dresden, Dresden, Germany
2Technische Universität Dresden, Dresden Database Research Group, Dresden, Germany, {�rst}.{last}@tu-dresden.de

Abstract
In this work, we present the submission of TU Dresden to WOWS 2024. Four student teams assembled
di�erent approaches for Genre Classi�cation, Text Snippet Extraction, Query Expansion, and Text
Features. Each implemented component integrates seamlessly into the open web search ecosystem. We
present each approach alongside a short evaluation of possible use cases, and hope that our submission
will contain viable building blocks for future research to be build on top.

Keywords
Information Retrieval, OpenWeb Search, Genre Classi�cation, Text Snippet Extraction, Query Expansion,
Text Features

1. Introduction

This report describes the submission of the team at TU Dresden for the Workshop on Open Web
Search WOWS 2024 [1]. The work was conducted during a university-organized hackathon
targeted at students. Details about the setup are included in the Appendix in Sec. A. Four
teams, consisting of two to three students contributed four components for the open web search
ecosystem. We hope that with our submitted components future research on Information
Retrieval (IR) can be facilitated.
In summary, this paper is discusses the following four components: Sec. 2 reports the work

of the group Genre Classi�cation, which categorizes web pages based on the intent of the page,
such as Discussion or Shopping. In Sec. 3 we detail our the submission for the extraction of
text snippets. Here, the goal is to divide long documents into shorter ones and return a list of
the best snippets. Sec. 4 provides details on the work of the group Query Expansion, which
employed Large Language Modelss (LLMs) to generate more related information or variants for
a given query. The results for the extraction of text features is highlighted in Sec. 5. The goal of
this component was to quantify syntactic or semantic features of natural language such as the
readability of a web page. Finally, Sec. 6 draws the conclusions of all our submissions.

WOWS’24: 1st International Workshop on Open Web Search, March 28, 2024, Glasgow, Scotland
⇤Supervision of projects. Corresponding authors.
†
Equal contribution in the respective components. These authors are ordered alphabetically after their last name.

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0

2. Genre Classificaion

The goal of genre classi�cation [2] is to categorize documents into the intent of the document
itself. Objectives for a website could include: (1) making sales (like in an online store), (2)
providing information (like in a course website for a university), (3) sharing personal experiences
(like in a personal blog), etc. Genre classi�cation facilitates e�ective document �ltering in
ranking based on the search query in conjunction with existing query intent classi�ers that
di�erentiate search queries as informational (e.g. "What is IR?"), transactional (e.g., "I want
to buy a PlayStation"), or navigational (e.g., "take me to log in for my university course") [3].
Relevant websites with a matching genre should be ranked higher if a query indicates an intent.
This open web search component 1 examines techniques for classifying text documents into
their respective categories, employing rule-based and machine-learning methodologies. We
compare three classi�cation strategies with a focus on high precision.

2.1. Methods

2.1.1. Rule-Based Classifier

The rule-based classi�er makes use of a vocabulary list of relevant terms per genre. Comparing
the intersection between terms in the genre-speci�c vocabulary lists, and the terms in the
document, the most probable category is the one with the highest intersection. We �rst remove
stop words and subsequently extract the 75 most frequent terms that we compare to the
vocabulary lists to classify the genre. We use Snorkel AI [4] for implementation.

The rule-based classi�er can be adapted to a precision-oriented method, where the most
probable genre needs to be better than a threshold compared to the second most probable genre,
otherwise the classi�cation result is abstain.

2.1.2. Multi-Layer Perceptron Classifier

As a typical Machine Learning based method a neural network was used for classi�cation. As
features the web pages were converted into a tf-idf vectorspace. We use the Python library scikit-
learn [5] for the implementation of the Multi-Layer Perceptron classi�er. After an empirical
hyperparameter search a neural network using a single hidden layer of 50 neurons, ReLU
activation function, stochastic gradient descent in the Adam variant using momentum for
optimizations, and a constant learning rate of 0.001 was used.

2.2. Experiments

2.2.1. Dataset

For evaluation we used the Genre-KI-04 dataset [2]. This includes vocabulary lists, and the
following classi�cation categories: articles, discussion, download, help, link lists, portrait (non
private), portrait (private), and shop. Details about the genres can be found in the original paper.

1https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-01

https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-01

0.00

0.25

0.50

0.75

1.00

Rule-Based (Genre-KI-04
vocabulary lists)

Rule-Based (new
vocabulary lists)

Rule-Based (Genre-KI-04
vocabulary lists, Precision

oriented)

Rule-Based (new
vocabulary lists, Precision

oriented)

MLP

Precision Recall

Figure 1: Precision and recall results for all methods

The dataset contains a total of 1,239 web documents classi�ed into eight genres. The distribu-
tion of the classes is as follows: Articles: 127 (10.2%), Discussion: 127 (10.3%), Download: 152
(12.3%), Help: 140 (11.3%), Link lists: 208 (16.8%), Portrait (nonprivate): 179 (14.4%), Portrait
(private): 131 (10.6%), and Shop: 175 (14.1%). The dataset is split into a training set with 928
documents and a test set with 311 documents. The corpus contains the HTML documents
grouped into directories according to their respective genre. The �rst lines of each document
contain the meta information for each document in an HTML comment. This information
includes the URL from which the document was downloaded, the title, and the parsed text.

2.2.2. Vocabulary Lists

The rule-based classi�er needs vocabulary lists containing core terms per genre. The Genre-
KI-04 dataset contains a manually curated vocabulary list. Additionally we constructed an
additional vocabulary list using the train set: First, all stop-words are removed. Secondly, the
union of words shared among all genres is removed. Lastly, we performed a manual check over
the vocabulary list. The remaining words are distinctive for the respective genres.

2.2.3. Results

Figure 1 shows the results of our compared approaches. We compared the rule-based approach
both with our constructed vocabulary, and the given vocabulary in the dataset. The new
vocabulary works better than the original vocabulary in the dataset. If a high precision is
required, our rule-based approach should be used, otherwise the neural network provides the
best overall performance.

2.3. Summary

We implemented a genre classi�cation component for the open web search framework. Using
our implemented methods, documents can be classi�ed based on their intent. If the query or user
intent is detectable, the genre classi�cation can be used to improve the retrieval performance
by ranking genre-speci�c documents higher than non genre-speci�c documents. We proposed
multiple classi�ers, including a precision oriented rule-based classi�er and a neural network
showing the best overall performance.

