Bayesian Networks 2015-2016
Tutorial IT — Conditional Independence Models

Peter Lucas
LIACS, Leiden University

Introduction

The exercises below concern the independence relation L and graph representation of the
independence relation. In contrast to the associated slides of the lecture on Markov Indepen-
dence, we do not make a distinction between names of vertices in a graph, e.g., 1 and 2, and
their associated random variable in a probability distribution, in this case X; and X5. We
will use variable names all the way through. Note that independence relations can be defined
on any set of objects (vertex names of a graph, numbers, symbols), not on random variables
only.

Exercises

Exercise 1

Let V be a set of random variables. Let P be a joint probability distribution of V and let
1L p be its independence relation. Show that 1L p satisfies the properties

a. (P.1 Symmetry) X UpY |Z=Y llp X |Z
b. (P.2 Decomposition) X LLpYUW |Z=X lLLlpY |ZANX UpW |Z
c. (P.3 Weak union) X LpYUW |Z=X UpY |ZUW

d. (P4 Contraction) X LlpY |WAX ULp Z|WUY = X lLlpYUZ| W (note the
difference with the slides)

for all mutually disjoint sets of variables X,Y, Z, W C V.

You need to prove these properties by translating them to statements concerning the
probability distribution P. For example X llp Y | Z is first translated into P(X | Y, Z) =
P(X | Z2).

c. We show that the independence relation 1l p satisfies the property
XUpYUW|Z=>X UpY | ZUW

for all mutually disjoint sets of variables X, Y, Z W C V.
We assume that X 1Lp Y UW | Z. From this observation, we have

P(X | ZAY AW)=P(X | Z)



From our assumption X 1l p YUW | Z, we further have X 1l p W | Z by the second property stated
in the exercise. By definition, we therefore have that

P(X|ZAW)=P(X |Z)
Now consider the conditional probability P(X | Z AW AY). We find that
P(X|ZAWAY) = P(X|Z)
= P(X|ZAW)

From P(X | ZAW AY) = P(X | ZAW), we have by definition that X 1l p Y | ZUW. We conclude
that X UpYUW | Z=X UpY |ZUW.

Exercise 2

Let V be a set of random variables and let 1l be a semi-graphoid independence relation on
V. Show that

XULUYUWI|ZAY LW |Z=XUW LY |Z

for all mutually disjoint sets of variables X,Y, Z, W C V.

We begin our proof by observing that, since Il is a semi-graphoid independence relation, it obeys
the first four axioms of the independence relation L. Now, we assume that X Il YUW | Z and
Y UL W | Z. We have that

XUYUWI|Z =X1LY|ZUW
SY U X|ZUW

by the weak union and symmetry axioms; in conjunction with our assumption Y 1L W | Z, we find

YUX|ZUWAY LW |Z =Y LWUX|Z=
S XUWIY|Z

by the contraction and symmetry axioms.

Exercise 3

Let V' be a set of random variables and let 1l be a semi-graphoid independence relation on
V. Show that

XLUUWI|YUZAY LX|ZUU=XLYUW |ZUU

for all mutually disjoint sets of variables X,Y, Z, U, W C V.

Exercise 4

Let V = {X1, X9, X3, X4} be a set of random variables. Furthermore, let 1L be a (semi-
graphoid) independence relation on V, containing, amongst others, the following elements:

{(Xit L{Xu}t o {Xaf L {Xo} [{X1}
{(Xot L{Xu} o {Xaf L {X5}[{X1}
(X3} W {Xy} |9 {Xaf L {Xo, X3} [ {Xa}
{Xu} L{Xa} o {Xa} WL {Xa} | {Xo}



{(Xu} L A{Xo} o {X3} 1L {X4} | {X2}
{Xa} LA{Xs} @ {X1, X} WL {Xa} [ {Xo}
{X1, Xo} L {Xa} @ {Xu} 1L {X1}|{X2}
{X1, X5} L {Xa} [ {Xu} 1L {X5} | {Xo}
{Xa} LA{X1, X3} @ {Xo} 1L {X4} | {X3}
{Xa} LA{X1, X3} @ {Xo} 1L {X4} | {X3}
{X1, Xo, X3} WL {Xu} [ @ {Xi} 1L {Xo} | {X4}
(X1} L {Xo} [@ {X3} W {X4} [ {X1, Xo}
{ X1, Xaf L {Xo} | @ {Xo} WL {Xu}|{X1, X5}
{Xo, Xaf L Xy} |2 { Xy} WL A{Xo} | {X1, X5}

Show that each statement X Il Y | Z, X,Y,Z C V, of the independence relation L can be
derived from the statements {X7, X9, X3} 1L {X4} | @ and {X1} 1L {Xs} | @, by the four
independence axioms.

