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Rate-monotonic 
analysis, a collection 

of quantitative 
methods, provides a 
basis for designing, 
understanding, and 
analyzing the timing 
behavior of real-time 
industrial computing 

systems. 

I ssues of real-time resource management are pervasive throughout indus- I 
trial computing. Unlike general-purpose computer systems, where re- 

1. sources must be managed to provide adequate system responsiveness for all 
tasks, the underlying physical processes of many industrial computing applications 
impose explicit timing requirements on the tasks processed by the computer 
system. These timing requirements are an integral part of the correctness and 
safety of a real-time system. 

It is tempting to think that speed (for example. processor speeds or higher 
communication bandwidths) is the sole ingredient in meeting system timing 
requirements. but speed alone is not enough. Proper resource-management tech- 
niques also must be used to prevent. for example. situations in which long. low- 
priority tasks block higher priority tasks with short deadlines. One guiding princi- 
ple in real-time system resource management is prrdicrahility, the ability to 
determine for a given set of tasks whether the system will be able to meet all of the 
timing requirements of those tasks. Predictability calls for the development of 
scheduling models and analytic techniques to determine whether or not a real-time 
system can meet its timing requirements. 

This article illustrates an analysis methodology for managing real-time require- 
ments in a distributed industrial computing situation. The illustration is based on 
a comprehensive robotics example drawn from a typical industrial application. 

Classification of tasks and scheduling strategies 
Tasks. Three types of tasks are commonly encountered in real-time systems 

designed for monitoring and control functions. They are periodic tasks, sporadic 
tasks, and aperiodic tasks.’ 

Periodic tasks are the most common. To monitor a physical system or process. 
a computer system must sample it and react to the data gathered. This regular 
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sampling gives rise to a periodic task, a Each task invocation will have an 
single task with a continuous series of explicit timing requirement. The most 
regular invocations (jobs), beginning common requirement is that a task in- 
with an initial invocation at some rela- vocation must be completed within D 
tive initiation time I. Subsequent invo- time units after it is ready; this timing 
cations occur periodically, every Ttime requirement is often referred to as a 
units. Each of these invocations has a hard deadline. Thus, the first invoca- 
computation requirement of C units, tion must be completed by time I + D, 
which can be deterministic or stochas- the second by I + T + D, and so on. 
tic. If the computation time is sto- Periodic tasks are usually invoked by 
chastic, Coften denotes the upper bound internal timers with the periodicity cho- 
(or worst case) computation time. sen to ensure a latency short enough to 

react to events or changes in the under- 
lying physical process. 

Sporadic and aperiodic tasks refer to 
a continuous series of jobs invoked at 
irregular intervals. Sporadic tasks have 
hard deadlines and a bound on how 
small the interarrival interval between 
two successive jobs can be. 

Aperiodic jobs can arrive with arbi- 
trarily small interarrival intervals. The 
arrival patterns can be described byprob- 
ability density functions. Timing require- 

Characterizing real-time industrial computing Characterizing real-time industrial computing 

industrial spunk capab&ti@s directly affect a na- industrial spunk capab&ti@s dirsctiy affect a na- Vessel traffic systems used for harbor traffic manage- YWS%l traffic systems used for harbor traffic manage- 
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complex in the ae4?ee +&at tight CaRtFol must b% tiain- complex in the ae~~e +&at tight CaRtFol must b% tiain- considerations for advanc%d vessel traffic syst%ms. These considerations for advanc%d vessel traffic syst%ms. These 
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s&r% that f%su&g pr~~ maet quality %~i~~t~o~. s&r% that f%su&g pr~~ maet quality %~~~~t~o~. to control dang8rvus situativns,that can arise and . . . im- to control dang%r@us situativns,that can arise and . . . im- 

The current trend Is toward diat&btited, fl6x#bl8 manu- The current trend Is toward diat~tited, fl6x#bl8 manu- ply damage or ioss of goods and injury to people if not ply damage or ioss of goods and injury to people if not 
facturin$j in which fabliiee can Is% quickly reconfigured facturin$j in which fabliiee can Is% quickly reconfigured appropriately handled.“’ appropriately handled.“’ 
to meet changing prMuction requirements. This, @XI- to meet changing prMu&on requirements. This, @XI- Analysis of system speoifications for this type of system Analysis of system speoifications for this type of system 
pled with the need fos tight proceea control and monitor- pled with the need fvr tight prvceea contra1 and monitor- shows the need for handling (1) periodic tasks for data shows the need for handling (1) periodic tasks for data 
Rg, puts great demands on the computing technology Rg, puts great demands on the computing technology acquisition and cotltrol, (2) stringent timing ootistraints for acquisition and cotltrol, (2) stringent timing cotistraints for 
that s#pports this en~ronm%~. These systems often re- that s#pports this en~ronm%~. These systems often re- critical activities, and (3) task types witti hard and soft critical activities, and (3) task types wiiti hard and soft 
quire a high degree of ~pe~b~ non-stop operation quire a high degree of ~p%~b~ non-stop operation timing requirements. timing requirements. 
and safety assurance. Motevver, production control and and safety assur&ce. Moreover, production control and Another example involves patient monitoring in a hospi- Another example involves patient monitoring in a hospi- 
monitoring r~uif~~ts in industrial computing often monitoring r~uif~~ts in industrial computing often tal’s intensive-care unit. A clinician mvnitoring a patient’s tal’s intensive-care unit. A clinician mvnitoring a patient’s 
cr%ate very stringent demands for teal-time prvoessing. cr%ate very stringent demands for teal-time prvoessing. status requires the support of intelligent monitoring that status requires the support of intelligent monitoring that 