3. Text Snippet Extraction

Since sophisticated neural ranking models such as cross-encoders generally require a lot of
computational e�ort, a customary retrieval pipeline �rst retrieves a number of (e.g., 1000)
documents using a fast but imprecise retrieval method and then re-ranks those documents using
a more precise weighting model [6]. Cross-encoder as introduced by Nogueira and Cho [6] are
an example for the latter, which are used to calculate scores for query-document pairs. Apart
from their comparatively high computational cost, cross-encoders have another disadvantage–
their limited input size. This weakness is typically mitigated by truncating the document once
the maximum number of input tokens is reached. The problem of this procedure is that content
which is not in the beginning of a document is not taken into account by cross-encoders. As a
result, the ranking of documents may be biased towards those that address the query early on.
In this part, we therefore present a simple method of extracting a number of snippets, i.e.,

smaller chunks of the document which �t in the cross-encoder as an additional component
in a larger retrieval pipeline. Instead of simply truncation documents after a �xed number of
tokens, we search for the most relevant passages (ranked snippets) in the document. These
ranked snippets are used for the cross-encoder with the goal of a more precise ranking. We
show the bene�ts of this method on two exemplary datasets which contain long documents.

3.1. Methodology

The re-ranking process with ranked snippets consists of �ve steps. An example of those steps
for the re-ranking of n = 3 documents (d1, d2, and d3) is shown alongside the explanation.
First, we subdivide all n documents into snippets. The maximum length of those snippets

may be chosen arbitrarily–we defaulted to 250 tokens which is the passage size used by Dalton
et al. [7]. The actual length of the snippets may vary since the division process aims to retain
context by not separating sentences. For example, we may start with three documents d1, d2,
d3. After the �rst step, each of these documents is divided into several snippets: s11s

2
1 . . . s

l1
1 ,

s12s
2
2 . . . s

l2
2 , s

1
3s

2
3 . . . s

l3
3 where sji denotes the j-th snippet of document di for j 2 { 1, . . . , li }

and li is the number of snippets of di.
In Step 2, we pre-rank all extracted snippets in relation to the query. To accomplish this,

we view the set of all snippets of a document as a corpus. From this corpus, we can create a
ranking for the query using one of the following weighting models: Term frequency (TF), BM25
or PL2. We do not use cross-encoder for the pre-ranking of documents, because there may be a
multitude of snippets per document depending on document length and therefore ranking all
snippets using a cross-encoder can drastically slow down the re-ranking process. After this
pre-ranking step, our example snippets might be ranked in the following way: s33 > s22 > s42 > s23
> s13 > s31 > s43 > s11 > s32 > s51 >

In Step 3, we can obtain the top k relevant snippets of each document from the pre-ranking,
which are later ranked using a cross-encoder. This step ensures that the cross-encoder only needs
to rank n · k snippets for n documents instead of all snippets. In order to reduce computational
cost, we defaulted to k = 3. In our example, this step results in the following selection:�
s31, s

1
1, s

5
1

,
�
s22, s

4
2, s

3
2

,
�
s33, s

2
3, s

1
3

. Here, s43 is not selected as one of the top snippets of

d3 since it is the (k + 1)-th snippet of d3 in the ranking despite being ranked relatively high.

In Step 4, the top k snippets of all documents are ranked using a cross-encoder (CE). That
way, similar to Step 2, we can more accurately deduce which snippets best match the query–but
now the ranking is more precise since we used a CE instead of the simple weighting models
used in Step 2. An examplary ranking for our snippets might be: s42 > s33 > s22 > s51 > The
�nal document ranking ensues from this snippet ranking in Step 5, i.e., the document that
provided the best snippet is ranked �rst. Our example documents are therefore ranked in the
following way: d2 > d3 > d1. It should be noted that the goal of this section is to rank documents
with regard to a query, and not only passages. Therefore, the result is a ranking of documents.
Details on our implementation can be found in Appendix B.1.

3.2. Evaluation

In this section, we conduct tests to study the possible improvements of our cross-encoder
re-ranking of top k snippets. As baselines, we use BM25 and the dense retriever MonoT5.
All further ranking is performed on the top 20 documents retrieved by these two systems.
We evaluate the re-ranking with our TF-ranked snippets. For this, we load the previously
saved top 3 snippets for each document. To re-rank the documents, we follow the “weakest
link” principle, selecting the minimum TF score among the top 3 snippets. This results in the
methods BM25+TF-SP and MonoT5+TF-SP. We denote by +CE that the 3 snippets are further
re-ranked by a cross-encoder. In addition, we compare the performance of these systems to the
cross-encoder’s performance when only evaluating the �rst snippet of each document (which
resembles the naïve application of a cross-encoder). These results are denoted by BM25+CE
and MonoT5+CE.
To measure the performance of the approaches, we utilize normalized discounted cumula-

tive gain at 10 (NDCG@10) and mean reciprocal rank (MRR). We conduct our tests on the
ClueWeb12 [8] and ClueWeb09 [9] datasets, which di�er in document size: ClueWeb12 has
an average document size of 5641.7 tokens, and ClueWeb09 has an average document size of
1132.6 tokens.

0 0.2 0.4 0.6

BM25
MonoT5

BM25+TF-SP
MonoT5+TF-SP

BM25+TF-SP+CE
MonoT5+TF-SP+CE

BM25+CE
MonoT5+CE

Performance

(a) ClueWeb09 (2011)

0 0.2 0.4 0.6

BM25
MonoT5

BM25+TF-SP
MonoT5+TF-SP

BM25+TF-SP+CE
MonoT5+TF-SP+CE

BM25+CE
MonoT5+CE

Performance

(b) ClueWeb12 (2013)

Figure 2: Experimental results on di�erent datasets, blue bars denote NDCG@10, while red bars
indicate MRR.

The results for the two datasets are plotted in Fig. 2. Our approach of cross-encoder re-ranking
with TF-pre-ranked snippets achieves the best performance in both metrics across all our tested
datasets (see Appendix B.2 for diagrams of other evaluated datasets). The impact of our TF-

ranked snippet pre-selection is relatively high on ClueWeb12 with long documents, while it
is more marginal on ClueWeb09. This highlights the importance of snippet pre-selection for
longer documents. ClueWeb09 consists of approximately 6 snippets, and ClueWeb12 consists of
approximately 23 snippets per document. We assume for our naïve snippet generation approach
that information is equally spread throughout a document. A cross-encoder taking the �rst
snippet as input is assumed to capture more relevant information of a document with a size
that is closer to the cross-encoder input size. This also explains why MonoT5 scores better
on the shorter dataset, especially in comparison to BM25, since MonoT5 also su�ers from a
limited input size. This proves that there is a need to address the problem of limited input
size, especially in large documents like those in ClueWeb12. That information is not always
equally spread over a document, like we assumed for our snippet generation, can be concluded
when comparing Figs. 4b and 4c. This raises the need of a more advanced approach for snippet
generation.

