Bayesian Networks 2015–2016 Tutorial II – Conditional Independence Models

Peter Lucas LIACS, Leiden University

Introduction

The exercises below concern the independence relation \perp and graph representation of the independence relation. In contrast to the associated slides of the lecture on Markov Independence, we do not make a distinction between names of vertices in a graph, e.g., 1 and 2, and their associated random variable in a probability distribution, in this case X_1 and X_2 . We will use variable names all the way through. Note that independence relations can be defined on any set of objects (vertex names of a graph, numbers, symbols), not on random variables only.

Exercises

Exercise 1

Let V be a set of random variables. Let P be a joint probability distribution of V and let \coprod_P be its independence relation. Show that \coprod_P satisfies the properties

- a. (P.1 Symmetry) $X \perp P Y \mid Z \Rightarrow Y \perp P X \mid Z$
- b. (P.2 Decomposition) $X \perp _P Y \cup W \mid Z \Rightarrow X \perp _P Y \mid Z \land X \perp _P W \mid Z$
- c. (P.3 Weak union) $X \perp P Y \cup W \mid Z \Rightarrow X \perp P Y \mid Z \cup W$
- d. (P.4 Contraction) $X \perp P Y \mid W \land X \perp P Z \mid W \cup Y \Rightarrow X \perp P Y \cup Z \mid W$ (note the difference with the slides)

for all mutually disjoint sets of variables $X, Y, Z, W \subseteq V$.

You need to prove these properties by translating them to statements concerning the probability distribution P. For example $X \perp P Y \mid Z$ is first translated into $P(X \mid Y, Z) = P(X \mid Z)$.

c. We show that the independence relation $\perp\!\!\!\perp_P$ satisfies the property

 $X \perp\!\!\!\perp_P Y \cup W \mid Z \Rightarrow X \perp\!\!\!\!\perp_P Y \mid Z \cup W$

for all mutually disjoint sets of variables $X, Y, Z, W \subseteq V$.

We assume that $X \perp _{P} Y \cup W \mid Z$. From this observation, we have

 $P(X \mid Z \land Y \land W) = P(X \mid Z)$

From our assumption $X \perp _P Y \cup W \mid Z$, we further have $X \perp _P W \mid Z$ by the second property stated in the exercise. By definition, we therefore have that

$$P(X \mid Z \land W) = P(X \mid Z)$$

Now consider the conditional probability $P(X \mid Z \land W \land Y)$. We find that

$$P(X \mid Z \land W \land Y) = P(X \mid Z)$$

= $P(X \mid Z \land W)$

From $P(X \mid Z \land W \land Y) = P(X \mid Z \land W)$, we have by definition that $X \perp P Y \mid Z \cup W$. We conclude that $X \perp P Y \cup W \mid Z \Rightarrow X \perp P Y \mid Z \cup W$.

Exercise 2

Let V be a set of random variables and let \perp be a semi-graphoid independence relation on V. Show that

$$X \perp\!\!\!\perp Y \cup W \mid Z \land Y \perp\!\!\!\perp W \mid Z \Rightarrow X \cup W \perp\!\!\!\perp Y \mid Z$$

for all mutually disjoint sets of variables $X, Y, Z, W \subseteq V$.

We begin our proof by observing that, since $\perp\!\!\!\perp$ is a semi-graphoid independence relation, it obeys the first four axioms of the independence relation $\perp\!\!\!\perp$. Now, we assume that $X \perp\!\!\!\perp Y \cup W \mid Z$ and $Y \perp\!\!\!\perp W \mid Z$. We have that

$$\begin{array}{ccc} X \perp\!\!\!\!\!\perp Y \cup W \mid Z & \Rightarrow X \perp\!\!\!\!\!\!\perp Y \mid Z \cup W \\ & \Rightarrow Y \perp\!\!\!\!\!\!\!\!\!\!\!\perp X \mid Z \cup W \end{array}$$

by the weak union and symmetry axioms; in conjunction with our assumption $Y \perp \!\!\!\perp W \mid Z$, we find

$$\begin{array}{cccc} Y \perp\!\!\!\!\perp X \mid Z \cup W \wedge Y \perp\!\!\!\!\!\perp W \mid Z & \Rightarrow Y \perp\!\!\!\!\!\perp W \cup X \mid Z \Rightarrow \\ & \Rightarrow X \cup W \perp\!\!\!\!\perp Y \mid Z \end{array}$$

by the contraction and symmetry axioms.

Exercise 3

Let V be a set of random variables and let $\perp\!\!\!\perp$ be a semi-graphoid independence relation on V. Show that

 $X \perp\!\!\!\perp U \cup W \mid Y \cup Z \land Y \perp\!\!\!\perp X \mid Z \cup U \Rightarrow X \perp\!\!\!\perp Y \cup W \mid Z \cup U$

for all mutually disjoint sets of variables $X, Y, Z, U, W \subseteq V$.

Exercise 4

Let $V = \{X_1, X_2, X_3, X_4\}$ be a set of random variables. Furthermore, let \perp be a (semigraphoid) independence relation on V, containing, amongst others, the following elements:

$$\begin{array}{l} \{X_1\} \perp \{X_4\} \mid \varnothing \qquad \{X_4\} \perp \{X_2\} \mid \{X_1\} \\ \{X_2\} \perp \{X_4\} \mid \varnothing \qquad \{X_4\} \perp \{X_3\} \mid \{X_1\} \\ \{X_3\} \perp \{X_4\} \mid \varnothing \qquad \{X_4\} \perp \{X_2, X_3\} \mid \{X_1\} \\ \{X_4\} \perp \{X_1\} \mid \varnothing \qquad \{X_1\} \perp \{X_4\} \mid \{X_2\} \end{array}$$

Show that each statement $X \perp \!\!\!\perp Y \mid Z, X, Y, Z \subseteq V$, of the independence relation $\perp \!\!\!\perp$ can be derived from the statements $\{X_1, X_2, X_3\} \perp \!\!\!\perp \{X_4\} \mid \varnothing$ and $\{X_1\} \perp \!\!\!\perp \{X_2\} \mid \varnothing$, by the four independence axioms.

