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Preface

These are the working notes of the workshop on BAYESIAN MODELS IN MEDICINE, which
was held during the Furopean Conference on Artificial Intelligence in Medicine, AIME’ 01,
on 1st July, 2001, in Cascais, Portugal. The workshop brought together various theoretical
and practical approaches to using Bayesian models in tackling biomedical and health-care
problems.

Bayesian networks with their associated methods have now been around in medicine for
more than a decade. They have become increasingly popular for representing and handling
uncertain knowledge in medicine, for example to assist in the diagnosis of disorders, or to
predict the natural course of a disorder or the most likely outcome after treatment. Almost
simultaneously, the use of Bayesian statistics has increased in popularity in medicine, for
example to study spatial distributions of disease. The advantage of Bayesian methods offered
here is that knowledge of a background population can be taken as a starting point of a study.
Currently, interest is also emerging within the field of bioinformatics to use Bayesian methods
for building models of various kinds, for example based on the analysis of gene and protein
data. With the increase in research activities in Bayesian models, it was considered timely
to organise a workshop to enable researchers in the field to assess the current state of the
art, to identify obstacles to progress and to determine future research directions. Of course,
the opportunity to actually meet each other to exchange views and to explore possibilities for
collaboration was also considered most valuable.

The contributions included in these workshop notes cover a wide range of topics, from
learning to modelling, and from theory to the use of software tools to develop biomedical
applications. We hope that the reader will be left with the feeling that developing Bayesian
models in medicine as a research subject is very much alive and thriving.

We are grateful to our colleagues who served on the programme committee of the workshop
on BAYESIAN MODELS IN MEDICINE (A. Abu-Hanna (co-chair) K.-P. Adlassnig, R. Bellazzi,
C. Berzuini, G.F. Cooper, R.G. Cowell, F.J. Diez, M.J. Druzdzel, L.C. van der Gaag (co-
chair), P. Haddawy, D. Hand, I.S. Kohane, P. Larranaga, A. Lawson, L. Leibovici, T.Y. Leong,
P.J.F. Lucas (co-chair), S. Monti, L. Ohno-Machado, K.G. Olesen, M. Paul, M. Ramoni, A.
Riva, P. Sebastiani, G. Tusch, J. Wyatt, B. Zupan ). They carefully read and reviewed each
submission. Each paper was reviewed by at least two members, and in most cases by three
members. Thanks are further due to Andrew Lawson, Marco Ramoni, and Paola Sebastiani
for accepting our invitation to give an invited talk at the workshop. Last but not least, the
participants of the workshop made the effort we put into organising the workshop worthwhile.
To them also we would like to express our gratitude.

The Editors:

Peter Lucas, Department of Computing Science, University of Aberdeen

Linda van der Gaag, Institute of Information and Computing Sciences, Utrecht University
Ameen Abu-Hanna, Department of Medical Informatics, University of Amsterdam

20th June, 2001
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Bayesian Bioinformatics
(Invited Talk)

M arco Ramoni
Harvard Medical School
and Children’s Hospital
Boston, MA 02115, USA
E-mail: marco_ramoni @harvard.edu

Abstract

Bioinformatics, the computational challenger of
the genome, offers unparalleled opportunities
to machine learning research in general and to
Bayesian learning methods in particular. In this
talk, we outline some of the opportunities and
the challenges and we describe where the effort
of “cracking the code of life” can most benefit of
a Bayesian approach.

1 Introduction

The recent completion of a first draft of the human genome
has brought several surprises to many and changed our
views about many aspects of the genetic code. What has
not been shattered is the humongous size of the task of de-
coding the genome by find a meaning, i.e. a function, for
each part of it. Since the beginning of the Human Genome
Project, the international effort to characterize the genomes
of human and selected model organisms through complete
mapping and sequencing of their DNA, it was clear that the
management and analysis of the vast amount of informa-
tion gathered insofar would have been impossible without
the massive use and development of appropriate computa-
tional and analytical techniques. The reward of these ef-
forts is even greater than the task itself: a new understand-
ing of the basis of life and a new array of medicines and
cures to make it healthier and longer.

The convergence of computational and biomedical sci-
ences is leading to a radical change on both sides.
Computer science is importing in biological sciences a
new quantitative awareness, while post-genomic data are
prompting the development of novel computational meth-
ods able to handle their peculiar characters. This talk will
describe how Bayesian methods can offer interesting and
unique solutions to some of the critical problems involved
in the decoding of the semantics of the genome.

2 Functional Genomics

The aim of functional genomics is to understand the func-
tion of genes as parts of the entire human genome. Current
research is mainly focused on the understanding of gene
expression mechanisms, i.e. the processes inducing a par-
ticular gene to be transcribed and ultimately to code for a
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protein. The identification of the genes expressed, say, in
a cancer cell line or in a dystrophic muscle, can cast a new
light on the genetic basis of a disease and lead to poten-
tial remedies. The long term promise is to “reverse engi-
neer” the regulatory mechanisms underlying the genomic
controls of an organism and their interaction with external
conditions, pathogenic agents, and pharmaceutical prod-
ucts.

2.1 Differential Expression Analysis

Current technology allows for the simultaneous expression
analysis of thousands of genes using devices known as
microarrays. These massively parallel methods to study
the simultaneous expression of large number of genes are
based on hybridization either to cDNA [16] or to synthetic
oligonucleotides [11]. Despite some substantial technical
differences, both approaches rely on high-resolution arrays
measuring the expression level of each gene as a function
of the gene transcript abundance [12]. This abundance
is in turn measured by the emission intensity of the re-
gion where the gene transcript is located in the scanned
image of the microarray, and the signal is filtered to re-
move noise generated by the microarray background and
non-specific expression. Figure 1 shows the picture of an
oligonucleotide microarray.

The simplest functional genomic study we can conduct
is based on test vs. control experiments identifying which
genes are up- or down-regulated by a particular agent or
condition. For instance, we can compare the gene expres-
sion levels of a cancer cell line line against a healthy cell
line and identify which genes are differentially expressed
in the two cell lines. Early analyses of these array data
identify differentially expressed genes by taking the ratio
of the intensities and choosing an arbitrary cut-off factor
above (below) which the genes will be taken to be differ-
entially expressed [16; 6]. More sophisticated statistical
techniques take into account the distribution of the inten-
sities in the whole microarray. In the first statistical anal-
ysis of these data, Chen et al. [5] propose a method to
identify statistically significant changes between the two
samples, under several distributional assumptions, includ-
ing normality, null intercept, and constant variation coef-
ficient. Bayesian approaches to this problem have been
emerging in the past few months. Newton et al [13] offer



Figure 1: An oligonucleotide microarray.

a Bayesian approach to the problem using a hierarchical
model and identify differentially expressed genes on the
basis of the posterior odds of change. A similar approach
has been proposed by Baldi and Long [2] by modeling ex-
pression values as independent log-normal distributions,
parameterized by corresponding means and variances with
hierarchical prior distributions. Probably because of their
recent appearance, these approaches have not been used
yet in main-stream biomedical research and they remain in
the realm of the interesting computational techniques.

2.2 Functional Clustering

A more ambitious approach to functional genomics tack-
les to challenge of portraying a functional picture of the
genome of an entire organism. The chief tool of this
quest has been correlation-based hierarchical clustering [7;
17]. Given a set of expression values measured for a set
of genes under different experimental conditions, this ap-
proach recursively clusters pairs of genes according to the
correlation of their measurements under the same experi-
mental conditions. The intuition behind this approach is
that correlated genes are acting together since they belong
to the same functional categories.

The critical point of this approach is that it always ends
up generating generates a single tree and leaves the bur-
den of identifying the actual functional clusters by relying
on the available domain knowledge. We have developed a
Bayesian clustering method able to identify the set of most
probable processes responsible for sequences of observa-
tions [15]. The idea underpinning this Bayesian approach
is that the observed data are generated by processes. The
aim of the algorithm is to find the set of processes most
likely, a posteriori, to have generated the sequences of ob-

Figure 2: Bayesian clustering of gene expression data.



servations in the database.

We have applied this method to cluster observations on
517 genes in a study of the response of human fibroblasts to
serum. The data were collected using competitive cDNA
microarrays. These microarrays measure the expression
level of a gene simultaneously in a basal or control condi-
tion and in an experimental condition. The overall expres-
sion induced by the experimental condition is measured as
the ratio of the two intensity levels, and these are the data
used as input by clustering algorithms. Figure 2 shows the
clustering obtained on these data by our Bayesian cluster-
ing method. The tree on the left represents the steps of the
clustering algorithm and reports the four clusters identified
by the algorithm. The squares in the center of the picture
represents the gene expression measurements. Each row
displays the expression levels of a gene in each experimen-
tal condition, represented by the columns. Green cells and
red cells represents higher than one and lower than one
expression levels, respectively. The intensity of the color
represents the distance between the measurement and one.

2.3 TheCircuitry of the Cell

BBNS are not new to genetic research. As a matter of facts,
networks based on directed acyclic graphs actually orig-
inated from the genetics studies by Sewall Wright [18],
who developed a method called Path Analysis [19; 20],
a recognized ancestor of BBNS. The application of BBNS
to functional genomics is, on the other hand, very recent.
BBNS hold the promise of answering very interesting ques-
tions in functional genomics and, in principle, they seem
to be the right technology to take advantage of the mas-
sively parallel analysis of whole-genome data to discover
how interact, control each other, and align themselves in
pathways of activation. BBNs offer an alternative view to
the more popular clustering algorithms currently used for
the analysis of massively parallel gene expression data [7;
17]. While these algorithms attempt to locate groups of
genes that have similar expression patterns over a set of
experiments to discover genes that are co-regulated, BBNS
dive into the regulatory circuitry of genetic expression to
discover the web of dependencies among genes.

The promise of BBNSs in functional genomics goes even
further, as intensive research efforts have been addressed,
during the past decade, to define conditions under which
BBNs actually uncover the causal model underlying the
data [14; 10]. The most ambitious question is therefore:
given a set of microarrays data, can we discover a causal
model of interaction among different genes? The chal-
lenge is the common problem of sound statistical methods
when faced with microarray data: a large number of vari-
ables with a small number of measurements. In the context
of BBNS, this situation results in the inability to discrimi-
nate among the set of possible models as the small amount
of data is not sufficient to identify a single most probable
model.

Friedman et al. [8] address these problems using partial
models of BBNs and a measure of confidence in a learned
model. The strategy they follow is to search a space of
under-specified models, each comprising a set of BBNS,

and select a class of models rather than a single one. They
also adopt a measure of confidence based on bootstrapping
to evaluate the reliability of each discovered dependency
in the database in order to avoid the risk of ascribing a
causal role to a gene when no enough information is actu-
ally available to support the claim. Hartemink et al. [9]
tackle the under-determination problem by turning the un-
supervised search of the most probable network structure.
They leverage on established biological knowledge to se-
lect a small number of networks and then limit their com-
parisons to these networks only.

We have taken a slightly different approach, adopting
the strategy used in differential gene expression analysis
and converting the ratio measures generated by cDNA mi-
croarrays into discrete variables by thresholding the mea-
sures at 2 folds up and 2 folds down, the same used by
the authors of the original paper. Figure Figure 3 shows
a BBN generated by Bayesware Discoverer! from the fi-
broblasts response to serum dataset used for the functional
clustering displayed in Figure 2.

Although the use of BBNS in functional genomics is still
in its infancy, the simple comparison of the network in Fig-
ure 3 with the clusters in Figure 2 displays the potential of
BBNS to improve the results already obtained by clustering
methods by to dissecting the inner structure of the regula-
tory circuitry of life.

Figure 3: A Bayesian network for functional genomics.

Information about Bayesware Discoverer is available from
http://bayesware.com.



3 TheNew Population Genetics

A further side effect of the completion of a first draft of the
human genome has been to infuse new life and provide new
perspectives to the more traditional fields of population ge-
netics. One of the surprising statistics emerged from this
first draft may hold the key to unlock the code: on average,
the genomes of any two human individuals are identical at
99.9% of all nucleotides. While this high degree of iden-
tity is striking, the enormous size of the genome (over 3
x 109 base pairs) means that a 0.1% rate of divergence is
still equivalent to over 3 million differences between any
two people, which translates, on the average, into one dif-
ference every 1000 bases. These subtle variations, called
polymorphisms, have been proven to be invaluable tools to
relate genetic code to phenotypes. Albeit small, these vari-
ations of the genome have a major impact on how humans
respond to disease; environmental insults such as bacteria,
viruses, toxins, and chemicals; and drugs and other ther-
apies. But most of all, they have the potential to reveal,
in various ways, how the genetic code relates to genetic
expression and ultimately to phenotype [3]. Compared to
functional genomics, population genetics offers a way to
related higher level characters, such as genetic diseases and
observable individual features, to their genetic basis.

The most frequent type of polymorphism are Single
nucleotide polymorphisms (SNPs). SNPs (pronounced
“snips” or “S N Ps”) are DNA sequence variations that oc-
cur when a single nucleotide (A, T, C, or G) in the genome
sequence is altered [3]. For example a SNP might change
the DNA sequence AAGGCTAA to ATGGCTAA. Two of
every three SNPs involve the replacement of cytosine (C)
with thymine (T). Technically, SNPs are single base pair
positions in genomic DNA at which different sequence al-
ternatives (alleles) exist in normal individuals in some pop-
ulation(s). The most precious property of SNPs is to be
markers on the genetic code [4]. A second desirable prop-
erty of SNPs is that their frequencies are also evolutionary
stable — not changing much from generation to generation
— making them easier to follow in population studies.

Original studies on identification of the genetic basis of
phenotypes relied on so-called association studies. This
kind of studies, typically performed in case-control set-
tings, use measures of correlation between genetic regions
and phenotype of interest in order to identify which region
is linked to the phenotype. These studies have been shown
to be prone to false positives because of spurious associ-
ations arising from stratification in the studied population
(population admixture). To avoid this situation, pedigree
studies based on family members of affected individuals
have been introduced and appropriate tests for this setting
have been developed, most notably the Transmission Dis-
equilibrium Test (TDT) and its extensions. These tests
control for the stratification problem, but they can best be
used to test for the transmission of a single genetic region
at a time. Therefore, their application to the analysis of
complex traits maybe problematic, as this analysis requires
the simultaneous test of the transmission of multiple (co-
occurring) genetic variations, or for the interacting effect
of genetic variations and environmental conditions on phe-

Kenj11

Figure 4: A Bayesian network for SNPs analysis.

notypes. Furthermore, as family members are sometime
not available for study, pedigree studies are not always an
option and case-control association studies must be un-
dertaken. Finally, as both study types are based on tra-
ditional frequentist approaches to hypothesis testing, they
suffer from the well-known problem of multiple compar-
isons, whereby the same data are used to test multiple hy-
potheses, thus confusing the statistical significance of the
correlations measured.

BBNS are an ideal tool to tackle the analysis of these
data. BBNS are not restricted to pair-wise models of in-
teractions, but they can describe, and therefore help as-
sessing, models where more than one variable is respon-
sible for changes in others. SNPs, environmental condi-
tions and observable characters are represented as stochas-
tic variables, thus allowing for the seamless integration of
the relevant information. Patterns of inheritance and inter-
actions among traits, SNPs and environmental conditions,
are modeled by means of probabilistic functions, thus ac-
counting for the non-deterministic (stochastic) nature of
these interactions. Furthermore, the Bayesian metric used
to learn BNs from data avoids the multiple comparisons
problem by selecting the dependencies on the basis of their
probability rather than the probability of error. The metric
used to assess the existence of a dependency between a set
of SNPs and phenotypes of interest is based on a compet-
itive measure of probability, which scores multiple mod-
els at once and allows for the simultaneous evaluation of
multiple correlations among SNPs and phenotypes. In so
doing, this technology holds the promise to be a viable ex-
ploratory tool to mine the databases produced by the geno-
typing of the participants to large-scale epidemiological
studies collecting dozens of clinical phenotypes. The avail-
ability of unsupervised methods like the one proposed here
will enable the fast exploration of the potential dependen-
cies between SNPs and phenotypes. Finally, BNs provide
a global model of the dependencies among all the genetic
regions under consideration, a global picture of transmis-
sions and dependencies that can be used to assess endemic
correlations and help to identify potential stratifications.

Figure 4 shows the network generated from a single-
sided pedigree study to identify the genetic region respon-



sible for Insulin Dependent Diabetes Mellitus (IDDM)[1].
The study collects data on the 13 SNPs identified so far in
literature as associated with IDDM. Our preliminary anal-
ysis shows that the pathological status (State) is directly
affected by three different SNPs. The high connectivity of
the network also helps explain why other SNPs were found
to be related to IDDM when measured by conventional
tests of pair-wise correlations: if one variable/SNP is re-
moved from the network, a weaker, yet non-negligible, de-
pendency might be manifested between the phenotype and
amore remotely linked SNP (for example, the SNP Kcnj11
renders State conditionally independent of the SNPs Fabp2
and Pon2. Removing Kcnj11 would result in State to be-
come dependent on the two ancestors SNPs Fabp2 and
Pon2). The model shown was assessed as 54 times more
likely than the next best competing model by our Bayesian
metric. In other words, the observed data were 54 times
more likely to have been generated by this model than by
the next best one, and the phenotype of interest was found
to be several thousands times more likely to have been gen-
erated by the interaction of thse genes than from any single
gene alone

4 Conclusions

Since its origins, Artificial Intelligence has always had
a special relationship with biomedical sciences: the first
Bayes classifier, the first expert system, the first efforts to
develop Bayesian networks — just to mention only a few
— all emerged from medical applications. The opportu-
nity today is to turn Artificial Intelligence into an integral
part of the new biomedical sciences and to join in a sin-
gle venture two of the major endeavors of the century: the
reproduction of intelligence and the understanding of life.
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Bayesian Hierarchical Modelling for Spatial Disease Surveillance
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Abstract

The analysis of the geographical distribu-
tion of disease incidence is of growing im-
portance within public health (PH). Much
attention has been paid to modelling of
disease maps within a Bayesian hierachical
modelling framework. However little at-
tention has been paid to the analysis of
such spatial data in real time. Similarti-
ties between spatio-temporal/dynamic anal-
ysis within image restoration and disease
surveillance are apparent while there is clear
relations also with areas of Data mining.

This paper outlines and reviews the main
issues found in the area of spatio-temporal
disease surveillance and examines a specific
application of global surveillance within a
Bayesian hierarchical framework.

1 Introduction

Disease mapping is now an important tool for pub-
lic health surveillance. The analysis of the geo-
graphical distribution of disease incidence has impor-
tant applications in environmental risk assessment,
health resource allocation and in epidemiological re-
search. Although spatial epidemiology is a broad
field with various foci, a major theme of recent work
has been the application of Bayesian hierarchical
models to the analysis of the geographical distribu-
tion of disease, including correlated and uncorrelated
heterogeneities[16],[14],[13].