3.3. Summary

Overall, our results show that selecting top-k pre-ranked snippets is a viable approach to tackle
the problem of input size restrictions on Transformer-based retrieval systems. Especially, cross-
encoders can bene�t from this approach since they are ine�cient on large documents. Further
testing to edge out e�ciency and reduce context loss with snippets will be required. Also,
it would be bene�cial to test multiple pre-ranking systems and values of k for top-k snippet
selection. The code for this part can be found in the accompanying repository2.

4. Query Expansion and User Query Variants using Large
Language Models

Query Expansion and User Query Variants are two common methods to increase the recall of an
IR system [10, 11, 12]. Both methods are based on modifying the query to include more related
keywords, thereby causing the IR system to score relevant documents higher. In addition to
conventional techniques such as the Kullback-Leibler Divergence (KL) [13, 14] or Relevance
Model 3 (RM3) [15], recent approaches have embraced the utilization of Large Language Models
(LLMs). In this part, we employ various prompts to generate improved and expanded queries
using LLMs [16, 17], in particular, GPT-3.53, Llama2 [18] and FLAN-UL2 [19].

4.1. Methodology

LLMs have previously been in use for the task of query expansion and studies have been
conducted using various methods and language models [16, 20, 21, 22]. Wang et al. [21] employ
query2doc, a method where the LLM generates a document for a given query, which is then
used as Pseudo-Relevance Feedback (PRF). Jagerman et al. [16] follow a similar approach
but extend the experiments to include alternative LLMs and additional prompt types. All

2https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-02
3https://platform.openai.com/docs/models/gpt-3-5-turbo

https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-02
https://platform.openai.com/docs/models/gpt-3-5-turbo

Model Temperature min. Tokens max. Tokens Quantization Parameters

Llama 2 1.1 10 200 4 bit 7B
FLAN-UL2 0.5 10 200 8 bit 20B
GPT-3.5 Turbo 0.5 – 200 – 175B

Table 1
Model parameters, for GPT-3.5 the parameter min. tokens is unavailable in the API

previous work demonstrates improvements across di�erent datasets. In order to weigh the
original query more heavily, multiple concatenations of the original query q with a single
instance of the LLM’s output may be used [16, 21]. The resulting expanded query is of the form
q0 = concat({q} ⇤ n, LLMout), where n is the number of times q is concatenated with itself,
and LLMout is the LLM-generated version of q. We adopt this approach in our work with n = 5
and employ modi�ed versions of the prompt types suggested by Jagerman et al. [16]: Chain
of Thoughts (CoT) where the model is prompted to document its thought process, Query to
Expansion with Zero-Shot prompting (Q2E/ZS) where the model should reformulate the query
directly, and Query to Expansion with Few-Shot prompting (Q2E/FS), where three examples
for the desired query format are provided to the model. For the exact prompt format used,
see Appendix C.3. It should be noted that the prompt for Q2E/ZS di�ers between the models.
While GPT-3.5 and FLAN were prompted to generate �ve similar queries, Llama was asked to
answer the query. Apart from this di�erence, the prompts for in all experiments are similar and
comparable.

Initially, the query, alongwith the prompt, is fed into the LLM, and its response is concatenated
with the original query (n = 5). For evaluation, the Recall@1000 metric of the original and
modi�ed queries is compared on the given dataset using BM25. The speci�c LLMs in use are
GPT-3.545, Llama 2 [18] and FLAN-UL2 [19]. Llama 2 and FLAN-UL2 were run locally. Table 1
shows the model con�gurations that we used in our experiments. The temperature values were
chosen empirically in a way such that model outputs are roughly similar. The lower and upper
token limitations prevent generation edge cases such as empty responses or endless output,
while still allowing for expressive responses. Local models had to �t GPU memory constraints.
Hence, we had to employ the quantized versions of the models. We conducted experiments for
the prompt types presented above: CoT, Q2E/FS, and Q2E/ZS. While FLAN-UL2 and GPT-3.5 can
be prompted without further changes, Llama 2 requires the chat-prompt to follow a pre-de�ned
format, our version of which can be found in the project’s repository6. We utilize BM25 as the
retrieval system in the default con�guration of the Tira-framework [23]. The query expansion
baselines consist of an unmodi�ed BM25, BM25 with Kullback-Leibler Divergence (KL) and
BM25 with RM3.

Baseline CoT Q2E/FS Q2E/ZS
BM25 KL RM3 FLAN Llama GPT FLAN Llama GPT FLAN Llama GPT

Avg 0.66 0.67 0.69 0.68 0.67 0.69 0.66 0.67 0.67 0.67 0.67 0.68
Avgeasy 0.72 0.73 0.75 0.76 0.76 0.78 0.73 0.74 0.73 0.74 0.76 0.76

Table 2
Recall@1000 evaluation results. The best value across di�erent configurations is bolded. Grey values
failed to outperform the best baseline e�ectiveness. Avg denotes the arithmetic mean scores all 18
datasets. Avgeasy excludes the cord19, longeval and medline datasets.

4.2. Evaluation

Wemeasure the recall, which is aggregated over 18 datasets per model, and per prompt type. The
datasets cover a range of diverse topics and were provided as part of TIRA [24] / TIREx [25]. The
aggregated results can be observed in Table 4.2. Avgeasy excludes evidently (cord19, longeval)
and presumably (medline) di�cult datasets. This highlights the di�culties LLMs experience
on speci�c datasets, especially domain-speci�c ones: Excluding those, CoT+OpenAI GPT-3.5
Turbo (GPT) now performs 0.03 points better than baseline models. Note that the two Avg
rows cannot be compared to one another, as baseline scores have also shifted due to the
exclusion of generally low-performing datasets. Detailed results for each dataset can be found
in Appendix C.1. For our query expansion approaches, it is evident that the choice of prompt
has a large impact on recall performance. The combination of CoT and GPT consistently yields
the highest recall in absolute numbers. However, with other prompt types such as Q2E/ZS
and Q2E/FS, GPT also frequently achieves the highest recall per dataset, albeit less frequently
compared to CoT. In this regard, our results are consistent with those reported in [16]. Although
CoT generally performs the best, it exhibits poorer results than the baselines in datasets such as
cord19 or the longeval datasets. In these cases, Q2E/ZS and Q2E/FS emerge as better choices,
but are still commonly outperformed by the baseline models.
Q2E/FS exhibits less convincing e�ectiveness, presumably because it mimics the relatively

short responses of example queries through the Q2E/FS method, resulting in short queries with
few new keywords. Q2E/ZS behaves similarly. Although the responses of the LLMs are longer
compared to Q2E/FS, as the LLMs do not conform to the rather short examples, the generated
responses are overall less extensive than those of CoT, likely resulting in inferior e�ectiveness.
Considering the longeval datasets and cord19, it is evident that they contain either very general
or highly speci�c queries. In the case of nonspeci�c queries, there is a risk that they may be
muddled by the consequently more general, and in the case of CoT, extensive responses from
the LLMs. This e�ect might potentially be reversed by conveying the user intent to the LLM,
indicating whether, for instance, in the case of the query "car," the user intends to buy one or
have it repaired. With domain-speci�c queries, it is plausible that models were trained with
insu�cient knowledge on the subject, resulting in subpar e�ectiveness.
While our main evaluation is conducted using recall@1000, we also evaluated nDCG@10.

