
Category theory and coalgebra,
lecture 1, second part: first examples

Jurriaan Rot

February 3, 2020

In the first part of the lecture (see the slides), we’ve already talked a bit
about the history and general aims of the theory of coalgebra, so we won’t do
this here. Instead, we’ll see some first, basic examples of coalgebras, and the
important notion of homomorphisms between them. The main points of this
part is to see, through examples, that coalgebras provide a very general and
flexible description of state-based systems with ‘observable behaviour’; and that
homomorphisms allow to compare and reduce coalgebras. We’ll even get our
first view of the famous final coalgebras which got the whole theory going in the
first place!

We start with a first, rough, very informal approximation of a coalgebra: a
set of states X together with a function

f : X → F (X)

where

• we call X the set of states

• we call f the transition function, coalgebra structure or whatever nice name
we fancy momentarily;

• F is, for now, informal: a “construction on sets (and functions)” which
determines the type of coalgebra. Later, we will make this into something
meaningful by taking F to be a functor, but it’s not assumed you already
know what this is right now.

The actual definition of a coalgebra (and functors) is provided in lecture 3.

1 Deterministic systems

Our first example is a “machine with a button”: a machine which has no display,
or other interface, only a button that can be pressed. It has some internal
state, which we can’t observe, and may change when we press the button. This
exciting device is modelled as a pair (X, f) where f is a function

f : X → X

1

We think of X as the set of internal states, and application of f as pressing
the button and thereby changing the current state. We write x →f y or simply
x → y for f(x) = y. Then, we can make nice pictorial representations of such
machines:

x // y ;; z
||

u
��

u1 // u2 // u3 // . . .

The “construction” F here is just the identity on sets: indeed, this is probably
the most boring example of a coalgebra, and we’ll soon leave it alone. But for
now, it serves nicely to illustrate a few points. And there’s something to say
about it: Rutten [2] has a whole chapter about these systems!

For the moment, we call a coalgebra as above a deterministic system.

Example 1.1. In [1], Jacobs describes an example of such coalgebras stat : S →
S, where stat ranges over the statements of some (imperative) programming
language, and S models the set of program states, that is, assignments σ : Var→
Z from variables to integers. For each statement stat, the coalgebra stat : S →
S describing how it changes the state. For instance, for i ∈ Var, we could

meaningfully define [i := 5] : S → S as [i := 5](σ)(x) =

{
5 if x = i

σ(x) otherwise
.

Homomorphisms are central in the theory of coalgebras, to compare and
reduce systems. They are maps from one coalgebra to another which “preserve
observations/behaviour” in a manner prescribed by the type F . Like coalgebras
themselves, they will be properly defined later on.

In our example of deterministic systems, a homomorphism from f : X → X
to g : Y → Y is a function h : X → Y such that ∀x ∈ X.h(f(x)) = g(h(x)),
also written as h ◦ f = g ◦ h, also written by saying that the ‘following diagram
commutes’ (this is terminology we’ll see a lot!):

X
h //

f

��

Y

g

��
X

h
// Y

With the arrow notation of before, this means that for all x, y ∈ X:

x→ y ⇒ h(x)→ h(y) . (1)

Between the three examples before, there are many homomorphisms:

1. the (unique!) map h : {x, y, z} → {u}

2. h : {x, y, z} → {u1, u2, u3, . . .} – no homomorphism of this type!

3. h : {u1, u2, u3, . . .} → {x, y, z} with h(u1) = y, h(u2) = z, h(u3) = y, . . .

4. and many more!

2

The first example of a homomorphism is special. In fact, we can prove that
for any coalgebra f : X → X, the unique function h : X → {u} is a homomor-
phism, since the right-hand side of (1) is trivial: h(x)→ h(y) always holds.

The deterministic system {u} (with the trivial transition structure on it) is
thus special: for every deterministic system (X, f), there exists a unique homo-
morphism from (X, f) to {u}. We therefore call it the final deterministic system;
it is an example of a final coalgebra.

This final coalgebra, even if it’s simple, tells us something meaningful. A
homomorphism identifies those states that ‘behave the same’ to an external ob-
server. In this case, there’s nothing to observe (the type F is the identity) and
indeed every two states are identified by the unique morphism to the final coal-
gebra: every two states behave the same! This is in line with our ‘machine
with a single button’ example: whether the machine has one internal state or
switches between many, the behaviour is always the same.

It’s about time to add some observations, to get a more interesting type of
coalgebra . . .

2 Deterministic systems with termination

In our second example, our machine has new capabilities: it can break! We can
again press a button, but it could very well happen that the machine blocks at
some point, and the button can’t be pressed anymore. No idea how many times
we should press; possibly the machine will never break, and we can keep on
pressing forever!

