
Bayesian Networks 2015–2016

Tutorial II – Conditional Independence Models

Peter Lucas

LIACS, Leiden University

Introduction

The exercises below concern the independence relation ⊥⊥ and graph representation of the
independence relation. In contrast to the associated slides of the lecture on Markov Indepen-
dence, we do not make a distinction between names of vertices in a graph, e.g., 1 and 2, and
their associated random variable in a probability distribution, in this case X1 and X2. We
will use variable names all the way through. Note that independence relations can be defined
on any set of objects (vertex names of a graph, numbers, symbols), not on random variables
only.

Exercises

Exercise 1

Let V be a set of random variables. Let P be a joint probability distribution of V and let
⊥⊥P be its independence relation. Show that ⊥⊥P satisfies the properties

a. (P.1 Symmetry) X ⊥⊥P Y | Z ⇒ Y ⊥⊥P X | Z

b. (P.2 Decomposition) X ⊥⊥P Y ∪W | Z ⇒ X ⊥⊥P Y | Z ∧X ⊥⊥P W | Z

c. (P.3 Weak union) X ⊥⊥P Y ∪W | Z ⇒ X ⊥⊥P Y | Z ∪W

d. (P.4 Contraction) X ⊥⊥P Y | W ∧ X ⊥⊥P Z | W ∪ Y ⇒ X ⊥⊥P Y ∪ Z | W (note the
difference with the slides)

for all mutually disjoint sets of variables X,Y,Z,W ⊆ V .
You need to prove these properties by translating them to statements concerning the

probability distribution P . For example X ⊥⊥P Y | Z is first translated into P (X | Y,Z) =
P (X | Z).

c. We show that the independence relation ⊥⊥P satisfies the property

X ⊥⊥P Y ∪W | Z ⇒ X ⊥⊥P Y | Z ∪W

for all mutually disjoint sets of variables X,Y, Z,W ⊆ V .
We assume that X ⊥⊥P Y ∪W | Z. From this observation, we have

P (X | Z ∧ Y ∧W ) = P (X | Z)
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From our assumption X ⊥⊥P Y ∪W | Z, we further have X ⊥⊥P W | Z by the second property stated
in the exercise. By definition, we therefore have that

P (X | Z ∧W ) = P (X | Z)

Now consider the conditional probability P (X | Z ∧W ∧ Y ). We find that

P (X | Z ∧W ∧ Y ) = P (X | Z)

= P (X | Z ∧W )

From P (X | Z ∧W ∧ Y ) = P (X | Z ∧W ), we have by definition that X ⊥⊥P Y | Z ∪W . We conclude

that X ⊥⊥P Y ∪W | Z ⇒ X ⊥⊥P Y | Z ∪W .

Exercise 2

Let V be a set of random variables and let ⊥⊥ be a semi-graphoid independence relation on
V . Show that

X ⊥⊥ Y ∪W | Z ∧ Y ⊥⊥ W | Z ⇒ X ∪W ⊥⊥ Y | Z

for all mutually disjoint sets of variables X,Y,Z,W ⊆ V .

We begin our proof by observing that, since ⊥⊥ is a semi-graphoid independence relation, it obeys
the first four axioms of the independence relation ⊥⊥. Now, we assume that X ⊥⊥ Y ∪ W | Z and
Y ⊥⊥ W | Z. We have that

X ⊥⊥ Y ∪W | Z ⇒ X ⊥⊥ Y | Z ∪W

⇒ Y ⊥⊥ X | Z ∪W

by the weak union and symmetry axioms; in conjunction with our assumption Y ⊥⊥ W | Z, we find

Y ⊥⊥ X | Z ∪W ∧ Y ⊥⊥ W | Z ⇒ Y ⊥⊥ W ∪X | Z ⇒
⇒ X ∪W ⊥⊥ Y | Z

by the contraction and symmetry axioms.

Exercise 3

Let V be a set of random variables and let ⊥⊥ be a semi-graphoid independence relation on
V . Show that

X ⊥⊥ U ∪W | Y ∪ Z ∧ Y ⊥⊥ X | Z ∪ U ⇒ X ⊥⊥ Y ∪W | Z ∪ U

for all mutually disjoint sets of variables X,Y,Z,U,W ⊆ V .

Exercise 4

Let V = {X1,X2,X3,X4} be a set of random variables. Furthermore, let ⊥⊥ be a (semi-
graphoid) independence relation on V , containing, amongst others, the following elements:

{X1} ⊥⊥ {X4} | ∅ {X4} ⊥⊥ {X2} | {X1}

{X2} ⊥⊥ {X4} | ∅ {X4} ⊥⊥ {X3} | {X1}

{X3} ⊥⊥ {X4} | ∅ {X4} ⊥⊥ {X2,X3} | {X1}

{X4} ⊥⊥ {X1} | ∅ {X1} ⊥⊥ {X4} | {X2}
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{X4} ⊥⊥ {X2} | ∅ {X3} ⊥⊥ {X4} | {X2}