4https://platform.openai.com/docs/models/gpt-3-5-turbo
5https://platform.openai.com/docs/api-reference/
6https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-03

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/api-reference/
https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-03

Name Formula

Flesch Reading Ease [29] 206.835� 1.015 ⇤
� Word Count
Sentence Count

�
� 84.6 ⇤

⇣
Syllable Count
Word Count

⌘

Flesch Kincaid grade level [29] 0.39 ⇤
� Word Count
Sentence Count

�
+ 11.8 ⇤

⇣
Syllable Count
Word Count

⌘
� 15.59

Gunning FOG [29, 30] 0.4 ⇤
h� Word Count

Sentence Count

�
+ 100

⇣
Complex Word Count

Word Count

⌘i

SMOG Index [31] 1.0430 ⇤
q

Complex Word Count ⇤ 30
Sentence Count + 3.1291

Automated Readability Index [29, 32] 4.71 ⇤
�Character Count

Word Count

�
+ 0.5

� Word Count
Sentence Count

�
� 21.43

Coleman-Liau Index [33] 5.88 ⇤
�Character Count

Word Count

�
� 29.6 ⇤

� Sentence Count
Word Count

�
� 15.8

LIX [34] Word Count
Sentence Count + 100 ⇤

⇣
Long Word Count

Word Count

⌘

RIX [34] Long Word Count
Sentence Count

Table 3
Implemented Text Features with the respective formulas. Syllable count and word count were imple-
mented using the provided tools by the Text Feature Libraries Textstat and spaCy.

The results for this metric are detailed in Table 4 in the appendix. Overall, our conclusions
for nDCG are similar to those for recall. The generations for each model and each prompt are
publicly available in our repository7.

4.3. Summary

In this part, we generated di�erent versions of query expansions using three LLMs and three
prompt templates. We were able to demonstrate that LLMs are capable of improving the recall of
user queries. The combination of the prompt CoT alongside GPT proves to be themost promising,
improving recall scores by up to 15%. Future research could focus on further templates for using
the generated expansions since we only evaluated the qqqqq, response-format.

5. Text Features

Text Features are quanti�ed metrics describing syntactic or semantic features of natural language.
An example is the readability of a text, useful for returning user-dependent search results. A
search engine targeted to school children should return results with a high readability score,
whereas a search engine with domain experts as target audience will also include texts with
low readability scores. Additionally, this could be used to �lter out noisy websites.
This Open Web Search component8 incorporates two tools for computing text features,

namely Textstat [26] and textdescriptives [27] from spaCy [28]. SpaCy’s Text Feature analysis
is more comprehensive than the one in Textstat, but is less e�cient. Per design of the pipeline
approach of SpaCy many things are computed in the background, from which only a few are
required for the calculation of the text features. This overhead results in a longer runtime which
should be considered. Table 3 displays the implemented text features.

7https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-03/tree/main/src/generated
8https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-04

https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-03/tree/main/src/generated
https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-04

Additional contributions besides the integration of the text features components include
examining a potential correlation between text features and documents evaluated as relevant
by ranked retrieval models. For easier exploration of the document corpus we provide an
interactive Jupyter Notebook showing correlation graphs between Ranked Retrieval and Text
Features, applicable to arbitrary datasets, as well as the analysis of correlations between Ranked
Retrieval and Text Measures.

5.1. Evaluation

To verify the capability to di�erentiate between levels of Readability, unit tests were used.
The test data consists of multi-sentence snippets from web pages. These were categorized by
di�culty in the following categories (including the amount of test documents): children (3),
teenagers (3), academic (3), and simple language (2), depending on what demographic the source
was directed to. Initial tests involved a project member assessing the reading level of excerpts
and comparing their assessments to the classi�cations provided by the automated measures,
thus proving correct usage of the used text feature libraries at least for the readability scores.
Compared to human assessments, the automated Text Measures often overestimated the

reading level, possibly failing to capture the complexities of human reading abilities within
their respective indexes. Large-scale dataset computations further highlighted the discrepancies
between predicted and human-classi�ed reading levels, corroborating these �ndings. Despite
the observed di�erences in assessment, the data suggested an inverse proportional relationship
between comprehension levels and readability measures.

5.2. Experiment Design

The experiments were run on the "antique/test" [35] dataset from the ir_datasets collection [36].
Based on TIRA [37] ranked retrieval models were used to create top-10 results.

5.2.1. Correlations between ranked retrieval and text feature readability

A primary objective of our project was to investigate whether the ranking of relevant documents
by ranked retrieval models correlates to document Readability.

5.2.2. Readability of Top 10

First we looked at the top 10 retrieved documents for all queries across multiple retrieval models,
the resulting distributions are displayed in Figure 3. The majority of results, assessed using
the Flesch Reading Ease, indicates comprehension levels at or below an eighth-grade level,
implying a high degree of readability. The high degree of readability was consistently observed
across multiple retrieval models. Compared to the overall readability across all documents in
a collection, we found that some retrieval models like SBERT or MonoT5 indeed result in a
higher readability in the retrieved documents compared to the rest of the corpora, suggesting a
potential relationship between relevancy and readability, whereas other retrieval models such
as BM25 do not share this characteristic.

Figure 3: Box plot of Flesch Reading Ease for Top 10 documents of all queries over selected ranked
retrieval models

The results of our analysis revealed an inverse correlation between readability and necessary
reading comprehension levels. We found that relevant documents generally exhibit higher
readability, except for complex queries, which tend to retrieve domain-speci�c documents
with lower readability. Another notable �nding was that the Top 10 retrieved results from
retrieval models demonstrated high readability. The correlation between readability and corpus
readability was found to be corpus-dependent, and retrieval models often retrieved highly
readable documents within the Top 10 results.

5.3. Possibilities for Future Work

Future research endeavors could involve utilizing the extracted text features to re-rank docu-
ments retrieved by Retrieval Models, thereby enhancing the relevance ranking by incorporating
Readability Metrics.
Additionally, optimizing the project could involve matching the readability level of the

retrieved documents to the readability level of the user based on the readability score of the
query itself.

Furthermore, an unexplored extension could examine whether partitioning the dataset based
on prede�ned readability score thresholds facilitates the generation of demographic-speci�c
results.

