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Mild Cognitive Impairment (MCI) is thought to be the prodromal phase to Alzheimer’s disease (AD),
which is the most common form of dementia and leads to irreversible neurogenerative damage of the
brain. In order to further improve the diagnostic quality of the MCI, we developed a MCI expert system
to address MCI's prediction and inference question, consequently, assist the diagnosis of doctor. In this
system, we mainly deal with following problems: (1) Estimate missing data in the experiment by utiliz-
ing mutual information and Newton interpolation. (2) Make certain the prior feature ordering in con-

structing Bayesian network. (3) Construct the Bayesian network (We term the algorithm as MNBN).
The experimental results indicate that MNBN algorithm achieved better results than some existing meth-
ods in most instances. The mean square error comes to 0.0173 in the MCI experiment. Our results shed
light on the potential application in MCI diagnosis.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia
and that may lead to irreversible neurogenerative damage of the
brain. But the current diagnostic tools have poor sensitivity, espe-
cially for the early stages of AD and are not easy to be diagnosed
until AD has led to irreversible brain damage (Morris et al.,
2001). Therefore, it is very important research topic for how to
diagnose AD as early as possible. Through research effort of recent
10 years, it is concluded that MCI (Mild cognitive impairment) is
the early stage of the Alzheimer Diseases (Celsis, 2000; Morris
et al., 2001; Petersen et al., 2001). 10-30% of MCI patients convert
to AD annually, whereas the rate of conversion of cognitively nor-
mal elderly people is 1-2% (Celsis, 2000). Furthermore, there is evi-
dence that 100% of patients with MCI progress to greater dementia
severity (Petersen et al., 2001). So the problem of diagnosing AD
can be converted into the diagnosis of the MCI. Up to now, how-
ever, there is still not a strict and unified standard.

In this study, we develop a specific diagnostic system on the
MCI, which predicts and diagnoses the MCI by using some artificial
intelligent methods. Since a practical database usually might be
not complete, at first, we utilize the mutual information and
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Newton interpolation to estimate the values of missing data. Then,
we propose to determine the feature ordering by using the mutual
information and defining a “higher filter”. Finally, we construct the
Bayesian network for assisting the prediction and diagnosis of the
MCL

The remainder of this paper is organized as follows: Section 2
briefly reviews some related works. In Section 3, we present the
MNBN algorithm. In Section 4, we further describe how to imple-
ment the MNBN algorithm. In Section 5, we report and analyze
experimental results. Finally, in Section 6, we draw the main con-
clusions and give some discussions.

2. Related works

In recent years, one new idea is to assistant diagnose the MCI
by using some method of artificial intelligence. Among them,
Bayesian Network is popular within the community of artificial
intelligence due to their ability to support probabilistic reasoning
from data with uncertainty. According to the network, probabilis-
tic inference can be conducted to predict the values of some vari-
ables based on the observed values of other variables. Hence,
Bayesian networks are widely used in many areas. Reference
(Chen & Herskovits, 2006) applied Bayesian Network to model
the interactions among morphological changes and clinical vari-
ables of the MCI. We can conclude four principal advantages of
using a discrete variable Bayesian network for network analysis:
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(1) the Bayesian network framework does not require that the
joint distribution follows a specific parametric distribution; (2)
a Bayesian network supports probabilistic reasoning as it consists
of probabilistic associations among variables; (3) because the
Bayesian network representation is based on the concept of con-
ditional independence, it supports Bayesian inference without
having to maintain the full joint distribution in memory; and
(4) since each Bayesian network is a multivariate model that
we can evaluate using a single probability score, we can evaluate
many structure-function interactions without the multiple com-
parison problem.

Although the method of network analysis is very effective, such
as the method of reference (Wong & Leung, 2004; Chen & Hersko-
vits, 2006; Liang & Zhang, 2009), these algorithms can not deal
with the missing data. Whereas, in real-world applications, miss-
ing data is a great quantity, especially in the medical problem. In
the MCI experiment, because the eyesight of some subjects is not
better, they can not see clearly the stimulation, which leads to ap-
pear some missing values in the data set. One example of the
importance of handling missing data is that more than 40% of data
sets in the UCI repository have missing values (Newman, Hettich, &
Blake, 1998; Garcia-Laencina, Sancho-Gomez, Figueiras-Vidal, &
Verleysen, 2009), which is one of most commonly used data sets
for benchmarking machine learning procedures. Many high effi-
cient and effective learning algorithms require complete data sets
to execute. The conversion from an incomplete data set to a com-
plete one then becomes an issue.

