
Non-deterministic Finite
Automata

1/19

Outline

Non-deterministic Finite Automata (NFA)

Regular Languages, NFAs and DFAs

2/19

Non-deterministic finite automaton (NFA)

q0start q1 q2
b

a, b

b

δ(q, a) is not one state, but a set of states.

δ a b

q0 {q0} {q0, q1}
q1 ∅ {q2}
q2 ∅ ∅

4/19

Non-deterministic Finite Automata (NFA)

M is a NFA over Σ if M = (Q, q0, δ,F) with
Q is a finite set of states
q0 ∈ Q is the initial state
F ⊆ Q is a finite set of final states
δ : Q × Σ→ P(Q) is the transition function

[P(Q) denotes the collection of subsets of Q]

Reading function δ∗ : Q × Σ∗ → P(Q) (multi-step transition)

δ∗(q, λ) = {q}
δ∗(q, aw) = {q′ | q′ ∈ δ∗(p,w) for some p ∈ δ(q, a)}

=
⋃

p∈δ(q,a)

δ∗(p,w)

The language accepted by M, notation L(M), is:

L(M) = {w ∈ Σ∗ | ∃q ∈ δ∗(q0,w) such that q ∈ F}

5/19

Union of languages of NFAs

Example Suppose we want to have an NFA for L1 ∪ L2 =
{w | |w |a is even or |w |b ≥ 1}
First idea: put the two machines “non-deterministically in parallel”

evstart od

a

b

a

b

0start 1
b

a a, b

ev0start od

1

a

a, b

b

b

a

a

But this is wrong: The NFA accepts aaa.

6/19

NFAs with silent steps: NFA-λ

We add λ-transitions or ‘silent steps’ to NFAs
The correct union of M1 and M2 is:

Ustart

ev od

0 1

λ

λ

a

b

a

b

b

a a, b

In an NFA-λ we allow
δ(q, λ) = q′

for q 6= q′. That means

δ : Q × (Σ ∪ {λ})→ P(Q)

7/19

NFA-λ (definition)
M is an NFA-λ over Σ if M = (Q, q0, δ,F) with
Q is a finite set of states
q0 ∈ Q is the initial state
F ⊆ Q is a finite set of final states
δ : Q × (Σ ∪ {λ})→ P(Q) is the transition function

The λ-closure of a state q, λ-closure(q), is the set of states reachable
with only λ-steps.
Reading function δ∗ : Q × Σ∗ → P(Q) (multi-step transition)

δ∗(q, λ) = λ-closure(q)

δ∗(q, aw) = {q′ | ∃p ∈ λ-closure(q)∃r ∈ δ(p, a) (q′ ∈ δ∗(r ,w))}
=

⋃
p∈λ-closure(q)

⋃
r∈δ(p,a)

δ∗(r ,w)

The language accepted by M, notation L(M), is:
L(M) = {w ∈ Σ∗ | ∃q ∈ δ∗(q0,w) such that q ∈ F}

8/19

Kleene’s Theorem (announced last lecture)

Theorem
The languages accepted by DFAs are exactly the regular languages
We will prove this as follows:
1. For every regular expression e there is an NFA-λ M such that
L(e) = L(M)

2. For every NFA-λ M there is an NFA M ′ such that L(M) = L(M ′)

3. For every NFA M there is a DFA M such that L(M) = L(M)

4. For every DFA M there is a regexp e such that L(M) = L(e).

So: reg expr, DFA, NFA, NFA-λ all characterise the same languages!

10/19

From regular expression to NFA-λ

e M such that L(M) = L(e)

0
q0start

1
q0start

a (for a ∈ Σ)
q0start f

a

e = e1 + e2
with
L(M1) = L(e1)
L(M2) = L(e2)

q0start

q1 f1

q2 f2

f

M1

M2

λ

λ

λ

λ

11/19

Regexp to NFA-λ (continued)

e M such that L(M) = L(e)

e = e1e2
with
L(M1) = L(e1)
L(M2) = L(e2)

q1start f1 q2 f2

M1 M2

λ

e = (e1)∗

with
L(M1) = L(e1)

q0start q1 f1

M1

λ

λ

12/19

Regular languages accepted by an NFA-λ

Proposition. For every regular expression e there is an NFA-λ Me such
that

L(Me) = L(e).

Proof. Apply the toolkit. Me can be found by induction on the structure
of e: First do this for the simplest regular expressions. For a composed
regular expression compose the automata. -

Corollary. For every regular language L there is an NFA-λ M that accepts
L (so L(M) = L).

13/19

From NFA-λ to NFA

• if there is a path

q1
λ−→ q2

λ−→ . . .
λ−→ qn

a−→ q′

then add
q1

a−→ q′

• a state is accepting if reaches an accepting state via λ-steps

Example: Ustart

ev od

0 1

λ

λ

a

b

a

b

b

a a, b

Ustart

ev od

0 1

b

a

b

a

a

b

a

b

b

a a, b

14/19

From NFA-λ to NFA

Given an NFA-λ M = (Q, δ, q0,F) we build the NFA

M ′ = (Q, δ̄, q0, F̄)

where
• δ̄(q, a) =

⋃
p∈λ-closure(q)

δ(p, a).

• F̄ = {q ∈ Q | λ-closure(q) ∩ F 6= ∅} and
Theorem
Given an NFA-λ M = (Q, δ, q0,F), the corresponding automaton
M ′ = (Q, δ̄, q0, F̄) after elimination of λ-transitions accepts the same
language.

15/19

From NFA to DFA

We can transform any NFA into a DFA that accepts the same language.

Idea:
• Keep track of the set of all states you can go to!
• States of the DFA are sets-of-states from the original NFA.
• A set of states is final if one of the members is final.
Example L = {w | |w |a is even or |w |b ≥ 1}

Ustart

ev od

0 1

b

a

b

a

a

b

a

b

b

a a, b

{U}start

{od,0} {ev,0}

{ev,1}

{od,1}

a

b

a

b

a
b

a

b

b

a

16/19

Eliminating non-determinism

Let M be a NFA given by (Q, q0, δ,F)
Define the DFA M as (Q, q0, δ,F) where

Q = P(Q)

q0 = {q0}
δ(H, a) =

⋃
q∈H

δ(q, a), for H ⊆ Q,

F = {H ⊆ Q | H ∩ F 6= ∅}

17/19

Correctness

Given M, an NFA, we have defined the DFA M by

Q = P(Q)

q0 = {q0}
δ(H, a) =

⋃
q∈H

δ(q, a), for H ⊆ Q,

F = {H ⊆ Q | H ∩ F 6= ∅}
Theorem M and M accept the same languages.

Proof: This follows from
Lemma

δ∗(q,w) ∩ F 6= ∅ ⇐⇒ δ
∗
({q},w) ∈ F

(Take q := q0)

Proof of the Lemma: induction on w , considering the cases w = λ and
w = au.

18/19

Equivalence of regexp, DFA, NFA and NFA-λ

Theorem
The class of regular languages is (equivalently) characterized as
1. The languages described by a regular expression
2. The languages accepted by an NFA-λ
3. The languages accepted by an NFA
4. The languages accepted by a DFA

19/19

	Non-deterministic Finite Automata (NFA)
	Regular Languages, NFAs and DFAs