Realtime induett4al biting systems are often dis- Realtime induett4al biting systems are often dis- can integrate data from multiple sourGes in real-time. Fac- can integrate data from multiple sourves in real-time. Fac- 
tributed and hav% distinctively stringent timing, r%iiability, tributed and hav% distinctively stringent timing, r%iiability, tor et al.2 said tor et aL2 said 
and safety requkements imposed by the application en- and safety requkements imposed by the application en- 
vironment. in addition, systems such as telecommunica- vifonmeni. in &dWn, systems such as telecommunica- To build a software system that support$ such a monitor, we To build a! software system that suppart$ such a monitor, we 
tivn networks and pourerr generation networks hav% high tion networks and pourerr generation networks hav% high must achieve predictable, real-time performance, accommo- must achieve predictable, real-time performance, accommo- 

availability requirements that require on-line software availability requirements that require on-line software 
date heterogeneous approaches to the manjl separable date heterogeneous approaches tb the manjl separable 
subproblems, and design a useful interface. The need for real- subproblems, and design a useful interface. The need for real- 

and hardware upgrades. and hardware upgrades. time performance is obvious: A monitor that does not run in time performance is obvious: A monitor that does not run in 
Advanced industiiai computing applications include Advanced industiiai computing applications include real time cannot give early warning of life-threatening real time cannot give early warning of life-threatening 

situations. situations. 

4 agile manufacturing facilities that can quickly recon- 
figure plant operatidns to meet chatiging requirements Predictability in the context of hard real-time constraints 

and permit on-line maintenance and upgrade: is a central concern in both examples, and the robotics 

l radars and other sensors for monitoring th8 develop- example discussed in the main text has similar timing 

ment of weather patt%rns, scsismic data, power distribu- requirements in a distributed setting. These and other 

tion grid status, and pollutant division; industiial computing applications can Comprise a collec- 
l satellites, fi&+t~ n&do&%, and high-speed tivn of heterogeneous resources suoh as CPU backplane 

switches to treat &g% volumes of live audio, video, buses, networks, and l/O devices that must be scheduled 

graphics, animation, end text da& to be predictable, flexible, and amenable to mathematical 

l vehicular and ali traffic control systems; and analysis. 
l patient monitoring, heati-lung machinery, CAT (com- 

puterized axial tomography) scanners, magnetic reso- 
nance imaging systems, and other medical information References 
systems. 

1. P. Ancilotti et al., “TRACS: A Flexible Real-Time Environment for 
Traffic Control Systems,” Proc. /EEE Workshop on Real-Time Ap 

Developing these applications will require the integra- p/&&ions, IEEE CS Press, Los Alamitos, Calif., Order No. 4130, 
tion of computing and communications technologies with 1993, pp. 50-53. 

real-time scheduling and fault-toierance technologies to 2, M. Factor et al., “Real-Time Data Fusion in the Intensive Care 
meet their stringent timing and reliability requirements. Unit,” Computer, Vol. 24. No. 11, Nov. IS91 , pp. 45-54. 
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ments for aperiodic tasks are usually 
stated in terms of satisfying an average 
response time requirement. 

Scheduling strategies. Certain real- 
time systems are sufficiently simple and 
static, andinvolve so relatively few tasks, 
that the timeline can be laid out off line. 
For example, if the task set consists 
solely of periodic tasks, then once the 
first invocation has been determined, 
all future invocation times can be deter- 
mined exactly. The resulting off-line 
schedule is called a cyclic executive. 
These schedules can be efficient. They 
can reduce overhead from task swap- 
ping and offer a simple method to en- 
force mutual exclusion while accessing 
a shared resource. Cyclic executives do, 
however, have major problems. Any 
change in the task set, including modifi- 
cations to the tasks themselves, can re- 
quire drawing and fully testing a new 
timeline. The method also requires a 
relatively small task set. Cyclic execu- 
tives are not well suited to handling 
mixtures of periodic and aperiodic tasks; 
consequently, they do not offer as good 
a response time for aperiodic tasks as 
can be achieved by other methods. To 
efficiently implement a cyclic execu- 
tive, the task periods should be as close 
to harmonic as possible to create a short 
schedule. This may force unnecessary 
additional processing load. Finally, a 
cyclic executive cannot easily deal with 
frame overruns, whereby a code seg- 
ment occasionally executes longer than 
expected. For these reasons, we focus 
only on on-line scheduling algorithms 
in this article. 

cause high-priority tasks to miss their 
deadlines if they are blocked by a long 
task. Nevertheless, partial nonpreemp- 
tivity can be effective for concurrency 
control, for example, in enforcing criti- 
cal sections. Some lack of preemptibil- 
ity is often inevitable, for example, when 
interrupts on behalf of lower priority 
tasks are not masked or when the sched- 
uler or other operating system func- 
tions are executing. 

While much of the scheduling litera- 
ture deals with nonpreemptive cases, 
most modern computer systems allow 
task preemption with small overhead. 
Thus, we’ll focus primarily on the pre- 
emptive case. 

A second classification of on-line 
scheduling algorithms is static priority 
versus dynamic priority. A static prior- 
ity scheduling algorithm preassigns a 
fixed priority to each task (and the same 
priority to every invocation of that task). 
A dynamic priority algorithm allows a 
task to change its priority at any time 
between its readiness and completion 
times; different invocations of a period- 
ic task can have different priorities. 