2 Disease mapping, Data Mining and
Surveillance

Surveillance includes a set of statistical paradigms for
the analysis of disease incidence either in time, or
space or in space-time

These methods should be designed to detect health
anomalies in the relevant domain of interest. Often
this task has a multiple focus: in PH it may be useful
to be able to detect clusters, change points or trends
(in space or time) in the incidence. They may also be

implemented in real time i.e. sequential detection of
anomalies could be important (e.g. emerging adverse
health indicators around putative pollution sources).
Data Mining can be viewed in a similar light: ‘Rel-
atively little of statistics is concerned with real time
analysis, though data mining problems often require
this.’ ‘.....in pattern detection, one is seeking to iden-
tify small departures from the norm, to detect unusual
patterns of behaviour. To many, it is this ..exercise
which is the essence of ‘data mining’- an attempt to
locate nuggets of value amongst the dross’ David Hand
(1999) ‘Statistics and Data Mining: Intersecting Dis-
ciplines’ [9].

3 Spatial Models

Here we consider a set of p arbitrary non-overlapping
regions within which counts of disease are observed:
{ni},i=1,....,p. In addition, we usually also observe
a set of expected rates within the regions of interest:
{ e; }. The expected rates are included so that spa-
tial variation in risk can be correctly modelled. The
usual assumption within Bayesian Hierarchical mod-
els for these counts is that, conditional on known and
unobserved effects, the counts have independent Pois-
son distributions with expectation E(n;) = e;.0;. The
0, are the relative risk for the disease of interest in the
i th region, and is the focus of most models for risk
variation. The likelihood is given by

P
= Z{ n; logeiﬂi—eiﬂi}.
=1

It is often the case that unobserved effects could be
thought to exist within the observed data and that
these effects should also be included within the anal-
ysis. These effects are often termed random effects,
and their analysis has provided a large literature both
in statistical methodology and in epidemiological ap-
plications ( see e.g. [17],[15],[3],[5]). Within the litera-
ture on disease mapping, there has been a considerable
growth in recent years in modelling random effects of
various kinds, within a hierarchical framework. In the
mapping context, a random effect could take a vari-
ety of forms. In its simplest form, a random effect



is an extra quantity of variation (or variance compo-
nent) which is estimable within the map and which
can be ascribed a defined probabilistic structure. This
component can affect individuals or can be associated
with tracts or covariables. For example, individuals
vary in susceptibility to disease and hence individuals
who become cases could have a random component
relating to different susceptibility. This is sometimes
known as frailty. Another example is the interpola-
tion of a spatial covariable to the locations of case
events or tract centroids. In that case, some error will
be included in the interpolation process, and could
be included within the resulting analysis of case or
count events. Also, the locations of case-events might
not be precisely known or subject to some random
shift, which may be related to uncertain residential
exposure. First, a form of independent and spatially
uncorrelated extra variation can be assumed. This
is often called uncorrelated heterogeneity (UH) ( see
e.g. [2]). Another form of random effect is that which
arises from a model where it is thought that the spatial
unit (such as regions) is correlated with neighbouring
spatial units. This is often termed correlated hetero-
geneity (CH). Essentially, this form of extra variation
implies that there exists spatial autocorrelation be-
tween spatial units. This can usually be modelled at
the next level of the hierarchy with prior distributions
representing the UH and CH. The model for the log
relative risk is often assumed:

logOi :ti +Ui+u1-

where the t; is a spatial trend component, the v;
is the UH and wu; is the CH. Suitable prior distri-
butions for these components are specified and the
posterior distribution of 8; is constructed. Full pos-
terior inference for Bayesian models has only recently
become feasible, largely because of the increased use
of McMC methods of posterior sampling. This has
been facilitated by the availability of general Gibbs
sampling packages such as BUGS (GeoBugs and Win-
Bugs). More recently, Metropolis-Hastings algorithms
have been applied in comparison to approximate MAP
estimation by Lawson and coworkers [15] and Diggle
and coworkers[6], and hybrid Gibbs-Metropolis sam-
plers have been applied to space-time problems by
Waller and coworkers[18]. Figure 1 shows the relative
risk estimates from a UH-CH model fit for lip cancer
incidence in Eastern Germany (1980-1989). On this
map the relative risks display some residual variation:
a north-south trend in incidence is apparent while a
cluster of low incidence appears in the south of the
map.

4 Temporal Models

The variation of disease incidence in time has been
addressed by a range of workers, an a variety of mod-
els similar to the spatial case can be defined. For
the purposes of surveillance, we wish to identify in
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Figure 1:

real time particular forms of process change. In fig-
ure 2 the relative risk (log scale) is considered to be-
have like a gaussian random variable which can be
monitored using upper and lower control warning lim-
its (UCL, LCL). In statistical process control (SPC)
applications, these warning limits are used to detect
changes in mean level (usually). Alternative methods
are available for changepoint detection (e.g. cusums).
Often in the temporal literature the methods of pro-
cess control are adopted and the use of control limits
are advocated. These have a number of drawbacks
within disease surveillance, not least of which is the
fact that a time dependent baseline risk is found. This
display serves to highlight the features which might
be thought to be important in detection of ‘adverse’
disease risk situations. These can be summarised as
changepoints (A)(mean level, variance), clusters (B)
and overall process change (C).

Some or all of these features may be of interest in
a disease surveillance system. Of course a temporal
surveillance system would operate in real time, and
so it may be difficult to identify some or all of these
features quickly. For example, a cluster of disease (B)
could not be identified until sometime after its peak
incidence were found.

5 Optimal Surveillance

Likelihood-based surveillance can be developed for the
time-domain where an alarm function is constructed
from a likelihood ratio evaluated as each time mea-
surement point. With a simple change in parameter
an alarm function can be defined as:

hiE= el

where:
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p(.) is the alarm function

Ty, is the prior probability of a change from

lo to pq at k

L(.|p) is the likelihood given the parameter p

x(u) is the data at time u

s is a chosen time point

This approach allows the analysis of important

measures of the potential delay in alarm based on
e.g. conditional expected delay, the expected de-
lay, and the probability of alarm at a given time.
This can be extended to multivariate forms and for
Bayesian models, but is global in nature in that it
examines simple changes in a global parameter or
parameters|7],[8],12],[19],[10]. The Bayesian hierar-
chical model extension of the LR method above defines
there to be a posterior distribution for any parameter
of interest, and a sample from this distribution must
be monitored. Clearly simple changes in parameter
can be assessed but must be summarised to represent
the mean or variance or other functional of the poste-
rior sample. Note that for complex hierarchical mod-
els which require computationally intensive sampling
algorithms (MCMC or RJMCMC) then it may be use-
ful to examine resampling methods (particle filters)
(see e.g. [11],[1]).

6 Spatio-Temporal Models

The classic spatial surveillance situation would be
where spatio-temporal disease incidence observations
are available, possibly within fixed time periods. This
form of data consists of sequences of maps of disease,
and analysis may proceed as in the case of imaging,
where a general model for the spatio-temporal process

can be conceived and thence and monitoring proce-
dure implemented. There are clearly many compli-
cations with surveillance in space-time, not least of
which is the wealth of potential interactions between
spatial structure and temporal structure.

A Possible Simple Model (fixed time period and
spatial frame) assumes we want to examine a change
within a fixed time and spatial unit:

Nt ~ Poisson(e;t.0:t)

1)

where n;; is the observed number of cases in the 7
th region at time ¢

e; is the expected number of cases in the ¢ th
region at time ¢

0 is the relative risk in the i th region at time

A simple model can be assumed for the relative risk:

Inbic = Xie =@+ &+ vi+ Vi
Oilps 1~ N(P‘Pt—bKl-U%) (2)
_ ai
Blo_; ~ N(dpsi, Ka.—) 3)
vi ~ N(0,K302) (4)

where m; is the number of spatial neighbours of the
i th region, and

Vit ~ N(0, K4.0%) (5)

The idea is that we can monitor a variety of
the changes to the process by examining changes in
K1, K5, K3. If the process is in control then K; =
Ko = K3 = 1. If K; > 1 then a sharp jump in the
risk occurs in time, Ko > 1 is a change in the global
spatial correlation structure, if K3 > 1 then a change
in global variability occurs, while K4 > 1 is a global
change in the risk inplying changes at specific space-
time locations.
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Another simple model might examine the moni-
toring of clustering (object recognition) via a cluster
model.

Assume that we have a spatio-temporal cluster
model of the form:

E(nit) =

il + a1y K(xi—yy; k1) +
i=1

nt
a9 ZK(t — Y2i; Koi) +
i—1

nst

ag Yy K((xit) — yai; £3:)
i=1

where yy; are the spatial cluster centres, y9; are the
temporal cluster centres, y3; are the spatio-temporal
cluster centres, and (x;,t) is the spatial and tempo-
ral location of the region.. The ’weights’ aq, @y and
ag represent the increase in relative risk invoked by
the cluster centres, and the {k.; }are cluster variances
which are allowed to vary with the cluster label. A
similar dynamic model formulation can be specified
for this situation.

Figure 3 displays the form of clusters found in space-
time:

7 Local versus Global Surveillance

Optimal surveillance methods and most monitoring
procedures focus on global parameter surveillance,
which is the simplest form of surveillance possible.
However in spatial problems there is a need for other
forms of surveillance related to localised changes in the
structure of the problem. For example, a disease can
spread spatially within a time period but only within
a small number of regions, and it may be important
to report such a spread quickly, especially if it were a

highly contagious disease (e.g. FMD). A global model
for a map usually doesn’t contain measures of localised
behaviour and what is needed is a form of locational
surveillance which examines localise increases in risk.
We call this distinction Locational versus Parameter
surveillance. It is in the area of locational surveillance
that most work is needed. The obvious application of
this form of monitoring is the assessment of clusters
of disease and aggregated areas of adverse risk.

8 Example

In this report a simple example of a spatial disease
map analysis will be presented where there is a multi-
focus on global parameter changes and cluster assess-
ment. A special surveillance model will be considered
for this application.

The surveillance model chosen was that described in
1,2, 3,4, and 5 above. We examine the Ohio lung can-
cer data set described by [4] (amongst others). This
data set consists of lung cancer counts for 88 coun-
ties of Ohio for 21 year time periods (1968-1988). The
surveillance of the 21 years of the map sequence will
be examined. The model was fitted using Metropolis
Hastings steps with a moving window to reduce the
computational time (see e.g. [1]). A fuller discussion
of the modelling issues will be presented, and the mul-
tiple time series of K1 Ko K3, K4 will be discussed.
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1 Introduction

Health-care systems are complex and depend on or-
ganizational, economical and structural factors. The
availability of appropriate tools for their representa-
tion would allow to study and understand the inter-
actions among the different elements that determine
their behaviour, as well as to analyze some alterna-
tives to improve their performance. As many of the
factors that influence on the performance of a health-
care system are of a uncertain nature, Bayesian net-
works could play an important role in their study. In
this paper we introduce some representation models,
based on Bayesian networks, applied to the specific
case of an emergency medical service. These models
have been obtained, from real data recorded at the
hospital “Virgen de las Nieves”, using algorithms for
learning Bayesian networks.

The paper is structured as follows: In Section 2 we
describe the problem we are going to study, the avail-
able data and the preprocessing steps (discretization,
variable selection,...) used to get a database appropri-
ate for the learning algorithms. In Section 3 we briefly
comment on the different learning algorithms we have
considered for our experiments. Section 4 describes
the networks obtained for the different algorithms. In
Section 5 we summarize the results of several experi-
ments, which try to assess the quality of the networks
from different points of view. Finally, Section 6 dis-
cusses the conclusions of this work.

2 The Problem

As we have already commented, we want to model
some aspects of the health-care system for patients
that arrive to the emergency department of a hospi-
tal. Our first aim is simply to better understand the
interactions between some of the factors that shape
this system, and obtain a model that describes rea-
sonably well the nature of the system. Afterwards,
this model could be used to make predictions about
some variables of interest, or even to make decisions
about the configuration of the system itself. Our ap-
proach is management oriented, and tries to assist to
the hospital manager in organizational and economi-
cal questions (for example, possible redistribution or

reinforcement of personnel and/or infrastructure) in-
stead of clinical problems!.

2.1 The Data Set

From the set of variables which are collected when a
patient enters in the emergency department, the vari-
ables displayed in Table 1 were initially selected. In
this table we also show either the number of possible
values or the range for each variable. For the exper-
iments we had at our disposal a database containing
31937 records (corresponding to all the arrivals to the
emergency departments of the hospital “Virgen de las
Nieves” at Granada, from 01,/01/2001 to 02/20/2001).

Variable Possible values
Financing 11

Date of Admission date

Time of Admission | 0:01-24:00

Cause of Admission | 8

Pathology 7

P10 2
Identification 6

Date of Discharge date
Time of Discharge 0:01-24:00

Cause of Discharge | 11
Medical Service 36

Table 1: Variables initially considered.

Financing represents the type of entity that sup-
ports the expenses (Social Security, Insurance com-
panies, International agreements, ...). Cause of Ad-
mission codifies 8 different values (considered as con-
fidential by the hospital staff). Pathology includes
Common Disease, Common Accident, Industrial Ac-
cident, Traffic Accident, Aggression, Self-inflicted Le-
sion and Other. P10 represents whether the patient
was sent to the emergency medical service by a family
doctor. Identification codifies the type of identifica-
tion document of the patient (Identity Card, Social
Security Card, Passport, Oral Identification, Other

! Although a better use of the available resources would
also imply an improvement of the medical care.



and Unidentified). Cause of Discharge represents sev-
eral reasons (Return to duty, Death, Hospitalization,
Transfer to another hospital, ...). Medical Service in-
cludes all the different emergency units at the hospital.
All the described variables were used just as they are,
but for the remaining four variables in Table 1, some
additional treatment was necessary.

2.2 Preprocessing of Data
We have discretized some variables as follows:

e Date of Admission: We discretized it into 7 val-
ues, corresponding to the days of the week. From
now on we call this variable Day.

e Time of Admission: We discretized it into 3 val-
ues corresponding to the three different horary
periods of the day: morning (8:01-15:00), evening
(15:01-22:00) and night (22:01-8:00). From now
on we call this variable Shift.

We also defined new variables, which were consid-
ered relevant:

e Duration: The lenght of time (in hours) that
the patient stayed in the emergency department.
This value is calculated from the values of Date
and Time of Admission and Date and Time of
Discharge. Moreover, this new variable was dis-
cretized into 3 values (from 0 to 8 hours, from 8
to 72 hours, and more than 72 hours) which were
considered meaningful by the physicians?.

e (Centre: The hospital has three different emer-
gency departments corresponding to the three
centres that compose it (Maternity hospital, Or-
thopedic Surgery and General hospital).

The variables Date and Time of Discharge were
considered irrelevant to our purposes, because the
truly relevant information is the Duration of the stay.
Therefore, these two variables were removed. So, we
have considered a total of 11 variables.

3 The Learning Algorithms

We have applied to our problem several algorithms
for learning the structure of a Bayesian network. On
one hand, we aim to compare their performance on a
real problem; on the other hand, the arcs appearing in
all the learned networks could be considered as being
the “core” for this representation model. Any consen-
sus Bayesian network should be built from this shared
structure.

The algorithms that we have used are the following;:

e PC [SGS93], an algorithm based on independence
tests. This type of algorithms carries out a quali-
tative study of the dependence and independence
relationships among the variables in the domain
(using conditional independence tests), and tries
to find a network that represents these relation-
ships as far as possible.

2They correspond, respectively, to “normal”, “compli-
cated” and “anomalous” cases.

e Another algorithm, BN Power Constructor
(BNPC), that uses independence tests and cross
entropy [CBL9S].

e A scoring-based algorithm, that uses local search
(LS) in the space of dags (directed acyclic
graphs) [HGC95]. The algorithms based on a
scoring metric try to find a graph with the mini-
mum number of links that “best” represents the
data, according to a specific metric. All of them
use a metric in combination with a search method
to measure the goodness of each explored struc-
ture. Each one of these algorithms is character-
ized by the specific metric and search procedure
used. In our case, the local search used is based on
the classical operators of addition, deletion and
reversal of arcs (and an initial empty graph); the
(Bayesian) metric used is the K2 metric [CH92].

e A version of the BenepICT® (BE) algorithm
[ACO1b]. This algorithm, which searches in the
space of equivalence classes of dags*, is based on
a hybrid methodology [Aci99], that shares with
the methods based on scoring metrics the use of
heuristic search methods to build a model and
then evaluate it using a scoring metric. At the
same time, the method has some similarities with
those based on independence tests: it explicitly
uses the conditional independencies embodied in
the topology of the network to elaborate the scor-
ing metric, and carries out conditional indepen-
dence tests to limit the search effort.

The basic idea of this algorithm is to measure the
discrepancies between the conditional indepen-
dences represented in any given candidate net-
work G (d-separation statements) and those dis-
played by the database (probabilistic conditional
independences). The lesser these discrepancies
are, the better the network fits the data. The ag-
gregation of all these local discrepancies results
in a measure of global discrepancy between the
network and the database. The local discrep-
ancies are measured using the Kullback-Leibler
cross entropy, Dep(z,y|Z), which measures the
degree of dependence between two variables z and
y, given that we know the values of the subset of
variables Z. To evaluate a network G, only the
values Dep(z,y|Z) for pairs of non-adjacent vari-
ables in G, given a d-separating set of minimum
size, Z, of z and y in G [AC96], are calculated.
The main search process is greedy and only addi-
tion of arcs is permitted, although a final refining
process (reinsertion of discarded arcs and pruning
of inserted arcs) mitigates the irrevocable charac-
ter of the whole search method.

8 Acronym of BElief NEtwork DIscovery using Cut-set
Techniques.

40ther versions of BENEDICT, that search in the space
of dags with a given ordering of the variables, and use a
slightly different metric, can be found in [ACO01a).



The experiments we are going to describe have
been carried out by means of our own implemen-
tations for the cases of PC, LS, and BE. For
BNPC, we used the software package available at
http://www.cs.ualberta.ca/~jcheng/bnsoft.htm.

To compute the conditional (or marginal) probabil-
ity distributions stored at each node in the network,
thus obtaining a complete Bayesian network, we used
a maximum likelihood estimator (frequency counts).

4 Results

After running the four learning algorithms we ob-
tained four different networks. Due to space limita-
tions, we cannot show all of them. Figure 1 displays
the edges in common to all the networks (four arcs
and four links (excluding the directionality)).

Cause Discharge

Medical Service

Identification

(@

Figure 1: The incomplete structure shared by all the
networks.

We do not assume a causal interpretation of the arcs
in the networks (although in some cases this could be
reasonable). Instead, we interpret the arcs as direct
dependence relationships between the linked variables,
and the absence of arcs means the existence of inde-
pendence relationships.

Pathology

Figure 2: Structure obtained by the BE algorithm.

The strong relation between Pathology and Financ-
ing is explained because the expenses are charged to
different entities depending on the type of pathology
(traffic accident, industrial accident,...). Financing
also depends on Identification (obviously the expenses
will be charged to some entity or company only if
the patient can be identified as belonging to this en-
tity). The connection between Pathology and Cause
of Admission seems us quite obvious. The relation
between Cause of Admission and Shift may be due
to the fact that the reason to go to the emergency
department is not homogeneous across the different
hours (Shifts). The arc going from Medical Service to
Centre is justified because Centre is a variable func-
tionally dependent on Medical Service (each Centre
has its own emergency medical units). The Duration
of the stay at the emergency department essentially
depends only on the medical unit that tended the pa-
tient and the Cause of Discharge (the seriousness of
the diseases and the degree of congestion of the ser-
vice, which are strongly related with the duration of
the stay, probably vary from one unit to another). In
turn, these two variables are highly correlated: For
example, a decease as being the cause of discharge is
much more unlikely for some medical units than for
others.