6. Conclusion and Future Work

In this work, we have introduced four diverse components that can be integrated into a larger
retrieval pipeline: Genre Classi�cation, Text Snippet Extraction, Query Expansion, and Text
Feature Extraction. We have provided short use cases for each component as part of our
evaluations that demonstrate the bene�ts of using the developed components. Even though our
main focus was implementing proof-of-concepts of our components, we are sure that future
research can easily be built upon our e�orts. We hope that our components can be integrated
seamlessly into larger IR research projects and facilitate the usage of our built-in methods, and
are looking forward to the future of the open web search ecosystem.

7. Acknowledgments

Wewould like to express our gratitude to the Open Search Foundation for organizing theWOWS
2024 and especially Maik Fröbe, who supported us and our student teams in organizing and
conducting our Hackathon which made this submission possible.

In addition, the authors gratefully acknowledge the computing time made available to them
on the high-performance computer at the NHR Center of TU Dresden. This center is jointly
supported by the Federal Ministry of Education and Research and the state governments
participating in the NHR (www.nhr-verein.de/unsere-partner).

References

[1] S. Farzana, M. Fröbe, M. Granitzer, G. Hendriksen, D. Hiemstra, M. Potthast, S. Zerhoudi,
1st International Workshop on Open Web Search (WOWS), in: Advances in Informa-
tion Retrieval. 46th European Conference on IR Research (ECIR 2024), Lecture Notes in
Computer Science, Springer, 2024.

[2] S. Meyer zu Eissen, B. Stein, Genre classi�cation of web pages, in: S. Biundo, T. Frühwirth,
G. Palm (Eds.), KI 2004: Advances in Arti�cial Intelligence, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004, pp. 256–269.

[3] A. Z. Broder, A taxonomy of web search, SIGIR Forum 36 (2002) 3–10. URL: https:
//doi.org/10.1145/792550.792552. doi:10.1145/792550.792552.

[4] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, C. Ré, Snorkel: Rapid training data
creation with weak supervision, in: Proceedings of the VLDB endowment. International
conference on very large data bases, volume 11, NIH Public Access, 2017, p. 269.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine
Learning Research 12 (2011) 2825–2830.

[6] R. Nogueira, K. Cho, Passage Re-ranking with BERT, 2020. URL: http://arxiv.org/abs/1901.
04085. doi:10.48550/arXiv.1901.04085.

[7] J. Dalton, C. Xiong, J. Callan, TREC CAsT 2019: The Conversational Assistance
Track Overview, 2020. URL: http://arxiv.org/abs/2003.13624. doi:10.48550/arXiv.2003.
13624.

[8] J. Callan, The lemur project and its clueweb12 dataset, in: Invited talk at the SIGIR 2012
Workshop on Open-Source Information Retrieval, 2012.

[9] J. Callan, M. Hoy, C. Yoo, L. Zhao, Clueweb09 data set, 2009.
[10] J. J. R. Jr., Relevance feedback in information retrieval. The SMART retrieval system:

experiments in automatic document processing (1971).
[11] R. R. Kor�age, To see, or not to see—is that the query?, in: Proceedings of the 14th

annual international ACM SIGIR conference on Research and development in information
retrieval, 1991, pp. 134–141.

[12] J. Yang, R. R. Kor�age, E. Rasmussen, Query improvement in information retrieval using

www.nhr-verein.de/unsere-partner
https://doi.org/10.1145/792550.792552
https://doi.org/10.1145/792550.792552
http://dx.doi.org/10.1145/792550.792552
http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1901.04085
http://dx.doi.org/10.48550/arXiv.1901.04085
http://arxiv.org/abs/2003.13624
http://dx.doi.org/10.48550/arXiv.2003.13624
http://dx.doi.org/10.48550/arXiv.2003.13624

genetic algorithms–a report on the experiments of the trec project, in: Proceedings of the
Text REtrieval Conference (TREC-1), 1993, pp. 31–58.

[13] S. Kullback, R. A. Leibler, On Information and Su�ciency, The Annals of Mathematical
Statistics 22 (1951) 79 – 86. URL: https://doi.org/10.1214/aoms/1177729694. doi:10.1214/
aoms/1177729694.

[14] F. Raiber, O. Kurland, Kullback-leibler divergence revisited, in: Proceedings of the
ACM SIGIR International Conference on Theory of Information Retrieval, ICTIR ’17,
Association for Computing Machinery, New York, NY, USA, 2017, p. 117–124. URL: https:
//doi.org/10.1145/3121050.3121062. doi:10.1145/3121050.3121062.

[15] V. Lavrenko, W. B. Croft, Relevance-based language models, in: ACM SIGIR Forum,
volume 51, ACM New York, NY, USA, 2017, pp. 260–267.

[16] R. Jagerman, H. Zhuang, Z. Qin, X. Wang, M. Bendersky, Query expansion by prompting
large language models, 2023. arXiv:2305.03653.

[17] M. Alao�, L. Gallagher, M. Sanderson, F. Scholer, P. Thomas, Can generative llms create
query variants for test collections? an exploratory study, in: Proceedings of the 46th Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’23, Association for Computing Machinery, New York, NY, USA, 2023, p. 1869–1873.
URL: https://doi.org/10.1145/3539618.3591960. doi:10.1145/3539618.3591960.

[18] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,
J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura,
M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov,
P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten,
R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X.
Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez,
R. Stojnic, S. Edunov, T. Scialom, Llama 2: Open foundation and �ne-tuned chat models,
2023. arXiv:2307.09288.

[19] Y. Tay, M. Dehghani, V. Q. Tran, X. Garcia, J. Wei, X. Wang, H. W. Chung, D. Bahri,
T. Schuster, S. Zheng, et al., Ul2: Unifying language learning paradigms, in: The Eleventh
International Conference on Learning Representations, 2022.

[20] V. Claveau, Neural text generation for query expansion in information retrieval, in: WI-IAT
2021 - 20th IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, Proceedings of the WI-IAT Conference, IEEE, Melbourne, Australia,
2021, pp. 1–8. URL: https://hal.science/hal-03494692. doi:10.1145/3486622.3493957.

[21] L. Wang, N. Yang, F. Wei, Query2doc: Query expansion with large language models, in:
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
2023, pp. 9414–9423.

[22] R. Ren, Y. Qu, J. Liu, W. X. Zhao, Q. She, H. Wu, H. Wang, J.-R. Wen, Rocketqav2: A joint
training method for dense passage retrieval and passage re-ranking, in: Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, pp.
2825–2835.

