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1. Introduction
The rapid growth of electronic computation continues
to challenge our ability to conceptualize and describe
the world around us. Mathematical tools and formal
descriptions serve poorly as a communication device
with the majority of people not trained in nor used
to mathematical means of expression. Yet virtually
everyone has information useful in the solution of his
own problems or the problems of others, if only it
could be tapped.
The subject of this paper is a new form of descrip-

tion, the influence diagram, that is at once both a for-
mal description of the problem that can be treated by
computers and a representation easily understood by
people in all walks of life and degrees of technical
proficiency. It thus forms a bridge between qualitative
description and quantitative specification.
The reason for the power of this representation is

that it can serve at the three levels of specification of
relation, function, and number, and in both determin-
istic and probabilistic cases. In the deterministic case,
relation means that one variable can depend in a gen-
eral way on several others; for example, profit is a
function of revenue and cost. At the level of function,
we specify the relationship; namely, that profit equals
revenue minus cost. Finally, at the level of number,
we specify the numerical values of revenue and cost
and hence determine the numerical value of profit.
In the probabilistic case, at the level of relation we

mean that given the information available, one vari-
able is probabilistically dependent on certain other
variables and probabilistically independent of still
other variables. At the level of function, the proba-
bility distribution of each variable is assigned condi-

tioned on values of the variables on which it depends.
Finally, at the level of number, unconditional distribu-
tions are assigned on all variables that do not depend
on any other variable and hence determine all joint
and marginal probability distributions.
As an example of the probabilistic case, we might

assert at the level of relation that income depends
on age and education and that education depends on
age. Next, at the level of function we would assign
the conditional distribution of income given age and
education and the distribution of education given age.
Finally, at the level of number, we would assign the
unconditional distribution on age.
The successive degrees of specification can be made

by different individuals. Thus, an executive may
know that sales depend in some way on price, but
he may leave to others the probabilistic description of
the relationship.
Because of its generality, the influence diagram is

an important tool not only for decision analysis, but
for any formal description of relationship and thus
for all modeling work.
In the present paper, we shall focus on the prob-

abilistic use of influence diagrams since the deter-
ministic use is a special, but important, case of the
probabilistic. We now proceed to development of the
influence diagram concept, to examination of its prop-
erties, and to illustration of its use.

2. Probabilistic Dependence1
One of the most perplexing aspects of making deci-
sions under uncertainty is the problem of representing

1 This entire discussion applies as well to events as to variables.
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and encoding probabilistic dependencies. A proba-
bilistic dependency is one that arises as a result of
uncertainty. For example, if a and b are known vari-
ables and c = a + b, then it is clear that c depends
on both a and b, both in a vernacular sense and in
a mathematical sense. However, suppose a is known
and b is uncertain. Then c is probabilistically depen-
dent on b but not on a. The reason is that knowing
the specific value of b tells us something new about
c, but there is no such possibility with respect to a.

3. Probabilistic Independence
Probabilistic independence, like the assigning of prob-
ability itself, depends on the state of information pos-
sessed by the assessor. Let x, y, and z be aleatory state
variables of interest, which can be either continuous
or discrete. Then �x � S	 is the probability distribution
assigned to x given the state of information S. Two
variables x and y are probabilistically independent
given the state of information S if

�x
y � S	 = �x � S	�y � S	
or equivalently, if

�x � y
S	 = �x � S	�

4. Expansion
Regardless of whether x and y are probabilistically
independent, we can write

�x
y � S	 = �x � y
S	�y � S	
= �y � x
S	�x � S	�

We call this the “chain rule of probabilities.” Note that
for three events there are six possible representations:

�x
y
 z � S	 = �x � y
z
S	�y � z
S	�z � S	
= �x � y
z
S	�z � y
S	�y � S	
= �y � x
z
S	�x � z
S	�z � S	
= �y � x
z
S	�z � x
S	�x � S	
= �z � x
y
S	�x � y
S	�y � S	
= �z � x
y
S	�y � x
S	�x � S	�

For n variables there are n! possible expansions,
each requiring the assignment of a different set of

probabilities and each logically equivalent to the rest.
However, while the assessments are logically equiv-
alent, there may be considerable differences in the
ease with which the decision maker can provide them.
Thus, the question of which expansion to use in a
problem is far from trivial.

5. Probability Trees
Associated with each expansion is a probability tree.
The expansion

�x
y
 z � S	= �x � y
z
S	�y � z
S	�z � S	

implies the tree shown in Figure 5.1. The tree is a suc-
cession of nodes with branches emanating from each
node to represent different possible values of a vari-
able. The first assignment made is the probability of
various values of z. The probability of each value of
y is assigned conditioned on a particular value of z,
and placed on the portion of the tree indicated by that
value. Finally, the probabilities of various levels of x
are assessed given particular values of z and y and
placed on the portion of the tree specified by those
values. When this has been done for all possible val-
ues of x, y, and z the tree is complete. The probability
of any particular path through the tree is obtained
by multiplying the values along the branches and is
�x
y
 z � S	. Notice that the tree convention uses small
circles to represent chance nodes. If we wish to focus

Figure 5.1 A Probability Tree

{zS}

{yz, S}

{xy, z, S}
{x, y, zS}
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Figure 5.2 A Generic Probability Tree

{z|S} {y|z, S} {x|y, z, S}

on the succession in the tree rather than the detailed
connections, we can draw the tree in the generic form
shown in Figure 5.2.