Many researchers have been working on constructing Bayesian
network from incomplete data sets. However, there are a few algo-
rithms available for learning the Bayesian network structure with
missing data, because most algorithms require a complete data
set (Lin & Haug, 2008). For learning Bayesian network from incom-
plete data set, the most important challenge is that the parameter
values and the scores of networks can not be computed directly on
the cases with missing values. Moreover, the scoring metric can
not be decomposed directly. Thus, a local change in the network
structure will lead to reevaluate the score of the whole network
(Wong & Guo, 2008).

Friedman proposes a Bayesian Structural Expectation Maximi-
zation (SEM) algorithm which alternates between the parameter
optimization process and the model search process (Friedman,
1997, 1998). However the algorithm takes much longer time to
run and is lack of stability (Austin & Escobar, 2005; Lin and Haug,
2008). The score of a Bayesian network is maximized by means of
the maximization of the expected score. Pena et al. uses the
BC + EM method instead of the EM method (Dempster, Laird, & Ru-
bin, 1977) in their BS-BC + EM algorithm for clustering (Pena, Loz-
ano, & Larranaga, 2000; Pena, Lozano, & Larranaga, 2002).
However, the search strategies adopted in most existing SEM algo-
rithms may not be effective and may make the algorithms find sub-
optimal solutions. Myers et al. employ a genetic algorithm to learn
Bayesian networks from incomplete data sets (Myers, Laskey, &
DeJong, 1999). Both network structures and the missing values
are encoded and evolved. The incomplete data set is completed
by specific genetic operators during evolution. Nevertheless, it
has the efficiency and convergence problems because of the en-
larged search space and the strong randomness of the genetic oper-
ators for completing the missing values.

It is worth mentioning that Wong uses evolutionary algorithm
to learn Bayesian network from incomplete data sets, called EBN
(Evolutionary Bayesian Network learning method) (Wong & Guo,
2008), which utilizes the efficient and effective global search abil-
ity of HEA (Wong & Leung, 2004) and applies EM (Dempster et al.,
1977) to handle missing values. However, EBN is a stochastic algo-
rithm and results are strongly dependent on the initial network
structure, so the results are not stationary.

In this paper, we propose a novel method that firstly uses mu-
tual information to get the important extent of the feature. Accord-
ing to the importance of feature we find the most similar cases
with the missing value case. Then, we adopt the Newton interpola-
tion to estimate the value of the missing data. Finally, we construct
the Bayesian network by using K2 algorithm (Cooper & Herskovits,
1992), it is the most effective, efficient and most popular. However,
this algorithm has one disadvantage that it must specify a prior
feature sequence. The feature ordering consists of domain knowl-
edge or constraints that specify a partial order, such that a parent
feature must appear earlier in the order than any of its descendants
(Chen & Herskovits, 2006). The prior feature ordering most de-
pends on the subjective experience of researchers, which serious
effect on the results of the Bayesian network model. Some re-
searcher used the oriented tree obtained from the maximum-
weight spanning-tree algorithm to generate this ordering (Hecker-
man, Geiger, & Chickering, 1994; Chen & Herskovits, 2006). In this
study, we utilize the mutual information and define a “higher fil-
ter” to learn the prior feature ordering.

3. The algorithm

We suppose that there is a data set D(or sampling space) with
X={xq,...,X,} C RY, for each case x, € X(a=1,...,n) has m features
F={f1,...fm}, it can be represented as a value vector of features,
i.e., X = (Ua1,. .., Vam), Where v is the value of x, corresponding to
the feature f. Among them some 7,; are missing and the number
of missing data is k.

Given a data set D, the first objective of learning algorithm is to
get the estimation of the missing data z,; by computing the mutual
information and Newton interpolation. The second objective is to
get the prior feature ordering by defining a “higher filter”. The third
goal is to construct the Bayesian network B; using K2 algorithm
(Cooper & Herskovits, 1992), it will find the nonlinear relationships
among all the features and get the posterior distribution for the
functional feature MCI from the Bayesian network. That is, we
can predict the state of feature MCI based on the Bayesian network.

3.1. Getting the relationships between features

Since mutual information is good at quantifying how much
information is shared by two random variables, it is often taken
as evaluation criterion to measure the relevance between features
and the class labels (Marcus, Hutter, & Zaffalon, 2005; Liu, Sun, Liu,
& Zhang, 2009). In this study, we utilize mutual information to
measure the relationship between features, which aims to estimate
the missing feature data.

