
~‘: Rate-Monotonic > ;.
Analysis for Real-Time
Industrial Computing

Mark H. Klein, John P. Lehoczky, and Ragunathan Rajkumar

Carnegie Mellon University

Rate-monotonic
analysis, a collection

of quantitative
methods, provides a
basis for designing,
understanding, and
analyzing the timing
behavior of real-time
industrial computing

systems.

I ssues of real-time resource management are pervasive throughout indus- I
trial computing. Unlike general-purpose computer systems, where re-

1. sources must be managed to provide adequate system responsiveness for all
tasks, the underlying physical processes of many industrial computing applications
impose explicit timing requirements on the tasks processed by the computer
system. These timing requirements are an integral part of the correctness and
safety of a real-time system.

It is tempting to think that speed (for example. processor speeds or higher
communication bandwidths) is the sole ingredient in meeting system timing
requirements. but speed alone is not enough. Proper resource-management tech-
niques also must be used to prevent. for example. situations in which long. low-
priority tasks block higher priority tasks with short deadlines. One guiding princi-
ple in real-time system resource management is prrdicrahility, the ability to
determine for a given set of tasks whether the system will be able to meet all of the
timing requirements of those tasks. Predictability calls for the development of
scheduling models and analytic techniques to determine whether or not a real-time
system can meet its timing requirements.

This article illustrates an analysis methodology for managing real-time require-
ments in a distributed industrial computing situation. The illustration is based on
a comprehensive robotics example drawn from a typical industrial application.

Classification of tasks and scheduling strategies
Tasks. Three types of tasks are commonly encountered in real-time systems

designed for monitoring and control functions. They are periodic tasks, sporadic
tasks, and aperiodic tasks.’

Periodic tasks are the most common. To monitor a physical system or process.
a computer system must sample it and react to the data gathered. This regular

24 00,8~Y,h2,Y1,‘,J 00 % 1994 IEEE COMPUTER

sampling gives rise to a periodic task, a Each task invocation will have an
single task with a continuous series of explicit timing requirement. The most
regular invocations (jobs), beginning common requirement is that a task in-
with an initial invocation at some rela- vocation must be completed within D
tive initiation time I. Subsequent invo- time units after it is ready; this timing
cations occur periodically, every Ttime requirement is often referred to as a
units. Each of these invocations has a hard deadline. Thus, the first invoca-
computation requirement of C units, tion must be completed by time I + D,
which can be deterministic or stochas- the second by I + T + D, and so on.
tic. If the computation time is sto- Periodic tasks are usually invoked by
chastic, Coften denotes the upper bound internal timers with the periodicity cho-
(or worst case) computation time. sen to ensure a latency short enough to

react to events or changes in the under-
lying physical process.

Sporadic and aperiodic tasks refer to
a continuous series of jobs invoked at
irregular intervals. Sporadic tasks have
hard deadlines and a bound on how
small the interarrival interval between
two successive jobs can be.

Aperiodic jobs can arrive with arbi-
trarily small interarrival intervals. The
arrival patterns can be described byprob-
ability density functions. Timing require-

Characterizing real-time industrial computing Characterizing real-time industrial computing

industrial spunk capab&ti@s directly affect a na- industrial spunk capab&ti@s dirsctiy affect a na- Vessel traffic systems used for harbor traffic manage- YWS%l traffic systems used for harbor traffic manage-
tion’s ~~n~~~af .~%~ment dtnd economic competi- tivn’s ~~n~~~af .~%~m%nt dtnd economic competi- ment provide one exam@%. The TRAGS Esprit, !I1 project ment provide one exam@%. The TRAGS Esprit, !I1 project
tiv%n%aa. Ind&rial procee%e% afe b%coming incr%a&ngly tiv%n%aa. Ind&rial procee%e% afe b%coming incr%a&ngly is inv%&gating requirements and %y%t%m arohitectural is inv%&gating requirements and %y%t%m arohitectural
complex in the ae4?ee +&at tight CaRtFol must b% tiain- complex in the ae~~e +&at tight CaRtFol must b% tiain- considerations for advanc%d vessel traffic syst%ms. These considerations for advanc%d vessel traffic syst%ms. These
taingd and pro&+e5 ~on~~~ muet be carried @tit to 8n- taingd and pro&+e5 ~on~~~ muet be carried @tit to 8n- systems need to implement “hard r%aHn% features . . . systems need to implement “hard r%aHn% features . . .
s&r% that f%su&g pr~~ maet quality %~i~~t~o~. s&r% that f%su&g pr~~ maet quality %~~~~t~o~. to control dang8rvus situativns,that can arise and . . . im- to control dang%r@us situativns,that can arise and . . . im-

The current trend Is toward diat&btited, fl6x#bl8 manu- The current trend Is toward diat~tited, fl6x#bl8 manu- ply damage or ioss of goods and injury to people if not ply damage or ioss of goods and injury to people if not
facturin$j in which fabliiee can Is% quickly reconfigured facturin$j in which fabliiee can Is% quickly reconfigured appropriately handled.“’ appropriately handled.“’
to meet changing prMuction requirements. This, @XI- to meet changing prMu&on requirements. This, @XI- Analysis of system speoifications for this type of system Analysis of system speoifications for this type of system
pled with the need fos tight proceea control and monitor- pled with the need fvr tight prvceea contra1 and monitor- shows the need for handling (1) periodic tasks for data shows the need for handling (1) periodic tasks for data
Rg, puts great demands on the computing technology Rg, puts great demands on the computing technology acquisition and cotltrol, (2) stringent timing ootistraints for acquisition and cotltrol, (2) stringent timing cotistraints for
that s#pports this en~ronm%~. These systems often re- that s#pports this en~ronm%~. These systems often re- critical activities, and (3) task types witti hard and soft critical activities, and (3) task types wiiti hard and soft
quire a high degree of ~pe~b~ non-stop operation quire a high degree of ~p%~b~ non-stop operation timing requirements. timing requirements.
and safety assurance. Motevver, production control and and safety assur&ce. Moreover, production control and Another example involves patient monitoring in a hospi- Another example involves patient monitoring in a hospi-
monitoring r~uif~~ts in industrial computing often monitoring r~uif~~ts in industrial computing often tal’s intensive-care unit. A clinician mvnitoring a patient’s tal’s intensive-care unit. A clinician mvnitoring a patient’s
cr%ate very stringent demands for teal-time prvoessing. cr%ate very stringent demands for teal-time prvoessing. status requires the support of intelligent monitoring that status requires the support of intelligent monitoring that

