# Talen en Automaten <br> Retake Exam, Tue $1^{\text {st }}$ May, 2018 <br> 8:30-11:30 

This test consists of $\mathbf{7}$ problems over 5 pages. Explain your approach. You can score a maximum of 100 points, and each question indicates how many points it is worth. The test is closed book. You are NOT allowed to use a calculator, a computer or a mobile phone. You may answer in Dutch or in English. Please write clearly, and do not forget to put on each page: your name and your student number.

Notation Throughout the test, we denote for any alphabet $A, w \in A^{*}$ and $a \in A$ by $|w|_{a}$ the number of $a$ 's in $w$, and by $|w|$ the length of the word $w$.

## Problem 1.

For each of the following claims, state whether it is true or false. Support your claim with either a counterexample or a (short) argument/proof.

1. If a language $L$ contains finitely many words, it is regular.
2. If a language is context-free, it is not regular.
3. If $L$ is regular, then $K \cap L$ is also regular.
4. The language $L=\mathcal{L}\left(b(a+b)^{*}\right) \cup\left\{a^{n} b^{m} \mid n \neq m\right\}$ is regular.

## Solution:

1. True; given a finite language $\left\{w_{1}, \ldots, w_{n}\right\}$, a corresponding expression is simply $w_{1}+\ldots+w_{n}$.
2. False; every regular language is context-free.
3. False; take $L=A^{*}$ for $A=\{a, b\}$ and $K=\left\{a^{n} b^{n} \mid n \geq 0\right\}$; then $K \cap L=K$ is not regular.
4. False; if $L$ is regular then $\bar{L} \cap \mathcal{L}\left(a^{*} b^{*}\right)=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is regular, contradiction.

## Problem 2.

You are in charge of the security of a large web-based company, and you should formally describe what a good password looks like. Fortunately, you know regular expressions...

Th alphabet of our passwords will be $\Sigma=\{a, b, c, A, B, C, 0,1,2\}$. A safe password is a word $w \in \Sigma^{*}$ such that $w$ begins and ends with a number, $w$ contains at least one lower-case letter and $w$ contains at least one upper-case letter.
Give a regular expression $e$ such that $\mathcal{L}(e)=\left\{w \in \Sigma^{*} \mid w\right.$ is a safe password $\}$.
(10pt)

## Solution:

First, let $e=(a+b+c+A+B+C+0+1+2)^{*}$. The desired expression is given by:

$$
(0+1+2) e(a+b+c) e(A+B+C) e(0+1+2)+(0+1+2) e(A+B+C) e(a+b+c) e(0+1+2)
$$

## Problem 3.

Let $A=\{a, b\}$ be our finite alphabet and define $f: A^{*} \rightarrow A^{*}$ inductively as follows:

$$
f(\lambda)=\lambda \quad f(a v)=f(v) a b a \quad f(b v)=f(v) b b
$$

Prove that $f(w a)=a b a f(w)$ for all $w \in A^{*}$, by induction on $w$.

## Solution:

Base case

$$
f(\lambda a)=f(a)=f(a \lambda)=f(\lambda) a b a=a b a=a b a f(\lambda)
$$

Induction step: suppose $f(w a)=a b a f(w)$ for some $w \in A^{*}$. We need to prove the statement holds again for $x w$, for every $x \in A$, i.e., $f(a w a)=a b a f(a w)$ and $f(b w a)=a b a f(b w)$ :

- $f(a w a)=f(w a) a b a=a b a f(w) a b a=a b a f(a w)$
- $f(b w a)=f(w a) b b=a b a f(w) b b=a b a f(b w)$


## Problem 4.

Consider the following NFA $M$ over the alphabet $A=\{a, b\}$ :

a) Show that $a a a$ is accepted by $M$, and $a a b$ is not.