{X4} ⊥⊥ {X3} | ∅ {X1,X3} ⊥⊥ {X4} | {X2}

{X1,X2} ⊥⊥ {X4} | ∅ {X4} ⊥⊥ {X1} | {X2}

{X1,X3} ⊥⊥ {X4} | ∅ {X4} ⊥⊥ {X3} | {X2}

{X4} ⊥⊥ {X1,X3} | ∅ {X2} ⊥⊥ {X4} | {X3}

{X4} ⊥⊥ {X1,X3} | ∅ {X2} ⊥⊥ {X4} | {X3}

{X1,X2,X3} ⊥⊥ {X4} | ∅ {X1} ⊥⊥ {X2} | {X4}

{X1} ⊥⊥ {X2} | ∅ {X3} ⊥⊥ {X4} | {X1,X2}

{X1,X4} ⊥⊥ {X2} | ∅ {X2} ⊥⊥ {X4} | {X1,X3}

{X2,X4} ⊥⊥ {X1} | ∅ {X4} ⊥⊥ {X2} | {X1,X3}

Show that each statement X ⊥⊥ Y | Z, X,Y,Z ⊆ V , of the independence relation ⊥⊥ can be
derived from the statements {X1,X2,X3} ⊥⊥ {X4} | ∅ and {X1} ⊥⊥ {X2} | ∅, by the four
independence axioms.

Exercise 5

Let V = {X1,X2,X3,X4} be a set of random variables. Let ⊥⊥ be the independence relation
on V that is defined by the statements {X1} ⊥⊥ {X4} | {X2,X3} and {X2} ⊥⊥ {X3} |
{X1,X4}.

a. Give all undirected D-maps for the independence relation ⊥⊥;

b. Give all undirected I-maps for the independence relation ⊥⊥.

Exercise 6

Show that for any undirected graph G = (V (G), E(G)) the following property holds: for any
vertex Xi ∈ V (G) and any vertex Xj ∈ V (G) \ ({Xi} ∪ νG(Xi)), we have that {Xi} ⊥⊥G

{Xj} | νG(Xi), where νG(X) is the set of neighbours in the graph G of X.

Exercise 7

Let G be the following acyclic digraph:
Examine for each of the following statements whether or not it holds in G:

a. {X1} ⊥⊥d
G {X6} | {X2,X3};

b. {X2} ⊥⊥d
G {X3} | ∅;

c. {X2} ⊥⊥d
G {X3} | {X1};

d. {X4} ⊥⊥d
G {X3} | {X1};

e. {X2} ⊥⊥d
G {X6} | {X3,X4};

f. {X3} ⊥⊥d
G {X1} | ∅.
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Figure 1: Bayesian network.

c. The property {X2} ⊥⊥d

G
{X3} | {X1} holds in the digraph G since all chains in G from X2 to

X3 are blocked by the set of vertices {X1}. For example, the chain X2, X1, X3 from X2 to X3 is

blocked by {X1} since X1 ∈ {X1}; the chain X2, X5, X3 from X2 to X3 is blocked by {X1} since

{X5, X6} ∩ {X1} = ∅.

e. The property {X2} ⊥⊥d

G
{X6} | {X3, X4} does not hold in the digraph G since not every chain in

G from X2 to X6 is blocked by the set of vertices {X3, X4}. For example, the chain X2, X5, X6 from

X2 to X6 is not blocked by {X3, X4}.

Exercise 8

Let V = {X1,X2,X3,X4} be a set of random variables. Let ⊥⊥ be the independence relation
on V that is defined by the statements {X1} ⊥⊥ {X2} | ∅ and {X1,X2} ⊥⊥ {X4} | {X3}.

a. Give some directed D-maps for the independence relation ⊥⊥;

b. Give some directed I-maps for the independence relation ⊥⊥.

Exercise 9

Show that for every independence relation there exists a directed D-map and a directed I-map.

Exercise 10

Given an example of an independence relation that has more than one directed P-map.

Exercise 11

Let V = {X1,X2,X3,X4} be a set of random variables. Let ⊥⊥ be the independence relation
on V that is defined by the statements {X1} ⊥⊥ {X4} | {X2,X3} and {X2} ⊥⊥ {X3} |
{X1,X4}. Give some minimal directed I-maps for the relation ⊥⊥.
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Exercise 12

Show that for any acyclic directed graph G = (V (G), A(G)) the following property holds:
for any vertex Xi ∈ V (G) and any vertex Xj ∈ V (G) \ (σ∗

G(Xi) ∪ πG(Xi)), we have that
{Xi} ⊥⊥G {Xj} | πG(Xi), where π(X) is the set of parents of vertex X and σ∗

G(X) is the set
of successors of X, including X.

Exercise 13

Let V be a set of random variables. Let ⊥⊥ be an independence relation on V and let G be a
directed I-map for ⊥⊥. Now, let H be the underlying graph of G. Is H an undirected I-map
for ⊥⊥?

Exercise 14

a. Give an example of an independence relation that has both an undirected P-map and
a directed P-map.

b. Give an example of an independence relation that has an undirected P-map but no
directed P-map.

c. Give an example of an independence relation that has a directed P-map but no undi-
rected P-map.

d. Give an example of an independence relation that has no undirected P-map nor a
directed P-map.

Exercise 15

Consider the Bayesian network shown in Figure 1. We study in this exercise the procedure
of moralisation (have a look at the slides of Lectures 3-4).

a. Determine whether or not {X2} ⊥⊥G {X3} | {X1} using moralisation.

b. Answer the same question for {X2} ⊥⊥G {X3} | {X1,X6}
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