Exercise 5

Let V = {X1, X5, X3, X4} be a set of random variables. Let 1L be the independence relation
on V that is defined by the statements {X;} L {X4} | {X2, X3} and {Xo} 1L {X3} |
{ X1, Xa}.

a. Give all undirected D-maps for the independence relation 11 ;

b. Give all undirected I-maps for the independence relation L.

Exercise 6

Show that for any undirected graph G = (V(G), E(G)) the following property holds: for any
vertex X; € V(G) and any vertex X; € V(G) \ ({X;} Uvg(X;)), we have that {X;} 1lg
{X;} | va(X;), where vg(X) is the set of neighbours in the graph G of X.

Exercise 7

Let G be the following acyclic digraph:
Examine for each of the following statements whether or not it holds in G:

a {X1} LLE {Xe} | {X2, X3}
b. {Xo} LE {X3} | @
AXe} LE X5} [ {Xa s
AXg} LE{XGH { X0 )
X2} LE { X6} | { X3, Xa)s
f. {X3} L {Xx1}]@.
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Figure 1: Bayesian network.

c. The property {Xo} L& {X3} | {X1} holds in the digraph G since all chains in G from X» to
X3 are blocked by the set of vertices {X;}. For example, the chain X5, X1, X3 from X3 to X3 is
blocked by {X;} since X7 € {X1}; the chain X», X5, X3 from X» to X3 is blocked by {X;} since
{X5, Xe} N{X1} = 2.

e. The property {X2} L& {X6} | {X3, X4} does not hold in the digraph G since not every chain in
G from X5 to Xg is blocked by the set of vertices { X3, X4}. For example, the chain X5, X5, X from
X to X is not blocked by { X3, X4}.

Exercise 8

Let V = {X1, X3, X3, X4} be a set of random variables. Let 1L be the independence relation
on V that is defined by the statements {X;} 1L {Xs} | @ and {X1, Xo} 1L {X4} | {X3}.

a. Give some directed D-maps for the independence relation 1l ;

b. Give some directed I-maps for the independence relation L.

Exercise 9

Show that for every independence relation there exists a directed D-map and a directed I-map.

Exercise 10

Given an example of an independence relation that has more than one directed P-map.

Exercise 11

Let V = {X;, X9, X3, X4} be a set of random variables. Let 1L be the independence relation
on V that is defined by the statements {X;} 1L {X4} | {X2, X3} and {Xo} L {X3} |
{X1,X4}. Give some minimal directed I-maps for the relation L.



Exercise 12

Show that for any acyclic directed graph G = (V(G), A(G)) the following property holds:
for any vertex X; € V(G) and any vertex X; € V(G) \ (05(X;) Ung(X;)), we have that
{Xi} g {X;} | mq(X;), where w(X) is the set of parents of vertex X and o, (X) is the set
of successors of X, including X.

Exercise 13

Let V be a set of random variables. Let Il be an independence relation on V' and let G be a
directed I-map for 1L. Now, let H be the underlying graph of G. Is H an undirected I-map
for 1.7

Exercise 14

a. Give an example of an independence relation that has both an undirected P-map and
a directed P-map.

b. Give an example of an independence relation that has an undirected P-map but no
directed P-map.

c. Give an example of an independence relation that has a directed P-map but no undi-
rected P-map.

d. Give an example of an independence relation that has no undirected P-map nor a
directed P-map.
Exercise 15

Consider the Bayesian network shown in Figure 1. We study in this exercise the procedure
of moralisation (have a look at the slides of Lectures 3-4).

a. Determine whether or not {Xs} Ll {X3} | {X1} using moralisation.

b. Answer the same question for {Xs} Ll {X3} | {X1, X6}