Realtime induett4al biting systems are often dis- Realtime induett4al biting systems are often dis- can integrate data from multiple sourGes in real-time. Fac- can integrate data from multiple sourves in real-time. Fac-
tributed and hav% distinctively stringent timing, r%iiability, tributed and hav% distinctively stringent timing, r%iiability, tor et al.2 said tor et aL2 said
and safety requkements imposed by the application en- and safety requkements imposed by the application en-
vironment. in addition, systems such as telecommunica- vifonmeni. in &dWn, systems such as telecommunica- To build a software system that support$ such a monitor, we To build a! software system that suppart$ such a monitor, we
tivn networks and pourerr generation networks hav% high tion networks and pourerr generation networks hav% high must achieve predictable, real-time performance, accommo- must achieve predictable, real-time performance, accommo-

availability requirements that require on-line software availability requirements that require on-line software
date heterogeneous approaches to the manjl separable date heterogeneous approaches tb the manjl separable
subproblems, and design a useful interface. The need for real- subproblems, and design a useful interface. The need for real-

and hardware upgrades. and hardware upgrades. time performance is obvious: A monitor that does not run in time performance is obvious: A monitor that does not run in
Advanced industiiai computing applications include Advanced industiiai computing applications include real time cannot give early warning of life-threatening real time cannot give early warning of life-threatening

situations. situations.

4 agile manufacturing facilities that can quickly recon-
figure plant operatidns to meet chatiging requirements Predictability in the context of hard real-time constraints

and permit on-line maintenance and upgrade: is a central concern in both examples, and the robotics

l radars and other sensors for monitoring th8 develop- example discussed in the main text has similar timing

ment of weather patt%rns, scsismic data, power distribu- requirements in a distributed setting. These and other

tion grid status, and pollutant division; industiial computing applications can Comprise a collec-
l satellites, fi&+t~ n&do&%, and high-speed tivn of heterogeneous resources suoh as CPU backplane

switches to treat &g% volumes of live audio, video, buses, networks, and l/O devices that must be scheduled

graphics, animation, end text da& to be predictable, flexible, and amenable to mathematical

l vehicular and ali traffic control systems; and analysis.
l patient monitoring, heati-lung machinery, CAT (com-

puterized axial tomography) scanners, magnetic reso-
nance imaging systems, and other medical information References
systems.

1. P. Ancilotti et al., “TRACS: A Flexible Real-Time Environment for
Traffic Control Systems,” Proc. /EEE Workshop on Real-Time Ap

Developing these applications will require the integra- p/&&ions, IEEE CS Press, Los Alamitos, Calif., Order No. 4130,
tion of computing and communications technologies with 1993, pp. 50-53.

real-time scheduling and fault-toierance technologies to 2, M. Factor et al., “Real-Time Data Fusion in the Intensive Care
meet their stringent timing and reliability requirements. Unit,” Computer, Vol. 24. No. 11, Nov. IS91 , pp. 45-54.

January 1994 25

ments for aperiodic tasks are usually
stated in terms of satisfying an average
response time requirement.

Scheduling strategies. Certain real-
time systems are sufficiently simple and
static, andinvolve so relatively few tasks,
that the timeline can be laid out off line.
For example, if the task set consists
solely of periodic tasks, then once the
first invocation has been determined,
all future invocation times can be deter-
mined exactly. The resulting off-line
schedule is called a cyclic executive.
These schedules can be efficient. They
can reduce overhead from task swap-
ping and offer a simple method to en-
force mutual exclusion while accessing
a shared resource. Cyclic executives do,
however, have major problems. Any
change in the task set, including modifi-
cations to the tasks themselves, can re-
quire drawing and fully testing a new
timeline. The method also requires a
relatively small task set. Cyclic execu-
tives are not well suited to handling
mixtures of periodic and aperiodic tasks;
consequently, they do not offer as good
a response time for aperiodic tasks as
can be achieved by other methods. To
efficiently implement a cyclic execu-
tive, the task periods should be as close
to harmonic as possible to create a short
schedule. This may force unnecessary
additional processing load. Finally, a
cyclic executive cannot easily deal with
frame overruns, whereby a code seg-
ment occasionally executes longer than
expected. For these reasons, we focus
only on on-line scheduling algorithms
in this article.

cause high-priority tasks to miss their
deadlines if they are blocked by a long
task. Nevertheless, partial nonpreemp-
tivity can be effective for concurrency
control, for example, in enforcing criti-
cal sections. Some lack of preemptibil-
ity is often inevitable, for example, when
interrupts on behalf of lower priority
tasks are not masked or when the sched-
uler or other operating system func-
tions are executing.

While much of the scheduling litera-
ture deals with nonpreemptive cases,
most modern computer systems allow
task preemption with small overhead.
Thus, we’ll focus primarily on the pre-
emptive case.

A second classification of on-line
scheduling algorithms is static priority
versus dynamic priority. A static prior-
ity scheduling algorithm preassigns a
fixed priority to each task (and the same
priority to every invocation of that task).
A dynamic priority algorithm allows a
task to change its priority at any time
between its readiness and completion
times; different invocations of a period-
ic task can have different priorities.

The task-scheduling problem has been
extensively studied, but the literature
focuses on optimal scheduling methods
and their computational complexity.
Optimal methods are seldom useful in
real-time systems because most realis-
tic problems incorporating practical is-
sues such as task blocking and transient
overloads are NP-hard. Garey, Graham,
and Johnson2 summarize this as follows:

For real-time systems, it is more im-
portant to use algorithms that, while
not optimal, will be predictable, guar-
antee acceptably high levels of resource
utilization, and address practical issues
such as operating system overhead, task
synchronization, aperiodic events, and
transient overload. Two scheduling al-
gorithms are especially important for
scheduling real-time systems: the rate-
monotonic scheduling algorithm and the
earliest deadline scheduling algorithm.
The former is an on-line but static prior-
ity algorithm that assigns periodic task
priorities in inverse relation to the task
periods. The latter is a dynamic priority
algorithm in which the highest priority
is accorded to the ready task with the
nearest deadline.

There are several classifications of
on-line scheduling algo-
rithms. One dichotomy is
based onpreemptive and non-
preemptive scheduling algo-
rithms. Preemptive algo-
rithms assume that any
process can be suspended by
the scheduler at any time with
relatively small overhead and
later can be resumed from
the point of suspension. The
most common reason for pre-
emption is to run a higher
priority task.