This we model as a coalgebra of the form

f : X → X⊥

where
X⊥ = X ∪ {⊥}

and we assume ⊥ 6∈ X. For such a coalgebra, we write x → y if f(x) = y for
some y ∈ X, and we write x ↓ if f(x) = ⊥. We’ll call them deterministic systems
with termination.

Here’s some examples:

x ;; y
||

u // v // w ↓ z
��

(2)

A homomorphism from f : X → X⊥ to g : Y → Y⊥ is a map h : X → Y such that
the following diagram commutes:

X
h //

f

��

Y

g

��
X⊥

h⊥

// Y⊥

(3)

3

But what does h⊥ mean? Well, it’s another function h⊥ : X⊥ → Y⊥, defined as

h⊥(x) =

{
⊥ if x = ⊥
h(x) otherwise

Notice that such a map h⊥ can be defined for any h; it is a construction on
functions. Later on, we’ll see that this is part of the informally defined ‘type’ F
from the beginning of this section: the mapping of a set X to X⊥ and a from a
function h to h⊥ is both encoded in F .

Anyway, let’s express h being a morphism, that is, commutativity of dia-
gram (3) in terms of our beloved arrow notation: for all x, we require:

• if x ↓ then h(x) ↓, and

• if x→ y then h(x)→ h(y).

This is quite similar to the case of deterministic systems, but here we require
that x and h(x) “terminate at the same time”.

In the examples above (2), the only homomorphism (other than identity
functions) is h : {x, y} → {z} given by h(x) = h(y) = z. And, for two coalgebras

u→ v → w ↓ and a→ b→ c→ d→ e ↓

the only morphism from {u, v, w} to {a, b, c, d, e} maps u to c, v to d, and w to e.
In general, h is a homomorphism if for all x, either:

• x and h(x) both terminate (that is, they reach ⊥) after the same number
of steps (applications of the coalgebra structures), or

• neither x nor h(x) terminate.

This is all possible behaviour of our type of coalgebras: every state either never
terminates, or it terminates after a certain number of steps.

Consider:

ω
��

. . . // 3 // 2 // 1 // 0 ↓

This is a coalgebra over the set N ∪ {ω} of ‘extended natural numbers’. Written
as a function: g : N ∪ {ω} → (N ∪ {ω})⊥,

g(x) =

ω if x = ω

x− 1 if x ∈ N and x > 0

⊥ if x = 0

For every deterministic system with termination (X, f), there is a unique ho-
momorphism to (N ∪ {ω}, g), so the latter coalgebra is final. This reflects the
idea that for this type of coalgebra, an external observer can observe exactly
one thing: after how many steps the system terminates; in terms of our ma-
chine analogy, the machine is determined by how many button presses it takes
to break the machine!

4

2.1 More (interesting) examples

So far, we focus on a few very basic examples to illustrate the notions of coalge-
bra, homomorphism and final coalgebra. In the next lectures we’ll often focus
on other examples, one prominent instance being coalgebras of the form:

f : X → A×X

for some fixed set of ‘outputs’ A. If we take for instance A = N, then this reflects
a machine which has two buttons and a display. Pressing one of the buttons
shows a number; pressing the other changes shows nothing but changes the
internal state (so possibly we’ll see another number if we press the first one
again). That’s about enough for the machines analogy . . . in the next lecture
we’ll study these systems properly.

For now, here’s an example:

x
a // y

b // z

a
""
v

b

cc

where x, y, z, v are states and a, b ∈ A are output elements. What is the observ-
able behaviour here?

Another super-important example is coalgebras of the form

f : X → {0, 1} ×XA

where XA is the set of functions from A to X. What is the behaviour of such a
coalgebra? What do we observe in a state x?

We’ll conclude with a nice list of examples.

f : X → X deterministic system
f : X → X⊥ det. system with termination
f : X → X⊥ ∪ (E ×X) – with termination and exceptions
f : X → A×X stream system
f : X → (A×X)⊥ – with termination
f : X → {0, 1} ×XA deterministic automaton
f : X → P(X) transition system
f : X → {0, 1} × (P(X))A non-deterministic automaton
f : X → P(A×X) labelled transition system
. . .

where P(X) is the set of subsets of X (the powerset).
Concluding, we’ve seen basic, first examples of coalgebras as state-based

systems; homomorphisms to compare and reduce systems; and a first glimpse
of the generality of coalgebras. In the next lecture, we’ll however focus on a
specific instance: we’ll see coalgebraic techniques to define infinite sequences,
and prove properties about them.

5

References

[1] B. Jacobs. Introduction to Coalgebra: Towards Mathematics of States and
Observation, volume 59 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2016.

[2] J. Rutten. The method of coalgebra: exercises in coinduction. CWI Techni-
cal report, available at: https://ir.cwi.nl/pub/28550/, 2019.

6

https://ir.cwi.nl/pub/28550/

	Deterministic systems
	Deterministic systems with termination
	More (interesting) examples