6. Decision Trees
If a variable is controlled by a decision maker, it is
represented in a tree by a decision node. Thus, if y
were a decision variable, Figure 5.2 could be redrawn
as Figure 6.1. This tree states that the decision maker
is initially uncertain about z and has assigned a prob-
ability distribution �z � S	 to it. However, he will know
z at the time he must set y, the decision variable.
This node is represented, like all decision nodes, by a
small square box. Once z and y are given, the decision
maker will still be uncertain about x; he has repre-
sented this uncertainty by �x � y
z
S	, Notice that a
decision tree implies both a particular expansion of
the probability assessments and a statement of the
information available when a decision is made.

7. Probability Assignment
for Decision Trees

The major problem with decision trees arises from
the first of these characteristics. The order of expan-
sion required by the decision tree is rarely the nat-
ural order in which to assess the decision maker’s
information. The decision-tree order is the simplest
form for assessment only when each variable is prob-
abilistically dependent on all preceding aleatory and

Figure 6.1 A Generic Decision Tree

{zS} y {xy, z, S}

Figure 7.1 A Four-Node Decision Tree

{zS} y {xy, z, S} {vx, y, z, S}

decision variables. If, as is usually the case, many
independence assertions can be made, assessments
are best done in a different order from that used in the
decision tree. This means that we first draw a prob-
ability tree in an expansion form convenient to the
decision maker and have him use this tree for assign-
ment; it is called a probability assignment tree. Later
the information is processed into the form required
by the decision tree by representing it in one of the
alternative expansion orders (Howard 1965). This is
often called “using Bayes’ Rule” or “flipping the tree.”
It is a fundamental operation permitted by the arbi-
trariness in the expansion order.
Consider, for example, the decision tree of Fig-

ure 6.1 with one additional aleatory variable v added,
as shown in Figure 7.1. We interpret z as a test result
that will become known, y as our decision, x as the
outcome variable to which the test is relevant, and v

as the value we shall receive if the test indicates z, we
decide y, and x is the value of the outcome variable.
Often y will not affect x in any way, even though y

affects v; we write

�x � y
z
S	= �x � z
S	
to represent this assertion.
With this independence assertion we have the tree

shown in Figure 7.2. This tree requires the speci-
fication of �z � S	 and �x � z
S	: the probability of
various test results and the probability of various out-
comes given test results. But typically in situations of
this kind, the decision maker would prefer to assign

Figure 7.2 A Four-Node Decision Tree Given the Assertion that y Will
Not Affect x

{zS} y {xz, S} {vx, y, z, S}
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Figure 7.3 The Probability Assignment Tree

{x|S} {z|x,S}

directly the probabilities of different outcomes �x � S	
and then the probabilities of various test results given
the outcome, �z � x
S	. In other words, he would pre-
fer to make his assessments in the probability tree of
Figure 7.3 and then have them processed to fit the
decision tree of Figure 7.2. Because

�x � S	�z � xS	= �z � S	�x � zS	= �x
 z � S	

this is no more than choosing one expansion over the
other. The exact processing required for the decision
tree is then summation,

�z � S	=
∫
x
�z � x
S	�x � S	


and division,

�x � z
S	= �z � x
S	�x � S	
�z � S	 �

Recall, however, that this whole procedure was pos-
sible only because variable x did not depend on the
decision variable y.

8. Influence Diagrams
An influence diagram is a way of describing the
dependencies among aleatory variables and decisions.
An influence diagram can be used to visualize the
probabilistic dependencies in a decision analysis and
to specify the states of information for which inde-
pendencies can be assumed to exist.
Figure 8.1 shows how influence diagrams represent

the dependencies among aleatory variables and deci-
sions. An aleatory variable is represented by a circle
containing its name or number. An arrow pointing
from aleatory variable A to aleatory variable B means
that the outcome of A can influence the probabilities
associated with B. An arrow pointing to a decision
from either another decision or an aleatory variable
means that the decision is made with the knowledge
of the outcome of the other decision or aleatory vari-
able. A connected set of squares and circles is called

Figure 8.1 Definitions Used in Influence Diagrams

A B

C D

E F

G H

THE PROBABILITIES ASSOCIATED WITH ALEATORY
VARIABLE B DEPEND ON THE OUTCOME OF
ALEATORY VARIABLE A

THE PROBABILITY OF ALEATORY VARIABLE D
DEPENDS ON DECISION C

THE DECISION MAKER KNOWS THE OUTCOME OF
ALEATORY VARIABLE E WHEN DECISION F IS MADE

THE DECISION MAKER KNOWS DECISION G
WHEN DECISION H IS MADE

an influence diagram because it shows how aleatory
variables and decisions influence each other.
The influence diagram in Figure 8.2(a) states that

the probability distribution assigned to x may depend
on the value of y, whereas the influence diagram in
Figure 8.2(b) asserts that x and y are probabilistically
independent for the state of information with which
the diagram was drawn. Note that the diagram of
Figure 8.2(a) really makes no assertion about the prob-
abilistic relationship of x and y since, as we know,
any joint probability �x
y � S	 can be represented in
the form