For illustrative purposes we also show a complete
network, corresponding to the BE algorithm (see Fig-
ure 2). From this network, we can obtain (using d-
separation) a number of conditional independence re-
lationships: For example, Pathology and Cause of Dis-
charge are independent when we know Medical Ser-
vice; also, Financing and Duration are conditionally
independent given Medical Service.

To give an idea of the resemblance between mod-
els, Table 2 shows, for each pair of algorithms, the
two numbers ! /a, where [ is the number of com-
mon links (in either direction) and a is the number of
common arcs between the networks learned by these
algorithms®.

PC LS BE  BNPC
PC ii/ii _9/8  9/7  8/4
LS - 18/18  10/9  9/5
BE - - 16/16  10/6
BNPC | - - - 13/13

Table 2: Number of common links and arcs, ! / a, be-
tween pairs of learned networks.

5 Experiments

The information we have collected about the exper-
iments with the different learning algorithms is the
following;:

5The main diagonal in this table represents the number
of arcs contained in each network.
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Kullback-Leibler (KL) distance (cross-
entropy) between the probability distribution, P,
associated to the database (the empirical fre-
cuency distribution) and the probability distri-
bution associated to the learned network, Pg.
In this way we try to assess the performance of
the algorithm from the perspective of how closely
the probability distribution learned approximates
the empirical frequency distribution. Actually,
we have calculated a decreasing monotonic linear
transformation of the Kullback-Leibler distance,
because this one has exponential complexity and
the transformation can be computed in a very ef-
ficient form [Cam98]. The interpretation of our
transformation of the Kullback-Leibler distance
is: the higher this value is the better the network
fits the data. However, this measure should be
handled cautiously, because a high KL value may
also indicate overfitting (a network with many
edges probably will have a high KL value).

The values of the K2 metric [CH92] (log version)
and the BIC (Bayesian Information Criterion)
metric [SwaT78] for the learned network. These
values give an idea of the quality of the learned
network from different points of view.

The learned networks can also be used with pre-
dictive purposes, by using the inference methods
(propagation of evidence) available for Bayesian
networks. More precisely, from the perspective
of a classification problem, we want to use the
networks to predict the values of some variable
of interest given some evidence, and compare the
predictions obtained with the true values of this
variable, thus obtaining the corresponding per-
centages of success. We have considered three
different situations:

(a) Predicting the values of Duration, given evi-
dence about the values of all the other variables,
except Cause of Discharge. In this way, we try to
determine the most probable duration of the stay
at the emergency department before the patient
is effectively discharged.

(b) Predicting the values of Medical Service,
given evidence relative to all the remaining vari-
ables, except Pathology, Cause of Discharge and
Duration, which would be unknown at the arrival
time of the patient. If accurate, this prediction
could serve to direct the arriving patient to the
appropriate emergency unit.

(c) Predicting the value of each one of the eleven
variables, given evidence about all the ten re-
maining variables. In this way we try to test
the behaviour of the network models for different
problems. This experiment could serve to assess
the robustness of the networks as general classi-
fiers (as opposed to have to manage a different
model to classify each variable of interest).

For all the classification problems, we have learned the
different networks using a training subset containing
21309 cases and the success percentages have been cal-
culated using a test set containing the remaining 10628
cases.

We have also computed the performance measures
corresponding to the empty network (Qem), which is
obviously a quite poor model (no interaction among
the variables). These values may serve as a kind of
scale.

The values of the different metrics for all the net-
works considered are displayed in Table 3°.

Algorithm | KL K2 BIC
BE 2.4473 | -101016 | -243420
PC 2.1518 104834 -249509
LS 2.5180 | -99896 | -315000
BNPC | 2.4850 | -101308 | -258123
Dem 0 -133315 | -306937

Table 3: Performance measures for the different net-
works.

The LS algorithm performs quite well with respect
to both the KL and K2 metrics, although its BIC value
is the worst (including the empty network!). More-
over, LS is the algorithm that obtains the most dense
network (18 arcs), as was to be expected taking into
account the previous values. On the other hand, PC
produces the sparsest network (11 arcs) and gets bad
KL and K2 values. The BE algorithm obtains a net-
work quite balanced with respect to all the metrics and
an intermediate number of arcs. As a whole, BNPC
seems to behave worse than BE and LS and better
than PC. Anyway, from the point of view of the KL
and K2 metrics, there are not important differences
(less than 3%) among the learning algorithms, with
the exception of PC7. With respect to the BIC metric
the differences are greater.

Algorithm | Duration % | M. Service %
BE 89.8 76.0
PC 89.8 76.0
LS 89.8 76.0
BNPC 89.8 75.9
Dem 85.9 31.0

Table 4: Success percentages of classification for Du-
ration and Medical Service.

Table 4 displays the percentages of success of the
different networks for the first two classification prob-

5The best value for each metric is written in bold, the
second best value in italic and the worst value (excluding
the empty network) in small font.

"For the K2 metric these differences become quite large
when we consider the natural probability space instead of
the log space.



lems considered®. In both cases all the learned net-
works perform equally. With respect to predicting
the duration of the stay, note that the percentage of
improvement obtained with respect to the prediction
of the empty network is rather small, 3.9% (although
this value amounts for 415 patients). The reason is
that the distribution of the duration of the stay is
quite biased towards its first value (from 0 to 8 hours)
and therefore the default rule that assigns to all the
cases the ‘a priori’ most probable class gets a high
percentage of correct classifications®. For the problem
of predicting the medical service involved, the results
outperform remarkably the prediction of the empty
network.

Table 5 displays the percentages of success of the
different networks for the other eleven classification
problems. In this case LS performs slightly better
than BE and BNPC, which in turn are also a bit better
than PC. All the learned network significantly outper-
form the empty network in most cases.

BE | PC LS | BNPC | 0em
CoA% | 90.0 | 90.0 | 90.1 | 89.9 | 90.0
CoD% | 76.6 | 76.1 | 76.8 | 76.6 | 60.8
Cen% | 100 | 100 | 100 | 100 | 39.3
Day% | 18.1 | 17.8 | 19.3 | 181 | 17.8
Dur% | 90.0 | 89.8 | 90.2 | 90.0 | 85.9
Fin% | 98.0 | 98.0 | 98.1 | 98.0 | 93.9
Ide% | 86.0 | 86.6 | 86.4 | 86.5 | 86.0
MS% | 83.3 | 82.8 | 82.9 | 83.0 | 31.0
P10% | 94.6 | 94.6 | 94.6 | 94.6 | 94.6
Pat% | 86.2 | 80.7 | 85.6 | 86.2 | 79.2
Shi% | 47.5 | 47.5 | 49.9 | 46.6 | 46.6

Table 5: Success percentages of classification for the
eleven variables.

Taking into account the results shown in Tables 3,
4 and 5 for the different learned networks, we can con-
clude that all the models seem to be very competitive.

6 Concluding Remarks

The complexity of the health-care systems requires ap-
propriate tools for their representation, study and op-
timization. Bayesian networks constitute a very at-
tractive formalism for representing uncertain knowl-
edge (which is the result of the sinergy of statistical
methods for data analysis and Artificial Intelligence
tools), that has been successfully applied in different
fields. However, Bayesian networks have been used in
medicine essentially to assist in the diagnosis of disor-
ders and to predict the natural course of disease after

81n this table and also in Table 5, all the values which
do not exhibit significant differences (at a 95% confidence
level) with respect to the best value are written in bold
font.

“Probably, a finer discretization of the variable Dura-
tion would give rise to much greater differences.

treatment (prognosis). A novelty of this work is the
application of Bayesian networks to other, more man-
agement oriented, medical problems.

For future works, we plan to extend and refine
our model (using consensus networks), including more
variables (e.g., seasonal variables), validate it taking
into account expert knowledge and use it as a tool to
assist to the manager hospital. We also plan to ap-
ply Bayesian networks to other management medical
problems (as waiting-lists).
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Abstract

Belief Networks in the Bayesian approach
provide a well-established methodology to
fuse prior knowledge and statistical observa-
tions for an enriched decision support. In
this paper we investigate one of the advan-
tages of the Bayesian approach - the provided
additional uncertainty information for pre-
dictions - in a medical classification problem.
We perform a Bayesian analysis using Be-
lief Network models to discriminate between
benign and malignant ovarian masses. The
performance of such Bayesian Belief Network
models are reported when the exclusion of
some data points is allowed based on various
uncertainty measures of the prediction.

1 Introduction

The Bayesian approach is becoming more attractive
for the machine learning community because it can
cope with the valuable subjective prior information
in a principled way and it provides more detailed in-
formation for decision support. These properties are
particularly attractive in medical applications, since
detailed uncertainty information can be vital in a med-
ical decision and frequently abundant prior domain
knowledge is available beside the statistical data. Un-
der certain conditions Belief Networks are especially
suitable for Bayesian modeling, that is to formalize the
prior domain knowledge, to update it by observations
and to perform inference in a Bayesian way [4]. In the
paper we investigate a Belief Network model from the
Bayesian perspective to discriminate between benign
and malignant ovarian masses.

The paper is organized as follows: Section 2 re-
views the Bayesian approach in classification prob-
lems. Section 3 recapitulates the medical problem
which will serve as a test case, introduces the data and
defines relevant performance measures. In Section 4
we discuss the applied Belief Network model and the
algorithms used to approximate the Bayesian perfor-
mance measures. Section 5 presents the performance
of the model using thresholds based on various un-

certainty measures of the prediction to exclude some
data points. In Section 6 we summarize our findings
about having a detailed Bayesianist prediction in this
medical problem.

2 Bayesian Classification

Starting with a prior distribution expressing the initial
beliefs concerning the parameter values of the model,
we can use the observations to transform this into the
posterior distribution for the model parameters ex-
pressing the beliefs after observing the data. Using
this posterior distribution over the model parameters,
useful random variables can be defined for functions
depending on the model parameters, like predictions
and error measures.

In a binary classification task this rationale means
the following. We are primarily interested in the cor-
rect classification of an observation € R'. This can
be achieved by constructing a binary decision function
g(xz,w) € {0,1} where w € O are the model param-
eters. A more informative predictive model provides
not only a class label, but also the class probabilities,
though it is a more complex task both from a statisti-
cal and computational point of view. As a further step
in improving the decision support, uncertainty infor-
mation can be provided for the class probabilities, for
example the posterior distribution of class probabili-
ties in the Bayesian framework.

In this paper we follow the Bayesian approach to
solve the classification problem for two main reasons:
to incorporate prior background information in a gen-
eral and principled way and to provide detailed in-
formation with clear semantics for decision support.
For a probabilistic regression model P(T = 1|z, w) =
f(x,w) € [0,1] it means there is a prior distribution
pa(.) over the model parameters w € ©. Fq|q denotes
the random variable for the predicted posterior class
probability (as a scalar in the [0, 1] interval).

We assume the existence of a labeled training set
d = {zk, te}jey, (Trte) € R x {0,1}, where z is
a real valued ldimensional input vector and t is the
corresponding class label. In the paper we use capitals
for random variables, bold indicates a vector and a
bold underline indicates a matrix.
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Using the observed data d and applying Bayes’ rule,
the prior distribution can be transformed to the pos-
terior distribution po(w|d) given by

pr(ti, .. tolw, @1,. .., ) pa(w|Ty,. .. x,)

pp(d)

that is, by
L(w|d)pa(w)

where L(w|d) denotes the probability of the data given
the parameters.

Once we have this posterior distribution for the
model parameters, we can define random variables re-
lated to predictions, performance, etc. In classifica-
tion problems for example, we are interested, for a
given x, in the random variable f(z, Q) where Q is a
random parameter vector. In this way we have uncer-
tainty information about the predicted class probabil-
ity.

We can simplify this result to scalar values for the
class probabilities P(T' = 1|z,d). The optimal step
back depends on the cost function attached to the re-
ported scalar value. Assuming the Lo loss function,
the optimal strategy is to report the expectation of
the class probability in the posterior parameter prob-
ability space f(z) := Eqq[f(z,w)]. A further sim-
plification is to discretize this scalar value using some
user specified threshold A, deriving a binary decision
function

a(z) = { éi}flsf_mg[f(m,w)] >

These three distinct levels, the distribution of the
class probabilities (f(zx,€)), the class probabilities
(f(x)) and the class labels (gx(x)) provide dimin-
ishing possibilities for decision support, though the
burdening statistical and computational complexity
should be considered too.

P(Y=1]x) as
random variable

P(Y=1]x) as
point estimate

Binairy
classification

Figure 1: Three levels of predictions.

A more refined scheme allows rejection based on the
uncertainty of the prediction of the class probability
Fag

"rejected” if 0[Fq|q] > 0
Lif Eqg[f(z,w)] > A
0 else.

g\o (m) =

We are using the following uncertainty measures de-
rived by the transformations of the random variable
Fqq into a scalar 4:

0r,[Fag) = min(Epgu(fl,1— Erg,lf) (1)
5VaT[FQ|4] = VaTFmg[f]
0y, var[Faal = Ovar[Fajal = dr,[Fayd
SulFaa] = H(Faja)
1/2 1
OBayes[Faid] = mzn(/o dFq|d, /1/2 dFqa)

dr, is a non-Bayesian uncertainty measure, the
distance of the point-value prediction from a deci-
sion threshold. &y, is the variance of the Bayesian
prediction of the class probability. &g, ver is the
distance of the threshold from the credible region
[0r, — 1/20var,0L, — 1/26vqr]- dm is the entropy of
the class probability distribution and §gayes is the be-
lief in the less probable class (i.e. the belief in the
unavoidable minimal error).

3 Classification of Ovarian Masses

Ovarian malignancies represent the greatest challenge
among gynaecologic cancers. A reliable preoperative
prediction in terms of benign and malignant ovarian
tumors would be of considerable help to clinicians
selecting an appropriate treatment. There are two
sources of information to construct such predictive
models: prior knowledge and data.

The available relevant medical literature and ex-
pert knowledge is abundant and very diverse (for an
overview, see [5]). In addition to the prior background
information, data were collected prospectively from
300 consecutive patients who were referred to a sin-
gle institution (University Hospitals Leuven, Belgium)
from August 1994 until June 1997. The data collec-
tion protocol ensure that the patients had an appar-
ent persistent extrauterine pelvic mass and excludes
other causes that may have similar symptoms such as
infection or pregnancy, so the primary aim is differ-
entiation between benign and malignant masses (for a
detailed description, see [5]). Univariate statistics of
data set are presented in Table 1. Since the data set
is mostly complete with respect to the used model in
the paper we used only this subset after certain sta-
tistically or medically motivated discretizations (e.g.
CA 125="< 357,735 — 657,765 <”).

Standard statistical studies indicate that a multi-
modal approach — the combination of various types of
variables — is necessary for the discrimination between
benign and malignant tumors. Therefore Logistic Re-
gression models, Multilayer Perceptrons and Belief
Networks were previously applied [5; 1]. These mod-
els predicted the scalar class probabilities and they
were developed and tested in the classical statistical
framework.



Age | Parity | CA 125 | Color

score

E[.|Benign] 47.77 | 1.50 110.3 1.98
E[|Malignant] | 58.62 | 157 | 12222 | 3.20
Std[.|Benign) 15.60 | 1.40 976.5 0.84
Std[.|Malignant] | 15.18 | 1.73 | 3779.6 | 0.95

Table 1: Univariate statistics for the benign and ma-
lignant subpopulation in the ovarian cancer data set.

A natural step to provide more detailed information
for medical decision support is to apply the Bayesian
approach to provide the distribution of class proba-
bilities. We can use the classical statistical perfor-
mance measures, such as Misclassification Rate (MR)
and the area under the Receiver Operator Character-
istics curve (ROC), for the evaluation of the models in
the Bayesian framework, since any performance mea-
sure is a function of the model parameters (for fixed
observations/test data). These performance measures
then become random variables which provide more in-
formation than a point estimate. For the definition
and interpretations of the ROC curve, see e.g.[6].

4 Bayesian Belief Networks

A Belief Network represents a joint probability distri-
bution over a set of variables (see e.g. [2]). We assume
that these are discrete variables, partitioned into three
sets X, Y in {co, c1}, Z: set of input, output, and in-
termediate variables respectively. The model consists
of a qualitative part (a directed graph) and quantita-
tive parts (dependency models). The vertices of the
graph represent the variables and the edges define the
qualitative dependency-independency relations among
the variables. There is a dependency model for every
vertex (i.e., for the corresponding variable) to describe
its probabilistic dependency on the parents (i.e., on
the corresponding variables).

Assuming parameter independence we use Dirich-
let distributions as dependency models (see e.g. [4;
3]). In this case the prior background knowledge is
formalized as a fixed Belief Network structure and
the prior distribution pa(.) over the model parameters
w € O, where the hyper parameters of the Dirichlet
distributions, N;;i, can be interpreted as the number
of previously seen corresponding examples.

Using such Dirichlet distributions, an expert can
express his belief in parametrizations and for com-
plete samples the posterior distribution pa(w|d) has
the same analytic formula with updated hyper param-
eters [4; 3].

We built the Belief Network from the available prior
knowledge from expert and literature in a ”hetero-
geneous” way incorporating biological models of the
underlying mechanism quantifiable by the literature,
parts quantified by a medical expert and parts quanti-

fied by previously published studies [1]. The structure
of the Belief Network model is shown on Fig. 2.

ReslstMenopause

|ndex

Figure 2: The BN model structures.

The target random variables to be estimated are
hierarchical: the inference P(T = 1|Q,z°%, z,d)
and the performance related M R(S2,d). We sample
the posterior distribution pg(w|d) by direct sampling
from the updated Dirichlet distributions and com-
pute the conditional probabilities of malignancy for
the drawn parametrizations by an exact inference al-
gorithm using a join tree (see [2]). Based on these
predictions the corresponding MR and AUC values
can be computed.

5 Results

We investigated the advantages of having a more de-
tailed probabilistic prediction in the Bayesian frame-
work. At first we manually evaluated the Bayesian
predictions of the Belief Network model from a medi-
cal point of view. We noticed that the predictions for
misclassified cases are more uncertain, e.g. they have
higher variances Vargq[f(x,w)] which is one mea-
sure for the ’uncertainty’. Generally spoken, the cases
with a high value for Vargq4[f(x,w)] were also hard
to classify by a medical professional, in contrast with
cases with a low value for Varg q[f(z,w)], that were
almost always straightforward to predict.

To identify automatically these medically hard
cases, we tried to quantify the uncertainty of the pre-
diction by the d-measures introduced in section 2. Fig.
3 and 4 show the correlation between the dv ., 5 and
0y measures. Correct classified samples are denoted
with ”*” and incorrect ones with a ”0”.

One promising possibility of havmg a quantiﬁcation
for the uncertainty of the prediction is to allow the
rejection of the most uncertain cases, which in prac-
tice can mean referring such a patient to an expert
or further examinations. To investigate the efficiency
of the identification of hard cases, we computed the
area under the ROC curve and the misclassification
rate when various proportions of the most uncertain
cases are rejected. Fig. 5 shows the misclassification
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Correct classified samples are denoted with ”*” and
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Figure 4: Correlation between Er, ,[f] and dg. Cor-

rect classified samples are denoted with ”*” and in-
correct ones with ”0”.

rates after excluding various proportions of the data
set based on J-measures (01, , Oy qr and dg) as defined
in Section 2, Fig. 6 shows the same for the rejected
partition. In these experiments, we partitioned the
data set described in Section 3 randomly to a test
(50%) and training (50%) set, this was repeated 30
times to eliminate dependency on separation. The re-
ported results are based on the test set.