[23] M. Fröbe, J. H. Reimer, S. MacAvaney, N. Deckers, S. Reich, J. Bevendor�, B. Stein, M. Hagen,
M. Potthast, The information retrieval experiment platform, in: Proceedings of the

https://doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
https://doi.org/10.1145/3121050.3121062
https://doi.org/10.1145/3121050.3121062
http://dx.doi.org/10.1145/3121050.3121062
http://arxiv.org/abs/2305.03653
https://doi.org/10.1145/3539618.3591960
http://dx.doi.org/10.1145/3539618.3591960
http://arxiv.org/abs/2307.09288
https://hal.science/hal-03494692
http://dx.doi.org/10.1145/3486622.3493957

46th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’23, ACM, 2023. URL: http://dx.doi.org/10.1145/3539618.3591888. doi:10.
1145/3539618.3591888.

[24] M. Fröbe, M. Wiegmann, N. Kolyada, B. Grahm, T. Elstner, F. Loebe, M. Hagen, B. Stein,
M. Potthast, Continuous Integration for Reproducible Shared Tasks with TIRA.io, in:
J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kr-
uschwitz, A. Caputo (Eds.), Advances in Information Retrieval. 45th European Conference
on IR Research (ECIR 2023), Lecture Notes in Computer Science, Springer, Berlin Hei-
delberg New York, 2023, pp. 236–241. URL: https://link.springer.com/chapter/10.1007/
978-3-031-28241-6_20. doi:10.1007/978-3-031-28241-6_20.

[25] M. Fröbe, J. H. Reimer, S. MacAvaney, N. Deckers, S. Reich, J. Bevendor�, B. Stein, M. Hagen,
M. Potthast, The Information Retrieval Experiment Platform, in: H.-H. Chen, W.-J. E.
Duh, H.-H. Huang, M. P. Kato, J. Mothe, B. Poblete (Eds.), 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2023), ACM,
2023, pp. 2826–2836. URL: https://dl.acm.org/doi/10.1145/3539618.3591888. doi:10.1145/
3539618.3591888.

[26] S. Bansal, textstat, https://github.com/textstat/, 2016.
[27] L. Hansen, L. R. Olsen, K. Enevoldsen, TextDescriptives: A Python package for calculating

a large variety of metrics from text, Journal of Open Source Software 8 (2023) 5153. URL:
https://joss.theoj.org/papers/10.21105/joss.05153. doi:10.21105/joss.05153.

[28] M. Honnibal, I. Montani, S. Van Landeghem, A. Boyd, spaCy: Industrial-strength Natural
Language Processing in Python (2020). doi:10.5281/zenodo.1212303.

[29] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, B. S. Chissom, Derivation of new readability
formulas (automated readability index, fog count and �esch reading ease formula) for navy
enlisted personnel (1975).

[30] J. Bogert, In defense of the fog index, The Bulletin of the Association for Business
Communication 48 (1985) 9–12.

[31] G. H. Mc Laughlin, Smog grading-a new readability formula, Journal of reading 12 (1969)
639–646.

[32] R. Senter, E. A. Smith, Automated readability index, Technical Report, Technical report,
DTIC document, 1967.

[33] M. Coleman, T. L. Liau, A computer readability formula designed for machine scoring.,
Journal of Applied Psychology 60 (1975) 283.

[34] J. Anderson, Lix and rix: Variations on a little-known readability index, Journal of Reading
26 (1983) 490–496. URL: http://www.jstor.org/stable/40031755.

[35] H. Hashemi, M. Aliannejadi, H. Zamani, B. Croft, Antique: A non-factoid question
answering benchmark, in: ECIR, 2020.

[36] S. MacAvaney, A. Yates, S. Feldman, D. Downey, A. Cohan, N. Goharian, Simpli�ed data
wrangling with ir_datasets, in: F. Diaz, C. Shah, T. Suel, P. Castells, R. Jones, T. Sakai (Eds.),
SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Virtual Event, Canada, July 11-15, 2021, ACM, 2021, pp. 2429–2436.
URL: https://doi.org/10.1145/3404835.3463254. doi:10.1145/3404835.3463254.

[37] M. Fröbe, M. Wiegmann, N. Kolyada, B. Grahm, T. Elstner, F. Loebe, M. Hagen, B. Stein,
M. Potthast, Continuous Integration for Reproducible Shared Tasks with TIRA.io, in:

http://dx.doi.org/10.1145/3539618.3591888
http://dx.doi.org/10.1145/3539618.3591888
http://dx.doi.org/10.1145/3539618.3591888
https://link.springer.com/chapter/10.1007/978-3-031-28241-6_20
https://link.springer.com/chapter/10.1007/978-3-031-28241-6_20
http://dx.doi.org/10.1007/978-3-031-28241-6_20
https://dl.acm.org/doi/10.1145/3539618.3591888
http://dx.doi.org/10.1145/3539618.3591888
http://dx.doi.org/10.1145/3539618.3591888
https://github.com/textstat/
https://joss.theoj.org/papers/10.21105/joss.05153
http://dx.doi.org/10.21105/joss.05153
http://dx.doi.org/10.5281/zenodo.1212303
http://www.jstor.org/stable/40031755
https://doi.org/10.1145/3404835.3463254
http://dx.doi.org/10.1145/3404835.3463254

J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kr-
uschwitz, A. Caputo (Eds.), Advances in Information Retrieval. 45th European Conference
on IR Research (ECIR 2023), Lecture Notes in Computer Science, Springer, Berlin Hei-
delberg New York, 2023, pp. 236–241. URL: https://link.springer.com/chapter/10.1007/
978-3-031-28241-6_20. doi:10.1007/978-3-031-28241-6_20.

[38] I. Montani, M. Honnibal, A. Boyd, S. V. Landeghem, H. Peters, spaCy: Industrial-strength
Natural Language Processing in Python, 2023. URL: https://zenodo.org/records/10009823.
doi:10.5281/zenodo.10009823.

[39] C. Macdonald, N. Tonellotto, Declarative experimentation in information retrieval using
pyterrier, in: Proceedings of the 2020 ACM SIGIR on International Conference on Theory
of Information Retrieval, 2020, pp. 161–168.

[40] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,
S. Gugger, M. Drame, Q. Lhoest, A. Rush, Transformers: State-of-the-Art Natural Language
Processing, in: Q. Liu, D. Schlangen (Eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, Association
for Computational Linguistics, Online, 2020, pp. 38–45. URL: https://aclanthology.org/2020.
emnlp-demos.6. doi:10.18653/v1/2020.emnlp-demos.6.

[41] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An Imperative Style,
High-Performance Deep Learning Library, in: H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information Processing
Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

https://link.springer.com/chapter/10.1007/978-3-031-28241-6_20
https://link.springer.com/chapter/10.1007/978-3-031-28241-6_20
http://dx.doi.org/10.1007/978-3-031-28241-6_20
https://zenodo.org/records/10009823
http://dx.doi.org/10.5281/zenodo.10009823
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

A. Hackathon

The paper’s work was carried out by students from TU Dresden as part of a one-week hackathon.
The workshop was open to students in the Computer Science program and related �elds, and
they could earn ECTS credit points for lab work. The hackathon was advertised on the mailing
lists of the beginner Information Retrieval courses from the past three years. Interested students
could �ll a survey indicating their preferred timeframe for the hackathon.