Unfortunately, although it is not difficult
to design optimization algorithms (e.g.,
exhaustive search is usually applicable),
the goal of designing efficient optimization

Other robot control
A

A comprehensive scheduling theory
has been developed for fixed priority
preemptive systems based on the rate-
monotonic algorithm; the theory is called
generalized rate-monotonic analysis.
Interested readers should consult A
Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate-Monotonic
Analysis for Real-Time System? for a
comprehensive description of the theo-
ry. Because the theory can handle many
practical problems that arise with real-

time systems, it provides a
basis for designing predict-
able real-time industrial com-
puting systems.

Sensor information
Other robot control

Fiber distributed
$

Node 3

Robot control

Nonpreemptive scheduling
algorithms do not permit sus-
pension of running process-
es. Nonpreemptive schedul-
ers are relatively easy to
implement, but they can

Command interface Display processing

Figure 1. High-level view of the robotics application.

algorithms has proved much more difficult
to attain. In fact, all but a few schedule-
optimization problems are considered
insoluble except for small or specially
structured problem instances. For these
scheduling problems, no efficient
optimization algorithm has yet been found
and, indeed, none is expected. This
pessimistic outlook has been bolstered by
recent results showing that most scheduling
problems belong to the infamous class of
NP-complete problems.

Industrial
computing
example

To illustrate how the gen-
eralized rate-monotonic
scheduling theory applies to
a large class of industrial com-
puting problems, we will an-
alyze a realistic example
based on a real-time robotics
application4

Figure 1 presents a high-

26 COMPUTER

level view of this application. An FDDI
(fiber distributed data interface, ANSI
X3T9.5) network has four nodes. Nodes
1, 2. and 3 are dedicated to robotics
applications, and Node 4 has an opcra-
tor’s console system for displaying sys-
tem measurement data and issuing
commands to the other nodes’ robotic
measurement systems.

The system must satisfy two types of
timing requirements:

*Each task on each node must be
guaranteed to meet its deadline.

l System-level timing constraints such
as end-to-end deadlines across nodes
must be satisfied.

An end-to-end deadline is a timing re-
quirement for processing that requires
several resources, such as several CPUs
and the network. Although this system
has multiple end-to-end deadlines. for
this discussion, we assume a single end-
to-end deadline.

Robotics applications. The actual ro-
bot system measures the shape of pipes
by moving around them and using a
distance sensor. We’ve simplified the
system’s task set to reflect only the
important activities relevant to our
analysis.

Figure 2 shows system functions in
terms of tasks and subtasks (assume
that Nodes 2 and 3 are similar). Each
task represents the response to some
event (for example, the arrival of sensor
data). A subtask represents a portion of
that response that executes at a con-
stant priority. The total response to an
event might execute at multiple priori-
ties-higher numbers mean higher pri-
orities - and hence might comprise
multiple subtasks.

There are five tasks, one for robot
control and two each for the measure-
ment subsystems and system command.
In robot control, ‘c, controls the robot’s
servomotors and has two subtasks. The
corresponding activities are (1) reading
servosensor inputs and (2) controlling
robot motion.

Tasks rz and r? constitute the mea-
surement subsystem and synchronize
with each other. Task rz reads the dis-
tance sensors, performs some data pre-
processing, and sends the results to Node
4. Task r3 does more processing on the
sensor data for local use.

Task tl is responsible for receiving
and interpreting system commands ar-

January 1994

-

Table 1. Node 1 tasks (units in milliseconds).

Task T C,, Ci2 C,; C,, D, P,, Pi2 P,; P.,

Tl 40 1 5 - 40 10 7 - -
T-. so 7 11 2 - SO 5 8 5 -
T; 100 10 5 5 - 100 4 8 4 -
T4 200 8 1x 3 2 200 9 2 3 2
T< 400 2 12 10 - 400 3 1 6 -

riving from Node 4, while r$ processes
and executes these commands. The tasks
synchronize with each other. Task r?
also has to update some control vari-
ables that affect the operation of the
rest of the tasks.

Tasks can execute at multiple priori-
ties. For example, r, is considered a
single task but is composed of two sys-
tem subtasks: (1) an interrupt service
routine and (2) servo control, which
executes only after signaling by the in-
terrupt service routine.

Table 1 shows the execution times
and priorities of the subtasks as well as
the periods and deadlines of the five

tasks. Task T, is the period of the ith
task. D, is the deadline of the ith task. C,,
is the execution time of the jth subtask
of the ith task. P,, is the execution prior-
ity of the jth subtask of the ith task.
Each task has a deadline at the end of its
period.

Task t2 has been assigned an end-of-
period deadline, but the deadline actu-
ally arises from a system-level deadline.
Specifically, there is an end-to-end dead-
line of 0.5 seconds from the time the
data is sensed by r2 on Node 1 to the
time it is displayed on Node 4.

Data display. Node 4 performs a data

‘t:%
sensors

Control
outputs

Communication
subsystem -

Remote
‘system

ment
system

Figure 2. Node 1 tasking structure.

27

Table 2. Node 4 tasks (units in milliseconds).

Task D, p,
Resource Access

(Time)

71 80 20 80 10
72 100 61 200 9
T3 300 30 300 8

Yes (4)
No C-1
Yes (5)

display function. Tasks z, and 7, need
mutually exclusive access to a shared
resource (device) and are responsible
for reading and displaying data from
Nodes 2 and 3, respectively. Task z, is
responsible for displaying data sent from
Node 1. Table 2 shows the execution
times, periods, deadlines, and priorities
for the tasks on Node 4.

ing behavior. The solution strategy is
to decompose this distributed-system
resource-scheduling problem into sep-
arate local-resource-scheduling prob-
lems and then apply appropriate real-
time resource-scheduling techniques to
each resource.

Tasks z, and z, have end-of-period
deadlines. Task z, has a deadline of 200
ms that represents a part of the OS-
second end-to-end deadline of the sen-
sor data of z, on Node 1.

Sensor data received at Node 1 must
be displayed at Node 4 within the end-
to-end timing requirement of 0.5 sec-
ond. These data must traverse three
resources: the CPU at Node 1, the net-
work to get from Node 1 to Node 4, and
the CPU at Node 4.

. . .> 7,. Each task is characterized by four
components (C,, Tj, D,, I,), 1 5 i 5 n,
where C, equals the computation re-
quirement of each instance of zi; T, equals
the period of r,; Di equals the deadline
of z,; and I, equals the phasing of 7;
relative to some fixed time origin.