�x
y � S	= �x � y
S	�y � S	�
However, because

�x
y � S	= �y � x
S	�x � S	

the influence diagram of Figure 8.2(a) can be redrawn
as shown in Figure 8.2(c); both are completely general
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Figure 8.2 Two-Node Influence Diagrams

y x

y x

y x

(a) A SIMPLE INFLUENCE DIAGRAM

(b) AN EVEN SIMPLER INFLUENCE DIAGRAM

(c) AN ALTERNATE REPRESENTATION

representations requiring no independence assertions.
While the direction of the arrow is irrelevant for this
simple example, it is used in more complicated prob-
lems to specify the states of information upon which
independence assertions are made.

Figure 8.3 Alternate Influence Diagrams for �x� y � z�S�

z y x

z y x

z y x

z y x

z y x

z y x

Similarly, with three variables x, y, z there are six
possible influence diagrams of complete generality,
one corresponding to each of the possible expansions
we developed earlier. They are shown in Figure 8.3.
While all of these representations are logically equiv-
alent, they again differ in their suitability for assess-
ment purposes. In large decision problems, the influ-
ence diagrams can display the needed assessments in
a very useful way.

9. Graphical Manipulation
Because there are many alternative representations of
an influence diagram, we might ask what manipula-
tions can be performed on an influence diagram to
change it into another form that is logically equivalent.
The first observation we should make is that an

arrow can always be added between two nodes with-
out making an additional assertion about the inde-
pendence of the two corresponding variables (as long
as no loops are created). That is, saying that x may
depend on variable y is not equivalent to saying that x

Figure 9.1 Graphical Manipulation of Influence Diagrams

z

yx

z

yx

z

yx

(a) AN INFLUENCE DIAGRAM

(b) ARROW BETWEEN x AND y REVERSED

(c) ANOTHER INFLUENCE DIAGRAM
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Figure 9.2 Graphical Manipulations Producing Non-Unique Results

z y x

z y x

z y x

z y x

z y x

z y x

z y x

z y x

STEP 1

STEP 2

STEP A

STEP B

STEP C

STEP 3

STEP 4

STEP 5

(a) FIRST SEQUENCE OF MANIPULATIONS (b) SECOND SEQUENCE OF MANIPULATIONS

must depend on y. Thus, the diagram of Figure 8.2(b)
can be changed into either of the diagrams shown
in Figures 8.2(a) and 8.2(c) without making an erro-
neous assertion. However, the reverse procedure could
lead to an erroneous assertion. Creating additional
influence arrows will not change any probability
assessment, but may destroy explicit recognition of
independencies in the influence diagram.
Thus, Figures 8.2(a) and 8.2(c) are two equivalent

influence diagrams. They are equivalent in that they
imply the same possibility of dependencies between
x and y given the state of information on which the
diagram was based.
An arrow joining two nodes in an influence dia-

gram may be reversed provided that all probability
assignments are based on the same set of informa-
tion. For example, consider the influence diagram
of Figure 9.1(a). Because the probability assignment
to both x and y are made given knowledge of z,
the arrow joining them can be reversed as shown in
Figure 9.1(b) without making any incorrect or addi-
tional assertions about the possible independence of x
and y. Figure 9.1(c) shows another example where the
assignment of probability to x does not depend on the
value of z, and so it might appear that no reversal of
the arrow from x to y is possible. However, recall that
we can always add an arrow to a diagram without

making an incorrect assertion. Thus, we can change
the diagram of Figure 9.1(c) to that of Figure 9.1(a),
and then that of Figure 9.1(a) to that of Figure 9.1(b).
The influence arrow between x and y can be reversed
after an influence arrow is inserted between z and x.
The graphical manipulation procedure may yield

more than one result. For example, consider the
reversal of the three-node influence diagram shown
in Step 1 of Figure 9.2(a). Suppose we first attempt
to reverse the y to x arrow. For x and y to have only
common influences, we must provide x with an influ-
ence from z (Step 2), before performing the reversal
(Step 3). Since both x and z now are based on the same
state of information (there are no impinging influ-
ences, i.e., arrows into x or z from any other node),
the influence joining them may be reversed (Step 4).
Finally, since both z and y are assigned probabilities
after x is known, the influence joining them can be
reversed (Step 5) .
Suppose however, that the same diagram (Step

A, Figure 9.2(b)) was transformed by first reversing
the arrow joining z and y (Step B), which is pos-
sible since y and z are based on the same state of
information (i.e., there are no impinging influences).
Then the arrow joining x and y can be reversed
(Step C) because neither x nor y now have imping-
ing influences. Both this transformation and the one
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in Figure 9.2(a) are correct. However, Step C of
Figure 9.2(b) shows that there is no need to indicate
conditioning of z on x. Step 5 of Figure 9.2(a) contains
this unnecessary, but not incorrect, influence.