The task-scheduling problem has been 
extensively studied, but the literature 
focuses on optimal scheduling methods 
and their computational complexity. 
Optimal methods are seldom useful in 
real-time systems because most realis- 
tic problems incorporating practical is- 
sues such as task blocking and transient 
overloads are NP-hard. Garey, Graham, 
and Johnson2 summarize this as follows: 

For real-time systems, it is more im- 
portant to use algorithms that, while 
not optimal, will be predictable, guar- 
antee acceptably high levels of resource 
utilization, and address practical issues 
such as operating system overhead, task 
synchronization, aperiodic events, and 
transient overload. Two scheduling al- 
gorithms are especially important for 
scheduling real-time systems: the rate- 
monotonic scheduling algorithm and the 
earliest deadline scheduling algorithm. 
The former is an on-line but static prior- 
ity algorithm that assigns periodic task 
priorities in inverse relation to the task 
periods. The latter is a dynamic priority 
algorithm in which the highest priority 
is accorded to the ready task with the 
nearest deadline. 

There are several classifications of 
on-line scheduling algo- 
rithms. One dichotomy is 
based onpreemptive and non- 
preemptive scheduling algo- 
rithms. Preemptive algo- 
rithms assume that any 
process can be suspended by 
the scheduler at any time with 
relatively small overhead and 
later can be resumed from 
the point of suspension. The 
most common reason for pre- 
emption is to run a higher 
priority task. 

Unfortunately, although it is not difficult 
to design optimization algorithms (e.g., 
exhaustive search is usually applicable), 
the goal of designing efficient optimization 

Other robot control 
A 

A comprehensive scheduling theory 
has been developed for fixed priority 
preemptive systems based on the rate- 
monotonic algorithm; the theory is called 
generalized rate-monotonic analysis. 
Interested readers should consult A 
Practitioner’s Handbook for Real-Time 
Analysis: Guide to Rate-Monotonic 
Analysis for Real-Time System? for a 
comprehensive description of the theo- 
ry. Because the theory can handle many 
practical problems that arise with real- 

time systems, it provides a 
basis for designing predict- 
able real-time industrial com- 
puting systems. 

Sensor information 
Other robot control 

Fiber distributed 
$ 

Node 3 

Robot control 

Nonpreemptive scheduling 
algorithms do not permit sus- 
pension of running process- 
es. Nonpreemptive schedul- 
ers are relatively easy to 
implement, but they can 

Command interface Display processing 

Figure 1. High-level view of the robotics application. 

algorithms has proved much more difficult 
to attain. In fact, all but a few schedule- 
optimization problems are considered 
insoluble except for small or specially 
structured problem instances. For these 
scheduling problems, no efficient 
optimization algorithm has yet been found 
and, indeed, none is expected. This 
pessimistic outlook has been bolstered by 
recent results showing that most scheduling 
problems belong to the infamous class of 
NP-complete problems. 

Industrial 
computing 
example 

To illustrate how the gen- 
eralized rate-monotonic 
scheduling theory applies to 
a large class of industrial com- 
puting problems, we will an- 
alyze a realistic example 
based on a real-time robotics 
application4 

Figure 1 presents a high- 
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level view of this application. An FDDI 
(fiber distributed data interface, ANSI 
X3T9.5) network has four nodes. Nodes 
1, 2. and 3 are dedicated to robotics 
applications, and Node 4 has an opcra- 
tor’s console system for displaying sys- 
tem measurement data and issuing 
commands to the other nodes’ robotic 
measurement systems. 

The system must satisfy two types of 
timing requirements: 

*Each task on each node must be 
guaranteed to meet its deadline. 

l System-level timing constraints such 
as end-to-end deadlines across nodes 
must be satisfied. 

An end-to-end deadline is a timing re- 
quirement for processing that requires 
several resources, such as several CPUs 
and the network. Although this system 
has multiple end-to-end deadlines. for 
this discussion, we assume a single end- 
to-end deadline. 

Robotics applications. The actual ro- 
bot system measures the shape of pipes 
by moving around them and using a 
distance sensor. We’ve simplified the 
system’s task set to reflect only the 
important activities relevant to our 
analysis. 

Figure 2 shows system functions in 
terms of tasks and subtasks (assume 
that Nodes 2 and 3 are similar). Each 
task represents the response to some 
event (for example, the arrival of sensor 
data). A subtask represents a portion of 
that response that executes at a con- 
stant priority. The total response to an 
event might execute at multiple priori- 
ties-higher numbers mean higher pri- 
orities - and hence might comprise 
multiple subtasks. 

There are five tasks, one for robot 
control and two each for the measure- 
ment subsystems and system command. 
In robot control, ‘c, controls the robot’s 
servomotors and has two subtasks. The 
corresponding activities are (1) reading 
servosensor inputs and (2) controlling 
robot motion. 

Tasks rz and r? constitute the mea- 
surement subsystem and synchronize 
with each other. Task rz reads the dis- 
tance sensors, performs some data pre- 
processing, and sends the results to Node 
4. Task r3 does more processing on the 
sensor data for local use. 

Task tl is responsible for receiving 
and interpreting system commands ar- 
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Table 1. Node 1 tasks (units in milliseconds). 

Task T C,, Ci2 C,; C,, D, P,, Pi2 P,; P., 

Tl 40 1 5 - 40 10 7 - - 
T-. so 7 11 2 - SO 5 8 5 - 
T; 100 10 5 5 - 100 4 8 4 - 
T4 200 8 1x 3 2 200 9 2 3 2 
T< 400 2 12 10 - 400 3 1 6 - 

riving from Node 4, while r$ processes 
and executes these commands. The tasks 
synchronize with each other. Task r? 
also has to update some control vari- 
ables that affect the operation of the 
rest of the tasks. 

Tasks can execute at multiple priori- 
ties. For example, r, is considered a 
single task but is composed of two sys- 
tem subtasks: (1) an interrupt service 
routine and (2) servo control, which 
executes only after signaling by the in- 
terrupt service routine. 