We assume that f; C Fand f; C F(1 <i,j < m) represent the se-
lected missing value feature and candidate feature subsets, respec-
tively. According to the definition of the mutual information, we
will get the mutual information between f; and f; by Eq. (1).

)= 2 2 PO 98 oy v

Under this context, those features f; € F with high predictive
power will have larger mutual information I(f;;f;). On the contrary,
I(fi:f;) is zero if f; and f; are independent with each other. At this
point, f;j has no contribution to the distribution of f;.

3.2. Finding the most similar cases

In this section, we use the mutual information I(f;;f;) as weights
to find the most similar cases with the missing values case x,.

Firstly, in order to discard the feature that is irrelevant or
weakly relevant with the selected missing value feature f;, we first
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define a “lower filter”: for each selected feature f;, if

p((fi;f;) < €n) > p, (1 <i,j <m), we will discard the feature f.
Here ¢ is an arbitrary (low) positive threshold and p is an arbitrary
(high) probability. The feature satisfying the “lower filter” has low-
er dependency among the candidate feature subsets.

Then, we define the Eq. (2) to find the most similar cases with
the missing value case x,. For convenience, assume that different
missing value is in different case. So the we can suppose that k
missing value appears in k cases.

k

En =" Y S Ifif)(va — vy)*. (2)

a=1 b=1b+#a ij=1

Here E,;, reflects the similarity between the missing value case x,
and other case x;, in the data set. 7, is the ith feature in the case
X, and it is missing. vy, is the value of the jth feature in the case x, x;,
is other case except for x,. The more similar between the two cases,
the value of E,, is the more little.

Finally, rank corresponding E,, according to the each missing
value 7,. We will get the top ¢ cases related with each v, and
named as set Sq.544(1 < g < g) denotes the gth case in the set s,
where ¢ = [L,/p; x Es» x 11], p; is the probability that v, appears
in the sample space, feature f; is the feature which has maximum
mutual information with the feature f;.

To sum up, in this section, our objective is to get the set s, it is
the most similar cases with the missing value case x, than other
ones.

3.3. Estimating the value of missing data

At first, we briefly introduce the Newton interpolation polyno-
mial. Then we describe how to apply the polynomial to get the esti-
mation of missing data.

Given a set of n data nodes (x1,¥1),...,(Xn,¥n), the interpolation
polynomial in the Newton form is a linear combination of Newton
basis polynomials N(x) := Zf;lajnj(x) with the Newton basis poly-
nomials defined as nj(x) := [, (x — x;) and the coefficients defined
as a;: = [yn,...,y;l, where [y1,...,y;] is the notation for divided dif-
ferences (http://en.wikipedia.org/wiki/Divided_differences).

Thus, the Newton polynomial can be written as

NX) == 1]+ VYol (X —Xx10) + -+ Ve, W (X = X1) (X — X2)
(X = Xeq) 3)

N(x) is the estimation of the missing data x.

In this study, we assume that missing data is v,;,X, is the case
with v;, and f; is the most dependent on the feature f;. So our target
is to estimate the value of v,; using v, and set s,.5, is the most sim-
ilar cases set with the case x4,544(1 < g < ¢) denotes the gth case in
the set s,, and sqq; denotes the i-th feature in the case sgq.

Corresponding to (X1,y1), . - .,(Xn,¥n), we have o data nodes (S, -
Sati)- - -»(SaajrSaci), according to Eq. (3), we get the Eq. (4).

Vai = N(yaj) = [Sali] + [Salivsazi}(yaj - Salj) + -

+ [Salh Sa2i--- >saa'i](yaj - salj)(vaj - 502]') e (yaj - Saa—lj)- (4)

The value of N(vy) is the estimation of the missing data v,;. Repeat
for each missing data, we will get the estimation of all the missing
data.

3.4. Determining the prior feature ordering

As above mentioned, K2 algorithm is very efficient and effective
in constructing the Bayesian network, but it need a prior feature
ordering (Cooper & Herskovits, 1992; Estevam, Hruschka, Nelson,
& Ebecken, 2007), which mainly depends on the subjective experi-
ence of doctor and which will make strong effect on the analytical

results. In this study, we present a new method to get the prior fea-
ture ordering by defining a “higher filter”. The specific method is
following:

The fundamental target of MCI system is to diagnose MCL
Therefore, we define the functional feature MCI as the root of the
Bayesian network, and it has not the parents. That is to say, we
set the first feature in the ordering is the functional feature MCIL.
In order to find the ordering of other features, we set a “higher fil-
ter” that is: if p(I(f;;f;) > ¢ln) > 1 —p, we will include and rank
these features according to the results of the probability distribu-
tion, the definition of notations is same with “lower filter”. The
magnitude of probability distribution p(I(f;;f;) > ¢jn) means the
dependent extent among features. If the probability p(I(f; ;f;) > ¢|n)
is same among several features, we will rank them according to the
mutual information between the functional feature MCI and the
current selected feature f;. Thus we will get the prior feature order-
ing. The detailed procedure please sees the Section 5.2.