## Solution:

For $a a a$, we have the computation

$$
(u, a a a) \vdash(w, a a) \vdash(u, a) \vdash(v, \lambda)
$$

and since $v$ is accepting, the word $a a a$ is accepted.
For $a a b$, there are two possibilities: first,

$$
(u, a a b) \vdash(v, a b) \vdash(w, b)
$$

and here the computation is stuck; second,

$$
(u, a a b) \vdash(w, a b) \vdash(u, b) \vdash(u, \lambda)
$$

and $u$ is not accepting. Since there is no computation starting with ( $u, a a b$ ) and ending in an accepting state with the empty word as second component, $a a b$ is not accepted.
b) Use the construction from the lecture to give a deterministic finite automaton $N$ such that $\mathcal{L}(M)=\mathcal{L}(N)$. Clearly show how states in $N$ relate to states in $M$.

## Solution:



## Problem 5.

Consider the following three languages over the alphabet $A=\{a, b, \#\}$.

$$
\begin{aligned}
& L_{1}=\left\{w \# v \mid w, v \in\{a, b\}^{*} \text { and the first letter of } w \text { equals the last letter of } v\right\} \\
& L_{2}=\left\{w \# v \# z \mid w, v \in\{a, b\}^{*} \text { and }|w|_{a}=|v|_{a}=|z|_{a}\right\} \\
& L_{3}=\left\{w \# v \# z \# u \mid w, v, z, u \in\{a, b\}^{*} \text { and }|w|=|v| \text { and }|z|=|u|\right\}
\end{aligned}
$$

Two of these languages are context-free, and the third is not context-free. One of the three languages is regular.
a) Which of the languages $L_{1}, L_{2}, L_{3}$ is regular? Give an DFA which accepts that language.

## Solution:

$\qquad$
$L_{1}$ is regular. DFA:

b) Which of the languages $L_{1}, L_{2}, L_{3}$ is context-free but not regular? Give a context-free grammar which generates that language.

## Solution:

$L_{3}$ is context-free but not regular. Grammar:

$$
\begin{aligned}
& S \rightarrow T \# T \\
& T \rightarrow a T a|b T b| a T b|b T a| \#
\end{aligned}
$$

c) Choose a non-regular language from $L_{1}, L_{2}, L_{3}$, and use the pumping lemma to prove that it is indeed not regular.

## Solution:

$\qquad$

- Suppose $L_{2}$ is regular, and let $k$ be a constant given by the PL. Let $w=a^{k} \# a^{k} \# a^{k}$. By the pumping lemma, there are $x, y, z$ such that $w=x y z,|x y| \leq k,|y|>0$ and for all $n, x y^{n} z \in L_{2}$. It follows that $y=a^{i}$ for some $i \geq 0$, hence $x y^{2} z=a^{k+i} \# a^{k} \# a^{k} \notin L_{2}$, contradiction.
- $L_{3}$ is also not regular; the proof is similar to the above, for instance taking $w=a^{k} \# a^{k} \# a^{k} \# a^{k}$.


## Problem 6.

Consider the following push-down automaton $M$ over the alphabet $A=\{a, b, c\}$.

a) Is $M$ deterministic? Explain your answer.

## Solution:

$\qquad$

No; if $A$ is on top of the stack in state $q_{1}$, there are two enabled transitions.
b) Describe the language $\mathcal{L}(M)$ using set notation.

## Solution:

$$
\mathcal{L}(M)=\left\{\left.w c a^{n}\left|w \in\{a, b\}^{*}, 0<|w|_{a}+2\right| w\right|_{b} \leq n\right\}
$$

## Problem 7.

Consider the language over the alphabet $A=\{(),,[]$,$\} given by the following grammar G$ :

$$
S \rightarrow(S)|S S|[S] \mid \lambda
$$

Give a PDA $M$ such that $\mathcal{L}(G)=\mathcal{L}(M)$.

## Solution:

$\qquad$

We can, for instance, use the construction from the lecture. To this end, first transform the grammar to the correct form:

$$
\begin{aligned}
& S \rightarrow(S R|S S|[S Q \mid \lambda \\
& R \rightarrow) \\
& Q \rightarrow \quad
\end{aligned}
$$

From this grammar, we construct a PDA in the standard way:

|  | (, S/SR |
| :---: | :---: |
|  | $\lambda, S / S S$ |
| ${ }^{\lambda, \lambda / S}$ | [, $S / S Q$ |
|  | $\lambda, S / \lambda$ |
|  | ), $R / \lambda$ |
|  | ], $Q / \lambda$ |

