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Non-deterministic finite automaton (NFA)

a,b

start —( 9o b @ b @

5(q, a) is not one state, but a set of states.

(o] a [ b |
do {CIO} {QO,Ql}
a1 0 {CI2}
a2 ) )
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Non-deterministic Finite Automata (NFA)

M is a NFA over  if M = (Q, qo, 9, F) with

Q is a finite set of states

go € Q is the initial state

FCQ is a finite set of final states
§:QxX—=P(Q) is the transition function

[P(Q) denotes the collection of subsets of Q]
Reading function §* : Q@ x X* — P(Q) (multi-step transition)

§"(q,7) = {dq}
5 (g aw) = {q’|q'ea*(p, w) for some p € 3(q, )}
= | &pw
p€Ed(q,a)

The language accepted by M, notation £(M), is:
L(M)={w e X*|3qg e §*(qo, w) such that g € F}
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Union of languages of NFAs
Example Suppose we want to have an NFA for [, U L, =

{w | |wl], is even or |w|, > 1}
First idea: put the two machines “non-deterministically in parallel”

b b
a a a, b
Startﬁ @ <> b
start —

But this is wrong: The NFA accepts aaa.
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NFAs with silent steps: NFA-)\

We add A-transitions or ‘silent steps’ to NFAs

The correct union of M; and M, is:
b

%4

In an NFA-) we allow

A

start —|

é(q:\) =4
for g # q’. That means

5:Qx (ZU{ND) = P(Q)
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NFA-X (definition)
M is an NFA-X over X if M = (Q, qo, 0, F) with

Q is a finite set of states
go € Q is the initial state
FCQ is a finite set of final states

§:Qx (XU{A}) = P(Q) is the transition function
The A-closure of a state g, A-closure(q), is the set of states reachable
with only A-steps.
Reading function ¢* : Q x ©* — P(Q) (multi-step transition)
0"(q,\) = A-closure(q)
§*(g,aw) = {q'|3p € Aclosure(q)3r € 6(p,a)(q’ € 6*(r,w))}
= U U 5w
pEx-closure(q)  red(p,a)
The language accepted by M, notation L(M), is:
L(M) ={w e X*|3qg € (qo,w) such that g € F}
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Kleene's Theorem (announced last lecture)

Theorem
The languages accepted by DFAs are exactly the regular languages

We will prove this as follows:
1. For every regular expression e there is an NFA-A\ M such that
L(e) = L(M)
2. For every NFA-A M there is an NFA M’ such that L(M) = L(M")
3. For every NFA M there is a DFA M such that £L(M) = L(M)
L(e

4. For every DFA M there is a regexp e such that L(M) = L(e).

So: reg expr, DFA, NFA, NFA-X all characterise the same languages!
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From regular expression to NFA-)\

e M such that L(M) = L(e)

start —>
0
start —>
1
()——
start —
a (forae¥x)

RN
e=e + e A A
with

L(My) = L(er) e X . @
L(M>) = L(e2) M @/
]
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Regexp to NFA-)\ (continued)

e

M such that L(M) = L(e)

€ =66

with

C(Ml) = E(el)
L(M) = L(e2)

S ON <:%. ®

e=(e)"
with
[:(Ml) = L(el)
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Regular languages accepted by an NFA-)

Proposition. For every regular expression e there is an NFA-A M, such
that
L(M.) = L(e).

Proof. Apply the toolkit. M. can be found by induction on the structure
of e: First do this for the simplest regular expressions. For a composed
regular expression compose the automata. (-]

Corollary. For every regular language L there is an NFA-A M that accepts
L (so L(M) = L).
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From NFA-)\ to NFA

e if there is a path

then add
a
a—=4q
e  a state is accepting if reaches an accepting state via \-steps

Example: st~
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From NFA-)\ to NFA

Given an NFA-A M = (Q, 4, qo, F) we build the NFA
M = (Qaga o, F_)

where

e dga)= U dpa)
pEX-closure(q)
e F=1{gec Q] \closure(q) N F # 0} and
Theorem
Given an NFA-A M = (Q, 6, qo, F), the corresponding automaton
M’ = (Q, 6, qo, F) after elimination of \-transitions accepts the same
language.
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From NFA to DFA

We can transform any NFA into a DFA that accepts the same language.

Idea:

o  Keep track of the set of all states you can go to!

e  States of the DFA are sets-of-states from the original NFA.
e A set of states is final if one of the members is final.
Example L = {w | |w/|, is even or |w|, > 1}
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Eliminating non-determinism

Let M be a NFA given by (Q, g0, 0, F)
Define the DFA M as (Q, o, 0, F) where

Q = P

o {a0}

6(H,a) = |Jd(q,a), for HC Q,
qeEH

F = {HCQIHNF#0}
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Correctness

Given M, an NFA, we have defined the DFA M by

QR = P
@ = {ao}
6(H.a) = |Jd(q,a), for HC Q,
qeH

F = {HCQ|HNF#0}
Theorem M and M accept the same languages.

Proof: This follows from
Lemma

5 (q,w)NF#0 < & ({g},w) € F
(Take g := qo)

Proof of the Lemma: induction on w, considering the cases w = X\ and
w = au.
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Equivalence of regexp, DFA, NFA and NFA-)\

Theorem
The class of regular languages is (equivalently) characterized as

1. The languages described by a regular expression
2. The languages accepted by an NFA-\

3. The languages accepted by an NFA

4. The languages accepted by a DFA
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