3.5. Constructing Bayesian network

We adopt the famous K2 algorithm to construct the Bayesian
network (Cooper & Herskovits, 1992). Assume f; has any state in
{r1,r2,.. T }.

In this section, our primary goal is to use Eq. (5) as the score
metric to find a Bayesian network By that maximize P(Bs,D). Using
a simple greedy-search algorithm, we begin the algorithm by
assuming a node has no parents, then according to the above got-
ten prior feature ordering, adds incrementally that parent whose
addition most increases the probability of the resulting structure
B..

n i (ri —
max[P(B;, D)] =] ma 12 LH Nu+rl_1'Ha,ﬁ (5)

i=1

Here o is the number of cases in the data set D for which f; =t and
T =Jj.Nj = E{g i 7 is parent nodes of f;. Let ¢; denote a list of the
unique parents of f; as seen in D. If f; has no parents, then we define
¢; to be the list ¢, where ¢ represents the empty set of parents. Let
qi= |¢1‘

By computing Eq. (5) we get the most optimal Bayesian network
B..

4. Implementation
4.1. The procedure of the MNBN algorithm

The procedure of the MNBN algorithm showed in Fig. 1.
4.2. The procedure of the MCI test

We have recently been exploring a specific MCI diagnostic sys-
tem applying network analysis, which assists doctor and patients
to diagnose the MCI and track the development of the MCI. Fur-
thermore, the system will help patients to understand the MCI
based on the clinical data. The first important function of the sys-
tem is to select intelligently MCI, which is the fundamental target
of this study.

The criteria of MCI in this study is provided by Petersen et al.
(1999) : (1) memory complaint and corroborated by an informant,
(2) normal activities of daily living, (3) normal general cognitive
function, (4) objective memory impairment for age, and (5) not
demented.

In our data sets, all participants were recruited from the depart-
ment of neurology of Dalian University affiliated Xinhua hospital
(China) after providing informed written consent. We choose the
complete data as the experimental data, which includes 45 normal
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MCT test
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Fig. 1. The MNBN algorithm procedure.

people (mean age + S.D. 64.78 £5.15) and 42 MCI patients
(68.52 £ 8.32) were classified by neurological doctor according to
the Peterson’s criteria. The groups were relatively well-balanced
in terms of sex (58% and 55% women in each of the 2 groups,
respectively). The procedure of choosing the MCI contains a set
of preliminary behavioral tests.

We do not add the brain imaging data into this paper because of
the limited space. We focused on the method to infer the decisive
factors of MCI. The tests of the system included MMSE (mini-men-
tal state examination) (Folstein, Folstein, & McHugh, 1975), ADL
(Activities of Daily Living) (Lawton & Brody, 1969), CDR (Clinical
Dementia Rating scale) (Hughes, Berg, Danziger, Coben, & Martin,
1982), ANT (Attentive Networks Test), STM (short-time memory
test) and some enquiries of natural information, such as name,
No. of ID, age, sex and education degree. None of them was receiv-
ing psychoactive medications such as antipsychotic drugs or cere-
bral vasodilators, nor showed any neurological symptoms or other
physical disorders. Moreover, computed tomography (CT) was ap-
plied to rule out other organic brain diseases. Considering the pur-
pose of this paper is to describe the method of assistant diagnosis,
we do not give the experimental detail. We only give several spe-
cific implemental procedures showed as Figs. 2 and 3.

The STM was developed in the environment of the E-Prime,
which is commercial experiment software, on an IBM-compatible
personal computer. At first, there appears “+"400 ms on the screen.
Then appears target stimulation 105 ms. Next, appears an arrow,
which pointed randomly to one of the eight numbers. The time
internal (target-cue onset asynchrony, SOA) is 11 ms, 32 ms,
74 ms, 516 ms and 1105 ms, respectively. The accuracy of subjects
was recorded in every time internal. The experimental procedure is
simply showed in the Fig. 2.

ANT was run via E-Prime on an IBM-compatible personal com-
puter. The stimuli consisted of a target and four flankers dis-
played on a computer screen. The target was a leftward or
rightward arrow at the center. This target was flanked on each
side by two arrows in the same direction (congruent condition),
in the opposite direction (incongruent condition), or by lines
without arrowheads (neutral condition). Each target was pre-
ceded by some kind cues, such as asterisk, fixation cross and sub-
traction sign.