Tables 2 and 3 show the misclassification rates that
are achieved for 'non-rejected’ respectively ’rejected’
samples for varying uncertainty measures defined by
Eq. 1

6 Discussion

Since the Bayesian approach is becoming more and
more popular as an efficient inductive method for inte-
grating prior knowledge and statistical data, the ques-
tion arises how we can use other potential advantages
of this framework. One attractive candidate is the de-
tailed Bayesian prediction of class probabilities, since

- = = - §,, based sample rejection
3, based sample rejection
5, based sample rejection

0.1°

Misclassification rate after rejection
of the most uncertain samples

————=  Proportion of rejected samples
. 1
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Figure 5: The misclassification rate on the test set
after rejecting varying proportions.
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Misclassification rate on the rejected samples.
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Figure 6: The misclassification rate on the rejected
data points for varying proportions.

it may allow automatic identification of the uncer-
tain cases for special treatment. To test this idea,
we experimented with representing the uncertainty of
a prediction by a scalar and investigated the classifica-
tion performance when cases with uncertainty above
a given threshold are ’rejected’ as defined in Section
2.

The first manual evaluations by a medical doctor
show that the derived uncertainty measures from the
Bayesian prediction are in close correspondence with
the subjective uncertainty of a human decision maker,
though the quantitative evaluation needs further ex-
periments. To evaluate the efficiency of the rejec-
tion methods based on these measures we investigated
their effect on the classification performance. As Ta-
ble 2 shows without rejection the misclassification rate
is 10.2% while in the rejected sets it can be above 40%
for small rejected sets and in the most interesting re-
gion it is still between 20 — 30%. For example, if we
set our rejection threshold to exclude 20% of the cases,
the misclassification rate drops to 5%. In practice, this
means that a decision support system can be specified
to classify 80% of the cases with a low misclassifica-



% RejeCt- (5L1 (5Var 6L1,Va’r 5H 6Bayes
0 10.1 10.1 10.1 10.1 10.1
6.66 8.08 | 8.64 8.15 8.03 8.09
13.3 6.85 | 6.65 6.81 6.81 6.73
20 5.82 | 5.27 5.67 5.58 5.30
26.6 4.42 4.32 4.38 4.25 *
33.3 3.34 3.21 3.25 3.21 *
40 2.51 2.48 2.46 2.52 *
46.6 1.71 1.89 1.82 1.70 *
53.3 1.11 1.30 1.25 1.06 *
60 0.716 | 0.966 | 0.700 | 0.667 *

Table 2: The misclassification rate on the test set after
rejecting varying proportions.

%o RejeCt- 6L1 5Va7" 6L1,Var 6H 6Bayes
0 * * * * E3
6.66 39.5 | 31.7 38.5 40.2 | 39.2
13.3 31.8 | 33.0 32.0 32.0 | 324
20 27.5 | 29.7 28.2 285 | 29.1
26.6 259 | 26.2 26.1 26.4 *
33.3 23.8 | 241 24.0 24.0 *
40 21.6 | 21.7 21.7 21.6 *
46.6 19.8 | 19.6 19.7 19.8 *
53.3 18.1 | 179 17.9 18.1 *
60 16.4 | 16.3 16.4 16.5 *

Table 3: The misclassification rate on the rejected
samples.

tion rate and identify the remaining 20% as hard cases
that need special considerations.

As Table 2 and Fig. 6 illustrates, the effect of var-
ious rejection methods based on different §-measures
are similar and it also holds for the 1,1, which is a non-
Bayesian uncertainty measure. However, they have
slightly different characteristics which can be interest-
ing for various decision support strategies or problems.

7 Conclusions

In this paper we investigated one of the advantages
of the Bayesian approach - the provided additional
uncertainty information for predictions - in a medi-
cal classification problem. We performed a Bayesian
analysis using Belief Network models to discriminate
between benign and malignant ovarian masses allow-
ing the exclusion of some data points.

We introduced various uncertainty measures for
characterizing the confidence in the prediction. Pre-
liminary medical evaluations show that these uncer-
tainty measures are promising tools for identifying
hard cases. We demonstrated that a classifier with
‘rejection’ based on these measures can efficiently ex-
clude certain subset to improve its performance on the
remaining cases significantly. In practice, this may re-
sult in a decision support method where the difficult
cases are classified as ’rejected’ requiring special in-

vestigations, while the MR is lower on the remaining
subset than on the overall set. Though the examined
uncertainty measures behave similarly for this model-
ing method and problem, their slightly different char-
acteristics can be utilized in various decision support
strategies or problems. In general, their comparison
needs further investigation.
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Abstract

In spite of cancer classification is consider-
ably improved, nowadays a general method
that classifies known types of cancer has
not been yet developed. In this work,
we propose the use of supervised classifica-
tion techniques, coupled with feature sub-
set selection algorithms, to automatically
perform this classification in gene-expression
datasets. Due to the huge number of fea-
tures of gene-expression datasets, the search
of a highly accurate combination of features
is done by means of the new Estimation of
Distribution Algorithms paradigm. In or-
der to asses the accuracy level of the pro-
posed approach the naive-Bayes classifica-
tion algorithm is employed in a wrapper
form. Promising results are achieved, in
addition to a considerable reduction in the
number of genes. Stating the optimal selec-
tion of genes as a search task, an automatic
and robust choice in the finally selected genes
is performed, in contrast to previous works
in the same type of problems.

1 INTRODUCTION

Cancer classification is based basically on morpholog-
ical appearance of the tumor. However, tumors with
similar appearance present different responses to ther-
apy. This fact makes very important a correct cancer
classification. The gene expression data can be used
to learn classification models to aid cancer classifica-
tion. Taking into account that one pattern only be-
longs to one class (or type of cancer), the probabilistic
approach to the supervised classification problem re-
duces to find ¢* such as:

¢ =argmaxp(C=c| X1 =21,... ,Xn = 2Zn)

where C is the cancer class variable and X;
(1 = 1,2,...,n) is the variable related with the i-th
gene expression data. Nevertheless, depending on the
model and the number of features (and their values)
of the data set, the solution of the previous problem

might require a huge number of instances in order to
reliably estimate the parameters needed to learn the
joint probability distribution.

On the other hand, the cases of gene expression
datasets usually have a great number of variables.
Thus, the question is whether all variables are
“useful” to correctly classify new instances. The
Feature Subset Selection problem (FSS) tries to
answer this question, searching the best subset of
fe]atures for a data set and a learning algorithm [2;
9l.

Obviously, FSS has several advantages. Some of
them are: improvement of the comprehensibility of
the final classification model, a faster induction of it,
and an improvement in the classification accuracy.

Several classification algorithms can be chosen
to solve the supervised classification problem. The
naive-Bayes [5] is a paradigm based on the conditional
independence of the predictive variables given the
class. Thus, the number of parameters to estimate
the joint probability distribution is considerably
reduced.

The aim of this work, ie. a feature subset
selection to maximize the classification model ac-
curacy, can be expressed in the form of a search
problem [10]. In our work, the search engine are
the novel Estimation of Distribution Algorithms
(EDAs) [12]. EDAs have been successfully used
in similar FSS problems [7]. However, due to the
huge number of genomic features, the initialization
of the variables’ probabilities is a crucial point:
four types of initializations are proposed, three of
them based on the results of a classic greedy search
algorithm. To guide the search, a wrapper approach
over naive-Bayes is used. As previous works [3; 6;
15] in this kind of problems are not based on a search
task, they perform a somewhat arbitrary choice in
the finally selected number of genes, with the use of
a search technique, an automatic and robust choice is
performed.



Two different well-known, gene expression datasets
are used to test the proposed approach. The first
dataset, related with colon cancer, has 62 instances
involving 2000 predictive variables (gene expression
length) and the class indicates whether the patient
suffers cancer or not. The second dataset is related
with leukemia: 72 instances containing 7129 predic-
tive variables (gene expression length) are presented
and the class shows the kind of leukemia suffered:
AML or ALL. The experimental results suggest that
the accuracy of naive-Bayes classifier is improved
(better than 90%) with a significant reduction in the
number of variables involved in the learning (less
than 20 in all runs).

The work is organized as follows: the next section
presents the wrapper approach, naive-Bayes super-
vised paradigm and EDAs. Section 3 presents the
integration of these elements to carry out the FSS,
employing three different initialization methods. Sec-
tion 4 shows the experimental results. We finish with
conclusions and future work.

2 WRAPPER, NAIVE-BAYES AND
EDA PARADIGMS

2.1 THE WRAPPER APPROACH

Irrelevant features on the data set can degrade the
predictive accuracy of learning algorithms. Features
which information contribution is overlapped or
repeated can act in the same way. Algorithms such
as naive-Bayes are robust with respect to irrelevant
features but very sensitive to correlated features.

This lack of accuracy can be improved if the
learning algorithm only uses the adequated features
[10]. For this purpose, a feature selection process
is required. FSS can be used to find a feature
subset that maximizes the predictive accuracy of the
classification model built over this subset. From this
point of view, FSS can be faced as a search problem
where each point of the search space represents a
feature subset [10].

The aim of the search is to maximize the perfor-
mance of the classifier. Some evaluation functions
carry out this goal by looking only at the intrinsic
characteristics of the data and measuring the power to
discriminate among the classes of the problem. These
kind of evaluation functions are known as filter func-
tions [9] report that when the goal is to maximize the
accuracy of the classification model, the FSS should
depend not only on the features and the concept to
learn, but also on the characteristics of the classifier.
This allows the development of the wrapper approach:
when a feature subset is selected by the search algo-
rithm, its predictive accuracy is estimated with re-

spect to the supervised classification algorithm pro-
posed to generate the final model.

2.2 THE NAIVE-BAYES PARADIGM

The goal of a supervised classification algorithm is to
build a classification model using a data set. This
model is used to predict the class of new instances.
From a probabilistic perspective, the class chosen, c*,
for a given new instance will be the class with the
highest a posteriori probability, given the values of
the predictive features:

¢ =argmaxp(C =c| Xy =21,... ,Xp = xp).
c
The cost of the estimation of the class depends on
the complexity of the model and the assumptions
over the data.

The naive-Bayes is a supervised classification
algorithm built over the assumption of conditional in-
dependence of the predictive variables given the class.
Although this assumption is violated in numerous
occasions, this fact does not degrade the performance
of the paradigm in many situations [5]. Under this
assumption, the prediction of the class for an unseen
instance is simplified.

When the predictive features are discrete the pre-
dicted class for an unseen © = (z1,%2,... ,Z,) test
instance is as follows:

n
= arg max p(C=c) HPXi o=c(zi|c)
i=1

where px; c—.(z;|c) represents the conditional
probability of X; = x; given that C = c.

In the case that the predictive features are contin-
uous:

¢ = argmax p(C = ) [| fx, o=e(ai )
i=1

where fx,|c=c(:i|c) represents the density function
of the i-th feature conditioned on C' = ¢.In this work,
we assume that the previous density conditioned func-
tions follow a normal distribution. That is, for all
i=1,...,nand ¢c=0,1:

in \C:c(xi |C) ~ N(/Lf,(f,c)

In both cases —with predictive variables either dis-
cretes or continuous— the parameters are estimated by
means of their maximum likelihood estimates.

2.3 ESTIMATION OF
DISTRIBUTIONS ALGORITHMS

A new approach in the evolutionary computation
to solve optimization problems is the Estima-
tion of Distribution Algorithms (EDAs) [12; 11;
14]. Tts birth is motivated by the difficulty to choose



1. Dy + Generate M individuals randomly (the initial population)

2. Repeat for I =1,2,... until the stopping criterion is met:

2.1. Dis_el + Select N < M individuals from D;_4 according to
the selection method

2.2. pi(x) = p(x|Dls_€1) < Estimate the probability distribution
of selected individuals

2.8. D; + Sample M individuals from p;(x) (the new population)

Figure 1: Pseudo-code for EDA Approach.

the optimal parameters in Genetic Algorithms and
the impossibility to predict the movements of the
populations in the search space [11].

Although they are based on populations, there are
neither crossover nor mutations operators in EDAs.
Instead, the new population of individuals is sampled
from a probability distribution, which is learned from
some selected individuals at each generation.

Figure 1 shows the basic scheme of the EDA
paradigm. In the first step M individuals are
generated at random, for example, from a uniform
distribution for each variable. These M individuals
constitute the initial population, Dy, and each of
them is evaluated. In an iterative process until the
stopping criterion is met we repeat the following
steps: first, a number N (N < M) of individuals
are selected usually those with the best objective
function values. Second, a n-dimensional probability
distribution is learned from the selected individuals.
Finally, M new individuals (the new population) are
obtained from sampling the probability distribution
learned in the previous step.

The estimation of the joint probability distribution
associated to the selected individuals is the bottle-
neck of EDAs. Different ways to estimate this joint
probability exist, with different assumptions on the
interrelations between the variables.

The most simple assumption that can be made over
the variables is their independence. In this way, the
new individuals can be generated by sampling from
the univariate probability distribution of each vari-
able. The Univariate Marginal Distribution Algo-
rithm (UMDA) [13] works in this way. It estimates
the joint probability distribution of the selected indi-
viduals at each generation, p;(x) in the following form:

n
pi(z) = p(z| Dls—el) = le($i|Dig—e1) =
i=1

ﬁ > jey 8(Xs = @i | Df?))
N

i=1

X, X ... Xo| eval
T[T 0 ... 16547
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™
.
=
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l Selection of the best N < M individuals

Dy
L X .. Xa
1 0 .. 1
2 1 1

o= ol

N1 1 ... 0

Selection of the best,
N < M individuals
D

2 . Xo| oval |
o1 [8025
84.36

Induction of the

\pri'mbility model

‘ Sampling from py(c)

el
e el

Mo o ... 0|87
ni(z) = p(e| D)

Figure 2: FSS by the EDA (UMDA) Approach.

where

1 if in the j-th case of DJ¢,,
X =z
0 otherwise.

6;(X; = ;| DP%) = {

That is, the joint probability distribution of the
selected individuals at each generation, pj(x), is
factorized as a product of independent univariate
marginal distributions. Each univariate marginal
distribution is estimated from marginal frequencies.

Due to the huge dimension of our genomic
databases, the use of an EDA approach covering the
interrelations of order two or superior among the
variables of the problem is discarded [11]. Moreover,
the number of parameters to estimate these multi-
variate relations might be also huge.

Figure 2 overviews the proposed approach to select
features by means of the EDA (UMDA) algorithm.

3 PROPOSED APPROACH

Taking into account the huge dimension of the
problem, an appropriate initialization of the search
can save much computation time [1]. In this work,
the search initialization is based on the simulation
of a probability distribution for each variable. We
compare four different initializations, three of them



based in the results of a FSS greedy algorithm and
the naive-Bayes.

Greedy algorithms are deterministic algorithms,
that is, over a fixed dataset and with the same
initial conditions they always give the same solution.
Sequential Forward Selection (SFS) [8] is a classic
greedy search algorithm which starts from an empty
subset of features and sequentially selects features
until no improvement is achieved in the evaluation
function value.

Based on the feature subset obtained by SFS, three
initializations for EDAs are proposed. First, init-A,
assigns to all variables the same probability resulting
in a Bernouilli distribution with parameter p = %>°4
where nwvcg is the number of variables chosen by
the greedy algorithm and tnwv is the total number
of variables of the data set. Thirdly, init-B, assigns
to each variable a probability proportional to the
accuracy estimated when the classifier is only built
with this variable. Finally, the third initialization,
init-C, assigns to each variable a probability propor-
tional to the accuracy estimation increment when
the classifier is built with this variable and the ones
selected before by SFS. It must be noted that for
three initialization methods, the expected number
of selected features in each individual of the first
population is the number of variables finally selected
by SFS. The init-0 initicalization is not depending
on the feature subset obtained by SFS. In this ini-
tialization each variable is chosen with probability 0.5.

In the proposed EDA approach the population size
is fixed to 100 individuals, and 50 individuals are
selected to learn the probability distribution.

Each solution is evaluated to measure the accuracy
of the built model by means of leave-one-out. If we de-
note the number of instances as n., this kind of cross-
validation builds a model with n, — 1 instances of the
dataset and tests it with the remaining instance, leav-
ing as a test set one different instance the n. times.
The accuracy of the classification model built with
the n. instances is estimated by the percentage of cor-
rectly classified instances obtained with the n, models
induced with n, — 1 instances.

4 EXPERIMENTATION IN
ONCOLOGY

The proposed approach has been carried out over
two well-known biological data sets. The first was
presented by [4]. This data set is composed with 62
instances of colon cancer patients. Each instance is
characterized by 2000 predictive variables, each one
related with the numeric expression of a certain gene.
The task to be predicted is whether patients suffer
colon cancer disease.

The second data set was proposed by [6]. It
contains 72 instances of leukemia patients involving
7129 variables, each one related with the numeric
expression of a certain gene. The class to be predicted
is the specific type of leukemia: AML or ALL.

For he discrete naive-Bayes models each variable
is discretized into two values taking into account its
corresponding mediane.

Table 1 shows the results of leave-one-out with all
the variables and SFS. The results support that not
all the variables are relevant to learn the classification
model or the existence of redundant features.

Table 1: Results of Leave-One-Out with All the Vari-
ables and SFS.

DATA TYPE ALL FEATURES SFS
accuracy no.var. accuracy no.var.
Colon disc 70.97 2000 91.93 5
cont 53.23 2000 95.83 3
Leukemia disc 63.89 7129 98.61 6
cont 84.72 7129 87.09 2

These results follow the discoveries of [6] and [15],
relating the low number of features needed to improve
the accuracy of the whole feature set.

For each dataset and initialization method 10 EDAs
independent runs have been executed. Table 2 shows
the estimated accuracy of naive-Bayes and the num-
ber of selected features for the best run of each initial-
ization method. Table 3 shows the estimated average
accuracy, the number of selected features for the 10 ex-
ecutions of each initializations method and the average
generation where the best solution on the execution is
shown.

Table 2: Best Estimated Accuracy and Corresponding
Number of Features.