Each periodic task creates a continu-
al sequence of jobs. The jth job of z, is
ready at time Z, + 0’ - 1) T,, and the C,
computation units required for each job
of 2, have a deadline of Z, + G- 1) T, + Di.
Liu and Layland assumed D, = T,. A task
set is said to be schedulable by a partic-
ular scheduling algorithm, provided all
deadlines of all the tasks are met under
all task phasings if that scheduling algo-
rithm is used.

FDDI description. FDDI is a 100-
megabit per second local/metropolitan
area network that uses a token ring
protocol. The time it takes a token to
traverse an idle ring is called the walk
time (WT), which for this example is 1
ms. Under this protocol, the network
parameter known as the target token
rotation time is chosen. The TTRT is
the maximum amount of time it can
take for the token to make a round trip
in the network. Transmission time is
allocated to each node in a manner that
enforces the TTRT. For our example,
TTRT is 8 ms. The total amount of time
available to be split between the nodes
is TTRT - WT.

We will decompose this end-to-end
deadline and attempt to create shorter
independent deadlines on each resource.
If the sum of the deadlines on these
three resources is less than the end-to-
end deadline and the deadlines are sat-
isfied, this system constraint will be
satisfied.

A simple way of assigning deadlines
on individual resources is to assign one
period on each resource. Thus, the as-
signed deadline for the sensor data on
Node 1 and on the network correspond
to the period of 7,. A longer deadline is
necessary on Node 4, which has a high
level of processor utilization. Hence,
the allocated timing budget for each
resource is

Liu and Layland proved three impor-
tant theorems concerning static priori-
ty-scheduling algorithms. Consider first
the longest response time for any job of
zi where the response time is the differ-
ence between the task instantiation
time (I1 + kT,) and the task completion
time - that is, the time at which that
instance of z, completes its required C,
units of execution. If any static priority-
scheduling algorithm is used and tasks
are ordered so that z, has a higher prior-
ity than rj for i <i, then

Theorem 1: The longest response time for
any instance of z, occurs when it starts with
all higher priority tasks (that is, I, = I, =

= I, = 0).5

Each robotics node is allocated 30
percent of the available time, and the
display station is allocated the remain-
ing 10 percent of the available time. We
will assume that 2, on Node 1 transmits
1 Mbit of data every 50 ms to Node 4.

l 50 ms for z, on Node 1 to complete
its processing,

050 ms for z2 to transmit its data
across the network, and

l 200 ms for z, on Node 4 to complete
its processing.

Applying rate-
monotonic analysis

A critical instant is defined as an in-
stant at which a request for a job will
result in the longest possible response
time for the job. A critical instant oc-
curs when I, = I2 = . . = Z, = 0, which is
called the critical instant phasing be-
cause it is the phasing that results in the
longest response time for the first job of
each task. Consequently, this creates
the worst-case task set phasing and leads
to a criterion for the schedulability of a
task set.

Next, we analyze the application’s tim-
ing behavior, introducing relevant the-
oretical results and illustrating the prac-
tical applicability of each result.

The total delay adds up to 300 ms, or
less than the end-to-end deadline of 0.5
second. Our first problem is to under-
stand the timing behavior of periodic
tasks. Theorem 2: A periodic task set can be

scheduled by a static priority-scheduling
algorithm when D, 5 T,, 1 S i 5 FZ, provided
the deadline of the first job of each task
starting from a critical instant is met using
the scheduling algorithm.5

Solution strategy. We use a divide-
and-conquer approach for understand-
ing and controlling the application’s tim-

Applying rate-monotonic analysis
to periodic tasks. Liu and Laylands ad-
dressed the problem of scheduling
periodic tasks analytically. They con-
sidered both static priority and dynamic
priority scheduling algorithms and

The rate-monotonic algorithm assigns
every instance of a task an identical

28 COMPUTER

studied this scheduling problem under
idealized circumstances by assuming that
all tasks are independent and periodic
and have end-of-period deadlines.

Consider a set of 12 periodic tasks, r,,

priority and assigns priorities inversely
to task periods. Hence, ‘5, receives high-
er priority than z, if T, < T,. Ties are
broken arbitrarily. This algorithm is an
optimal static priority algorithm in the
sense that any task set that can be
scheduled by some static priority algo-
rithm can also be scheduled by the rate-
monotonic algorithm.

Table 3. Node 4 task schedulability (units in milliseconds).

Task T, C, Di

51 80 20 80
72 100 61 200
T3 300 30 300

Less Than
Cumulative Theorem 3 Theorem 3

u, U Bound Bound

0.250 0.250 1.000 Yes
0.610 0.860 0.828 No
0.100 0.960 0.779 No

The rate-monotonic-scheduling algo-
rithm considers only task periods, not
task computation times or the relative
importance of the task in the task set.
Liu and Layland went on to offer a
worst-case upper bound for the rate-
monotonic-scheduling algorithm. In oth-
er words, a threshold U: exists such
that, if the utilization of a task set con-
sisting of n periodic tasks, U = C,IT, +

set using a static priority-scheduling
algorithm based on the original work of
Joseph and Pandya.’ We will use this
refined analysis to recheck tasks whose
schedulability could not be guaranteed
using the technique based on utilization
bounds.

. . + C,IT,,, is no greater than u:, then
the rate-monotonic-scheduling algo-
rithm is guaranteed to meet all task
deadlines.

Theorem 3: A periodic task set T,, T,, . . ,
z, with D, = T,, 1 I i < n, is schedulable by
the rate-monotonic-scheduling algorithm
if5 U, + + V, 5 Uz= n(2”” - l), n = 1,
2, . .

The sequence of scheduling thresh-
olds is given by UT = 1.0, lJG = ,828, U; =
,779, U;= .756,. . ., U” = ln2 = .693. Con-
sequently, any periodic task set can be
scheduled by the rate-monotonic algo-
rithm if its total utilization is no greater
than .693.

$z;$f$te;t) ;;~n;hepc~~u;~:
tive demahd for irocessing by z,, 1 2 j <
i during [0, t]. Using Theorem 2, 75, meets
all its deadlines if its first job meets its
deadline under critical instant phasing.
Thus, z, will meet its deadline if W:(t) =
t at some time t, 0 2 t $ D,, the deadline
of the first job of z,. Equivalently, this
job will meet its deadline if and only if
there is t, 0 < t $ D,, at which W,(t)lt < 1.
The smallest time t satisfying this
inequality gives the longest possible
completion time of any instance of z,.
We summarize this in the following
theorem:

Theorem 4: Let a periodic task set T,, T*.
Analyzing Node 4 with bounds. We

will use Theorem 3 to analyze the sched-
ulability of tasks on Node 4, ignoring
the mutual exclusion requirements on
the shared resource. Theorem 3 only
applies to the case in which D, = T,. For
z,, this constraint represents an earlier
deadline than the allocated deadline of
200 ms. Table 3 illustrates the individu-
al and cumulative utilizations for the
task set and also lists the values of the
utilization bounds of Theorem 3.