After a date was decided, 10 students signed up for the hackathon, three from the Bachelor’s
program and seven from the Master’s program. The university supervisors prepared four topics,
which were advertised beforehand, and the students signed up for their preferred topics. The
text features topic was designated to the 3 Bachelor students. The Master students were provided
with a peer-reviewed research paper as additional material, which they were required to read
and understand before the hackathon.

On the �rst day of the hackathon, an invited member of the OpenWeb Search project provided
a brief introduction to the Open Web Search ecosystem and TIRA/TIREx. Following this, the
teams worked on their components, with supervisors providing guidance through daily check-
ins. On the �fth and �nal day of the hackathon, a short presentation from each team was held.
Following the hackathon, the students were requested to prepare a report on their work, which
served as the basis for this paper.

In retrospective, the short amount of time, one week, motivated the students to work diligently
on their project. However, at the end of the week, the students had several open ideas for future
work which they could not �nish in time. Therefore, more time, even a few days more, might
be bene�cial for the next iteration of the hackathon. The size of the group ranged between two
and three members. The small group size facilitated the organization within each group and
kept the management overhead small. The topics of the hackathon were aligned with the basics
gained during the Information Retrieval course, but required also reading additional literature
and research.

B. Text Snippet Extraction

B.1. Implementation

To implement the described re-ranking steps, we utilized several Python libraries, detailed
below to facilitate reproducibility. For snippet extraction in Step 1, we adapted the Spacy-
PassageChunker class from the corpus_processing package, as provided by Dalton et al. [7], to
allow for variable snippet sizes. The class requires spaCy [38]; we used version 3.3.0 for our
implementation. The snippet pre-ranking in Step 2 was implemented using PyTerrier [39],
version 0.10.0. For Step 4 we utilized ms-marco-MiniLM-L-6-v2 which has been published on
HuggingFace.co [40]. To embed the model into our project, we used the transformers library [40],
version 4.38.2, and the PyTorch library [41], version 2.2.0. The results of the preparation steps
are accessible via TIRA [24] / TIREx [25].

B.2. Results on other evaluated datasets

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

BM25
MonoT5

BM25 + TF-Snippets
MonoT5 + TF-Snippets

BM25 + TF-Snippets + CE
MonoT5 + TF-Snippets + CE

BM25 + CE (naive)
MonoT5 + CE (naive)

Performance

Ex
pe
ri
m
en
t

NDCG@10
MRR

(a) Clueweb09 (2009)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

BM25
MonoT5

BM25 + TF-Snippets
MonoT5 + TF-Snippets

BM25 + TF-Snippets + CE
MonoT5 + TF-Snippets + CE

BM25 + CE (naive)
MonoT5 + CE (naive)

Performance

Ex
pe
ri
m
en
t

NDCG@10
MRR

(b) Clueweb09 (2010)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

BM25
MonoT5

BM25 + TF-Snippets
MonoT5 + TF-Snippets

BM25 + TF-Snippets + CE
MonoT5 + TF-Snippets + CE

BM25 + CE (naive)
MonoT5 + CE (naive)

Performance

Ex
pe
ri
m
en
t

NDCG@10
MRR

(c) Clueweb09 (2012)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

BM25
MonoT5

BM25 + TF-Snippets
MonoT5 + TF-Snippets

BM25 + TF-Snippets + CE
MonoT5 + TF-Snippets + CE

BM25 + CE (naive)
MonoT5 + CE (naive)

Performance

Ex
pe
ri
m
en
t

NDCG@10
MRR

(d) Clueweb12 (2014)

Figure 4: Experimental results on other datasets

C. Query Expansion

C.1. Detailed Results for Recall

Dataset Baseline CoT Q2E/FS Q2E/ZS
BM25 KL RM3 FLAN Llama GPT FLAN Llama GPT FLAN Llama GPT

antique 0.79 0.78 0.79 0.80 0.79 0.81 0.79 0.80 0.80 0.80 0.80 0.79
argsme-2020-1 0.88 0.88 0.89 0.88 0.87 0.88 0.88 0.88 0.88 0.87 0.88 0.88
argsme-2021-1 0.94 0.95 0.95 0.95 0.95 0.96 0.94 0.94 0.94 0.96 0.95 0.96
cord19 0.43 0.41 0.44 0.38 0.31 0.33 0.41 0.42 0.43 0.41 0.36 0.42
cranfield 0.61 0.64 0.69 0.70 0.69 0.70 0.62 0.65 0.62 0.61 0.69 0.70
longeval-heldout 0.63 0.65 0.66 0.64 0.62 0.62 0.62 0.65 0.67 0.65 0.52 0.64
longeval-long-september 0.71 0.71 0.72 0.69 0.63 0.66 0.71 0.71 0.71 0.69 0.68 0.70
longeval-short-july 0.68 0.69 0.70 0.67 0.63 0.65 0.68 0.69 0.69 0.67 0.66 0.68
longeval-train 0.71 0.72 0.72 0.70 0.64 0.67 0.70 0.72 0.73 0.70 0.67 0.71
medline-2004 0.45 0.49 0.50 0.45 0.46 0.47 0.45 0.46 0.45 0.46 0.46 0.43
medline-2005 0.50 0.51 0.51 0.51 0.51 0.53 0.50 0.51 0.51 0.50 0.52 0.53
medline-2017 0.59 0.60 0.62 0.62 0.65 0.71 0.59 0.62 0.59 0.59 0.63 0.64
medline-2018 0.72 0.78 0.79 0.74 0.75 0.81 0.71 0.73 0.73 0.73 0.75 0.75
msmarco-pasage-2019 0.74 0.75 0.75 0.79 0.82 0.86 0.75 0.76 0.74 0.79 0.81 0.78
msmarco-passage-2020 0.75 0.80 0.79 0.81 0.81 0.85 0.76 0.76 0.76 0.80 0.78 0.77
nfcorpus-test 0.32 0.46 0.44 0.44 0.45 0.48 0.35 0.38 0.37 0.37 0.46 0.45
tip-of-the-tongue-dev 0.52 0.38 0.52 0.51 0.51 0.57 0.52 0.53 0.54 0.52 0.55 0.54
vaswani 0.93 0.94 0.94 0.94 0.95 0.96 0.94 0.94 0.93 0.94 0.95 0.94
Avg 0.66 0.67 0.69 0.68 0.67 0.69 0.66 0.67 0.67 0.67 0.67 0.68
Avgeasy 0.72 0.73 0.75 0.76 0.76 0.78 0.73 0.74 0.73 0.74 0.76 0.76

Table 4
Recall@1000 evaluation results. For each dataset, the best value across di�erent configurations is
bolded. Grey values failed to outperform the best baseline performance. The arithmetic mean scores
can be found at the bottom. Avgeasy excludes the cord19, longeval and medline datasets.