The participant was to respond as quickly and accurately as
possible based on the direction of the target by pressing the corre-
sponding left or right key on a mouse. The reaction time (RT) and
accuracy were recorded. Mainly procedure is showed in Fig. 3.

+

o7 5

4 4+ 0

7 4

+
—| WEEE |
SOA
Time
i 1]

Fig. 2. Display sequence in the test of the STM.

In the above tests, the goal is to find the influential factors on
the MCI. However, some of data can not be obtained in the process
of the experiment because the eyesight of participants is weak. So
we presented the method to intelligent infer with missing data.

4.3. Overview of the MNBN algorithm

Input: A data set D contains n discrete cases x,(1 < a < n), each
case x, has m features f(1 <i < m), denoted as v,; and some v
is missing, the number is k.
Output: Bayesian network Bs.
Step 1: Data preprocess We chose the following 9 features:
age, sex, education degree, CDR score, MMSE score, ADL
score, ANT, STM and MCI functional feature.
For the data of the STM, we adopt the mean of the accuracy
in the 0 ms, 116 ms, 137 ms, 179 ms, 621 ms, 1210 ms as the
results of the STM. For the data of the ANT, we observed the
accuracy of most subjects is nearly 100%, so we adopt the
mean of the react time as the results of the ANT. Other data
was discretized respectively.
Step 2: Get the relationships I(f;;f;) between the feature f; and
fi:
According to Eq. (1), Repeat for each feature f,f; € F calculat-
ing the mutual information:

Ifsf) =" > p(fifi)log

fieF fieFj#i

plfifi)

p(fp(f)

Step 3: Find the similar cases set s,:

1. Apply the “lower filter” p(I(fi;f;) < &|n) > p to discard

those irrelevant or weakly relevant features.
2. Repeat for each case and each feature computing

k

Ew=1_ > > I(fif)(va— vy

a=1 b=1ba ij=1

3. Rank these Egp, find the top ¢ cases and named as set s,

corresponding each missing data v, o=[L
\/Dj % Eap x NJ.
Step 4: Estimate the value of missing data z,; by Computing:
Vai = N(v4j) == [Sa1i] + [Satis Sa2i] (Vaj — Sa1j) + -+

+ [SaliaSaZi .. ~,Sa(ri](7/aj - Salj)(yaj - Sazj) v (Vuj - Saa—lj)-
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Fig. 3. Display sequence in the test of the ANT.

Repeat for each missing data v,;, we will get the estimation of all the
missing data.
Step 5: Determine the prior feature ordering Pyeg.
1. Set MCI as the first feature node in the predicted feature
ordering Preq.
2. Apply the “higher filter” p(I(fi;f;) >¢n)>1—p to
include and rank the features.

Step 6: Construct the Bayesian network Bs (the set ;)
1. Repeat for each case, set initialized parameter 7; = ¢;

a r— 1)
Poa = K> (fi, i) = H m

j=1

Ti
H o) Flag = true.
t=1

2. Iterate for each flag=true and |mj <u, update z=P..
df)—m; that maximizes Ko(fi, i U {z}) and
Prew = IG(fi, iU {2}). Here Pry(f;) is the prior feature
ordering and u is the permitted maximal number of par-
ent nodes, in general, u=3.

3. If (Ppew > Poig) then Pyg = Ppew; and m; = ; U {z}.

5. Experimental results
5.1. Experiments on the MCI

The algorithm has been implemented in MATLAB. All of the
experiments are conducted on the IBM personal computer with
2.0 GHz processor and 3 GB memory running Windows XP operat-
ing system.

In order to compare the robustness of the response models, we
adopt a 5-fold cross-validation approach for performance estima-
tion. A data set is randomly partitioned into 5 mutual exclusive
and exhaustive folds. Each time, a different fold is chosen as test
set and other four folds are combined together as the training
set. Response models are learned from the training set and evalu-
ated on the corresponding test set.

For convenience in later discuss, in the MCI experiment, we de-
fine 9 features from 1 to 9, which are age, sex, education degree,
MMSE, ADL, CDR, STM, ANT and MCI, respectively. The Table 1 de-
scribes the mutual information among 9 features in the training
set. We can see that the 3rd, 7th and 8th feature are high depen-
dent on the MCI functional feature, so we should give more weight
in finding the similar cases. Meanwhile, we can see that the 2nd
feature satisfying the “lower filter”, therefore, in the process of
estimating the missing data and constructing the Bayesian net-
work, we discard the feature, which will largely decrease the com-
plex of the computation, especially in the large scale data sets.