10. Influence Diagrams
with Decision Variables

We shall now extend the concept of influence dia-
grams to include decision variables. We begin with a
formal definition of influence diagrams.
An influence diagram is a directed graph having no

loops. It contains two types of nodes:
— Decision nodes represented by boxes (�)
— Chance nodes represented by circles (©)

Arrows between node pairs indicate influences of two
types:
— Informational influences, represented by arrows
leading into a decision node. These show exactly
which variables will be known by the decision
maker at the time that the decision is made.
— Conditioning influences, represented by arrows
leading into a chance node. These show the vari-
ables on which the probability assignment to the
chance node variable will be conditioned.

The informational influence on a decision node rep-
resent a basic cause/effect ordering, whereas the con-
ditional influence into a chance node represent, as we
have seen, a somewhat arbitrary order of conditioning
that may not correspond to any cause/effect notion
and that may be changed by application of the laws
of probability (e.g., Bayes’ Rule).

Figure 10.1 An Influence Diagram with Decision Nodes

m n o

a

c

b f

d e g

l

i k

j

h

Figure 10.1 is an example of an influence diagram.
Chance node variables a, b, c, e, f , g, h, I , j , k, l, m, and
o all indicate aleatory variables whose probabilities
must be assigned given their respective conditioning
influences. Decision node variables d and n represent
decision variables that must be set as a function of
their respective informational influences. For exam-
ple, the probability assignment to variable i is con-
ditioned upon variables f , g, and l, and only these
variables. In inferential notation, this assignment is

�i � f 
g
 l
E	


where E represents a special S, the initial state of
information upon which the construction of the entire
diagram is based. As another example, the decision
variable d is set with knowledge of variables a and
c, and only these variables. Thus, d is a function of a
and c.

11. Node Terminology
One of the most important, but most subtle, aspects
of an influence diagram is the set of possible addi-
tional influences that are not shown on the diagram.
An influence diagram asserts that these missing influ-
ences do not exist.
To illustrate this characteristic of influence diagram

more clearly we must make a few more definitions.
• A path from one node to another node is a set of

influence arrows connected head to tail that forms a
directed line from one node to another.
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Figure 11.1 Some Sets Defined by the Node g

m n o

a

c

b f

d e g

l

i k

j

h

PREDECESSORS

INDIRECT
PREDECESSORS DIRECT

PREDECESSORS
DIRECT

SUCCESSORS INDIRECT
SUCCESSORS

SUCCESSORS

With respect to any given node we make the fol-
lowing definitions:
• The predecessor set of a node is the set of all nodes

having a path leading to the given node.
• The direct predecessor set of a node is the set of

nodes having an influence arrow connected directly to
the given node.
• The indirect predecessor set of a node is the set

formed by removing from its predecessor set all ele-
ments of its direct predecessor set.
• The successor set of a node is the set of all nodes

having a path leading from the given node.
• The direct successor set of a node is the set of

nodes having an influence arrow connected directly
from the given node.
• The indirect successor set of a node is the set

formed by removing from its successor set all ele-
ments of its direct successor set.
We refer to members of these sets as predecessors,

direct predecessors, indirect predecessors, successors,
direct successors, and indirect successors. Figure 11.1
shows the composition of each of these sets in relation
to node g.

12. Missing Influences
We now are prepared to investigate the implications
of influences not shown in a diagram. A given node
could not have any arrows coming into it from suc-
cessor nodes because this addition would form a loop
in the diagram. A loop is prohibited since it could
not represent any possible expansion order. However,

the given node could conceivably have an additional
arrow coming from any predecessor node.
The situation for decision nodes is relatively simple.

The diagram asserts that the only information avail-
able when any decision is made is that represented by
the direct predecessors of the decision. The addition
of a new arrow, or informational influence, would
usually add to the information available for decision
making, and destroy the original logic of the diagram.
The influence diagram asserts that this information is
not directly available; however, all or part of it might
be inferred indirectly from the direct predecessor set.
The situation for chance nodes is more complex.

The diagram partially constrains the probabilistic con-
ditioning (expansion) order for chance nodes. In gen-
eral, the probability assignment for a given chance
node, x, might be conditioned on all nonsuccessors
(except for x itself). Let us call this set Nx, and let Dx

be the set of direct predecessors of x. The set Dx is, of
course, contained in Nx. The diagram asserts that the
probability assignment to x given Nx is same as to x

given Dx; that is,

�x �Nx
E	= �x �Dx
E	�

The addition of a new arrow or conditioning influ-
ence from an element of Nx to x would increase the
set of direct predecessors and seem to increase the
dimensionality of the conditional probability assign-
ment. While this addition would not violate the logic
of the diagram, it would cause a loss of information
regarding independence of the added conditioning
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influence. The original diagram asserts that all infor-
mation in the set Nx that is relevant to the probability
assignment to x is summarized by the direct prede-
cessors Dx. In classical terms, with respect to x, Dx is
a sufficient statistic for Nx.
Returning to Figure 10.1 as an example, the prob-

ability assignment to variable g is in principle
conditioned on all variables except g, i, j , and k. How-
ever, the diagram asserts that the variables on which g
depends are sufficiently summarized by only e and h.
This means

�g � a
 b
 c
d
 e
 f 
h
 l
m
n
o
E	= �g � e
h
E	�
This strong and useful assertion is based as much on
the lack of arrows as on the ones that are present.
We have seen that an influence diagram indicates a

specific, but possibly nonunique, order for condition-
ing probability assignments as well as the information
available as the basis for each decision. When decision
rules are specified for each decision node and proba-
bility assignments are made for each chance node, the
influence diagram relationship can be used to develop
the joint probability distribution for all variables.