C.2. Detailed Results for nDCG

Dataset Baseline CoT Q2E/FS Q2E/ZS
BM25 KL RM3 FLAN Llama GPT FLAN Llama GPT FLAN Llama GPT

antique 0.51 0.49 0.5 0.5 0.5 0.51 0.51 0.52 0.52 0.5 0.53 0.5
argsme-2020-1 0.3 0.32 0.32 0.35 0.4 0.42 0.31 0.33 0.31 0.3 0.39 0.37
argsme-2021-1 0.51 0.52 0.54 0.55 0.56 0.56 0.51 0.51 0.52 0.53 0.57 0.56
cord19 0.59 0.52 0.61 0.38 0.42 0.5 0.49 0.58 0.57 0.53 0.48 0.5
cranfield 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
longeval-heldout 0.16 0.16 0.18 0.16 0.14 0.16 0.17 0.16 0.17 0.15 0.09 0.16
longeval-long-september 0.18 0.18 0.19 0.17 0.14 0.16 0.18 0.18 0.19 0.17 0.16 0.17
longeval-short-july 0.18 0.17 0.18 0.16 0.14 0.15 0.18 0.18 0.18 0.16 0.16 0.17
longeval-train 0.18 0.17 0.17 0.15 0.13 0.15 0.17 0.17 0.18 0.15 0.14 0.17
medline-2004 0.34 0.35 0.35 0.35 0.32 0.34 0.35 0.35 0.34 0.34 0.35 0.34
medline-2005 0.38 0.38 0.38 0.38 0.42 0.41 0.39 0.39 0.39 0.39 0.4 0.43
medline-2017 0.28 0.31 0.3 0.3 0.34 0.36 0.28 0.3 0.28 0.28 0.3 0.34
medline-2018 0.43 0.46 0.48 0.45 0.44 0.53 0.4 0.43 0.42 0.41 0.44 0.46
msmarco-passage-2019 0.48 0.52 0.51 0.58 0.57 0.63 0.5 0.5 0.48 0.55 0.6 0.52
msmarco-passage-2020 0.49 0.5 0.49 0.58 0.57 0.59 0.49 0.5 0.5 0.57 0.53 0.51
nfcorpus-test 0.27 0.27 0.28 0.28 0.29 0.29 0.27 0.28 0.27 0.27 0.28 0.28
tip-of-the-tongue-dev 0.1 0.06 0.09 0.1 0.11 0.15 0.11 0.11 0.1 0.11 0.11 0.11
vaswani 0.45 0.44 0.45 0.45 0.43 0.46 0.44 0.45 0.46 0.45 0.45 0.46
Avg 0.32 0.32 0.33 0.33 0.33 0.35 0.32 0.33 0.33 0.33 0.33 0.34
Avgeasy 0.35 0.35 0.35 0.38 0.38 0.4 0.35 0.36 0.35 0.37 0.39 0.37

Table 5
NDCG@10 evaluation results. Bold indicates the strongest score. Grey results fell below the best
baseline. Avgeasy excludes the cord19, longeval and medline datasets.

C.3. Prompts

Method Prompt

CoT

f’Answer the following query:’
f’’
f’{q}’
f’’
f’Give the rationale before answering.’

Q2E/FS

f’For every query, suggest a similar query:’
f’’
f’Original query: How to tie a windsor knot?’
f’Similar query: Instructions for tying a windsor knot’
f’’
f’Original query: How is the weather tomorrow morning?’
f’Similar query: Weather tomorrow morning’
f’’
f’Original query: Simple vegan cooking recipes’
f’Similar query: What are some delicious and simple vegan cooking recipes?’
f’’
f’Original Query: {q}’
f’Similar Query:’

Q2E/ZS
f’Suggest 5 queries that are similar to the following query:’
f’’
f’Query: {q}’

Table 6
Prompt formats used for GPT and Google Flan-UL2 (Flan).

Method Prompt

CoT

f’<s>[INST] <<SYS>>\n’
f’Be short and concise, 100 words max. Answer in full sentences,

while briefly writing down your steps towards the response.’
f’\n<</SYS>>\n\n’
f’{q}’
f’ [/INST]’

Q2E/FS

f’<s>[INST] <<SYS>>\n’
f’Be short and concise, 100 words max. Answer in full sentences,

while briefly writing down your steps towards the response.’
f’\n<</SYS>>\n\n’
f’{f’For every query, suggest a similar query:’
f’’
f’Original query: How to tie a windsor knot? [/INST]’
f’Similar query: Instructions for tying a windsor knot </s>’
f’’
f’<s>[INST] Original query: How is the weather tomorrow morning?

[/INST]’
f’Similar query: Weather tomorrow morning </s>’
f’’
f’<s>[INST] Original query: Simple vegan cooking recipes [/INST]’
f’Similar query: What are some delicious and simple vegan cooking

recipes? </s>’
f’’
f’<s>[INST] Original query: {q} [/INST]’
f’Similar query:’}’
f’ [/INST]’

Q2E/ZS

f’<s>[INST] <<SYS>>\n’
f’Answer the following query. Be short and concise, 50 words at

max. Answer in full sentences.’
f’\n<</SYS>>\n\n’
f’{q}’
f’ [/INST]’

Table 7
Prompt formats used for Meta Llama 2 7B Chat (Llama). Note the necessity for a system prompt and
the additional formatting sequences due to the instruction fine-tuning of Llama-Chat. Prompts were
modified to fit Llama’s behaviour.

	1 Introduction
	2 Genre Classificaion
	2.1 Methods
	2.1.1 Rule-Based Classifier
	2.1.2 Multi-Layer Perceptron Classifier

	2.2 Experiments
	2.2.1 Dataset
	2.2.2 Vocabulary Lists
	2.2.3 Results

	2.3 Summary

	3 Text Snippet Extraction
	3.1 Methodology
	3.2 Evaluation
	3.3 Summary

	4 Query Expansion and User Query Variants using Large Language Models
	4.1 Methodology
	4.2 Evaluation
	4.3 Summary

	5 Text Features
	5.1 Evaluation
	5.2 Experiment Design
	5.2.1 Correlations between ranked retrieval and text feature readability
	5.2.2 Readability of Top 10

	5.3 Possibilities for Future Work

	6 Conclusion and Future Work
	7 Acknowledgments
	A Hackathon
	B Text Snippet Extraction
	B.1 Implementation
	B.2 Results on other evaluated datasets

	C Query Expansion
	C.1 Detailed Results for Recall
	C.2 Detailed Results for nDCG
	C.3 Prompts