The specific results are given in Table 1.

Next, we estimate missing data in the MCI test set. According to
the step 2, step 3 and step 4 of Section 4, we get the estimation of
the missing data. Specific results are showed in the Table 3.

In order to improve the efficiency, in finding the similar cases,
we do not find the most similar cases in the global data set. In gen-
eral, after we find § missing values, we will get the minimal error
between the missing data cases and other cases, then in the follow-
ing experiment, we find those cases less than or equal to minimal
error as the similar cases, which will save much search time and
get the better results.

According to the step 5 and step 6 of the Section 4, we construct
the Bayesian network of MCI showed in Fig. 4. The network shows
that the feature sex is weak dependent on all other features and
therefore not shown in Fig. 4. The Bayesian network in Fig. 4 rep-
resents multivariate nonlinear associations among 8 features and
the functional feature MCI. Given the results for a set of tests, we
can compute the posterior distribution for the clinical feature
MCI from the Fig. 4. That is, we can predict the state of feature
MCI based on the results of the tests. For example, MCI is directly
dependent on ANT, STM and education degree. In this way, for each
subjects we can compute the probability p = PIMCI|ANT, STM, educa-
tiondegree), based on the results of the ANT, STM test and educa-
tion degree. If p < 0.2, we can predict the state of feature MCI as
0 (Normal). If 0.2 < p < 0.5, we can predict the state of MCI as

Table 1
The mutual information among features in the MCL
fi f f3 fa fs fs f7 fs fo

fi 8.3246 0.6352 0.9845 2.3467 5.6432 3.1675 2.4563 5.6749 3.2135
fo 0.6352 6.4375 1.2364 0.3495 1.2436 0.9358 2.1038 1.4573 0.7366
f 0.9845 1.2364 34.3465 5.3429 2.4685 3.4256 3.6235 4.5323 6.4367
fa 2.3467 0.3495 5.3429 12.3483 3.2675 3.2643 3.2498 4.3847 2.3646
fs 5.6432 1.2436 2.4685 3.2675 15.4832 3.2476 1.6473 4.3728 3.3235
fe 3.1675 0.9358 3.4256 3.2643 3.2476 25.3594 2.1324 5.4635 3.1242
f7 2.4563 2.1038 3.6235 3.2498 1.6473 2.1324 18.2394 3.2421 5.4382
fs 5.6749 1.4573 4.5323 4.3847 4.3728 5.4635 3.2421 42.3421 9.3438
fo 3.2135 0.7366 6.4367 6.3646 33235 3.1242 5.4382 9.3438 62.4386
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Fig. 4. The Baysian network of MCIL.

1(MCI). If p>0.5, we can predict the state of MCI as 2(MCI to
dementia).

The predictive accuracy of using ANT, STM and education de-
gree jointly to predict MCI is 0.82(sensitivity 0.79 and specificity
0.84). If we use these three features independently, the accuracy
of ANT is 0.72(sensitivity 0.69 and specificity 0.76), that of STM
is 0.68 (sensitivity 0.74 and specificity 0.62, that of education de-
gree is 0.56(sensitivity 0.62 and specificity 0.51). This finding sug-
gests the importance of jointly considering the states of the ANT,
STM and education degree in diagnosing MCIL.

On the other side, we can conclude that if we want to do a
primary diagnosis quickly, we may only test the ANT,STM and
combine with the information of education degree, we will get
the diagnosis with highly accuracy in short time. We might ap-
ply this idea into the hospital to check the body for the general
people.

5.2. Experiments on the benchmark data sets

In order to further validate the performance of the MNBN algo-
rithm, we test the algorithm on the six standard data sets. We first
take the Pima Indians Diabetes data set (PID, one of the data set in
the UCI repository (Newman et al., 1998)) as example to further
introduce the procedure of the MNBN algorithm. Then, we verify
the performance of the MNBN algorithm by testing on the MCI
and six data sets from UCI repository.

The PID data set contains 768 cases and 9 features. The meaning
of each feature is: 1. Number of times pregnant; 2. Plasma glucose
concentration a 2 h in an oral glucose tolerance test; 3. Diastolic
blood pressure (mm Hg); 4. Triceps skin fold thickness (mm); 5.
2-h serum insulin (mu U/ml); 6. Body mass index (weight in kg/
(height in m)2); 7.Diabetes pedigree function; 8. Age (years); 9.
Diabetes (0 or 1). For convenience in later discuss, we named these
9 features from 1 to 9, respectively.