Table 1 shows the execution times 
and priorities of the subtasks as well as 
the periods and deadlines of the five 

tasks. Task T, is the period of the ith 
task. D, is the deadline of the ith task. C,, 
is the execution time of the jth subtask 
of the ith task. P,, is the execution prior- 
ity of the jth subtask of the ith task. 
Each task has a deadline at the end of its 
period. 

Task t2 has been assigned an end-of- 
period deadline, but the deadline actu- 
ally arises from a system-level deadline. 
Specifically, there is an end-to-end dead- 
line of 0.5 seconds from the time the 
data is sensed by r2 on Node 1 to the 
time it is displayed on Node 4. 

Data display. Node 4 performs a data 

‘t:% 
sensors 

Control 
outputs 

Communication 
subsystem - 

Remote 
‘system 

ment 
system 

Figure 2. Node 1 tasking structure. 
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Table 2. Node 4 tasks (units in milliseconds). 

Task D, p, 
Resource Access 

(Time) 

71 80 20 80 10 
72 100 61 200 9 
T3 300 30 300 8 

Yes (4) 
No C-1 
Yes (5) 

display function. Tasks z, and 7, need 
mutually exclusive access to a shared 
resource (device) and are responsible 
for reading and displaying data from 
Nodes 2 and 3, respectively. Task z, is 
responsible for displaying data sent from 
Node 1. Table 2 shows the execution 
times, periods, deadlines, and priorities 
for the tasks on Node 4. 

ing behavior. The solution strategy is 
to decompose this distributed-system 
resource-scheduling problem into sep- 
arate local-resource-scheduling prob- 
lems and then apply appropriate real- 
time resource-scheduling techniques to 
each resource. 

Tasks z, and z, have end-of-period 
deadlines. Task z, has a deadline of 200 
ms that represents a part of the OS- 
second end-to-end deadline of the sen- 
sor data of z, on Node 1. 

Sensor data received at Node 1 must 
be displayed at Node 4 within the end- 
to-end timing requirement of 0.5 sec- 
ond. These data must traverse three 
resources: the CPU at Node 1, the net- 
work to get from Node 1 to Node 4, and 
the CPU at Node 4. 

. . .> 7,. Each task is characterized by four 
components (C,, Tj, D,, I,), 1 5 i 5 n, 
where C, equals the computation re- 
quirement of each instance of zi; T, equals 
the period of r,; Di equals the deadline 
of z,; and I, equals the phasing of 7; 
relative to some fixed time origin. 

Each periodic task creates a continu- 
al sequence of jobs. The jth job of z, is 
ready at time Z, + 0’ - 1) T,, and the C, 
computation units required for each job 
of 2, have a deadline of Z, + G- 1) T, + Di. 
Liu and Layland assumed D, = T,. A task 
set is said to be schedulable by a partic- 
ular scheduling algorithm, provided all 
deadlines of all the tasks are met under 
all task phasings if that scheduling algo- 
rithm is used. 

FDDI description. FDDI is a 100- 
megabit per second local/metropolitan 
area network that uses a token ring 
protocol. The time it takes a token to 
traverse an idle ring is called the walk 
time (WT), which for this example is 1 
ms. Under this protocol, the network 
parameter known as the target token 
rotation time is chosen. The TTRT is 
the maximum amount of time it can 
take for the token to make a round trip 
in the network. Transmission time is 
allocated to each node in a manner that 
enforces the TTRT. For our example, 
TTRT is 8 ms. The total amount of time 
available to be split between the nodes 
is TTRT - WT. 

We will decompose this end-to-end 
deadline and attempt to create shorter 
independent deadlines on each resource. 
If the sum of the deadlines on these 
three resources is less than the end-to- 
end deadline and the deadlines are sat- 
isfied, this system constraint will be 
satisfied. 

A simple way of assigning deadlines 
on individual resources is to assign one 
period on each resource. Thus, the as- 
signed deadline for the sensor data on 
Node 1 and on the network correspond 
to the period of 7,. A longer deadline is 
necessary on Node 4, which has a high 
level of processor utilization. Hence, 
the allocated timing budget for each 
resource is 

Liu and Layland proved three impor- 
tant theorems concerning static priori- 
ty-scheduling algorithms. Consider first 
the longest response time for any job of 
zi where the response time is the differ- 
ence between the task instantiation 
time (I1 + kT,) and the task completion 
time - that is, the time at which that 
instance of z, completes its required C, 
units of execution. If any static priority- 
scheduling algorithm is used and tasks 
are ordered so that z, has a higher prior- 
ity than rj for i <i, then 

Theorem 1: The longest response time for 
any instance of z, occurs when it starts with 
all higher priority tasks (that is, I, = I, = 

= I, = 0).5 

Each robotics node is allocated 30 
percent of the available time, and the 
display station is allocated the remain- 
ing 10 percent of the available time. We 
will assume that 2, on Node 1 transmits 
1 Mbit of data every 50 ms to Node 4. 

l 50 ms for z, on Node 1 to complete 
its processing, 

050 ms for z2 to transmit its data 
across the network, and 

l 200 ms for z, on Node 4 to complete 
its processing. 

Applying rate- 
monotonic analysis 

A critical instant is defined as an in- 
stant at which a request for a job will 
result in the longest possible response 
time for the job. A critical instant oc- 
curs when I, = I2 = . . = Z, = 0, which is 
called the critical instant phasing be- 
cause it is the phasing that results in the 
longest response time for the first job of 
each task. Consequently, this creates 
the worst-case task set phasing and leads 
to a criterion for the schedulability of a 
task set. 

Next, we analyze the application’s tim- 
ing behavior, introducing relevant the- 
oretical results and illustrating the prac- 
tical applicability of each result. 