.) T, be given in priority order and
scheduled by a fixed priority-scheduling
algorithm using those priorities. If D, 5 T,,
then z, will meet all its deadlines under all
task phasings if and only if 6

The entire task set is schedulable under
the worst-case phasing if and only if

Table 3 shows that z, is guaranteed by
Theorem 3 to meet all of its deadlines
since its utilization is less than the utili-
zation bound and D, = T,. However,
Theorem 3 cannot guarantee the dead-
lines of T2 and z, because the cumulative
utilization exceeds the utilization bound
of Theorem 3. Therefore, a more de-
tailed analysis is required.

The criterion given in Theorem 4 is
easy to compute. Create a sequence of
times S,, S,, . . . with S, = c f=, C,, S,,+, =
W,(S,). If for some n, S, = Sntl 5 D,, then
2, is schedulable, and S, is its worst-case
completion time. If, instead, D, 5 S, for
some n, task 2, is not schedulable. We
call this the completion time test.3J

Exact analysis for computing com- Analyzing Node 4 using exact analy-
pletion times. Here we present an exact sis. We now use Theorem 4 to check the
analysis of the schedulability of a task schedulability of z, and zl.

January 1994

-

Using the completion time test for z,
first:

S, = l(20) + l(61) + l(30) = 111 ms
S, = 2(20) + 2(61) + l(30) = 192 ms
S, = 3(20) + 2(61) + l(30) = 212 ms
S, = 3(20) + 3(61) + l(30) = 273 ms
S, = 4(20) + 3(61) + l(30) = 293 ms
S, = 4(20) + 3(61) + l(30) = 293 ms

Therefore, z3’s worst-case completion
time is 293 ms, and it meets its deadline
at 300 ms.

Using the completion time test for z,:

S, = l(20) + l(61) = 81 ms
S, = 2(20) + l(61) = 101 ms
S, = 2(20) + l(61) = 101 ms

Thus, z2 completes at time 101 ms, or
before its deadline at 200 ms. Even so,
this is insufficient to conclude that all
deadlines of all invocations of z, will
meet their deadlines. That is because
the Theorem 2 assumption D, < T, has
been violated and is no longer sufficient
to check the first job’s deadline. How-
ever, a more general bound is available.

Generalizing utilization bounds.
Here we consider the situation in which
the task deadlines need not be equal to
the task periods. As discussed in Lehoc-
zky’.6 and Burns,8 Leung and White-
head initially considered this problem
and introduced a new static priority-
scheduling algorithm, the deadline-
monotonic algorithm, in which task
priorities are assigned inversely with
respect to task deadlines. That, is 2, has
a higher priority than z,if D, < D,. Leung
and Whitehead proved the optimality
of the deadline-monotonic algorithm
whenDiST,,lSiSn.

Theorem 3 has been generalized for
the case in which D, = AT,, 1 I i 5 n and
0 < A I 1, and for A > 1.’ In this case,
the rate-monotonic and deadline-
monotonic-scheduling algorithms give

29

the same priority assignment. We have
the following generalization of Theo-
rem 3:

Theorem 5: A periodic task set with D, =
AT,, 15 i 5 II and A = 1,2,. . is schedulable
if ’

(I, +...+U, I U;;(A)

Applying generalized utilization The priority ceilingprotocol is a syn-
bounds. Using the utilization bound for chronization protocol that uses priority
II = 2 and A = 2 from Theorem 5, we see inheritance to bound the duration of
that the cumulative utilization for r2 = priority inversion. It uses additional syn-
860, or less than 2(1)((3/2)“’ - 1) = 1.0. chronization rules to prevent deadlock
Therefore, all invocations of r2 on Node and further reduces priority inversion
4 are guaranteed to complete within 200 to the duration of at most one critical
ms of the time they are initiated. section of lower priority tasks.

Analysis of synchronization require-
ments. Until now, we have ignored the
fact that z, and r3 need to synchronize to
access a device mutually exclusively.
Here, we analyze the impact of such
synchronization requirements.

Consider the following scenario. Peri-
odic tasks z,, ., r,, are arranged in
descending order of priority. Suppose z,
and z, share a data structure guarded by
a semaphore S. Suppose that z, begins
execution and enters a critical section
using this data structure. Task 2, is initi-
ated next, preempts z,, and begins exe-
cution. During its execution, or attempts
to use the shared data and is blocked on
the semaphore S. Task T,, now continues
execution, but before it completes its
critical section, it is preempted by the
arrival of one of the tasks T,, . . ., r,_,.
Because none of them uses S, any of
these tasks that arrive will execute to
completion before 2, can execute and
unblock z,. This creates priority inver-
sion, where 2, is blocked by a lower
priority task for a potentially unbound-
ed amount of time. Tasks not involved
with the critical section can become the
dominant factor causing the delay.

The solution to this problem is prior-
ity inheritance, that is, a task blocking a
high-priority task inherits that task’s
priority for the duration of the blocking
period. In the scenario above, priority
inheritance would call for 2, to elevate
its priority to that of z, from the time Z,
blocks on S until the blocking condition
is removed. This would prevent any of
72,. . ., rn-, frompreemptingz, and would
bound the duration of the priority in-

Tasks not involved with
the critical section can
become the dominant

factor causing the delay.

version to the length of time that z,
holds S.

Theorem 6: The priority ceiling protocol
prevents deadlocks, and under the
protocol, a job J can experience priority
inversion for the duration of one critical
section at most9

To analyze scheduling using the rate-
monotonic-scheduling algorithm in con-
junction with the priority ceiling proto-
col, we define B,, 1 5 k 5 n, the longest
duration of blocking that can be experi-
enced by z,. Once these blocking terms
have been determined, they can be used
in a slightly modified version of the
completion time test.

Analyzing synchronization on Node
4. Using Theorem 6 (assuming the pri-
ority ceiling protocol is used), we can
determine that the blocking incurred by
z, due to zj is 5 ms. Applying a slightly
modified version of the completion time
test to z, amounts to simply adding the
blocking term to its execution time, in-
creasing it to 25 ms, or less than its
deadline of 80 ms. Therefore, 2, meets
its deadline even with the additional
delay due to synchronization.