Exercise 5

Let $V = \{X_1, X_2, X_3, X_4\}$ be a set of random variables. Let \bot be the independence relation on V that is defined by the statements $\{X_1\} \perp \{X_4\} \mid \{X_2, X_3\}$ and $\{X_2\} \perp \{X_3\} \mid \{X_1, X_4\}$.

- a. Give all undirected D-maps for the independence relation $\perp\!\!\!\perp$;
- b. Give all undirected I-maps for the independence relation $\perp\!\!\!\perp$.

Exercise 6

Show that for any undirected graph G = (V(G), E(G)) the following property holds: for any vertex $X_i \in V(G)$ and any vertex $X_j \in V(G) \setminus (\{X_i\} \cup \nu_G(X_i))$, we have that $\{X_i\} \perp_G \{X_j\} \mid \nu_G(X_i)$, where $\nu_G(X)$ is the set of neighbours in the graph G of X.

Exercise 7

Let G be the following acyclic digraph: Examine for each of the following statements whether or not it holds in G:

- a. $\{X_1\} \perp \!\!\!\perp^d_G \{X_6\} \mid \{X_2, X_3\};$
- b. $\{X_2\} \perp \!\!\!\perp^d_G \{X_3\} \mid \varnothing;$
- c. $\{X_2\} \perp\!\!\!\perp^d_G \{X_3\} \mid \{X_1\};$
- d. $\{X_4\} \perp\!\!\!\perp^d_G \{X_3\} \mid \{X_1\};$
- e. $\{X_2\} \perp \!\!\!\perp^d_G \{X_6\} \mid \{X_3, X_4\};$
- f. $\{X_3\} \perp \!\!\!\perp_G^d \{X_1\} \mid \varnothing$.

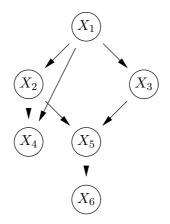


Figure 1: Bayesian network.

c. The property $\{X_2\} \perp _G^d \{X_3\} \mid \{X_1\}$ holds in the digraph G since all chains in G from X_2 to X_3 are blocked by the set of vertices $\{X_1\}$. For example, the chain X_2, X_1, X_3 from X_2 to X_3 is blocked by $\{X_1\}$ since $X_1 \in \{X_1\}$; the chain X_2, X_5, X_3 from X_2 to X_3 is blocked by $\{X_1\}$ since $\{X_1\} \in \{X_1\}$; the chain X_2, X_5, X_3 from X_2 to X_3 is blocked by $\{X_1\} = \emptyset$.

e. The property $\{X_2\} \perp _G^d \{X_6\} \mid \{X_3, X_4\}$ does *not* hold in the digraph G since not every chain in G from X_2 to X_6 is blocked by the set of vertices $\{X_3, X_4\}$. For example, the chain X_2, X_5, X_6 from X_2 to X_6 is not blocked by $\{X_3, X_4\}$.

Exercise 8

Let $V = \{X_1, X_2, X_3, X_4\}$ be a set of random variables. Let \bot be the independence relation on V that is defined by the statements $\{X_1\} \perp \{X_2\} \mid \emptyset$ and $\{X_1, X_2\} \perp \{X_4\} \mid \{X_3\}$.

- a. Give some directed D-maps for the independence relation $\perp\!\!\!\perp$;
- b. Give some directed I-maps for the independence relation \perp .

Exercise 9

Show that for every independence relation there exists a directed D-map and a directed I-map.

Exercise 10

Given an example of an independence relation that has more than one directed P-map.

Exercise 11

Let $V = \{X_1, X_2, X_3, X_4\}$ be a set of random variables. Let \bot be the independence relation on V that is defined by the statements $\{X_1\} \perp \{X_4\} \mid \{X_2, X_3\}$ and $\{X_2\} \perp \{X_3\} \mid \{X_1, X_4\}$. Give some minimal directed I-maps for the relation \bot .

Exercise 12

Show that for any acyclic directed graph G = (V(G), A(G)) the following property holds: for any vertex $X_i \in V(G)$ and any vertex $X_j \in V(G) \setminus (\sigma_G^*(X_i) \cup \pi_G(X_i))$, we have that $\{X_i\} \perp _G \{X_j\} \mid \pi_G(X_i)$, where $\pi(X)$ is the set of parents of vertex X and $\sigma_G^*(X)$ is the set of successors of X, including X.

Exercise 13

Let V be a set of random variables. Let $\perp\!\!\!\perp$ be an independence relation on V and let G be a directed I-map for $\perp\!\!\!\perp$. Now, let H be the underlying graph of G. Is H an undirected I-map for $\perp\!\!\!\perp$?

Exercise 14

- a. Give an example of an independence relation that has both an undirected P-map and a directed P-map.
- b. Give an example of an independence relation that has an undirected P-map but no directed P-map.
- c. Give an example of an independence relation that has a directed P-map but no undirected P-map.
- d. Give an example of an independence relation that has no undirected P-map nor a directed P-map.

Exercise 15

Consider the Bayesian network shown in Figure 1. We study in this exercise the procedure of moralisation (have a look at the slides of Lectures 3-4).

- a. Determine whether or not $\{X_2\} \perp _G \{X_3\} \mid \{X_1\}$ using moralisation.
- b. Answer the same question for $\{X_2\} \perp _G \{X_3\} \mid \{X_1, X_6\}$