DATA TYPE INIT. ACC. VAR.

init-0 67.74 985

disc init-A 95.16 13

init-B 95.16 13

Colon init-C 91.93 5
init-0 74.19 1069

cont init-A 98.39 6

init-B 98.39 10

init-C 95.16 3
init-0 45.8 3402

disc init-A 100 8

init-B 98.61 15

Leukemia init-C 98.61 6
init-0 76.39 3587

cont init-A 100 10

init-B 100 11

init-C 98.61 4

Although EDAs in the continuous model do not re-
port a significant accuracy improvement with respect
to SFS in the Colon dataset, the opposite behavior,



Table 3: Average Results: Estimated Accuracy and
Number of Features. Average Generation Where

the Best Solution of the Run Appears. Standard-
deviation of Averages is also Reported.
DATA TYPE ACC. VAR. GENER.
0 64.5 + 0.2 987 £ 39.1 29.0 + 6.9
disc A 91.9 +£ 0.1 11.9+ 4.1 13.0+ 4.0
B 91.2 £ 0.2 11.8 + 3.2 11.8 + 3.2
Colon C 90.9 £+ 0.1 6.3+ 1.6 3.9+ 1.6
0 64.9 £ 10.5 1035 £ 52.4 19.14 £ 8.7
cont A 95.0 £ 2.3 71+21 15.2+ 4.6
B 94.7 £ 2.9 724124 12.7+ 6.9
C 93.4+1.6 6.0+ 1.9 12.8 £ 5.0
0 44.0 £ 0.1 3476 + 57.0 18.2 £ 6.7
disc A 97.2 £ 0.1 14.6 + 3.6 142+ 4.2
B 96.9 + 0.1 14.8 + 3.6 129+ 4.7
Leukem C 98.6 + 0.0 81+1.8 3.3+ 1.2
0 75.9 £ 0.8 3561 + 35.9 9.3+ 1.5
cont A 98.8 £ 1.8 11.0 £ 3.6 18.1 £ 5.7
B 98.8 £ 1.5 11.8 + 3.2 16.3 + 3.6
C 96.3 £ 1.1 3.7+1.1 5.9+ 5.0

obtaining a significant accuracy improvement by EDA
techniques, is shown in Leukemia domain. However,
the use of an extremely low number of features is not
recommended in previous works [6]: this is because
the use of a so small number of genes ([6] fix 10)
may produce a classification model which depends
too heavily in any gene, producing spuriously high
prediction strengths.

Previous works in this type of problems [6;
15] alert us about their somewhat arbitrary choice in
the finally selected number of genes. Thus, stating
the problem as a search task and waiting until the
convergence, a robust an automatic criteria is adopted
to carry out this selection, obtaining competitive
results with previous cited works.

Table 4: p-values when Comparing A, B, and C Ini-
tializations

DATA INIT ACCURACY NO.VAR. NO.GEN.
Colon disc p = 0.440 p = 0.002 p < 0.001
cont p = 0.232 p = 0.446 p = 0.187
Leukem disc p = 0.004 p = 0.001 p < 0.001
cont p = 0.003 p < 0.001 p < 0.001

We carry out the Kruskall-Wallis test over the
results of the A, B, and C initializations. Table 4
reports the test outcome.

In the Colon database, we only obtained differences
significants (p < 0.05) in the discrete model in rela-
tion with the number of variables and the number of
generations needed to convergence. In the Leukemia
database, the test showed that the differences in all
criteria in respect with the three initializations are
statistically significants in the two models.

Table 5 shows the results obtained when applying
the Mann-Whitney test in order to compare the

Table 5: p-values when Comparing Discrete Versus
Continuous Models

DATA INIT DISCRETE vs CONTINUOUS
accuracy no.var no.gen.
0 p=0.47 p=0042 p=0.174
Colon A p = 0.007 p = 0.009 p = 0.353
B p=0.043 p=0.004 p=0.631
C p = 0.001 p = 0.631 p < 0.001
0 p=0.017 p=0.017 p=0.067
Leukem A p = 0.063 p = 0.063 p = 0.075
B p=0.080 p=0.075 p=0.063
l¢] p < 0.001 p<0.000 p=0.218

behaviour between the discrete and continuous

naive-Bayes models.

In the Colon database we found differences statisti-
cally significants in relation with the accuracy of the
model for the initializations A, B, and C obtaining
the best results in the case of continuous naive- Bayes.
With respect to the number of variables selected by
the EDA, we obtain that in the initializations A and B
the continuous naive-Bayes model needs significantly
more variables than its corresponding discrete model.
Finally and regarding the number of generations
needed until convergence is reached the differences
are statistically significants for initialization C where
the discrete naive-Bayes need a bigger number of
generations.

In the Leukemia database we only found that the
differences are statistically significants in the case of
initialization C and with respect to the accuracy of
the model —better result for the discrete naive-Bayes—
and the number of variables —less variables for the
continuous naive-Bayes.

5 CONCLUSION AND FUTURE
WORK

An application of the EDA approach (by its UMDA
algorithm) to select a highly accurate combination of
genes in two high-dimensional, well-known genomic
datasets is carried out. The selection of genes is
performed within a wrapper approach with respect to
the naive-Bayes supervised classification algorithm.
Four different approaches, three of them inspired in
a sequential selector, are compared to initialize the
EDA search.

The  discoveries of previous works on
the same datasets are confirmed [6;
15], noting that with a low number of genes the
accuracy level of the whole feature set is significantly
improved. In contrast of these works, stating the
selection of genes as a search task, an automatic
and robust selection of the final number of genes is
performed.

As future work, apart from UMDA, we plan the use



of other EDA univariate approaches. We also envision
the use of other supervised classifiers that extend
the univariate scheme of naive-Bayes, involving
relations among two or more variables. Finally, the
discretization task should be improved using a clever
heuristic approach.
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Abstract

A novel approach for knowledge acquisition
and generation of the Bayesian network of
a medical domain is presented. First, the
knowledge is acquired in a structured repre-
sentation using the software tool MedKnow
that allows the expert to specify diseases
and findings, their interconnections, and spe-
cific marginal and conditional probabilities.
Next, the software tool KnowledgeCompiler
generates the Bayesian network, embracing
both the graph of the network and the con-
ditional probability tables. For calculation
of the conditional probability tables, the ac-
quired probabilities first get transformed to
yield those probabilities that describe the re-
spective logical gate. The resulting Bayesian
network can be used by the HealthMan'\¥ Di-
alogue and Advisory System.

1 Introduction

Probabilistic models such as Bayesian networks are
well suited for medical decision support and are the
basis of many successful applications [1; 3; 4; 7; 9; 10;
11]. Bayesian networks [6] provide a rigorous and ef-
ficient framework for inference, i.e. for calculating the
probability of each stochastic variable given a set of
observations. Nevertheless, knowledge acquisition and
generation of the network are still demanding tasks
when large medical domains have to be modelled.
Here, a novel approach for knowledge acquisition
and generation of the network is presented. The ap-
proach was developed as part of the HealthMan
project [2]. First, the knowledge is collected and put
into a structured representation using a software tool
(MedKnow) tailored for the medical domain. Med-
Know allows the expert to specify diseases and find-
ings, their interconnections, and specific marginal and
conditional probabilities. Next, another tool (Knowl-



edgeCompiler) generates the Bayesian network using
the structured knowledge. The resulting network can
be used by the HealthMan'® Dialogue and Advisory
System.

An overview of the HealthMan® Dialogue and Ad-
visory System is given in section 2. Knowledge ac-
quisition using MedKnow is discussed in section 3.
Automated generation of Bayesian networks using
KnowledgeCompiler is presented in section 4.

2 Overview of the HealthMan®
Dialogue and Advisory System
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Figure 1: HealthMan® Dialogue and Advisory System

Siemens Medical Solutions has started a major ef-
fort to introduce intelligent communication in med-
ical care by using modern information technologies
with the goal of achieving a more efficient, faster, bet-
ter and more affordable patient health care system.
It is well known that the most important source of
information for a physician is his dialogue with the
patient - despite all advanced measurement devices.
Therefore, the key component of such an intelligent
communication will be a generally applicable me%
cal dialogue and advisory system - the HealthMan
Dialogue and Adyisory System. To give a few exam-
ples, HealthMan\Y will provide self diagnosis capabil-
ities servicing the most common health challenges for
the family, it will be the health advisor for patients
with chronic health problems supporting their disease
management process, or it will allow a physician to
focus on the real issues by automating necessary but
tedious routine questionnaires.

HealthMan® emulates the anamnese process of the
physician, i.e. an interactive process which is dynam-
ically driven by medical knowledge analyzing the in-
formation already at hand (history of the dialog, data
from the integrated personal health record). Bayesian
networks are an appropriate technology, because they
allow knowledge acquisition in the medically relevant
direction i.e. from diseases to symptoms by being able

to take into account prior disposition for diseases. Fur-
thermore, Bayesian networks provide a formally cor-
rect calculus for the inherent uncertainty. The HUGIN
Bayesian network library is used for inference.

As an experimental domain, the scenario ‘initial as-
sessment of the severity of common child diseases’ was
chosen. 1In collaboration with several pediatricians,
networks for several subdomains (e.g. infections, res-
piratory system, skin, abdomen, eyes, ears) were de-
veloped. The system was tested by a professional us-
ability lab and was generally well received by the users
(mothers of young children) as well as by the physi-
cians.

3 Knowledge Acquisition Using
MedKnow

There were two main goals in developing MedKnow:
First, MedKnow allows medical experts to formulate
their medical knowledge, without requiring intimate
knowledge of Bayesian networks or probability the-
ory. Second, MedKnow makes sure that the acquired
knowledge is complete such that the Bayesian network
can be generated automatically.

MedKnow uses two classes of stochastic variables:
diseases and findings. A finding may play the role of
a symptom or the role of an enhancing or inhibiting
factor of a disease. An example of knowledge repre-
sentation using MedKnow is shown in figure 2. In the
left part of the window, all defined diseases and find-
ings are listed. In the main part of the window, the
selected disease or finding is presented. Here, the med-
ical domain of infections is modeled, and the disease
‘measles’ is selected.
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Figure 2: Specification of measles using MedKnow

The upper part of the main window shows the en-
hancing and inhibiting factors of the disease, here con-
tact to infected persons and immunity. Furthermore,
conditional probabilities have to be specified to quan-
tify the effect of the enhancing and inhibiting factors.
The meaning of these conditional probabilities and un-
derlying assumptions will be discussed in detail in sec-
tion 4. The central part of the main window shows



the selected disease, its marginal proba@ility, and ad-
ditional information used in HealthMan\>, e.g. the ur-
gency to see a doctor. The lower part of the main
window shows the symptoms of the disease together
with the conditional probability that the disease will
cause the symptom.

A similar display is presented when a finding has
been selected.

4 Automated Generation of Bayesian
Networks Using KnowledgeCompiler

Generating the Bayesian network using the acquired
knowledge may be divided into two subtasks: gener-
ating the graph and calculating the conditional prob-
ability tables.

Generating the graph is straightforward: each dis-
ease and finding is represented by a node and addi-
tional nodes are created for — separately — collecting
enhancing factors and for collecting inhibiting factors
of each single disease. Directed edges are drawn from
diseases to the respective symptoms, from enhancing
factors to the respective collecting nodes, from inhibit-
ing factors to the respective collecting nodes, and from
collecting nodes to the respective diseases. Figure 3
shows the graph of the Bayesian Network for infections
generated by KnowledgeCompiler.
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Figure 3: Bayesian Network for infections generated
by KnowledgeCompiler

Calculation of the conditional probability tables of
the Bayesian network is based on the specified prob-
abilities and the selected type of gate. For findings,
gates like NoisyOR [6], NoisyMAX, and NoisyELENI
[8] are used. Diseases are modelled as an enhance-
inhibit—gate [5].

The expert specifies those probabilities that are
most convenient and well-known. Considering the

Figure 4: Model for enhancing and inhibiting factors
of a disease

enhance-inhibit—gate, typically the marginal proba-
bility P (D) of disease D being present, the condi-
tional probabilities P (D|E;), i = 1,...,n, of disease
D being present given that the enhancing factor E;
is present, and the conditional probabilities P (D|I;),
i = 1,...,m, of disease D being present given that
the inhibiting factor I; is present, are specified. Nev-
ertheless, these probabilities are not explicitly used
to specify the enhance—inhibit—gate. Instead, the
leak probability P (DFEp) and the conditional prob-
abilities P (DFE;|F;), ¢+ = 1,...,n, and P (DL|I;),
t = 1,...,m, are required. Thus, the probabilities
specified by the medical expert have to be transformed
to yield the probabilities that are used for the gate.
The transformation equations are derived in the se-
quel. For the sake of simplicity, the case of binary
variables is discussed.

4.1 Problem Formulation

Disease D is influenced by enhancing factors F;, i =

1,...,n, and inhibiting factors I;, i = 1,...,m, ac-
cording to
D=(NoisyOR (F4,..., E,, F1)) AND NOT
(NoisyOR (I, ..., Im)) )

where F, denotes the leak enhancing factor which is
not specified by the expert. Thus, the probability
P (D) of disease D being present is given by

P (D) =

1—(1- P(DEL))ﬁ(l — P(DE;

=1

Ei) P (Ei))

[ -P(pLE) P(L)) . (2)

i=1

Therefore, the probabilities P (DEL), P (DF;|FE;),
i=1,...,n, P(DL|L), i = 1,...,m, P(E;), i =
1,...,n, and P (I;), i = 1,...,m, have to be known.
It is assumed that the factors are indepent.

The medical expert specifies the following probabil-
ities:

P (DE;

m

E;) or P(D|E;) or P (E;|D), i=1,...

7”7



P (DL|L) 0rP(D|[i) or P(L|D),i=1,....,m ,
P(FE ),1_1 ST

P(L),i=1,...,m,

P (D) .

Using the specified probabilities, the required proba-
bilities have to calculated.

4.2 Case 1: Specification of P (DE;|E;),

i=1,...,n,and P (DL|L),i=1,...,m
Here, only the leak enhancing probability P (DFEp)
has to be calculated. Solving equation (2) yields

P(DEL) =

1 - (DL\L) P (L))

lo-r
- (1— P (DE;|E;) P
II

i=1

4.3 Case 2: Specification of P (D|E;),
1<i<mn,and P(D|;),1<i<m

In the sequel, it is shown that case 2 can be trans-

formed into case 1.

Specification of P (D|;), 1 <i<m

Here it is shown that P (DI |I) 1 < i< m, can be
calculated using P (D|I;) and the marginal probablh—
ties P (D) and P (I;). For 1 < i < m, we have

(Ei))

P (D)= P(D|I;) P(I)+ P (D|H;) (1 - P(I;)) (4)
with

P (D|H;) =

1—(1— P(DEL)) H P (DEx|Ey) P (Ey))
II - P (DI L) P (1)) . (5)
This yields

[1— 1= P(DEL)) [[ (1 = P(DE|Ey) P (Ey))

k=1

o

(1 — P (DI |Ix) P (It))
:EP(D) P(D|L) P(L)) /(1= P(L)) . (6)
Inserting into equation (2) gives
P (D) =
(1-P (DI|I) (1))
(P(D)—=P(D|L) P (L)) /(1= P(L)) . ()
Solving for P (DI;|1;) finally yields
P (DL|L) =
[1-P (D) (1= P (L) /(P (D)~ P(D|I;) P(I;))]
/P (L) (8)

Specification of P (D|E;), 1 <i<n

Here it is shown that P (DE |E) 1 < i< n, can be
calculated using P (D|F;), P (DIA|I Y, k=1,...,m,
and the marginal probabilities P (D), P (F;), and

P(Ix), k=1,...,m. For 1 <i< n, we have
P (D)= P(D|E;) P(E;) + P(D|F) (1 - P(E))
9
with ©
P (D|F;) =
1 (1-P(DEL) [T (1 - P(DEx|EL) P (Ex))
e
II - P(DLI1) P (1)) (10)
k=1
This yields
(1= P(DEL)) [ (1 = P(DEx|E) P (Ex)) =
I~ (P(D) - Pk(%lEi) P (E:)) (1)

/ ((1 - p(E) JJ - (Dmmpum)

gr=t

Inserting into equation (2) gives

P(D) =
1= (1= P(DF;|E;) P (F;))
I = (P (D) - P(D|E:) P(E:))
/ ((1 - P(8) [ (1= (DR 5 P m») H
k=1
[l (- P(PL|n) P (1)) - (12)
k=1
Solving for P (DE;|E;) finally yields
P (DE;|E;) =
{1 — l] —P(D H (1= P(DI|Ix) P([k))]
k=1
/ 1= (P (D) — P(D|E;) P(E;))
/ ((1 - P(E) [T (0 = P(DI|1k) P(Ik))) ]}
k=1
/P(F) (13)
4.4 Case 3: Specification of P (E;|D),
1<i<n,and P(L|D),1<i<m
Applying Bayes’ law yields
P(D|E;) = P(E;|D) P(D)/P(FE;),1<i<n (14)



and

P (D|I;) = P(L;|D) P

D) /P (I

Thus, case 3 can be transformed into case 2.

,1<i<m ..
(15)

4.5 Summary of Calculation of the
Required Probabilities

The influence of enhancing factors F;, i = 1,...,n,
and inhibiting factors I;, ¢ = 1,...,m, of a disease
D is modeled according to equation (1). Thus, the
conditional probabilities P (DF;|E;), i = 1,...,n, the

leak enhancing probability P (DFEL), and the condi-
tional probabilities P (DI;|I;), i = 1,...,m, have to
be known. The medical expert specifies the marginal
probabilities P (E;),i=1,...,n, P(L;),i=1,...,m,
and P (D), as well as P (DE;|E;), P(D|E;), or
P (E;|D) for each enhancing factor and P (DI;|I;),
P (D|I;), or P (I;|D) for each inhibiting factor. The
required probabilities are calculated according to the
following scheme:

. Step 1: If P (I;| D), 1 < i < m, has been specified,
P (D|I;) is calculated using equatlon (15).

. Step 2: If P (E;|D), 1 < i < n, has been specified,
P (D|FE;) is calculated using equatlon (14).

e Step 3: If P (D|I;), 1 < i < m, has been specified
or calculated in step 1, P (DI;|I;) is calculated
using equation (8).

e Step 4: If P (D|E) 1 <7 < n, has been specified
or calculated in step 2, P (DE |E;) is calculated
using equation (13).

e Step 5: P (DE}) is calculated using equation (3).

5 Conclusions

An approach for knowledge acquisition and automated
generation of Bayesian networks has been presented.
First, the knowledge is acquired using the software
tool MedKnow that allows the expert to specify dis-
eases and findings, their interconnections, and spe-
cific marginal and conditional probabilities. Next,
the software tool KnowledgeCompiler generates the
Bayesian network in HUGIN format [6] using the ac-
quired knowledge. The probabilities specified by the
expert get transformed into the conditional probabil-
ity tables of the specific gate according to [5; 8]. As an
example, the equations for the enhance-inhibit-gate
have been derived. The resulting @yeqian network
can then be used by the HealthMan\Y Dialogue and
Advisory System.
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Abstract

Modeing explicitly the links between cognitive
functions and networks of cerebrd areas is
necessitated bah by the understanding of the
clinicad outcomes of brain lesons and by the
interpretation of activation data provided by
functional neuroimaging techniques. At this globa
level of representation, the human brain can be best
modeled by a probabilistic functional causa
network. Our modeling approach is based on the
anatomicd connection pattern, the information
processing within cerebral areas and the cusd
influences that connected regions exert on each
other. The information processing within a region
is implemented by a cusal network of functiona
primitives that are the interpretation o integrated
biological properties. This explicit modeling
approach dlows the formulation and the simulation
of functional and physiological assumptions.

1 Introduction

In Neurology and Neuropsychology, the understanding and
the prediction of the clinicd outcomes of focd or
degenerative erebra lesions, as well as the assesgment of
rehabilitation procedures, necessitate knowing the cerebral
substratum of cognitive or sensorimotor functions. Human
brain mapping is performed through activation studies,
where subjects are aked to perform a spedfic task while
data of their brain functioning are obtained through
functional neuroimaging techniques. Such studies, as well
as animal experiments, have shown tha sensorimotor or
cognitive functions are the offspring of the ativity of large-
scale networks of anatomically connected cerebrd regions
[Bressler, 1995]. However, a one to ore @rrespondence
between activated networks and functions cannot be found
in dl cases [Démonet et al., 1994]. Understanding such
incongruent resultsis crucia for the care of cerebral lesions.