Task 2, can also incur blocking. The
priority ceiling protocol uses priority
inheritance as part of the protocol.
Therefore, during the execution of the
critical section, T, can be executing at a
priority equal to the priority of or and
hence can block 22 for 5 ms. By adding
the blocking to the execution time of z,
and applying Theorem 4, we can show
that 2, is schedulable.

Analyzing a complex priority struc-
ture. Shifting the focus to Node 1, we

first observe that tasks no longer exe-
cute at a single priority. Tasks have
several subtasks that are executed in
serial order.

Gonzalez Harbour, Klein, and Le-
hoczky4 researched the situation in which
tasks are divided into subtasks and are
executed in serial order. This situation
can arise in many practical circum-
stances. For example, it can arise when
high-priority tasks are blocked by the
interrupts of low-priority tasks (the in-
terrupt portion of the low-priority task
would be considered an initial subtask
that is executed at an elevated priority),
when synchronization is required (and
a task elevates its priority to enforce
mutual exclusion), or when operating
system activities (such as task swapping
or scheduling) are included in the anal-
ysis. The static priority-schedulability
analysis of this problem is similar in
nature to the usual case, except that the
system designer must be careful in
determining all the jobs whose dead-
lines must be checked and the worst-
case task phasings. These conditions are
fully spelled out in Gonzalez Harbour,
Klein, and Lehoczky.

The analysis of tasks with multiple
subtasks is greatly simplified by reduc-
ing a task to its canonical form. A task is
said to be in canonical form if it consists
of consecutive subtasks that do not de-
crease in priority. The following theo-
rem says that a task in canonical form
has the same completion time as the
original task:

Theorem 7: Suppose 7, has two consecutive
subtasks rij and T!~+, of strictly decreasing
priority P,, > P,j+,. For any task set phasing,
the completion times of 7, and its subtasks
T,~, j + 1 < k 2 m(i) are unchanged if the
priority of r,, is reduced to P,,,,, assuming
all equal priority segments are executed in
the same relative order.4

Theorem 7 can simplify the determi-
nation of whether a particular task meets
its deadline. By applying this theorem
to all such consecutive subtasks, we can
reduce the task to canonical form.

The canonical form of 7i is another
task, ri, obtained by applying the fol-
lowing algorithm starting with the final
subtask of T,. Let Pi; denote the priority
of subtask T&.

l Set pi&O = P,,(,p where m(i) denotes
the number of subtasks of 7i.

l If Pi’, < Pi,..,, then set Pi;-, = Pi;
l If Pi’, 2 P+,, then set Pi;-, = Pi;

30 COMPUTER

l Continue with this procedure, mov-
ing from the last subtask to the first.

After applying the algorithm, consec-
utive subtasks of the transformed task
with equal priority can be combined
into a single subtask. For example, on
Node 1, z, through z, in canonical form
become tasks with only one subtask
having priority 7,5,4, and 2, respective-
ly. Task 7, consists of two subtasks hav-
ing priority 1 and 6.

Using Theorem 7 to reduce zj to its
canonical form, the resulting task, 71,
will consist of m ’(i) subtasks r:i, . . .,
r&i) having priorities Pmin, = P,;< . . .
cmci)‘. The canonical form is useful for
reasoning about the phasing of other
tasks that create the worst-case response
time for z,. This phasing will depend on
the priority levels of each task, com-
pared to the priority of the first segment
of the canonical form task. This results
in a classification of the other tasks with
respect to z:.

Task classification. When analyzing
z,, we place other tasks into groups based
on the priorities of their subtasks rela-
tive to z,. A key criterion is the priority
of the first subtask relative to the mini-
mum priority of all subtasks of zi, Pmin,.
For example, a task that starts with a
high-priority subtask will eventually be
able to preempt the subtask of z, with
the minimum priority. Conversely, a task
that starts with a lower priority subtask
will never have this opportunity. Since
the task groupings are relative to the
priority structure of zi, the groups will
vary as a function of the task being
analyzed.

We call a sequence of consecutive
subtasks asegment. An H segment com-
prises a sequence of consecutive sub-
tasks, each of which has a priority equal
to or greater than Pmin,. Similarly, an L
segment refers to any set of consecutive
subtasks, each of which has priority strict-
ly less than Pmin,. An effect due to
preemption by a first segment that is an
H segment is called apreemption effect.
An effect due to an H segment that
occurs after an L segment is a blocking
effect.

The four types of tasks are

l Type 1: Each of these has a single H
segment and therefore can preempt z,
more than once. Each task in this group
determines the worst-case completion
time for zi.

January 1994

-

Table 4. Node 1 task classification rel-
ative to 22 (H represents a higher pri-
ority segment; L represents a lower
priority segment).

Priority Task
Task (Relative Priority) Type

71 10 --;, 7 H
HjH

z3 4+8+4 LHL
L+H*L

3 3+1+6 LH
LjL+H

l Type 2: With this type, each high-
priority segment is followed by a low-
priority segment. Consequently, each
task in this set can preempt zi only once.

l Type 3: With this type, each high-
priority segment is preceded by a low-
priority segment. Consequently, only
one task in this group can contribute a
blocking effect.

l Type 4: Each of these has a single L
segment; hence, they have no effect on
the completion time of T,, and can be
ignored.

A blocked-at-most-onceproperty. Our
procedure for finding the worst-case
phasing for other tasks uses a blocked-
at-most-once propertylO to determine
the effect of internal and final H seg-
ments (that is, blocking segments).

Theorem 8: No more than one blocking
segment can delay z,‘s completion time.4

Node 1 analysis. The lower level pri-
orities of each task have been assigned
according to rate-monotonic order, us-
ing the task periods. Tasks z, and Z, start
with an interrupt service routine and
therefore have the priorities of their
first sections fixed by the system’s hard-
ware. Tasks z, and z, synchronize in
their middle subtasks and execute both
subtasks at the same elevated priority.
Tasks r4 and z, also synchronize and are
assumed to have their third and initial
subtasks, respectively, executing at the
same priority. Task z,‘s final subtask
must modify some control variables and
therefore is executed at relatively high

priority to prevent interference from
some of the other tasks.