The total delay adds up to 300 ms, or 
less than the end-to-end deadline of 0.5 
second. Our first problem is to under- 
stand the timing behavior of periodic 
tasks. Theorem 2: A periodic task set can be 

scheduled by a static priority-scheduling 
algorithm when D, 5 T,, 1 S i 5 FZ, provided 
the deadline of the first job of each task 
starting from a critical instant is met using 
the scheduling algorithm.5 

Solution strategy. We use a divide- 
and-conquer approach for understand- 
ing and controlling the application’s tim- 

Applying rate-monotonic analysis 
to periodic tasks. Liu and Laylands ad- 
dressed the problem of scheduling 
periodic tasks analytically. They con- 
sidered both static priority and dynamic 
priority scheduling algorithms and 

The rate-monotonic algorithm assigns 
every instance of a task an identical 
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studied this scheduling problem under 
idealized circumstances by assuming that 
all tasks are independent and periodic 
and have end-of-period deadlines. 

Consider a set of 12 periodic tasks, r,, 



priority and assigns priorities inversely 
to task periods. Hence, ‘5, receives high- 
er priority than z, if T, < T,. Ties are 
broken arbitrarily. This algorithm is an 
optimal static priority algorithm in the 
sense that any task set that can be 
scheduled by some static priority algo- 
rithm can also be scheduled by the rate- 
monotonic algorithm. 

Table 3. Node 4 task schedulability (units in milliseconds). 

Task T, C, Di 

51 80 20 80 
72 100 61 200 
T3 300 30 300 

Less Than 
Cumulative Theorem 3 Theorem 3 

u, U Bound Bound 

0.250 0.250 1.000 Yes 
0.610 0.860 0.828 No 
0.100 0.960 0.779 No 

The rate-monotonic-scheduling algo- 
rithm considers only task periods, not 
task computation times or the relative 
importance of the task in the task set. 
Liu and Layland went on to offer a 
worst-case upper bound for the rate- 
monotonic-scheduling algorithm. In oth- 
er words, a threshold U: exists such 
that, if the utilization of a task set con- 
sisting of n periodic tasks, U = C,IT, + 

set using a static priority-scheduling 
algorithm based on the original work of 
Joseph and Pandya.’ We will use this 
refined analysis to recheck tasks whose 
schedulability could not be guaranteed 
using the technique based on utilization 
bounds. 

. . + C,IT,,, is no greater than u:, then 
the rate-monotonic-scheduling algo- 
rithm is guaranteed to meet all task 
deadlines. 

Theorem 3: A periodic task set T,, T,, . . , 
z, with D, = T,, 1 I i < n, is schedulable by 
the rate-monotonic-scheduling algorithm 
if5 U, + + V, 5 Uz= n(2”” - l), n = 1, 
2, . . 

The sequence of scheduling thresh- 
olds is given by UT = 1.0, lJG = ,828, U; = 
,779, U;= .756,. . ., U” = ln2 = .693. Con- 
sequently, any periodic task set can be 
scheduled by the rate-monotonic algo- 
rithm if its total utilization is no greater 
than .693. 

$z;$f$te;t) ;;~n;hepc~~u;~: 
tive demahd for irocessing by z,, 1 2 j < 
i during [0, t]. Using Theorem 2, 75, meets 
all its deadlines if its first job meets its 
deadline under critical instant phasing. 
Thus, z, will meet its deadline if W:(t) = 
t at some time t, 0 2 t $ D,, the deadline 
of the first job of z,. Equivalently, this 
job will meet its deadline if and only if 
there is t, 0 < t $ D,, at which W,(t)lt < 1. 
The smallest time t satisfying this 
inequality gives the longest possible 
completion time of any instance of z,. 
We summarize this in the following 
theorem: 

Theorem 4: Let a periodic task set T,, T*. 
Analyzing Node 4 with bounds. We 

will use Theorem 3 to analyze the sched- 
ulability of tasks on Node 4, ignoring 
the mutual exclusion requirements on 
the shared resource. Theorem 3 only 
applies to the case in which D, = T,. For 
z,, this constraint represents an earlier 
deadline than the allocated deadline of 
200 ms. Table 3 illustrates the individu- 
al and cumulative utilizations for the 
task set and also lists the values of the 
utilization bounds of Theorem 3. 

.) T, be given in priority order and 
scheduled by a fixed priority-scheduling 
algorithm using those priorities. If D, 5 T,, 
then z, will meet all its deadlines under all 
task phasings if and only if 6 

The entire task set is schedulable under 
the worst-case phasing if and only if 

Table 3 shows that z, is guaranteed by 
Theorem 3 to meet all of its deadlines 
since its utilization is less than the utili- 
zation bound and D, = T,. However, 
Theorem 3 cannot guarantee the dead- 
lines of T2 and z, because the cumulative 
utilization exceeds the utilization bound 
of Theorem 3. Therefore, a more de- 
tailed analysis is required. 

The criterion given in Theorem 4 is 
easy to compute. Create a sequence of 
times S,, S,, . . . with S, = c f=, C,, S,,+, = 
W,(S,). If for some n, S, = Sntl 5 D,, then 
2, is schedulable, and S, is its worst-case 
completion time. If, instead, D, 5 S, for 
some n, task 2, is not schedulable. We 
call this the completion time test.3J 

Exact analysis for computing com- Analyzing Node 4 using exact analy- 
pletion times. Here we present an exact sis. We now use Theorem 4 to check the 
analysis of the schedulability of a task schedulability of z, and zl. 
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Using the completion time test for z, 
first: 

S, = l(20) + l(61) + l(30) = 111 ms 
S, = 2(20) + 2(61) + l(30) = 192 ms 
S, = 3(20) + 2(61) + l(30) = 212 ms 
S, = 3(20) + 3(61) + l(30) = 273 ms 
S, = 4(20) + 3(61) + l(30) = 293 ms 
S, = 4(20) + 3(61) + l(30) = 293 ms 

Therefore, z3’s worst-case completion 
time is 293 ms, and it meets its deadline 
at 300 ms. 