13. Relationship of Influence
Diagrams to Decision Trees

Some influence diagrams do not have corresponding
decision trees. As in a decision tree, all probability
assignments in an influence diagram—including the

Figure 13.1 An Influence Diagram Representable by a Decision Tree

m n o

a

c

b f

d e g

l

i k

j

h

assignment limitations represented by its structure—
must be founded on a base state of information, E.
Unlike the nodes in a decision tree, the nodes in an
influence diagram do not have to be totally ordered
nor do they have to depend directly on all predeces-
sors. The freedom from total ordering allows conve-
nient probabilistic assessment and computation. The
freedom from dependence on all predecessors allows
the possibility of decisions in the diagram being made
by decision makers who agree on the common base
state of information E, but who differ in their abil-
ity to observe certain variables in the diagram. If the
diagram represents a single decision maker who does
not forget information, then the direct predecessor set
of one decision must be a subset of the direct prede-
cessor set of any subsequent decision. In the influence
diagram of Figure 11.1, decisions d and n have mutu-
ally exclusive direct predecessor sets, �a
 c� and �m�.
This situation could not be represented by a conven-
tional decision tree.
If the informational arrows shown as dashed lines

in Figure 13.1 are added to Figure 11.1, then the influ-
ence diagram can be represented by a decision tree.
Many different valid decision trees can be constructed
from this new influence diagram. The only conditions
are that they must (1) preserve the ordering of the
influence diagram and (2) not allow a chance node
to be a predecessor of a decision node for which it
is not a direct predecessor. For example, the chance
node mmust not appear ahead of decision node d in a
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Figure 13.2 Influence Diagram Requiring Probabilistic Manipulation Before Decision-Tree Construction

m n o

a

p

c

b f

d e g

l

i k

j

h

decision tree because this would imply that the deci-
sion rule for d could depend on m, which is not the
case.
The situation becomes more complex when we add

a node such as p in Figure 13.2. If we were to con-
struct a decision tree beginning with chance node p,
it would imply that the decision rules at nodes d and
n could depend on p, which is not the actual case.
Node p represents a variable that is used in the prob-
ability assignment model, but that is not observable
by the decision maker at the time that he makes his

Figure 13.3 Influence Diagram Ready for Development into a Decision Tree

m n o

a

p

c

b f

d e g

l

i k

j

h

decisions. In this situation, we would normally use
the laws of probability (e.g., Bayes’ Rule) to elimi-
nate the conditioning of c on p. This process would
lead to a new influence diagram reflecting a change
in the sequence of conditioning, and could result in
the inclusion of additional influence.
In Figure 13.3, the dashed arrow represents the

influence as “turned around” by Bayes’ Rule. The
resulting diagram can be developed into a decision
tree without further processing of probabilities. Also
note that the change in the influence diagram required
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only information already specified by the original
influence diagram (Figure 13.2) and its associated
numerical probability assignments. Thus, it can be
carried out by a routine procedure.
The foregoing considerations motivate two new

definitions.
• A decision network is an influence diagram:
(i) that implies a total ordering among decision

nodes,
(ii) where each decision node and its direct prede-

cessors directly influence all successor decision nodes.
• A decision-tree network is a decision network:
(iii) where all predecessors of each decision node

are direct predecessors.
Requirement (i) is the “single decision maker” con-

dition and requirement (ii) is the “no-forgetting” con-
dition. These two conditions guarantee that a decision
tree can be constructed, possibly after some proba-
bilistic processing. Requirement (iii) assures that no
probabilistic processing is needed so that a decision
tree can be constructed in direct correspondence with
the influence diagram.
As an example, consider the standard inferential

decision problem represented by the decision network
of Figure 13.4(a). This influence diagram cannot be
used to generate a decision tree directly because the
decision node c has a nondirect predecessor that rep-
resents an unobservable chance variable. To convert

Figure 13.4 The Process of Converting a Decision Network to a
Decision-Tree Network

a b dc

(a)

a b dc

(b)

a

b dc

(c)

this decision network to a suitable decision-tree net-
work, we simply reverse the arrow from a to b, which
is permissible because they have only common pre-
decessors, namely none. We thus achieve the decision
tree network of Figure 13.4(b), and with redrawing
we arrive at Figure 13.4(c).
Specifying the limitations on possible condition-

ing by drawing the influence diagram may be the
most significant step in probability assignment. The
remaining task is to specify the numerical probabil-
ity of each chance node variable conditioned on its
direct predecessor variable by a probability assess-
ment procedure.