Before 2, can be analyzed on Node 1,
it must be converted to canonical form.
The canonical form of 2, is a task that
has a simpler priority structure and pre-
serves the original task’s completion
time. The canonical task associated with
z, is 2; with the following properties:

C; = 20; T; = 50; P; = 5

Task 2; has a single subtask whose exe-
cution time is the sum of the execution
times of the original subtasks and whose
priority is equal to the priority of C,,.

The next step in determining 7,‘s
completion time is to classify each of
the other tasks on Node 1 relative to z,,
as shown in the Table 4. Table 4 and
Theorem4 show that the effects of z,, ‘cd,
and z, must be included in the comple-
tion time test. The new term for the
completion time test is calculated as
follows:

B, = max(C,,, G,) + G
= max(5,lO) + 8 = 18 ms

Using the completion time test:

So = l(6) + l(20) + 18 = 44 ms
S, = 2(6) + l(20) + 18 = 50 ms
S, = 2(6) + l(20) + 18 = 50 ms

Since S, = S,, the completion time is
50 ms and the deadline is satisfied.

Network analysis. The key to analyz-
ing the schedulability of the network is
to understand if the percentage of net-
work bandwidth allocated to a node is
sufficient to keep up with the message
traffic originating from that node. The
strategy for this analysis is to evaluate
each node separately and to treat the
message traffic generated by each node
as a set of network tasks.”

Each periodic message originating
from a specific node is considered a
network task. This set of network tasks
is then augmented by a higher priority
task accounting for the network band-
width that is not available to the node
under analysis.

In our example, 2, on Node 1 gener-
ates 1 Mbit of data every 50 ms. Since an
FDDI network transmits 100 Mbit/sec-
ond, network use due to r2 is equivalent
to a network task that would execute 10
ms every 50 ms. Next, we must charac-
terize the network task that represents

31

-

the bandwidth that is unavailable to
Node 1.

Recall that the target token rotation
time is 8 ms, the token walk time is 1 ms,
and 30 percent of the network band-
width is dedicated to Node 1. There-
fore, the bandwidth of the network not
available to Node 1 can be represented
as a high-priority network task with

l an execution time equal to TTRT
- .30 (TTRT - WT) = 5.9 ms.

l a period equal to 8 ms.

Therefore, we must ensure that the
following two tasks are schedulable and,
if so, the messages generated by Node 1
are schedulable:

l Network task 1: execution time equal
to 5.9 ms and a period equal to 8 ms
at a high priority.

l Network task 2: execution time equal
to 10 ms and a period equal to 50 ms
at a low priority.

Using the completion time test, we
can show that these two tasks are in-
deed schedulable, with network task 2
completing within 39.5 ms in the worst
case. Therefore, the latency attribut-
able to the network is less than the
required 50 ms.

End-to-end deadline analysis. Next,
we describe the latencies encountered
by the sensor data from Node 1 until its
display on Node 4. The latencies consist
of the timing budgets we allocated on
Nodes 1,4, and the network, as well as
latencies that can be incurred if these
activities are not in phase:

l 50 ms for z, on Node 1 to complete
its processing,

l 50 ms to transmit its data across the
network,

l 100 ms on Node 4. (Task r2 on Node
4 is initiated every 100 ms. It reads
data from the last two time intervals
of the data that z, sent on Node 1.
However, since the task is polling
for data, it could be out of phase by
one period from the arrival of the
oldest data in its input buffer. This
can introduce an additional 100 ms
of latency.)

l 200 ms for z, on Node 4 to complete
its processing.

constraint. Since there is some slack,
the system designer can introduce addi-
tional tasks or use this slack for future
extensions and modifications.

T here have been many exten-
sions of the rate-monotonic-
scheduling algorithm to address

a multitude of other practical problems
that arise with real-time systems. These
include

l providing excellent response times
to aperiodic tasks using a periodic serv-
er assigned a period and a processing
capacity such that incoming aperiodic
tasks can run at the priority of the serv-
er when capacity is available,

l analyzing loss in schedulable utili-
zation due to distinct priority-level lim-
its (for example, in network and bus
scheduling),

*ensuring that the most important
tasks meet their timing requirements in
cases of transient overload when not all
deadlines can be met,

l extending the processor scheduling
theory to communication subsystems,

l developing a theory of predictable
mode changes, and

l incorporating rate-monotonic-
scheduling support into Ada, Posix, and
Futurebus+.

The above topics, and many others
with associated references, are discussed
in review articles by Lehoczky1,6 and
Burns.R Readers interested in the prac-
tical aspects of using rate-monotonic
scheduling should consult Klein et a1.,3
and those interested in a tutorial on
hard real-time systems should consult
Stankovic and Ramamritham.12

Our own future research will include
integrating these techniques for timing
analysis with dependability techniques
to achieve safe operation, high avail-
ability, and on-line software/hardware
upgrades. n

Acknowledgments
This research is supported in part by the

US Office of Naval Research under contract
N00014-92-J-1524 and by IBM Federal Sys-
tems Company under University Agreement
Y-278067. The US Deoartment of Defense

Lehoczky,4 Lehoczky
mar, and Sathaye.”

References

et al.,6and Sha, Rajku-

1. J.P. Lehoczky, “Real-Time Resource-
Management Techniques,” J.J. Marcin-
iak, ed., Encyclopedia of Software Eng.,
John Wiley and Sons, New York, 1994,
pp. l,Oll-1,020.

2. M.R. Garey, R.L. Graham, and D.S. John-
son, “Performance Guarantees for Sched-
uling Algorithms,” Operations Research,
Vol. 26, No. 1, Jan.-Feb. 1978, pp. 3-21.

6.

10.

11.

M. Klein et al., A Practitioner’s Hand-
book for Real-Time Analysis: Guide to
Rate-Monotonic Analysis for Real-Time
Systems, Kluwer Academic Publishers,
Boston, July, 1993.

M. Gonzalez Harbour, M. Klein, and J.
P. Lehoczky, “Analysis of Tasks with
Varying Fixed Priorities,” Proc. 12th
IEEE Real-Time Systems Symp., IEEE
CS Press, Los Alamitos, Calif., Order
No. 2450, 1991, pp. 116-128.

C.L. Liu and J.W. Layland, “Scheduling
Algorithms for Multiprogramming in a
Hard Real-Time Environment,“J. ACM,
Vol. 20, No. 1, Jan. 1973, pp. 46-61.

J.P. Lehoczky et al., “Fixed Priority-
Scheduling Theory for Hard Real-Time
Systems,” A.M. van Tilborg and G.M.
Koob, eds., Foundations of Real-Time
Computing: Scheduling and Resource
Management, Kluwer Academic Publish-
ers, Boston, 1991, pp. l-30.