Using the completion time test for z,: 

S, = l(20) + l(61) = 81 ms 
S, = 2(20) + l(61) = 101 ms 
S, = 2(20) + l(61) = 101 ms 

Thus, z2 completes at time 101 ms, or 
before its deadline at 200 ms. Even so, 
this is insufficient to conclude that all 
deadlines of all invocations of z, will 
meet their deadlines. That is because 
the Theorem 2 assumption D, < T, has 
been violated and is no longer sufficient 
to check the first job’s deadline. How- 
ever, a more general bound is available. 

Generalizing utilization bounds. 
Here we consider the situation in which 
the task deadlines need not be equal to 
the task periods. As discussed in Lehoc- 
zky’.6 and Burns,8 Leung and White- 
head initially considered this problem 
and introduced a new static priority- 
scheduling algorithm, the deadline- 
monotonic algorithm, in which task 
priorities are assigned inversely with 
respect to task deadlines. That, is 2, has 
a higher priority than z,if D, < D,. Leung 
and Whitehead proved the optimality 
of the deadline-monotonic algorithm 
whenDiST,,lSiSn. 

Theorem 3 has been generalized for 
the case in which D, = AT,, 1 I i 5 n and 
0 < A I 1, and for A > 1.’ In this case, 
the rate-monotonic and deadline- 
monotonic-scheduling algorithms give 
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the same priority assignment. We have 
the following generalization of Theo- 
rem 3: 

Theorem 5: A periodic task set with D, = 
AT,, 15 i 5 II and A = 1,2,. . is schedulable 
if ’ 

(I, +...+U, I U;;(A) 

Applying generalized utilization The priority ceilingprotocol is a syn- 
bounds. Using the utilization bound for chronization protocol that uses priority 
II = 2 and A = 2 from Theorem 5, we see inheritance to bound the duration of 
that the cumulative utilization for r2 = priority inversion. It uses additional syn- 
860, or less than 2(1)((3/2)“’ - 1) = 1.0. chronization rules to prevent deadlock 
Therefore, all invocations of r2 on Node and further reduces priority inversion 
4 are guaranteed to complete within 200 to the duration of at most one critical 
ms of the time they are initiated. section of lower priority tasks. 

Analysis of synchronization require- 
ments. Until now, we have ignored the 
fact that z, and r3 need to synchronize to 
access a device mutually exclusively. 
Here, we analyze the impact of such 
synchronization requirements. 

Consider the following scenario. Peri- 
odic tasks z,, ., r,, are arranged in 
descending order of priority. Suppose z, 
and z, share a data structure guarded by 
a semaphore S. Suppose that z, begins 
execution and enters a critical section 
using this data structure. Task 2, is initi- 
ated next, preempts z,, and begins exe- 
cution. During its execution, or attempts 
to use the shared data and is blocked on 
the semaphore S. Task T,, now continues 
execution, but before it completes its 
critical section, it is preempted by the 
arrival of one of the tasks T,, . . ., r,_,. 
Because none of them uses S, any of 
these tasks that arrive will execute to 
completion before 2, can execute and 
unblock z,. This creates priority inver- 
sion, where 2, is blocked by a lower 
priority task for a potentially unbound- 
ed amount of time. Tasks not involved 
with the critical section can become the 
dominant factor causing the delay. 

The solution to this problem is prior- 
ity inheritance, that is, a task blocking a 
high-priority task inherits that task’s 
priority for the duration of the blocking 
period. In the scenario above, priority 
inheritance would call for 2, to elevate 
its priority to that of z, from the time Z, 
blocks on S until the blocking condition 
is removed. This would prevent any of 
72,. . ., rn-, frompreemptingz, and would 
bound the duration of the priority in- 

Tasks not involved with 
the critical section can 
become the dominant 

factor causing the delay. 

version to the length of time that z, 
holds S. 

Theorem 6: The priority ceiling protocol 
prevents deadlocks, and under the 
protocol, a job J can experience priority 
inversion for the duration of one critical 
section at most9 

To analyze scheduling using the rate- 
monotonic-scheduling algorithm in con- 
junction with the priority ceiling proto- 
col, we define B,, 1 5 k 5 n, the longest 
duration of blocking that can be experi- 
enced by z,. Once these blocking terms 
have been determined, they can be used 
in a slightly modified version of the 
completion time test. 

Analyzing synchronization on Node 
4. Using Theorem 6 (assuming the pri- 
ority ceiling protocol is used), we can 
determine that the blocking incurred by 
z, due to zj is 5 ms. Applying a slightly 
modified version of the completion time 
test to z, amounts to simply adding the 
blocking term to its execution time, in- 
creasing it to 25 ms, or less than its 
deadline of 80 ms. Therefore, 2, meets 
its deadline even with the additional 
delay due to synchronization. 

Task 2, can also incur blocking. The 
priority ceiling protocol uses priority 
inheritance as part of the protocol. 
Therefore, during the execution of the 
critical section, T, can be executing at a 
priority equal to the priority of or and 
hence can block 22 for 5 ms. By adding 
the blocking to the execution time of z, 
and applying Theorem 4, we can show 
that 2, is schedulable. 

Analyzing a complex priority struc- 
ture. Shifting the focus to Node 1, we 

first observe that tasks no longer exe- 
cute at a single priority. Tasks have 
several subtasks that are executed in 
serial order. 