Neuroimaging techniques and their traditiond
interpretation methods only address the following topics:

(1) Visudization of activated areas (tomographic
techniques) and times of specific cerebral ewents
(surface dedromagnetic techniques);

(2) What areas could paticipate in the same function
(“functiond connedivity’ [Herbster et al., 1996]) and
what is the role of anatomical links on the activation
(“effective connectivity” [Blichel and Friston, 1997]).
Clearly, if the “where’” and “when” (1), and the “what”

and “how” (2) are answered, the “why”, i.e how the
activation of large-scae networks derives from cerebra
information processing mechanisms, is missing. Our god is
the understanding of that “why”, which only can explain
apparently conflicting ectivation data. Our research is
twofold: providing plausible models, at the levd of large-
scde networks, of cerebral information processing
mechanisms in humans and building a flexible simulator,
alowing a quick implementation of the modds, for a better
interpretation of cerebra functional images.

Connectionis methods are the dominant approach in
the modeling o the cerebrd functional structure. However,
they focus on functions emerging from a networked
architecture of populations of undifferentiated neuronal
cells [Grosderg et al., 1997]. Modding explicitly the role
of networks of regions on information processing requires
departing from this dominant viewpoint for a least two
reasons. On one hand, we am a modeling the function that
emerges from the ativity of networks of differentiated
cerébral areas On the other hand, the information
processed by a erebra aea @n be onsdered as the
abstraction of the globd signd emitted by the region’s
neurons, representing both the pattern of firing neurons as
well as their average firing rate, and can therefore hardly be
modeled by a singe numerica vaue. Moreover, since the
cerebral response to a given stimulus may vary, the brain
can be consdered as a probabilistic information processor.
In the next paragraphs, we will demondrate that these
constraints are in favor of a Bayesian approach, and more
especidly of causal functiona networks.



2 Biological constraints

Modeling is constrained both by the necessity of a crtain
biologica plausibility and by the purpose of the mode
building, that is alowing neurologists to express explicitly,
as cause-effect rdationships, their knowledge ad
hypaotheses about the human brain.

A networked ar chitecture

The nodes of alarge-scale ceebrd network are functionaly
homogeneous, anatomically well-defined, cerebral regions,
connected by oriented armatomical links (axon bundles),
which are the network’s edges [Pagtor et al., 2000]. Each
region can itsdf be cmnsidered as a functional network of
procesors, such as information processors that are specific
neurond populations (e.g. GABA neurons) implementing
functional primitives (e.g. inhibition).

Causality and temporality

Every function (primitive or cognitive/sensorimotor
function) is, in the brain, the outcome of the ativation of an
oriented network (caled heregfter cerebra network), whose
nodes are neurons or neurona popuations, and ariented
links are aons or axon bundles. Information propagation
results from a cascade of causal events, since the signal or
information emitted by the firing of a node provokes the
activation of its downstream nodes. The brain can therefore
be considered as a causal network. According to Hume, A is
the cuse of B if they are antiguous, if A precedes B and if
the relationship is regular. Our definition of causality, which
extends Hume's one, is based on contiguity, probabilistic
regularity and temporal consistency (ie. the beginning of A
must precede the beginning of B).

Since anatomical links, which convey information with
very short transmission celays, connect physically nodes in
a oxebral network, the nodes are spatidly and tempordly
adjacent and the conditi on of contiguity is strictly met.

Either & a large or smal scale level, the response of a
neurond population to a given stimulus or information is
not deterministic. The relationship between two nodes in a
cerebral network has therefore aprobabili stic regularity.

Physiologicaly, the tempord consistency is met, that is
there is an order of activation for the cerebral aress. But the
interpretation of activation data requires representing
explicitly time in the models, and this representation hes to
be congstent with both the sampling time of neuroimaging
techniques and the cerebral processing time. Depending on
the temporal granularity chosen in the modd, a cause-node
and an effect-node culd fire within the same time unit. This
could lead to cycles in the network and hence to aloss of the
causdlity. Imposing the modd’s network not to be cyclic
will be necessary to keep the model causal.

A two-dimensioned representation of infor mation

Cerebrd information can be considered as the abstraction, at
the level of a neurona population, of the integrated activity
of the individua cells. Any piece of information is defined
as a ouple of an energy and a category, where ctegory

stands for which neurons react to a specific stimulus, and
energy determines how they respond [Pastor et al., 2000].

The @rebrd energy reflects roughly the number of
firing neurons and their firing rates. The energy of a
stimulus can be extracted from its physical parameters (e.g.
theintensity for asound). It has anumericd representation.

The category of a simulus siammarizes the minimal set
of physicd properties that characterizes the information
(eg. the frequency for a tone). This “externd” category is
consistent with the "interna” category, that corresponds to
the generd pattern of neurons excited by the information.
Information categorization is reflected in the “topic’
organization of primary cortices and ather areas [Alexander
et al.,, 1992]. For example, the auditory cortex can be
decomposed in subaress reacting to precise frequency
intervals. The category has a symboli c representation.

The pattern and the number of activated fibers of an
axon bundle [Leiner and Leiner, 1997], which correspond to
the pattern and the number of activated neurons in the
emitting cerebrd node, represent the ategory and the
energy that is transmitted between two nodes.

Uncertainty and impredsion
Uncertainty arises from the probabilistic regularity of
cerebral events.

Furthermore, in humans, the only externa evidences of
energy values are provided by neuroimaging techniques and
are therefore very imprecise. For example, the metabolic
activity (tomographic signal) is an indirect measure of the
neurond activity.

Conditionsand non-linearity

The relationships between cerebral nodes (neurons or areas)
are intrinsically non-linear. Moreover, the presence of
conditions on information propagation increases the non-
linearity of the brain processing. These conditions may go
from very simple (firing thresholds) to very complex (role
of specid areas on the propagation between other regions).

Habituation and learning

Both are related to the brain’s adaptabili ty. Habituation is a
transient decrease of the ativation that occurs when a
neurond population receives consecutively, severd times,
the same stimulus and that disappears when a new stimulus
is presented. Thiskind of “energy saving” phenomenon may
happen as on as the second presentation of a stimulus
[Miller etal., 1991].

Learning is a permanent change of the brain state that
occurs when a neuronal population receives regularly the
same information pettern. The populaion’s response
becomes more dficient, that is fewer neurons fire and they
become specidized in the processing of that information.
The population is upposed to create a new information
category, which represents the information pattern.

3 A new formalism for cerebral modeling
So-caled “causal networks’ should meet the two first



constraints of §2. However, al do not cope with the other
requirements and al do nd deserve to be @lled “causad”.
The pros and cons of different causd formaisms are
described heresgfter, and our aguments in favor of
probabilistic functiona causd networks are given.

3.1 Causal Qualitative Networks

Causd Quadlitative Networks (CQNs) have initialy been
designed to model physicd devices and they are largely
inspired by process control. CQNs are oriented graphs,
whose nodes are qualitative variables, generaly ate
variables, and edges are @use-effect reationships, generdly
influences between the state variables.

Causdity is based here on three requirements [de Kleer,
1979]: locality (the cuse acts only on its direct neighbors),
precedence ad regularity. Locdity is weaker than
contiguity, the neighborhood being not precisely defined.
Precedence and regularity are stronger congraints than
tempord consistency and probabilistic regularity. Therefore,
CQNsdo nat meet our definition of causality

Qudlitative dgebras are d the core of CQNs. They take
imprecison into account implicitly, by representing
numerical values by some qualitative properties. signs,
orders of magnitude or real intervas centered on the values.
CQNs do not support uncertainty and, since imprecision is
implicitly represented, it is not measurable or controll able.

An interva-based CQN, with an explicit discrete time
representation, has been used in a previous tentative
modeling of large-scale networks [Lafon et al., 1999; Pastor
et al., 2000]. In order to meet biologicd constraints, the
basic formalism was augmented by a limited nan-linearity
(piecewise linearity) and uncertainty (multivalued logic).
However, it suffers drawbacks: a dassica flaw of interva
caculus [Struss, 1990] makes the range of intervas increase
dramatically at each simulation step and uncertainty and
imprecision are defined by different formalisms. Moreover,
al the @uses to a node ae processed independently and
then combined. This is the opposite of what happens in
forma neura networks when the node processes the
weighted sum of inputs. Whether the combination precedes
the processng o not is dll an open question in
neuroscience. Those drawbacks restrict considerably the
applicability of the system to cerebra modding and hes
moved the research effort to Bayesian approaches.

3.2 Dynamic bayesian networks

Among the different dynamic Bayesian networks [Dean
and Kanawaza, 1989], State Space Modes (SSMs)
[Ghahramani, 1998], an extension of Hidden Markov
Modes (HMMs), seem to be the most interesting formalism
for our cerebrd modeling approach. Relationships are
defined by the probabilities of the current response variables
conditiondly to the arrent hidden dtate variables, and the
expression o every current hidden state variable & a linear
function o the past values of the hidden state variables, plus
arandom variable.

SSMs meet our definition of causality. The respect of
tempord consistency, contiguity and probabilistic regularity
is derived from the definition o the oriented, autonomous
and stable relationships [Pearl 2000]. Other congraints are
respected: the explicit and discrete representation o time,
the possible handling of the numericd (energy) and
symbolic (category) parts of cerebra information, the
expression o conditions in the relationships deterministic
part, a sraightforward measure of uncertainty and learning
mechanisms implemented by probability revisions.

However, two mgor requirements are not satisfied:
non-linearity cannat be represented in the deterministic part
of hidden state variables and no instantaneous reationship
can be defined.

3.3 Causal functional networks

Causd Functiona Networks (CFNs) [Pearl, 2000] are based
on structura equations. Basic structural equations are
asymmetric linear relationships, that is the eguality symbol
in each equation should be replaced by an affectation
symbol (:= or <=) [Druzdzel and Simon 93]. Therefore, they
are causal relationships.

However, in most applications of Structural Equation
Moddling (SEM), relationships are symmetric and the
equations system is identified globally, by fitting the
theoretical covariance matrix to the observed one. This non-
causal version is used in the “effective @mnnectivity” image
interpretation approach [Blchd and Friston, 1997].

CFNs [Pearl 2000] extend causal SEM in different
aspects: variables can be numericd or symbolic, non-linear
functions are used to model relationships and time @n have
an explicit, discrete representation. In fact, like SSMs, CFNs
respect, temporality, uncertainty, conditioning, learning and

cerebral information representation constraints and, in
addition, they alow non-linearity and instantaneous
relationships.

Their main drawback concerns the representation o
imprecision; probability theory can drectly measure only
uncertainty, while imprecision can be only estimated by an
average vaue and a dispersion vaue. A direct measure of
both imprecision and uncertainty could be obtained by the
use of the possbility theory [Dubois and Prades, 1994].
However, three points are in favor of the probability
cdculus. it has a wel developed mathematicd theory,
neuroimaging data ae atisticad summaries, and overal,
brain processing is mostly probabilistic.

CFNs sem to be the best paradigm for cerebra
modeling. Moreover, like dl causa Bayesian models, they
can answer clinica questions such as. “What happens in
area A when area B is activated?” (observation) and “What
happens when area A is damaged?’ (intervention). In
addition, they have the specific ability of answering “What
would happen if areaA was activated, knowing that it is not
activated in redity 7’ (counterfactud).

4 A Tentative Model of a Cerebral Area



Networ k

CFNs sem to be the most adapted formalism to mode
cerebral mechanisms. The algptation, in terms of a CFN, of
the model described by Pastor et al. [2000], is given. This
model aimed at explaining results from Fox and Raichle’'s
experiment [1984] that study focused on the modulation of
the ativation o the Striate @rtex by the presentation rate of
visual stimuli.

41 The causal network

The hypothesis is that the experimental results can be
explained by the interactions between the striate ortex and
the thalamus [Pastor et al., 2000]. The “large-scal€’ network
is a sample anatomicd loop, the mrtex and the thaamus
being connected by opposite oriented axon bundles. The
globa functiond network is the @nnection of the two
functional networks representing the dtriate @rtex and the
thalamus (Figure 1), plus an additional node standing for
the stimulus. Since delays are associated to the links in the
network, a a given time, the network is an acyclic oriented
graph.

Thalamic
Structure

T

(D Coon)
Caption

—»  Influence (functional causal li nk)
== Oriented Axon bundle (structural causal link)

Figure 1. The structural and functional network

Visual Cortex

4.2 Modeding Approach

The cerebral information, or part of it, is processed at each
node. It is therefore a flowing entity, while nodes are
processing entities and links are propagating entities.

Information Representation

The flowing entity is characterized by the vaues of its
Magnitude (the representation of the information energy)
and its Type (the representation of the ategory). Its date is,
functionally (at each node of the causal network, after it has
been processed by the @rresponding information processor)
and temporaly (at each discretized instant t), represented by
a two-dimension random variable X(t)=(Xu(t), X«(1),
atached to the node. Xy, the magnitude, is a real variable.
X, the type, takes a multiple symbolic vdue{s, ..., s.}. and
a probability P(s|X) is associated to each symbol 5. A
symbol s represents a pure type (something theoreticd), and
the aswciated probability stands for the propartion of
energy (i.e Xy) emitted by the s-typed neuronal popuation
of the X node. At the metabolic processor nodes, the
information representation is limited to its magnitude part.

Propagation and Processing

A reationship is a ouple of two functions dedicated,
respectively to the magnitude and the type. X(t) is updated at
each ingtant t of the simulation, according to the vaues of
its causes, previoudy computed.

X(t) = fx (PAX(), Ux ), Xu(t) = fx,, (PA (), Ux,,)

In the guations, PAy(t) stands for the parents of X(t), and
includes generaly X(t-1). The Ux_ are aror variables that do

not depend on time.

For each region R, a Type Preference Table (TPT)
contains the region's sengitivity to pure types. It is
represented by the set of P(AIR, s), where A gands for
“Activation” and P(A|IR, §) represents the chancefor R to be
activated, given that the receved stimulus category is of
the s type.

The ondtions are expressed by logica expressions
that are included in the functions. These nditions take
probabilistic values. Currently, to simplify the cmomputation,
we only caculate an expression according to the most
probable value (true or false) of the @rresponding condition
(i.e. we donot care aout the other case).

43 Anexample

Two processors exist both in the crtex and the
thalamus. The Input Gating Node (IGN) expresses the area’'s
neurond reactivity to the stimulus. It may be considered as
the astraction, in terms of pattern and average firing rate,
of the ativation of the aed spyramidal cdls somas.

SGNcM (t)=[oGNau (t-1p>ap[ox frer(STIM1 t-2) IGNCrr (--1)kSTIMu (-2)] +

H i
0 cxIGNew (t-1) + dxINw (1) + uiene

d M

g M M-

EIGNCT(t): M1+;\A2><STIMT(t—2)+ M1+M2x|GNcT(t—1)

The Output Gating Node (OGN) sends information to the
downstream aress. It represents, more or less, the integrated
activity at the junction between the cells' somas and axons.

OGN (t)=[IGNox(t-1)>FTNw(t-1) OFTNw (t-1)>0FaxIGNau (t-1)

H +bXOGN@ (1) + toone
Three other processors are specific to the cortex. The
Activation Node (AN) reflects the level of the rtex’s
metabalic ectivity, linked to the neurona energy demand.
The inhibitory node (IN) represents the integrated behavior
of the GABA-neurons. The dynamic Firing Threshold Node
(FTN) is modulated by the thalamus that can lower it.

{FTNu (t)=c - (bx(c - FTNu {-1)) + axOGN# (1)) + uern
In the visual cortex, as soon as the energy, a IGN, is greater
than FTN, OGN transmits information to the thalamus. The
two points are illustrated by the definition of the cortica
input node IGNc (Figure 1).

Simulation results

In the reference experiment [Fox and Raichle, 1984], the
stimuli are orange square-waves pulses of constant intensity
and duration (5ms) that are presented during 40s <ans
(PET) a rates of 1, 3.9, 7.8, 155, 33.1 and 61 Hz. For the
simulaion, we suppae that the stimulus is deterministic



with a magnitude of 1 and the type “orange’. The results are
messures of the metabolic activetion, i.e. measures, for each
40s-scan, of the regiond cerebrd blood flow variations
(ArCBF%) in the visua cortex measure.

In the model, the time unit is 1ms. The summation over
40s of dl the AN values is a measure of ArCBF%, once the
brain's average ativation level is st in the modd, at its
experimental value. Figure 2 shows dightly better results
for our modd than for the CQN model [Pastor et al., 2000],
the main advantage being a better control of the divergence.

ARCBF%%

35

30 +

25 +

20 +

15 +

Fox& Raichle

CFN modd

10 A
5 CON model
0 } } f f
1 3,9 7.8 15,5 33,1 61
Stimulus rates

Figure 2. Results of the smulations (mean values)
5 Conclusion

Modedling large-scae cerebral networks, so that new
evidences can be incorporated in the modd and hypotheses
can be assessed, is till a chdlenge. In the paper, we went
through two magjor steps. The most important result is that
causal functional networks are the best approach to cerebra
modeling, since they fulfill theoreticdly dl the
requirements. Moreover, in the brief description of our
modeling approach, we showed the flexibility and the
adaptability of the formaism. Then, we proved that this
formdism is redly applicable, describing an example of
cerebral model. With this model, we managed to approach
experimental data, and furthermore we obtained (dightly)
better results than with our previous CQN formalism.

The next steps will be on one hand to deepen the
theoretical aspects of our modeing approach, and on
ancther hand to assess the model by comparing simulation
results to new experiments, involving more ammplex large-
scale networks and a better tempora definition.
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Abstract

When the structure or the parameters of a
Bayesian network are obtained from subjec-
tive estimates, debugging the network is one
of the essential phases of knowledge elicita-
tion. However, given that probabilistic infer-
ence is quite different from human reasoning,
the identification of the elements that need to
be fixed is a very difficult task. In this paper
we show that the use of an explanation facil-
ity can significantly contribute to the process
of refining a Bayesian network.

1 Introduction

1.1 Bayesian networks

Bayesian Networks (BNs) provide a way to build ex-
pert systems by using probability as a measure of un-
certainty. A Bayesian network consists of an acyclic
directed graph (ADG), whose nodes represent random
variables, together with a probability distribution over
its variables that satisfies the d-separation property
[5]. This property implies that the joint probabil-
ity distribution can be factored as the product of the
probability of each node conditioned on its parents:

P(z1,..,xp) = HP(x,-|pa(x,-)) (1)

In case of discrete variables, P(z;|pa(x;)) takes the
form of a conditional probability table (CPT).