M. Joseph and P. Pandya, “Finding Re-
sponse Times in a Real-Time System,”
BCS ComputerJ., British Computer Sot.,
Vol. 29, No. 5, Oct. 1986, pp. 390-395.

A. Burns, “Scheduling Hard Real-Time
Systems: A Review,” Software Eng. J.,
Vol. 6, No. 3, May 1991, pp. 116-128.

L. Sha, R. Rajkumar, and J.P. Lehoczky,
“Priority Inheritance Protocols: An Ap-
proach to Real-Time Synchronization,”
IEEE Trans. Computers, Vol. 39, No. 9,
Sept. 1990, pp. 1,175-1,185.

R. Rajkumar, Task Synchronization In
Real-Time Systems, Kluwer Academic
Publishers, Boston 1991.

L. Sha, R. Rajkumar, and S. Sathaye,
“Generalized Rate-Monotonic-Schedul-
ing Theory: A Framework for Develop-
ing Real-Time Systems,” to appear in
IEEE Proc., Vol. 1, 1994.

The total !atency amounts to 400 ms,
sponsors the Software Engineering Institute. 12. J.A. Stankovic and K. Ramamritham,
Parts of this article are based on prior work Hard Real- Time Systems, IEEE CS Press,

which is less than the 500 ms end-to-end by Lehoczky,’ Gonzalez Harbour, Klein, and LosAlamitos,Calif.,OrderNo.819,1988.

32 COMPUTER

Mark H. Klein is a senior member of the John P. Lehoczky joined the faculty at Car-
technical staff at the Software Engineering negie Mellon University in 1969, has been a
Institute at Carnegie Mellon University. His professor of statistics there since 1981, and
research in real-time systems has focused on has been head of the CMU Department of
exploring the application of rate-monotonic Statistics since 1984. He is also a senior mem-
analysis to realistic systems and extending ber of the Advanced Real-Time Technology
the theoretical basis for RMA. He coau- Project at CMU. His research interests in-
thoredthe Practitioner’sGuideforReal-Time volve applied probability theory, with em-
Analysis: Guide to Rate-Monotonic Analysis phasis on models in the area of computer and
for Real-Time Systems. communications systems.

Klein received a BA in biology from Case
Western Reserve University in-1975 and an
MS in mathematics from Carnegie Mellon

Lehoczky received a BA in mathematics
from Oberlin College in 1965, and MS and
PhD degrees in statistics from Stanford Uni-
versity is 1967 and 1969, respectively. He is
a member of Phi Beta Kappa, IEEE, ACM,
the Operations Research Society of Ameri-
ca, and the Institute of Management Science,
and is a fellow of the Institute of Mathemat-
ical Statistics, the International Statistical
Institute, and the American Statistical Asso-
ciation.

University in 1978.

Ragunathan Rajkumar is a member of the
technical staff at the Software Engineering
Institute at Carnegie Mellon University and
as well as the CMU Advanced Real-Time
Technology Project. Previously, he spent
three years as a research staff member at the
IBM T.J. Watson Research Center. His re-
search interests include operating systems
support and techniques for building depend-
able distributed real-time and multimedia
systems. He authored the book Synchroni-
zation in Real-Time Systems: A Priority In-
heritance Approach and has published a num-
ber of articles in the area of real-time systems.

Rajkumar received a BE with honors in
electronics and communications engineer-
ing from the PSG College of Technology in
Coimbatore, India, in 1984, and MS and PhD
degrees in computer engineering from CMU
in 1986 and 1989, respectively. He is a mem-
ber of the IEEE Computer Society.

Readers can contact Klein and Rajkumar at the Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213-3890,
and Lehoczky at the Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213-3890. Their Internet addresses are (mk,
rr}@sei.cmu.edu and jpl@stat.cmu.edu.

b&+-X
p-g 4 1 0 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

g A. j
DHAHRAN 31261, SAUDI ARABIA

*3f,,,filF@
DEPARTMENT OF COMPUTER ENGINEERING

THE COMPUTER ENGINEERING DEPARTMENT SEEKS APPLICATIONS FOR FACULTY POSITIONS.
APPLICANTS MUST HOLD Ph.D. DEGREE IN COMPUTER ENGINEERING OR RELATED AREAS. PREFERENCE
WILL BE GIVEN TO EXPERIENCED APPLICANTS AT THE ASSOCIATE AND FULL PROFESSORIAL RANKS.
INDIVIDUALS WITH DEMONSTRATED RESEARCH RECORDS AND TEACHING EXPERIENCE IN VARIOUS
AREAS OF COMPUTER ENGINEERING WILL BE CONSIDERED WITH PARTICULAR EMPHASIS ON THE
FOLLOWING AREAS: FAULT TOLERANT COMPUTING, COMPUTER NETWORKS AND DATA COMMUNICA-
TIONS, PARALLEL PROCESSING, VLSI, COMPUTER SYSTEM PERFORMANCE EVALUATION AND MODELING.

TEACHING AND RESEARCH AT THE DEPARTMENT IS SUPPORTED BY 3 VAX 11-780 SYSTEMS, A
FULLY EQUIPPED GRAPHICS CENTER, A NUMBER OF DEC 3100, VAX 3100, SUN AND NEXT WORKSTATIONS
AS WELL AS A PC-LAB WITH VARIOUS PERSONAL COMPUTERS (486,386, MACS) AS WELL AS A UNIVER-
SITY DATA PROCESSING CENTER WITH AN IBM 3090 AND AMDAHL 5850 MAINFRAME COMPUTERS. RE-
SEARCH AND TEACHING LABORATORIES IN THE DEPARTMENT INCLUDE: DESIGN AUTOMATION LAB,
MICROPROCESSOR LAB, DIGITAL SYSTEM DESIGN LAB, PRINTED CIRCUIT DESIGN LAB, DATA ACQUISI-
TION LAB, ROBOTICS LAB, AND A COMPUTER COMMUNICATIONS NETWORKS LAB.

KFUPM offers attractive salaries, benefits that include free furnished air-conditioned accommodation on campus,
yearly repatriation tickets, two months paid vacation and two years renewable contract.

Interested applicants are requested to send their Curriculum Vitae with supporting documents no later than one
month from the date of this publication, to:

Dean of Faculty & Personnel Affairs
King Fahd University of Petroleum & Minerals
Dept. No. 9434
Dhahran 31261, Saudi Arabia