14. Example: The Used-Car Buyer
As an illustration of the use of influence diagrams, we
consider a problem known as “The Used-Car Buyer”
(Howard 1977) presented elsewhere in detail. For our
purposes, we need only specify that the buyer of a
used car can select among various tests T at differ-
ent costs, observe their results R, choose a purchase
alternative A, and then receive some value V that
depends on the state of the car he bought, the out-
come O. Figure 14(a) shows the influence diagram.
The arrows show that the test results R depends on
the test selected T and the state of the car O. The buy-
ing alternative A is chosen knowing the test selected
T and its results R. The value V depends on the buy-
ing alternative chosen A, on the test selected T (as
a result of the cost of the test), on the outcome O,
and on the test results R. This last influence allows
for the possibility that the value may depend directly
on the results of the test; for example, if the testing is
destructive. The outcome O does not depend on any
other variable, and in particular, not on the test T ,

�O � E	= �O � T 
E	�
This assumption is based on the belief that the seller
of the car will not switch the car to be tested as a
result of the test selected.
This influence diagram is a decision network, but

not a decision-tree network because node O is a pre-
decessor of node A, but not a direct predecessor. To
create a decision-tree network, we must reverse the
arrow connecting node O to node R. The first step in
this reversal is to assure that these nodes have a com-
mon information state. We accomplish this by adding
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Figure 14 The Influence Diagram for the Used-Car Buyer Converted to
a Generic Decision Tree

R

O

VAT

(a)
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VAT

(b)
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T A{RT, E} {OT, R, E}

〈VT, R, A, O, E〉

(d)

an influence from node T to node O as shown in
Figure 14(b). Then we reverse the arrow from node O
to node R and redraw the diagram as a decision-tree
network in Figure 14(c).
This reversal means, of course, that the original

probability assessments �R � T 
O
E	 and �O � E	 =
�O � T 
E	 must be changed to the probability distri-
butions �R � T 
E	 and �O � T 
R
E	 according to the
equation

�R � T 
E	=
∫
O
�R � T 
O
E	�O � T 
E	

and Bayes’ equation

�O � T 
R
E	= �R � T 
O
E	�O � T 
E	
�R � T 
E	 �

The resulting generic decision tree appears in
Figure 14(d), where the value assigned to each path
through the tree, �V � T 
R
A
O
E�, is recorded at
the endpoint of the path. The detailed calculations are
shown in Howard (1977).

15. Toxic-Chemical Testing Example
To illustrate the power of influence diagrams to solve
complex problems of decision making and informa-
tion acquisition, we shall apply this method to a

problem of toxic-chemical testing. We shall carry out
the analysis under the assumption that an automated
influence diagram system is available to provide the
flavor of its use.
Let us suppose that a chemical having some ben-

efits is also suspected of possible carcinogenicity. We
wish to determine whether to ban, restrict, or permit
its use, and also whether to undertake any informa-
tion gathering regarding cancer-producing activity of
the chemical or its degree of exposure to humans.
The primary decision problem can be formulated

by drawing the influence diagram on the input screen
of the system as in Figure 15.1. This figure shows
that the system has been told that the economic value
of the product and the cancer cost attributed to it
both depend on the decision regarding usage of the
chemical. The (probability assignment on) economic
value given the usage decision is independent of the
human exposure, carcinogenic activity, and the can-
cer cost. However, the cancer cost is dependent on
the usage decision as well as on both the carcinogenic
activity and human exposure levels of the chemical.
The net value of the chemical given the economic
value and the cancer cost is independent of the other
variables. Also, human exposure and carcinogenic
activity are independent.
These relationships are not necessarily obvious ones;

they depend on knowledge of the problem at hand. For

Figure 15.1 Influence Diagram for Primary Decision
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Figure 15.2 Initial Probability Assignments
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example, the economic value of a particular chemical
might well depend on its chemical activity, which in
turn might be closely related to its carcinogenic activ-
ity. In such a case an arrow might have to be added
from “carcinogenic activity” to “economic value.”
The next step is to obtain probability and value

assessments corresponding to the influence diagram.
The automated influence diagram system asks for a
list of usage decision alternatives. In this case they
are BAN, RESTRICT, and PERMIT. Next it asks for
the economic value given each of these alternatives.
In this case the permit alternative is considered to
have a reference value of zero, the restrict alternative
a substitute process cost of $1 million, and the ban
alternative a substitute process cost of $5 million.
The next request is to assess possible outcomes for

human exposure and carcinogenic activity along with
their corresponding (unconditional) probabilities.
The probability trees of Figure 15.2 illustrate these
assignments. Then we are asked for the cancer cost
given human exposure and carcinogenic activity lev-
els as well as the usage decision. We assess the
expected values of this cost as given in Table 15.1.
Finally we state that the net value is simply the sum
of the economic value and cancer cost.
All of this information is based on detailed mod-

eling and expert judgment regarding the decision
situation. Once it has been captured with the influ-
ence diagram, analysis can proceed. The automated

Table 15.1 Cancer Cost ($millions)

PERMIT RESTRICT BAN
ALTERNATIVE ALTERNATIVE ALTERNATIVE

Exposure Exposure Exposure

Activity Low Med High Low Med High Low Med High

Inactive 0 0 0 0 0 0 0 0 0
Moderate 0	5 5 50 0	05 0	5 5 0 0 0
Very active 10 100 1000 1 10 100 0 0 0

Figure 15.3 Partial Decision Tree for Primary Decision
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influence diagram procedure generates the appropri-
ate decision tree, displays it if desired by the user,
and determines that the best decision is to restrict
usage. The expected value given this decision is a cost
of $2.2 million. An example display containing this
information is shown in Figure 15.3. In the example
we consider only the expected value or risk-neutral
case, although the case of risk aversion can be treated
without difficulty.