Gonzalez Harbour, Klein, and Le- 
hoczky4 researched the situation in which 
tasks are divided into subtasks and are 
executed in serial order. This situation 
can arise in many practical circum- 
stances. For example, it can arise when 
high-priority tasks are blocked by the 
interrupts of low-priority tasks (the in- 
terrupt portion of the low-priority task 
would be considered an initial subtask 
that is executed at an elevated priority), 
when synchronization is required (and 
a task elevates its priority to enforce 
mutual exclusion), or when operating 
system activities (such as task swapping 
or scheduling) are included in the anal- 
ysis. The static priority-schedulability 
analysis of this problem is similar in 
nature to the usual case, except that the 
system designer must be careful in 
determining all the jobs whose dead- 
lines must be checked and the worst- 
case task phasings. These conditions are 
fully spelled out in Gonzalez Harbour, 
Klein, and Lehoczky. 

The analysis of tasks with multiple 
subtasks is greatly simplified by reduc- 
ing a task to its canonical form. A task is 
said to be in canonical form if it consists 
of consecutive subtasks that do not de- 
crease in priority. The following theo- 
rem says that a task in canonical form 
has the same completion time as the 
original task: 

Theorem 7: Suppose 7, has two consecutive 
subtasks rij and T!~+, of strictly decreasing 
priority P,, > P,j+,. For any task set phasing, 
the completion times of 7, and its subtasks 
T,~, j + 1 < k 2 m(i) are unchanged if the 
priority of r,, is reduced to P,,,,, assuming 
all equal priority segments are executed in 
the same relative order.4 

Theorem 7 can simplify the determi- 
nation of whether a particular task meets 
its deadline. By applying this theorem 
to all such consecutive subtasks, we can 
reduce the task to canonical form. 

The canonical form of 7i is another 
task, ri, obtained by applying the fol- 
lowing algorithm starting with the final 
subtask of T,. Let Pi; denote the priority 
of subtask T&. 

l Set pi&O = P,,(,p where m(i) denotes 
the number of subtasks of 7i. 

l If Pi’, < Pi,..,, then set Pi;-, = Pi; 
l If Pi’, 2 P+,, then set Pi;-, = Pi; 
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l Continue with this procedure, mov- 
ing from the last subtask to the first. 

After applying the algorithm, consec- 
utive subtasks of the transformed task 
with equal priority can be combined 
into a single subtask. For example, on 
Node 1, z, through z, in canonical form 
become tasks with only one subtask 
having priority 7,5,4, and 2, respective- 
ly. Task 7, consists of two subtasks hav- 
ing priority 1 and 6. 

Using Theorem 7 to reduce zj to its 
canonical form, the resulting task, 71, 
will consist of m ’(i) subtasks r:i, . . ., 
r&i) having priorities Pmin, = P,;< . . . 
cmci)‘. The canonical form is useful for 
reasoning about the phasing of other 
tasks that create the worst-case response 
time for z,. This phasing will depend on 
the priority levels of each task, com- 
pared to the priority of the first segment 
of the canonical form task. This results 
in a classification of the other tasks with 
respect to z:. 

Task classification. When analyzing 
z,, we place other tasks into groups based 
on the priorities of their subtasks rela- 
tive to z,. A  key criterion is the priority 
of the first subtask relative to the mini- 
mum priority of all subtasks of zi, Pmin,. 
For example, a task that starts with a 
high-priority subtask will eventually be 
able to preempt the subtask of z, with 
the minimum priority. Conversely, a task 
that starts with a lower priority subtask 
will never have this opportunity. Since 
the task groupings are relative to the 
priority structure of zi, the groups will 
vary as a function of the task being 
analyzed. 

We call a sequence of consecutive 
subtasks asegment. An H segment com- 
prises a sequence of consecutive sub- 
tasks, each of which has a priority equal 
to or greater than Pmin,. Similarly, an L 
segment refers to any set of consecutive 
subtasks, each of which has priority strict- 
ly less than Pmin,. An effect due to 
preemption by a first segment that is an 
H segment is called apreemption effect. 
An effect due to an H segment that 
occurs after an L segment is a blocking 
effect. 

The four types of tasks are 

l Type 1: Each of these has a single H 
segment and therefore can preempt z, 
more than once. Each task in this group 
determines the worst-case completion 
time for zi. 
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Table 4. Node 1 task classification rel- 
ative to 22 (H represents a higher pri- 
ority segment; L represents a lower 
priority segment). 

Priority Task 
Task (Relative Priority) Type 

71 10 --;, 7 H 
HjH 

z3 4+8+4 LHL 
L+H*L 

3 3+1+6 LH 
LjL+H 

l Type 2: With this type, each high- 
priority segment is followed by a low- 
priority segment. Consequently, each 
task in this set can preempt zi only once. 

l Type 3: With this type, each high- 
priority segment is preceded by a low- 
priority segment. Consequently, only 
one task in this group can contribute a 
blocking effect. 

l Type 4: Each of these has a single L 
segment; hence, they have no effect on 
the completion time of T,, and can be 
ignored. 

A  blocked-at-most-onceproperty. Our 
procedure for finding the worst-case 
phasing for other tasks uses a blocked- 
at-most-once propertylO to determine 
the effect of internal and final H seg- 
ments (that is, blocking segments). 