A finding is a piece of information that states with
certainty the value of a random variable. A finding
may be, for example, the assertion that a patient is a
male; other findings might be that he is 54 year old,
that he presents with fever, that he does not usually
have headaches, etc. Each set of findings constitutes
an evidence case. In medicine, an evidence case is typ-
ically a set of symptoms, signs, complementary test,
antecedents, etc. collected for a certain patient at a
given moment of the consultation. Diagnosis by prob-
abilistic reasoning consists in computing the posterior
probability of the unobserved variables given the avail-
able evidence.
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1.2 Building Bayesian networks

There are basically two ways of building a Bayesian
network. The automatic process consists in taking
a database and applying one of the many algorithms
that yield both the structure and the conditional prob-
abilities. The manual process consists of two stages:
(1) building the structure of the network with the
help of a human expert, by selecting the variables and
drawing causal links among nodes, and then (2) intro-
ducing the corresponding conditional probabilities—
CPTs in the case of discrete variables. Ideally, those
CPTs should be obtained from objective data, such
as databases or epidemiological studies. However, in
practice the lack of objective data often forces the
knowledge engineer to obtain the CPTs from human
experts’ estimations. This task is difficult, time con-
suming and prone to errors and biases. For this rea-
son, debugging is an intrinsic phase of probability elic-
itation. Debugging is also necessary when the param-
eters are obtained from a database, not only in order
to refine the structure of the network, but also for de-
tecting wrong parameters, which can be due to several
reasons: scarcity of cases in the database for certain
conditional probabilities, missing data and selection
biases.

In this debugging process it is specially difficult to
identify the model parameters that must be adjusted
in order to attain the correct diagnoses. This task re-
quires an explanation facility that helps both the ex-
pert and the knowledge engineer trace and understand
the propagation of evidence. Explanation of reason-
ing is also crucial for the acceptance of medical expert
systems, but we are not going to address that issue in
the current paper.

1.3 Explanation in Bayesian networks

There are several features that characterize an expla-
nation facility. First of all, explanations may be ver-
bal or graphical. Tt is possible to differentiate between
explanation of the model, also called static explana-
tion, which consists in showing the user in an intu-
itive fashion the information contained in the Bayesian
network, and explanation of the inference, also called
dynamic explanation, which consists in showing how



the evidence has led to the posterior probabilities and,
consequently, to certain diagnoses. Additionally, there
are two levels of explanation, micro and macro; the
former tries to justify the variation of the probabil-
ity of a certain node; in contrast, explanation at the
macro level analyzes the main lines of reasoning lead-
ing to the conclusions. (See [2] for a detailed study
of those features and a review of explanation methods
for Bayesian networks.)

1.4 Elvira

Elvira is an environment for the edition and evaluation
of Bayesian networks and influence diagrams, devel-
oped as a research project of several Spanish universi-
ties. The software package includes a parser for read-
ing networks in its own Elvira format and in HUGIN
format. It also contains a graphical interface for edit-
ing networks, with specific options for canonical mod-
els (OR, AND, MAX, etc.), exact and approximate
algorithms for both discrete and continuous variables,
explanation facilities, learning methods for building
networks from databases, algorithms for fusing net-
works, etc. Although some of the algorithms work
with both discrete and continuous variables, the in-
terface and the explanation capability assume that all
the variables are discrete. Elvira is implemented in
Java, so that it can run under different platforms. In
the near future the program, with its source code, will
be made publicly available on Internet.

Next section offers an overview of Elvira’s explana-
tion facility and the following one describes how to use
it for debugging medical Bayesian networks, by using
HEPAR II as an example.

2 Explanation in Elvira

Elvira has three main modes: edition (for “manually”
building and modifying Bayesian networks and influ-
ence diagrams), learning (for building networks from
databases) and inference (for propagating evidence).
Most of explanation capabilities are offered in this
mode. The explanation capability of Elvira is based
on a system of windows and menus. It offers verbal
and graphical explanations at the micro level, such as
information about specific nodes or links and it is ca-
pable also to give a verbal explanation of the model,
although in this paper we only discuss graphical ex-
planations.

2.1 Sign of influences

One of Elvira’s explanation options, available in both
edition and inference modes, consists in automatically
coloring the links of the network, in order to offer
qualitative insight about the conditional probability
tables. More specifically, given two ordinal discrete
variables A and C such that there is a link A — C,
this link is said to be positive if higher values of A
lead to higher values of C for any configuration of B,
where B represents the set of other parents of C:

a; > aj = Dist(Cla;,b) > Dist(Claj,b)  (2)

The comparison of probability distributions is defined
by

Dist(Clai, b) > Dist(C|aj,b)
<:>{[VC, P(C > clai; b) > P(C > C|aj,b)]
A [3e, P(C > clai,b) > P(C > cla;,b)]} (3)

i.e., the probability distribution of C' given a; is higher
than that given a; if the cummulative probability is
greater at least for a certain value ¢ and not smaller
for the other values of C'. The definition of negative
link and null link are analogous. When the influence
is not positive nor negative or null, then it is said to
be unknown. In Elvira these four kinds of links are
colored in red, blue, black or purple, respectively.

Typical orderings of values of a variable are +a >
—a, present > absent, severe > moderate > mild >
absent, positive > negative, etc. If A and C' are binary
variables, the above definition implies that link A — C'
is positive if and only if P(+c| + a,b) > P(+c|—a,b).
If variable A represents a cause or a risk factor for C,
or C is a test that detects A, then influence A — C'
is in general positive. In causal networks, most of the
links are positive.

2.2 Management of cases

Elvira differs from other Bayesian-network tools in
its ability to simultaneously handling several evidence
cases. At each moment there is one current case, such
that all the findings introduced by the user are added
to this case, until he decides to generate a new case or
return to one of the previous cases.

Figure 1 presents the HEPAR II network in Elvira.
There were three evidence cases entered into the
model: the first one had no evidence; the second one
contained two findings, itching and hepatomegaly (en-
larged liver); and the third one, which was the cur-
rent case when the screen was captured, contained one
more observation, an increased value of cholesterol.
These three nodes are expanded (in the next section
we explain that expanded nodes display a probability
bar for each value and each evidence case) in order to
show that the probability of itching and hepatomegaly
is 1 in the second and third evidence cases, and also
the probability of a certain increased value of choles-
terol is 1 in the third case.

The second toolbar in Elvira’s main window is the
explanation bar. A text field on this bar displays the
name of the current case (“Cholesterol”, in this exam-
ple). The four buttons around it allow the user to
navigate across the set of evidence cases. This bar
also contains widgets for setting the expansion thresh-
old (see next section), saving evidence cases in files,
generating new cases, expanding or contracting the
selected nodes, modifying the inference options, etc.
One of the buttons opens a monitor of cases that al-
lows the user to select the cases to be displayed (by
means of a checkbox), to add or remove evidence cases,
to assign names and colors to cases, etc. In the same
way, another button opens the editor of cases, which
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Figure 1: Elvira main window in inference mode

permits to introduce or remove findings from an evi-
dence case. The main utility of this editor is to enter
or remove evidence when the number of variables is
so high that it becomes impossible or cumbersome to
display the whole network on a screen. A more de-
tailed description of the monitor and editor of cases
can be found in [1].

2.3 Graphical display of probabilities

In Elvira, each node has an importance factor sub-
jectively assigned by the human expert when defining
the node properties. The importance factor for the
main diseases is 10; intermediate anomalies and find-
ings have lower assignments; its default value is 7.0.
When switching from edition to inference mode, the
nodes whose importance factor is greater or equal than
the expansion threshold are automatically expanded.
In Figure 1, only 6 of the 71 nodes are expanded; three
of them represent the findings of the current evidence
case (itching, hepatomegaly and cholesterol) and the
other three capture liver disorders (chronic hepatitis,
cirrhosis and PBC).

Expanded nodes contain a line for each value/state,
which displays its name, a bar proportional to its prob-
ability and the numerical value of its probability. In
this sense, Elvira is similar to other tools, such as

HUGIN and Netica, but differs from them in its abil-
ity to displaying several probability bars, one for each
evidence case, although only the numerical probability
corresponding to the current case is displayed. Ad-
ditionally, the most probable value (for the current
case) is highlighted by a surrounding rectangle. In
Figure 1, there are three bars per value/state, corre-
sponding to the three cases mentioned above; since
the first case contains no evidence, the upper bar rep-
resents the prior probability.

A finding (an observation) can be introduced by
double-clicking on the corresponding line of the ex-
panded node or by a contextual menu if the node is
contracted. The background color of observed nodes
automatically changes to gray, so that the user can
easily identify the evidence of the current case.

2.4 Changes in posterior probability

When evaluating the impact of evidence, it is useful to
know if the probability of a certain node has increased
or decreased. In Elvira, a node whose probability has
not changed keeps the yellow color of edition mode;
if the probability has increased, according to the def-
inition given in (3), the node is colored in red; if it
has decreased, in blue; and if the change is neither
positive nor negative, the node is colored in purple.



(Please note that the sign of influences only depends
on the CPTs, while the changes in probability also de-
pend on the propagation of evidence; therefore, the
coloring of nodes only makes sense in inference mode,
while the coloring of links can be in both edition and
inference mode.)

The explanation-options window allows the user to
decide whether the current probability distribution of
a node is compared to the prior probability, the prob-
ability of the previous case or the probability of a
fixed case. When doing hypothetical reasoning, for
instance, when trying to determine how different lev-
els of cholesterol will affect the posterior probabilities
of other variables, the user should create an evidence
case for each possible finding (each level of cholesterol)
and compare the posterior probability of each case to
the prior probability. In contrast, if the user wishes to
observe how the probability distributions evolve when
new findings are entered, he should select the option
“compare to the previous case” and generate a new
case for each finding.

3 Debugging the HEPAR II model

3.1 The HEPAR project

HEPAR II [3] is an expert system for the diagnosis
of liver disorders, based on a Bayesian network that
models a portion of the domain of hepatology. The
structure of the model (i.e., the nodes of the graph
along with links among them) was built with knowl-
edge obtained from the medical literature and conver-
sations with three domain experts. The most recent
version of the model consists of 71 nodes (see Fig. 1):
9 disorder nodes (representing 11 different liver dis-
eases), 18 risk factors, and 44 symptoms, signs, and
laboratory tests results.

The numerical parameters of the model, i.e., the
prior and conditional probability distributions, were
extracted from HEPAR, a clinical database created in
1990. The data used to extract the numerical param-
eters contained 699 patient records. Simultaneously,
we have built another version of HEPAR II based on
the same structure but in which the numerical param-
eters were elicited directly from our expert.

A quantitative evaluation of HEPAR II [3; 4], pre-
vious to the use of Elvira, showed that there was still
room for improving the diagnostic accuracy of both
versions of the network. For this reason we decided to
debug the Bayesian network by using Elvira’s expla-
nation facilities. The following sections describe our
experience in the debugging of the database version of
HEPAR II.

3.2 Analysis of negative influences

As mentioned above, in causal Bayesian networks
most of the influences should be positive. However,
the introduction of the database version of HEPAR II
into Elvira showed that there was a high number of
negative links. Therefore, the first step of our de-
bugging process concentrated on analyzing one by one

those influences in order to determine which of them
were justified and which should be corrected.

For instance, although the expert asserted that en-
cephalopathy is a symptom of cirrhosis, the link was
negative in our Bayesian network. When looking at
the data set more carefully, we realized that about
70% of patients having encephalopathy suffered from
PBC (atype of liver cirrhosis) and only 13.5% of those
patients presented with cirrhosis. The conclusion of
this analysis was that we should draw a link from PBC
to encephalopathy.

Similarly, the expert asserted that injections was a
risk factor of chronic hepatitis and a crucial finding
for its diagnosis. However, it turned out that around
63% of patients who had injections suffered from PBC
and only 10% of patients presented with a chronic
hepatitis. So, according to the database, we should
also consider modelling injections as a risk factor of
PBC.

We have also identified some negative influences in
case of those variables whose lower values represent
higher degrees of anomaly, such as INR, one of the
laboratory tests. This intrinsic property of INR justi-
fies the fact that the link from that node to symptom
liver palms is negative.

Another negative link was found from history of vi-
ral hepatitis, that represents patient self-reported find-
ing, to presence of HCV antibodies in blood. The ex-
planation suggested by our expert is that patients who
suffer from an asymptomatic viral hepatitis seldom
know about the presence of the virus. Therefore, when
using clinical data we must keep in mind that patient
self-reported data may be unreliable.

In the network we model sex and age variables
which are risk factors for some liver diseases. For
example, 90% of patients suffering from PBC are
middle-aged women. Patients presenting with func-
tional hyperbilirubinemia are typically young men.
However, since sez is not an ordinal variable, the sign
of an influence relative to this variable is arbitrary,
and should not be taken into account. In fact, in fu-
ture versions of Elvira we will explicitly declare ordinal
variables, so that links involving non-ordinal variables
will not be colored, in order to avoid confusing the
user.

The above-mentioned analysis refers us to the ver-
sion of the HEPAR II in which the numerical param-
eters were learnt from the database. We have con-
ducted a similar analysis for a model whose probabil-
ities were elicited from the expert. However, in this
network most of the links were positive. This can be
explained by consistency in expert judgement, i.e., the
structure was compatible with the elicited probabili-
ties.

3.3 Analysis of patient cases

Further interactions with Elvira focused on the analy-
sis of patient cases selected from the HEPAR database.
We introduced the data into HEPAR II by splitting



the patient data into several evidence cases. The first
evidence case consisted of self-reported data, such as
symptoms and history of diseases. The second evi-
dence case included the previous findings and those
gathered by the doctor at the physical examination.
Finally, the third evidence case added the results of
laboratory tests.

Elvira’s explanation facilities allowed us to compare
the evolution of probability for each node after the
addition of new findings (see Secs. 2.2 to 2.4). Our
expert found the coloring of nodes especially useful for
observing which variables were influenced positively or
negatively by each set of findings, and for assessing the
relevance of a certain variable by checking whether it
has any impact on a particular diagnostic situation or
not.

In particular, we noticed that in some situations a
certain diagnosis was already apparent after observing
a group of symptoms and signs and the laboratory
tests did not change the first diagnosis.

4 Conclusions

The use of Elvira for debugging HEPAR II has shown
that its explanation capability can offer significant in-
sight for detecting the inconsistencies and inaccuracies
of a Bayesian network.

With respect to static explanation (aka explanation
of the model), the coloring of each link according to
the sign of influence allows the user to observe at a
glance the qualitative properties of the network. In
causal models, most of the links are positive (red), be-
cause usually the presence of the cause increases the
probability of the presence of the effect. For this rea-
son, blue and purple links make the knowledge engi-
neer suspect that the parameters introduced for a cer-
tain CPT may be wrong. In our analysis of HEPAR II
with Elvira we realized that it was possible to find a
justification for some of the negative links, while in
other cases a reexamination of the data set, led us to
modifying the structure and parameters of the net-
work.

With respect to dynamic explanation (aka explana-
tion of inference), in our evaluation of HEPAR II it has
been very useful the facility of saving evidence cases
in files, the possibility of working with several cases
simultaneously and the fact that observed nodes are
clearly identifiable for each case. By comparing the
posterior probabilities resulting from different cases,
it is possible to perform hypothetical reasoning, some-
times called “what-if” in the literature on expert sys-
tems, which allows human experts to predict the im-
pact that would have observing each of the possible
values of a certain variable. Analogously, given a cer-
tain evidence, it is possible to assess the diagnostic
value of its components by assigning different cases
for each finding or set of findings, either individually
or incrementally.

A question that remains to be studied is how the
refinements introduced in the Bayesian network after

thorough debugging with Elvira contribute to improv-
ing the diagnostic accuracy of HEPAR II.

Finally, we would like to mention that the color-
ing of links and nodes is inspired in Wellman’s work
on qualitative probabilistic networks [6]. However, the
fact that our networks contain numerical probabilities
and that propagation of evidence is done by quan-
titative algorithms allows us to determine the sign of
probability changes in many cases in which Wellman’s
algorithms would lead to unknown signs.
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Abstract

In this paper we discuss some ongoing work on the
development of a Bayesian Belief Network to classify
patients into one of three categories associated with lower
back pain. A BBN with only thirteen nodes has been
found to give classification accuracies in the region of
76% for new cases. Thisis comparable to the performance
obtained by a neural network on the same data. However,
the BBN requires less detailed information to be entered
for each patient, a consideration if such a system isto be
of use to GPs. The network was developed based on an
analysis of 100 cases, and by utilising expert knowledge
provided by two consultant orthopaedic surgeons. The
network was then tested on a holdout sample.

1 Introduction

Low back pain (LBP) is a common ailment, estimated to
affect in the region of 70% of the population at some stage
of their lives. Most recover in a matter of weeks, with only
around 10% requiring investigation [Clinical Standards
Advisory Group, 1994; Wadddl, 1992]. This 10%,
however, congtitute a significant cost to health services in
teems of resources, to industry in terms of lost
productivity, and to society in terms of social security
benefits. There is also the cost to the individuas
themsalves, of course, in terms of suffering and impaired
quality of life. UK government statistics have estimated
the number of working days lost as a result of LBP
problems to be in the region of 100 million [Clinica
Standards Advisory Group, 1994]. The financial costs run
into billions of pounds.

There is little doubt about the magnitude of the LBP
problem. Yet successful diagnosis remains difficult, as
pointed out by several authors [Nachemson, 1992; Bigos
et al, 1994]. This was the backdrop to the application of
artificial neural networks for LBP diagnosis. Bounds et al
[1988, 1990] developed a neural network for LBP with a
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higher
clinicians.

Later, Vaughn et a [1999] aso developed a muilti-
layer perceptron neural network for this purpose,
collecting a dedicated data set for the study. It is that data
set which is described and employed in this paper.

Vaughn et a [1999] were not only concerned with
diagnostic accuracy, but with explanation of the neura
network’s outputs. However, rather than attempting to
induce general rules from the neural network, as described
by Fu [1994], for example, their approach is concerned
with explaining the neural network’s outputs on a case by
case basis. Recent work is described in Vaughn et a
[2000, 2001]. While such work is valuable, it is to be
expected that concerns will remain in some quarters about
utilising output from neural networks in clinical settings.
That clinicians may be rdluctant to employ methods they
do not fully understand or which do not leave a clear audit
trail is quite understandable and has been aluded to
esewhere [de Dombal et al, 1997]. The impact of the
trend towards increasing litigation in health services also
remains to be seen. The more methods which are
available to doctors, however, the greater is the chance
that they will find one which they fed comfortable with.
The purpose of this study is therefore to investigate the
potential effectiveness of BBNs in this domain, since their
explanations are arguably more transparent, and their
reasoning is based on classical probability theory which
some clinicians may be familiar with. Jensen [1996]
provides a good introduction.

diagnostic accuracy than that achieved by

2 Classification of LBP Patients

Although there are many more possible clinical
classifications of LBP patients, the study by Vaughn et al
[1999] employed three mutually exclusive classes. Simple
Lower Back Pain (SLBP), Root Pain (ROOTP) and
Abnormal Illness Behaviour (AIB). Since this study is



using the same data set, the same classes of patient are
used here.

SLBP refers to mechanical lower back pain, minor
scoliosis and old spinal fractures. ROOTP involves nerve
root compression due to either disc, bony entrapment or
adhesions. AIB also features mechanical low back pain,
degenerative disc or bony changes, with symptoms
magnified, possibly as a result of distress in response to
chronic pain. AIB has rather more psychological
symptoms associated with it than the other two classes.