Figure 15.1.1 Influence Diagram Modification to Determine the Value
with Perfect Information on Carcinogenic Activity
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Figure 15.1.2 Partial Decision Tree for Perfect Activity Information
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15.1. The Value of Clairvoyance
(Perfect Information)

Before investigating actual information-gathering al-
ternatives, the usual decision analysis practice is to
determine the value of clairvoyance (perfect informa-
tion) on the uncertain variables. The value of clair-
voyance furnishes an upper limit on the value of real
information gathering.
With the automatic influence diagram procedure,

these calculations are trivial. For example, to calcu-
late the value of the problem with clairvoyance on

carcinogenic activity, we need only add the influence
arrow indicated by a dotted line in Figure 15.1.1. This
modification states that the decision maker knows
the degree of carcinogenic activity when he makes
the usage decision. The result is an expected cost of
$1.1 million and a decision rule to permit if inac-
tive, restrict if moderate, and ban if very active. This
means that the expected value of clairvoyance is the
original $2.2 million minus this $1.1 million, which
is $1.1 million. Figure 15.1.2 shows a more com-
plete display of the decision tree for this case than
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would be automatically generated on request of the
user.
The value of clairvoyance on exposure can be calcu-

lated to be $0.4 million by adding an influence arrow
from the human exposure node to the usage decision
node in Figure 15.1. The associated decision rule is to
restrict if exposure is low or medium, and to ban if
exposure is high.
Finally, by adding influence arrows from both the

carcinogenic activity node and the human exposure
node to the usage decision node, we find the value of
clairvoyance on both activity and exposure to be $1.38
million, which is less than the sum of the values of
clairvoyance on each quantity separately. The decision
rule is shown later in Table 15.2.1.

15.2. Value of Imperfect Information
To place a value on imperfect information we must
model the information source. To be useful, the in-
formational report must depend probabilistically on
one or more of the uncertain variables in the prob-
lems. To incorporate this dependence we augment the
influence diagram with a model of the information-
gathering activity.
In the example at hand, it might be possible to carry

out a laboratory test of the carcinogenic activity of the
chemical. In this case we begin by adding a chance
node to represent the report from the activity test.
In Figure 15.2.1 we have added an activity test node,
we have drawn an arrow to it from the carcinogenic
activity node showing that the test result depends
on the actual carcinogenic activity of the chemical,

Table 15.2.1 Perfect Information Summary

EXPOSURE INFORMATION
VALUE WITH= 1.8
VALUE OF= 0.40

JOINT INFORMATION DECISION RULE
VALUE WITH −0.82 LOW MEDIUM HIGH
VALUE OF 1.38

DECISION RULE RESTRICT RESTRICT BAN

ACTIVITY INFORMATION
VALUE WITH=−1	10
VALUE OF+ 1.10
DECISION RULE

INACTIVE PERMIT PERMIT PERMIT PERMIT
MODERATELY ACTIVE RESTRICT PERMIT RESTRICT BAN
VERY ACTIVE BAN RESTRICT BAN BAN

Figure 15.2.1 Influence Diagram to Determine the Value with Imper-
fect Information on Carcinogenic Activity
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and we have drawn an arrow from the activity test to
the usage decision, showing that the decision maker
will know the test result when he makes the usage
decision. We must also check the logic of each proba-
bilistic statement represented in the diagram because
additional knowledge, in principle, could change the
probabilistic dependence elsewhere in the diagram.
The automated system would now ask us to define

the test results. We reply that there are three test results
called “INACTIVE,” “MODERATELY ACTIVE,” and
“VERY ACTIVE” corresponding to the possibilities for
the actual activity. However, unlike the case of per-
fect information, these test indicationsmay bemislead-

Figure 15.2.2 Activity Test Probability Assignments
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Figure 15.2.3 Exposure Test Probability Assignments
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ing. The system now asks us to supply the probabili-
ties of these test results for each state of carcinogenic
activity (i.e., to supply the likelihood function). Fig-
ure 15.2.2 shows a possible display with the assigned
probabilities.
All of the information needed to determine the

value of the carcinogenic activity test has now been
supplied. However, the influence diagram of Fig-
ure 15.2.1 is a decision network, rather than a
decision-tree network, so it must be manipulated into