Theorem 8: No more than one blocking 
segment can delay z,‘s completion time.4 

Node 1 analysis. The lower level pri- 
orities of each task have been assigned 
according to rate-monotonic order, us- 
ing the task periods. Tasks z, and Z, start 
with an interrupt service routine and 
therefore have the priorities of their 
first sections fixed by the system’s hard- 
ware. Tasks z, and z, synchronize in 
their middle subtasks and execute both 
subtasks at the same elevated priority. 
Tasks r4 and z, also synchronize and are 
assumed to have their third and initial 
subtasks, respectively, executing at the 
same priority. Task z,‘s final subtask 
must modify some control variables and 
therefore is executed at relatively high 

priority to prevent interference from 
some of the other tasks. 

Before 2, can be analyzed on Node 1, 
it must be converted to canonical form. 
The canonical form of 2, is a task that 
has a simpler priority structure and pre- 
serves the original task’s completion 
time. The canonical task associated with 
z, is 2; with the following properties: 

C; = 20; T; = 50; P; = 5 

Task 2; has a single subtask whose exe- 
cution time is the sum of the execution 
times of the original subtasks and whose 
priority is equal to the priority of C,,. 

The next step in determining 7,‘s 
completion time is to classify each of 
the other tasks on Node 1 relative to z,, 
as shown in the Table 4. Table 4 and 
Theorem4 show that the effects of z,, ‘cd, 
and z, must be included in the comple- 
tion time test. The new term for the 
completion time test is calculated as 
follows: 

B, = max(C,,, G,) + G 
= max(5,lO) + 8 = 18 ms  

Using the completion time test: 

So = l(6) + l(20) + 18 = 44 ms  
S, = 2(6) + l(20) + 18 = 50 ms  
S, = 2(6) + l(20) + 18 = 50 ms  

Since S, = S,, the completion time is 
50 ms  and the deadline is satisfied. 

Network analysis. The key to analyz- 
ing the schedulability of the network is 
to understand if the percentage of net- 
work bandwidth allocated to a node is 
sufficient to keep up with the message 
traffic originating from that node. The 
strategy for this analysis is to evaluate 
each node separately and to treat the 
message traffic generated by each node 
as a set of network tasks.” 

Each periodic message originating 
from a specific node is considered a 
network task. This set of network tasks 
is then augmented by a higher priority 
task accounting for the network band- 
width that is not available to the node 
under analysis. 

In our example, 2, on Node 1 gener- 
ates 1 Mbit of data every 50 ms. Since an 
FDDI network transmits 100 Mbit/sec- 
ond, network use due to r2 is equivalent 
to a network task that would execute 10 
ms  every 50 ms. Next, we must charac- 
terize the network task that represents 
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the bandwidth that is unavailable to 
Node 1. 

Recall that the target token rotation 
time is 8 ms, the token walk time is 1 ms, 
and 30 percent of the network band- 
width is dedicated to Node 1. There- 
fore, the bandwidth of the network not 
available to Node 1 can be represented 
as a high-priority network task with 

l an execution time equal to TTRT 
- .30 (TTRT - WT) = 5.9 ms. 

l a period equal to 8 ms. 

Therefore, we must ensure that the 
following two tasks are schedulable and, 
if so, the messages generated by Node 1 
are schedulable: 

l Network task 1: execution time equal 
to 5.9 ms and a period equal to 8 ms 
at a high priority. 

l Network task 2: execution time equal 
to 10 ms and a period equal to 50 ms 
at a low priority. 

Using the completion time test, we 
can show that these two tasks are in- 
deed schedulable, with network task 2 
completing within 39.5 ms in the worst 
case. Therefore, the latency attribut- 
able to the network is less than the 
required 50 ms. 

End-to-end deadline analysis. Next, 
we describe the latencies encountered 
by the sensor data from Node 1 until its 
display on Node 4. The latencies consist 
of the timing budgets we allocated on 
Nodes 1,4, and the network, as well as 
latencies that can be incurred if these 
activities are not in phase: 

l 50 ms for z, on Node 1 to complete 
its processing, 

l 50 ms to transmit its data across the 
network, 

l 100 ms on Node 4. (Task r2 on Node 
4 is initiated every 100 ms. It reads 
data from the last two time intervals 
of the data that z, sent on Node 1. 
However, since the task is polling 
for data, it could be out of phase by 
one period from the arrival of the 
oldest data in its input buffer. This 
can introduce an additional 100 ms 
of latency.) 

l 200 ms for z, on Node 4 to complete 
its processing. 

constraint. Since there is some slack, 
the system designer can introduce addi- 
tional tasks or use this slack for future 
extensions and modifications. 

T here have been many exten- 
sions of the rate-monotonic- 
scheduling algorithm to address 

a multitude of other practical problems 
that arise with real-time systems. These 
include 

l providing excellent response times 
to aperiodic tasks using a periodic serv- 
er assigned a period and a processing 
capacity such that incoming aperiodic 
tasks can run at the priority of the serv- 
er when capacity is available, 

l analyzing loss in schedulable utili- 
zation due to distinct priority-level lim- 
its (for example, in network and bus 
scheduling), 

*ensuring that the most important 
tasks meet their timing requirements in 
cases of transient overload when not all 
deadlines can be met, 

l extending the processor scheduling 
theory to communication subsystems, 

l developing a theory of predictable 
mode changes, and 

l incorporating rate-monotonic- 
scheduling support into Ada, Posix, and 
Futurebus+. 

The above topics, and many others 
with associated references, are discussed 
in review articles by Lehoczky1,6 and 
Burns.R Readers interested in the prac- 
tical aspects of using rate-monotonic 
scheduling should consult Klein et a1.,3 
and those interested in a tutorial on 
hard real-time systems should consult 
Stankovic and Ramamritham.12 

Our own future research will include 
integrating these techniques for timing 
analysis with dependability techniques 
to achieve safe operation, high avail- 
ability, and on-line software/hardware 
upgrades. n 
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