
Homework lecture 4

Agreement and consensus I:

concepts and protocols for crash failures

Jaap-Henk Hoepman
jhh@cs.ru.nl

June 4, 2018

Question 1: Suppose a protocol can tolerate (i.e. works when confronted
with) byzantine failures. Will the same protocol tolerate (the same number
of) crash failures?

Answer: Yes. A crash failure is a special kind of byzantine failure, namely
one where the arbitrary action of the processor is the action of not doing
anything anymore.

Question 2: How many messages does the consensus protocol for crash
failures exchange if there are no failures?

Can you somehow optimize this?

Answer: To answer the first part of the question, let n be the number of pro-
cessors and f be the maximal number of fautly ones. The protocol specified
that in each round r , with 1 ≤ r ≤ f + 1, a processor p does the following.
It sends, for all σ with |σ | = r − 1∧ p ∉ σ , a message to all q including p.

How many σ with |σ | = r −1∧p ∉ σ are there? Remember that σ never
contains the same processor more than once. Hence for the first element
in σ we have n − 1 choices (remember: p ∉ σ), for the next we have n − 2
choices, etc. That means there are

(n− 1)!
((n− 1)− (r − 1))!

= (n− 1)!
(n− r)!

such σ with |σ | = r − 1 ∧ p ∉ σ . For these, n messages are sent (to all
processors q including p). I.e. processor p sends

n
(n− 1)!
(n− r)! =

n!
(n− r)!

messages in round r . In total all processors then send

n
f+1∑
r=1

n!
(n− r)!

1

messages.
To answer the second part of the question, recall the decision rule. Let

Vp = {v | v = vpσ ∈ Tp ∧ v ≠ ⊥}. The decision rule says that p decides
on v if Vp = {v} and on a default value vdef otherwise. In other words, as
soon as |Vp| > 1, i.e. as soon as the tree contains two different values (also
different from ⊥), then p decides on the default. This means that as soon
as the tree contains two such different values, p knows enough to decide.
Moreover, if p is non faulty, it will have sent these two values to all other
processors. This means all other non-faulty nodes have received these two
different values and hence will also decide on the default.

This means the protocol can be modified in the following manner. Pro-
cessors keep a set of sent values Sp, initially empty. In each round r proces-
sor p does the following. It sends, for all σ with |σ | = r −1∧p ∉ σ , a value
vpσ to all q including p, provided vpσ ∉ Sp. It adds vpσ to Sp.

This drastically reduces the message complexity. Each processor sends
at most 2 messages to all other processors. The total number of messages
sent is therefore never more than 2n2.

Question 3: Consider an asynchronous system of n processes, f of which
may fail by crashing (only). Let each process p have an input value C[p].in ∈
{0,1}. Consider the following protocol for process p.

forall q (including p) send C[p].in to q.
receive n− f values and store them in the multiset V .
decide on C[p].decision =majority(V)

(where majority(V) computes the majority of values in the multiset V , re-
turning 1 if there is a tie). Now answer the following questions.

a) Why can the algorithm only consider n − f received values (and no
more) to compute the majority, even if no processes crashed?

b) Why can different processes decide on different values using this pro-
tocol?

c) How many 0 (or 1) valued inputs should there be initially, to guarantee
that all correct processors decide on the same value?

Answer:

a) Even if no processes crash, there is no way for a process to know this
in advance. If it waits for more than n − f values to receive before
computing a decision, it may wait forever (in an execution in which f
processes do crash).

b) Suppose n is even, and let f = 1. Consider a scenario where the first
n/2 processes have input 0, while the last n/2 processes have input 1.

2

If no process crashes, there are n/2 zeros and n/2 ones being sent to
each process. However, each process receives at most n − f = n − 1
values into V . Because the system is asynchronous, there is no guaran-
teed order in which messages are delivered. Therefore in some cases
V may contain n/2 zeros and n/2− 1 ones (deciding 0) or vice versa.

c) A process decides 1 if it receives at least d(n − f)/2e ones, and 0 if it
receives at least b(n − f)/2c + 1 zeros (note that 0 and 1 are the only
possible decision value). Suppose at least one process p decides 1. To
ensure no other process receives b(n − f)/2c + 1 or more zeros, the
number of processes having input 0 must be less than b(n−f)/2c+1.
So there must be at least n − b(n − f)/2c + 1 processes having input
1. (Or, the other way around, the number of processes having input 1
must be less than d(n− f)/2e.)
Alternative answer: a process needs to receive at least b(n− f)/2c + 1
copies of the same value to ensure this is the majority, and thus the
value decided. Of all input values sent a process receives only n −
f , i.e. it looses an arbitrary f of the input values. hence if at least
b(n− f)/2c + 1+ f ∼ n/2+ f/2+ 1 of the input values are the same,
all processes receive at least b(n − f)/2c + 1 copies of that value and
decide on it.

3