According to Eq. (1), we first get the results of the mutual infor-
mation in the Table 2.

Then, we generate randomly the missing data in the data set.
According the step 2, step 3 and step 4 in Section 4 we obtain

Fig. 5. The Baysian network of the PID.

Table 2
The mutual information among all the features in the PID.
h f f3 fa fs fs fz fs fo

fi 172.4335 1.7566 1.6407 1.7662 1.1030 1.9076 2.1098 4.3449 4.5956
fo 1.7566 36.6211 2.1604 2.1848 2.3484 3.4966 41819 2.2351 1.3867
fi 1.6407 2.1604 101.2492 2.9478 23315 2.6304 2.8798 2.0566 0.7475
fa 1.7662 2.1848 2.9478 124.4140 49.6010 2.5099 29127 1.5300 0.1954
fs 1.1030 2.3484 2.3315 49.6010 140.3182 2.6317 3.1042 1.2800 0.3969
fe 1.9076 3.4966 2.6304 2.5099 2.6317 23.8376 4.7661 2.5470 0.8147
fr 2.1098 4.1819 2.8798 2.9127 3.1042 4.7661 11.4355 3.0732 0.6703
fs 4.3449 2.2351 2.0566 1.5300 1.2800 2.5470 3.0732 93.4862 41898
fo 4.5956 1.3867 0.7475 0.1954 0.3969 0.8147 0.6703 4.1898 238.1666

Table 3

The performance of the MNBN algorithm in different data sets.

Iris Wine PID Cloud Statlog MGT MCI

No. of features 5 14 9 11 37 11 9
No. of complete cases 143 163 729 961 3750 18,351 78
No. of missing data 10 20 50 100 1000 1000 11
No. of incomplete cases 7 15 39 63 685 669 9
Missing percent (%) 133 0.80 0.72 0.88 0.61 0.48 1.39
MSE 0.0158 0.0667 0.2280 0.0319 3.1713 0.5919 0.0173
AET 0.0131 0.3097 2.2967 3.1158 377.1224 687.3553 0.0136
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Table 4
The performance comparison among LibB, EBN and MNBM.
Missing percent (%) No. of missing values No. of incomplete cases Method ASD AET
0.1 370 322 LibB 27.8+15.3 379.3+103.8
EBN 6.1+5.8 351.1+108.6
MNBN 56+4.7 366.3 £29.3
1 3700 2826 LibB 274+15.8 821.5+2239
EBN 72+44 694.3 +159.1
MNBN 6.9+3.6 839.5 £34.2
5 18.500 7639 LibB 29.7 £10.0 3012.2 £789.6
EBN 8.6+4.3 1553.8 +252.7
MNBN 82+4.1 2178.6 £39.8

the estimation of the missing data. Specific results are showed in
the Table 3.

Next, we will describe detailed procedure that mutual informa-
tion determines the prior feature ordering P4 according to the
step 5. The detailed procedure is followed:

1. Set MCI as the first feature node in the predicted feature order-
ing Pred-

2. Apply the “lower filter” p(I < &|n) > p . We can not discard any
feature because no any feature satisfying the “lower filter”.
£=20,p=0.75.

3. Apply the “higher filter” p(I > ¢jn) > 1 — p we will get all the
features which satisfy the “higher filter”. We rank these fea-
tures. The ordering is fo,f7.f.f3.f6.fs.fa.f5.f1. However, among
them the probability distribution of f5,f3,fe.fs and fa,fs is same,
respectively. So we rank them according to the mutual informa-
tion between the current feature and the functional feature fo.
Therefore, we will get the feature ordering Prg is

f9vf7vf8vf2vf6vf3vf5vf4vf1 .

Finally, according to the step 6, apply the feature ordering P4 to
the K2 algorithm, we construct the diagnostic network of the PID
showed in Fig. 5.

From the Fig. 5, we can conclude that strong association among
the Pima Indian Diabetes and body mass index (weight/height) and
triceps skin fold thickness. The positively correlated with body
mass index (weight/height) and blood pressure, diabetes pedigree
function and ages, respectively, which is consistent with other re-
ports (Knowler, Bennett, Hamman, & Miller, 1978; de Courten, Pet-
titt, & Knowler, 1996).

In order to further evaluate the effectiveness of the MNBN algo-
rithm, MCI and six data sets from UCI repository (Newman et al.,
1998) were used. These data sets were Iris, Wine, Pima Indians Dia-
betes (PID), Cloud, Landsat Satellite (Statlog) and Magic Gamma
Telescope (MGT).