Figure 15.2.4 Influence Diagram to Determine the Value of Imperfect Information on Both Carcinogenic Activity and Human Exposure
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decision-tree network form before a decision tree can
be generated and evaluated. The problem is that the
carcinogenic activity node precedes the usage deci-
sion node, but activity is unknown to the decision
maker when he makes the usage decision. A deci-
sion tree beginning with resolution of carcinogenic
activity would incorrectly give this information to
the decision maker. The problem is resolved by turn-
ing around the influence arrow between carcinogenic
activity and the activity test; the reversal is possi-
ble because both nodes have no impinging influences.
This manipulation requires the application of Bayes’
rule to determine from the original possibility assign-
ments new assignments conditional in the opposite
order. The procedure is straightforward for an auto-
mated system and results in the desired decision-
tree network. In fact, a sophisticated system could
determine that this manipulation was required and
carry it out without being asked by the user.
Evaluation of this network yields an expected cost,

given the activity test option, of $1.96 million. Sub-
tracting this cost from the original cost of $2.20 million
yields an expected value of $0.24 million from a free
activity test. This is the upper limit on the price the
decision maker should pay for the actual test.
A test of the degree of human exposure also could

be treated by adding an exposure test node to the
influence diagram. The necessary probability assign-
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ments are shown in Figure 15.2.3. Finally, the value
of testing both carcinogenic activity and human expo-
sure could be determined by making both modifi-
cations as illustrated in Figure 15.2.4. This influence
diagram indicates that given human exposure and
carcinogenic activity, exposure test and activity test
results are probabilistically independent.
In this example, we have shown how influence

diagrams can be used to designate the initial struc-
ture of the problem. The automated system can then
interact with the user to request and develop val-
ues for the probability assignments that are implic-
itly specified in the influence diagram. The automated
system can then process the information to solve
the decision problem. The automated system, not the
user, develops the decision tree from the influence
diagram specifications. This method allows the user
to ask value of perfect information questions through
simple modifications of the initial influence diagram,
and to ask value of imperfect information questions
by augmenting the influence diagram to model the
information-gathering activities.
For this example, the decision rules and values for

all information-gathering possibilities are displayed
in Tables 15.2.1 and 15.2.2. The value of the situation
with the specified information is given, as well as this
value less the value of the primary decision (−2.2 in
this case). This difference is the value of the specified
information. The decision rules for joint information
are given in matrix form and the ones for individual
information are given along the edges of the matrix.
These summaries allow the user to see easily which
information is most useful. For example, Table 15.2.2
shows that imperfect exposure information is use-
less because the decision rule is to restrict usage
regardless of the outcome of the test, even though as
shown in Table 15.2.1, perfect information would be
valuable. Examination of the two decision-rule matri-
ces for the joint information cases shows four dif-
ferences in choice of alternatives between the perfect
and imperfect information cases. Perfect joint infor-
mation is three times more valuable than imperfect
information.
We have shown in this example how influence dia-

grams can be used to model the primary decision

Table 15.2.2 Imperfect Information Summary

EXPOSURE INFORMATION
VALUE WITH= − 2	2
VALUE OF= 0.00

JOINT INFORMATION DECISION RULE
VALUE WITH =−1	74 “LOW” “MEDIUM” “HIGH”
VALUE OF= 0.46

RESTRICT RESTRICT RESTRICT

ACTIVITY INFORMATION
VALUE WITH = −1.96
VALUE OF= 0.25
DECISION RULE

“INACTIVE” RESTRICT PERMIT RESTRICT RESTRICT
“MODERATELY RESTRICT RESTRICT RESTRICT RESTRICT

ACTIVE”
“VERY ACTIVE” BAN RESTRICT BAN BAN

problem, to determine the value of perfect informa-
tion on the uncertain variables, and finally to deter-
mine the value of actual, but imperfect, information.
The latter calculation usually requires the application
of Bayes’ law. Decision-tree methods require the user
to apply Bayes’ law and supply the answers, or at
least the formulas, for the appropriate probabilities on
the decision tree. Because the influence diagram cap-
tures the logic of the problem in a more fundamental
way, the user need only supply the initial probabilities
that represent his model of the information-gathering
activity, and an automated system can carry out the
rest of the analysis. This example shows how influ-
ence diagrams can greatly simplify the probabilistic
modeling and decision-making process.

Acknowledgments
The authors acknowledge the contributions of Dr. Miley
W. Merkhofer and Dr. Allen C. Miller, III to many of the early
discussions in which the concept of influence diagrams was
developed.

References
Howard, R. A. 1965. Bayesian decision models for system engi-

neering. IEEE Trans. Systems Sci. Cybernetics, Vol. SSC-1, Vol. 1,
November, 1965; reprinted in Reading in Decision Analysis, 2nd
Edition, Stanford Research Institute, Menlo, CA.

Howard, R. A. 1977. The used car buyer. Reading in Decision Anal-
ysis, 2nd Ed. Stanford Research Institute, Menlo Park, CA.

Howard, Ronald A., James E. Matheson, Miley W. Merkhofer, Allen
C. Miller III, Thomas R. Rice. 1976. Development of Automated
Aids for Decision Analysis. DARPA Contract MDA 903-74-C-
0240, SRI International, Menlo Park, CA.