We evaluate the performance of the algorithms using the fol-
lowing parameters:

No. of missing data: equal to size of all cases x No. of fea-
tures x missing percentage.

MSE: mean square error is the sum of (real value-estimated
value)?, then divides k.

AET: the average execution time of each data set in seconds.

From the Table 3, we can conclude that most of the results in
MSE can be accepted, only minimum MSE is a little high, such as
Statlog. We analyze the reason that the range of data is larger
and difference between the data is larger. On the other hand, some
estimations of missing data are very precise, such as the MSE can
arrive at 0.0027 in the 5th feature of the MGT data set even with
1000 missing value. In the computation of the MSE, we adopt the
mean of all the MSE.

5.3. Comparisons among the MNBN and other algorithms

In order to compare the performance of MNBN with other algo-
rithms, including EBN (Wong & Guo, 2008) and LibB,! we tested the
different methods on the well-known benchmark network the Alarm
data set (Beinlinch, Suermondt, Chavez, & Cooper, 1989; Cooper &
Herskovits, 1992) with different missing percentage. LibB can learn
Bayesian networks from data in the presence of missing data, which
implements the SEM algorithm (Friedman, 1998) introduced in Sec-
tion 2.

Firstly, we randomly sample the original data set from the
alarm with no missing data. The No. of case is 10,000, No. of feature
is 37. Then, the incomplete data set used in our experiments are
generated from the corresponding original data set with missing
data introduced randomly. Because the EBN and LibB are two sto-
chastic algorithms, we execute them for 20 times on each data set
to get their average performance. The Table 4 is the average and
standard deviation of 20 trails.

ASD: The average structural difference, i.e., number of edges
added, reversed and omitted, between the final solution and the
original network structure.

From the Table 4, we can draw the following conclusions:

(1) The precision of the MNBN algorithm is better than SEM and
EBN algorithm, although time efficiency is worse than other
algorithms in some times.

(2) From the results of the standard deviation, The MNBN algo-
rithm is more stable than other algorithms. The percentage
of missing data makes little effect to the MNBN algorithm.
We analyze the reason that may be the MNBN algorithm
has adaptive ability through finding the similar cases.

6. Conclusions

In this paper, we use a set of behavioral experimental data con-
structing the MCI network model. We find ANT, STM and education
degree are the mainly influencing factors of MCI, and get the non-
linear association among these influencing factors.

The MCI system has been tested and applied in Xinhua hospital
of Dalian, and we have confidence that it has potential to apply in
society and ordinary family. Because each person can detect the
possibility of MCI risks at home, which will greatly improve the
discovery rate of MCL If the subject is detected the high MCI risk,
the system may advice the subject to go to hospital and do the fur-
ther examination under the guidance of doctor. So our system
might be a primary free diagnosis to MCIL

In the process of constructing MCI network, we propose the
MNBN algorithm, which first uses the mutual information between
features to find the similar cases with the missing data, adopt
Newton interpolation to estimate the missing data. Next, we utilize

1 LibB is available at http://compbio.cs.huji.ac.il/LibB/.


http://www.ics.uci.edu/~mlearn/MLRepository.html

Y. Sun et al./Expert Systems with Applications 38 (2011) 442-449 449

again the mutual information and define “higher filter” to get the
suitable feature ordering. Finally, we apply the feature ordering
to construct the Bayesian network. The experimental results indi-
cate that MNBN algorithm achieves better results than other meth-
ods in most conditions.

In the future, we plan to further improve the efficiency of the
algorithm by following several aspects:

(1) In the process of finding the similar cases, considering the
complexity, we currently only compute the mutual informa-
tion between two features and ignore the effects of the
selected feature subset. In some conditions, if necessary,
we could utilize the multivariate mutual information to fur-
ther improve the accuracy. By using multivariate mutual
information, we will get the sets of dependent relationships
among a set of features. But it will increase the complexity of
the algorithm. Therefore, how to utilize some optimal meth-
ods to increase the efficiency of the algorithm is a challenge
and require further investigation intensely.

(2) Using Newton interpolation to estimate the missing data
demands the feature value different from each other. In order
to decrease the complexity, we only compute the mean of
corresponding feature values, which will make effect on the
precision of the algorithm. In future, we will develop more
optimal algorithm to estimate the missing data.

(3) Although we gain the better performance on the above data
sets, more studies will be required on how to tune the
parameters, such as o, “higher filter” and “lower filter”,
which is a problem worth investigating in future research.
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