3 TheData

Most of the data were collected by a research
physiotherapist, with the remaining attributes being
provided by the patient's orthopaedic consultant,
including the patient’s classification as SLBP, ROOTP or
AIB. The attributes collected from the patients by the
physiotherapist included the following: Age, Gender,
Duration of Pain (acute, recurring or chronic), Pain Began
(suddenly or gradually), Any Leg Pain?, Which Pain is
Worse? (back, leg or equal), What is the Pain Aggravated
by?(e.g. coughing, standing, sitting, bending), Is the Pain
Worse in the Morning?, Is there Night Pain?, Any Weight
Loss?, Any Previous Spinal Operations?, Use of Walking
Aids?, Does the Case Involve Litigation?, Smoker?,
Unemployed for more than two years?, Claiming
Invalidity Benefit?

The attributes collected by the orthopaedic consultant
included: Lumbar Flexion (<30deg, 30-45deg, >45deg),
Lumbar Extension (<5deg, 5-15deg , >15deg ), Catch on
Extension, Straight Leg Raise (<45deg, 45-70deg ,
>70deg) for each leg, Raise Limited by (back pain, leg
pain, hamstrings, not limited) for each leg, Any Cross-
Leg Pain?, Any Neurological Signs? (Motor Loss, Sensory
Loss, Loss of Reflexes), Any Nerve Involvement? (1 or 2
nerve roots, multiple nerve roots, none), Neurone Pattern
(typical UMN, typical LMN, not typical), Inappropriate
Signs, ODI, MSPQ, Zung and DRAM.

Some of the latter attributes are derived from
questionnaires completed by the patient, eg. the
ODI(Oswestry Disahility Index) and the Zung score. It
was noticed that the Zung and DRAM scores were in one-
to-one correspondence, and so the DRAM attribute was
considered redundant. These attributes are related to the
patient’s psychological state. Inappropriate Signs refers to
observations made by the consultant about the patient’s
condition. If the patient answers certain questions or
responds to certain prompts in a contradictory way, often
exaggerating their condition, then they are said to exhibit
inappropriate signs. The number of these is recorded by
the consultant.

All of the attributes are represented by discrete
variables, and many of these are binary. For example,
‘Age issplitinto ‘Over 55" and ‘Under 55'. This follows

the format of the data employed in the neural network
study by Vaughn et al [1999].

4 Development of the BBN

The BBN was developed by examining the data for
attributes which appeared to discriminate between the
different possible classes of patient, and then arranging
these in alogical structure, consistent with the perceived
characteristics of LBP. Potentialy discriminating
variables were identified by a simple inspection of their
conditional distributions. It was not felt necessary to apply
formal statistical tests for association since the final list of
variables and their relationships would be subject to the
domain experts validation in any case, and indeed some
variables were rejected by the consultants as they did not
believe them to be generally useful indicators. Some
attributes were discarded for having insufficient cases
associated with them. Some others, e.g. ‘Unemployed for
more than two years? , ‘Does the Case Involve
Litigation? and ‘Claiming Invalidity Benefit? were
considered to be not only potentially offensive to new
patients, but questionable as predictive attributes for LBP
which might be included in a medical decision support
tool. While there is certainly evidence from the data set
that social factors such as these are more associated with
some conditions than others, we were not comfortable
with them being used to aid a medical diagnosis, even if
their incluson might have raised the classification
accuracy achieved. Should a doctor conducting a
diagnosis believe that some social aspects of a particular
patient’ s background might be relevant to their condition,
they could, of course, take due account of that information
Separately.

The structure of the LBP BBN is close to that of a
naive Bayesian classifier [Friedman et al, 1997; Domingos
and Pazzani, 1997]. The hypothesis node ‘Category’
consists of the three states SLBP, ROOTP and AlB, and
most of the other nodes depend only on it. However, ‘Use
of Walking Aids? depends on both the LBP classification
and ‘Age’. It was initially thought likely that some of the
variables would remain dependent even when conditioned
on the hypothesis node, e.g. some of the variables linked
to the patient's psychological state. Interestingly,
however, this was not the case and even these variables
were conditionally independent given the LBP
classification, i.e. the joint distribution of the two
variables conditioned on LBP classification is virtualy
identical to the product of the two individualy
conditioned distributions.

The 'Straight Leg Raise’ node is a deterministic node,
representing the maximum raise over the right and |eft
legs, which are dependent. The conditional probability
tables and the prior distribution for the hypothesis node
were obtained from the training set of 100 cases, and



verified as reasonable by the orthopaedic consultants. In
most cases, we have smply used the réeative frequencies
in the training sample as estimates of the required
probabilities. The only exceptions have been to avoid
values of zero which are inevitable with small samples. In
such cases, we have subgtituted an appropriately small
value such as 0.05, and adjusted the other probabilitiesin
the table accordingly.

After the construction of severa candidate networks, the
one that was found to give the highest classification

Figure 1. A BBN for Lower Back Pain Classification.

accuracy with the training set is shown in Figure 1. Some
of the other networks considered were only one or two
percent poorer at classifying the training set. Variables
used in these networks but not in the one above, included
MSPQ and Nerve Involvement. Adding these variables to
the final network did not improve the classification
accuracy, however, and so they were omitted.

5 Reaults

The above BBN correctly classified 75 new cases out of
99 in the test set. Thisis similar to the classification rate
achieved in the training set. The confusion matrix is
shown in Table 1.

Predicted Class

SLBP | ROOTP | AIB

SLBP 29 4 0

True | ROOTP | 8 30 6
Class | AIB 3 3 16

Table 1. Confusion matrix for the current BBN.

As the confusion matrix shows, the performance is not
too uneven even over the three classes, with the network
correctly classifying 88% of SLBP cases, 68% of ROOTP

cases and 73% of AIB cases. The quadratic loss score is
0.3814. Furthermore, the probability estimates of the
network are well calibrated, i.e. the modd’s output
probabilities are consistent with observation. This lends
credibility to its outputs and should give confidence to it’s
users that the probabilities generated are meaningful. It is
also an indication that important dependencies have not
been omitted. As Nikovski [2000] has pointed out, failing
to represent explicit dependencies between variables is
likely to result in over-confident mode outputs. Poor
calibration between predicted and realised probabilities
would then follow.

The BBN in Figure 1 requires discrete inputs for each
of the following variables for each case Age, Straight
Leg Raise (Right), Straight Leg Raise (Left), Which Pain
is Worse?, Pain Duration, Lumbar Flexion, Uses Walking
Aid?, ODI Score, Inappropriate Signs, Zung Score and
Neurological Signs (Motor Loss). Age, ODI Score, Uses
Walking Aid?, Inappropriate Signs and Motor Loss are all
represented as binary variables. Straight Leg Raise
(Right), Straight Leg Raise (Left), Lumbar Flexion, Pain
Duration, Which Pain is Worse? and Zung Score are al
represented as ternary variables. Pain Duration has the
three states — ‘Acute’, ‘Recurring’ and ‘Chronic’, while
Which Pain is Worse? has the states ‘Back’, ‘Leg’ and
‘Equal’.

6 Conclusion

The ‘true classifications are themselves not clear cut.
Indeed, some of the original cases were reclassified in the
light of the results from the neural network study. Most of
the reclassifications are now considered AIB cases, a
category noted as difficult to diagnose by other studies
[Wadddl et a, 1984]. This highlights the difficulty of
accurate diagnosis in this area, and strongly supports the
claims of Al and related approaches to be able to provide
a useful second opinion to consultants at low cost. Thisis
one very useful role which such systems can provide.
Another isasa ‘first opinion’ at health centres or General
Practitioners' surgeries, where expert human diagnosisis
unlikely to be available. A diagnostic tool such as this
could act as a filter, separating the more clear cut cases
from the more difficult, thus helping to ensure that each
patient is referred to the correct or most appropriate
specialist for their likely condition. Any mis-diagnosis
should obviously be picked up by the specialists at this
point. However, such an initial screening should help to
speed up the whole process of referring patients to the
appropriate consultants, providing benefits both to
patients and to hard-pressed health service resources since
there should be less ‘passing on’ of patients between
consultants.

The simple BBN developed in this study has
demonstrated a relatively high classification accuracy for



this domain. Although around 5% poorer than an MLP
neural network developed on the same data, less
information is required by the BBN. In particular, no
intrusive questions about the patients' social backgrounds
have to be posed. Furthermore, the output probabilities
from a BBN are more naturaly interpretable than the
output activations usually are from a neural network.
Another advantage of the BBN representation is that it is
easily incorporated within an influence diagram [Oliver
and Smith, 1990] to permit decision analytic modelling.
This facilitates an expected utility approach, within which
misclassification costs and risk can be incorporated. In
turn, this provides the doctor and patient with a more
sophisticated support tool to help in determining the most
appropriate treatment regime for a patient. Such
modelling is becoming increasingly popular in the
medical domain.

Thiswork is very much in its infancy, and we hope in
time to explore the avail able data further, and find ways of
improving the model. We also hope that more data will be
collected in order to allow further development and
testing. We have not yet attempted to create a mode
directly from the data, as described by Heckerman [1997],
for example, but that may provide an interesting
comparison with the current model and generate further
ideas for improvement.

We have also yet to conduct a sensitivity analysis of
the network. Furthermore, while we have noted that the
neural network developed from the same data uses more
information in the course of achieving a dightly higher
classification accuracy, we do not yet know how well a
neural network might perform with the same subset of
data employed in the BBN, or with another subset of a
similar size. There remains much scope for comparison
between the two approaches and possibly for the
development of a hybrid classifier.
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Abstract

The last decade has seen a number of prac-
tical decision support systems based on the
normative principles of probability theory
and decision theory. While, on theoretical
grounds, such systems can be expected to
perform well and be useful in practice, there
is still little empirical data that would val-
idate this expectation. In fact, a skeptic
might doubt the practical value of the nor-
mative approach on two grounds: (1) possi-
bly inferior performance of normative mod-
els compared to humans, and (2) because of
its formal reasoning approach and possibly
counterintuitive results, users might reject a
system’s advice, even if it is correct.

This paper describes a study conducted in
order to validate a normative decision sup-
port system in a practical setting. The study
compares performance of HEPAR II, a med-
ical system for diagnosis of liver disorders,
with the performance of general practitioners
on ten randomly selected patient cases with
histopathologically confirmed diagnosis. The
results are encouraging: HEPAR II’s diagnos-
tic accuracy was 40% higher than the best of
the physicians’. The study also tests the ef-
fect of system’s suggestions on the ultimate
diagnosis indicated by the physicians. Here
the results are encouraging as well: system’s
advice doubled the accuracy of physicians.

1 Introduction

The last decade has seen considerable progress in the
field of decision-theoretic systems, including several
practical decision support systems based on the nor-
mative principles of probability theory and decision
theory. Decision support is one area where computer-
based systems can make a tangible difference. In the
field of medicine, for example, where costs of making
errors are high, decision support plays a particularly
important role. For example, in the domain of hep-
atology, inexperienced clinicians have been found to

make a correct diagnosis in jaundiced patients in less
than 45% of the cases [15]. Computer-based decision
support systems have the potential for improving the
quality of diagnosis and, effectively saving lives.

Critics of the normative approach might doubt its
value on two grounds: (1) possibly inferior perfor-
mance of normative models compared to humans, and
(2) because of its formal reasoning approach and pos-
sibly counterintuitive results, users might reject a sys-
tem’s advice, even if it is correct. While several studies
have shown excellent performance of normative sys-
tems, it is not unusual to encounter criticism. And
so, in the earlier joint work on the HEPAR II sys-
tem we were criticized for poor performance of our
diagnostic model of liver disorders based on Bayesian
networks (the diagnostic accuracy of the HEPAR II
system was around 49%). As far as user acceptance
of a systems advice, it is theoretically possible and,
to my knowledge, never tested empirically that the
combined performance of a user and a decision sup-
port system becomes poorer than the user’s unaided
performance, even if the system by itself performs sig-
nificantly better than an unaided user [7]. Although
numerous medical decision support systems have been
developed to date, the clinical use of such systems has
been limited. They have seldom undergone a clinical
evaluation. Whether a computer system is useful in
practice, even if it performs well overall, remains often
an open issue.

There have been several evaluation studies of med-
ical systems performed in the past (e.g., [1; 2; 6; 8;
16; 19]). The most well known study concerned the
evaluation of MY CIN [20], a system for assisting the
diagnosis and treatment of patients with infectious
diseases. The evaluation of MYCIN focused on a
quantitative measure of its diagnostic accuracy and
its qualitative impact on decisions made by physi-
cians. It was a blinded evaluation in which the per-
formance of MYCIN and the performance of clini-
cians were assessed by independent experts who did
not know the identity of the prescribers. A study on
INTERNIST-I [10], a computer program assisting
diagnosis in internal medicine, compared diagnoses
made by the system to those made by human ex-



perts (hospital clinicians and discussants) as well as
the evaluation of capabilities of the system. The re-
sults were encouraging: INTERNIST-I performed at
clinicians level and only slightly worse than the dis-
cussants.

This paper describes an evaluation of a computer-
based system for diagnosis of liver disorders, HEPAR 11
[11; 12]. The HEPAR II system is based on a Bayesian
network model of a subset of the domain of hepatol-
ogy. The structure of the network has been elicited
from an expert diagnostician and the parameters have
been learned from a clinical database. The most
recent version of HEPAR II models 11 liver disor-
ders, 18 risk factors, and 44 symptoms and labo-
ratory tests results. A quantitative evaluation of
the HEPAR II model, consisting of testing its diag-
nostic accuracy, has been performed previously [11;
12]. In those studies, the answers of the system were
compared to the final diagnosis captured in the HEPAR
database. This paper focuses on comparing the per-
formance of HEPAR II to the diagnostic accuracy of
physicians. Additionally, it also addresses the issue of
the system’s impact on physicians decisions and the
resulting combined performance of the system-user
team.

The remainder of this paper is structured as fol-
lows. Section 2 describes briefly the HEPAR II model.
Section 3 presents the design details of the study. Sec-
tion 4 reports experimental results of the evaluation.
Finally, Section 5 discusses general issues related to
the performed study and directions for further work.

2 The HEPAR II Model

Support of a diagnosis in the management of liver
disorders has been the focus of a number of re-
search projects in Artificial Intelligence (e.g., [1; 9;
14]). The work on the HEPAR II model is a continua-
tion of the HEPAR project [3; 18]. The HEPAR system
was designed for gathering and processing clinical data
on patients with liver disorders and aimed at reducing
the need for hepatic biopsy. An integral part of the
HEPAR system is its database, created in 1990 and
thoroughly maintained since then at the Gastroen-
terological Clinic of the Institute of Food and Feed-
ing in Warsaw. The current database contains over
800 patient records and its size is steadily growing.
Each hepatological patient case is described by over
200 different medical findings, such as patient self-
reported data, results of physical examination, labo-
ratory tests, and finally a histopathologically verified
diagnosis. The HEPAR II project, which is a collab-
oration between Bialystok University of Technology,
Medical Center of Postgraduate Education, and the
University of Pittsburgh, is an attempt to address the
same problem using decision-theoretic methods. The
modeling tool chosen for the HEPAR II project are
Bayesian networks.

The HEPAR II model, a simplified fragment of which
is shown in Figure 1, is a Bayesian network consist-
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Figure 1: A simplified fragment of the HEPAR II net-
work

ing of 71 nodes. The structure of the model, (i.e., the
nodes of the graph along with arcs among them) was
built based on medical literature and conversations
with our domain expert, a hepatologist Dr. Hanna
Wasyluk and two American experts, a pathologist,
Dr. Daniel Schwartz, and a specialist in infectious dis-
eases, Dr. John N. Dowling, from the University of
Pittsburgh. The elicitation of the structure took ap-
proximately 50 hours of interviews with the experts,
of which roughly 40 hours were spent with Dr. Wa-
syluk and roughly 10 hours spent with Drs. Schwartz
and Dowling. This includes model refinement sessions,
where previously elicited structure was reevaluated in
a group setting. The most recent version of the model,
consists of 9 disorder nodes representing 11 different
liver diseases and 62 feature nodes encoding medi-
cal findings such as patient self-reported data, signs,
symptoms and laboratory tests results.

The numerical parameters of the model, i.e., the
prior and conditional probability distributions, were
extracted from the HEPAR database. The data used
to extract the numerical parameters contained 699
patient records. All continuous variables were dis-
cretized by our expert. In dealing with missing val-
ues, we followed the suggestions reported by Peot and
Shachter [13] that missing values in medical data sets
are not missing at random and are either indications
of normal or less severe symptoms. In other words, if a
symptom is absent, there is a high chance that it is not
reported, i.e., missing from the patient record. And
conversely, a missing value suggests that the symp-
tom was absent. In learning the model parameters,
missing values for discrete finding variables were as-
signed to state absent (e.g., a missing value for Jaun-
dice was interpreted as absent). In case of continu-
ous variables, a missing value was assigned a normal
value, elicited from the expert as the typical value for
a healthy patient (e.g., a missing value for Bilirubin
was interpreted as being in the range of 0-1 mg/dl).

Given a patient case, i.e., values of some of the mod-
eled variables, such as symptoms or test results, the
system computes the posterior probability distribu-
tion over the possible liver disorders. This probability
distribution can be directly used in diagnostic decision
support.



3 Experimental design

The experiment was conducted in the Center for Med-
ical Postgraduate Education, Warsaw, Poland.
Participants: 19 internists and pediatricians from
various medical centers in Poland. 13 physicians were
beginning practitioners with clinical experience rang-
ing between one and two years, and 6 physicians were
pediatricians with the clinical experience ranging be-
tween 10 and 30 years. All participants were gen-
eral medicine fellows (primary health-care speciality).
None of them had participated in the development of
the HEPAR II system.

Patient cases: 10 patient cases selected randomly
without replacement from the HEPAR database.
Measurement: Diagnostic accuracy.

Study details: The physicians participating in the
experiment received printouts with descriptions of pa-
tient cases (every physician received the same 10 pa-
tient descriptions). Each patient case was outlined in
a story-like-form that reported various findings such
as symptoms, signs, and laboratory tests results with
the biopsy data removed. The summary included an
alphabetically ordered list of 11 hepatological diag-
noses. The physicians were asked to indicate the four
most likely diagnoses based on the observed findings.
In case they did not find an appropriate diagnosis on
the list, they were asked to write in additional diag-
noses.

The second stage of the experiment focused on the
impact of the HEPAR II model on its users. 15 of the
19 physicians participated in this experiment. After
they had completed the first stage (i.e., diagnosing the
ten patient cases), they attended a presentation of the
HEPAR II system and were given the opportunity to
interact with HEPAR II on a personal computer. Then
they received the answers of the HEPAR II model, i.e.,
printouts consisting of lists of rated diagnoses for each
patient case with a value of posterior probability for
each diagnosis. After the physicians had seen the an-
swer of the system they were given an opportunity to
change their original answers. The whole experiment
took approximately 1.5 hours.

4 Results

The experiment yielded a total of 187 diagnoses. This
number captures 10 patient cases evaluated by 19
physicians (three of the diagnoses were accidentally
missed by the subjects).

Diagnostic accuracy is defined as the proportion
of patient cases that were diagnosed correctly among
all patient cases. By the correct diagnosis is meant
the histopathologically verified diagnosis included in
the HEPAR database. There are two aspects of diag-
nostic accuracy that are of interest: (1) whether the
most probable diagnosis indicated by the user or the
HEPAR II model was indeed the correct diagnosis, and
(2) whether the set of k most probable diagnoses con-
tains the correct diagnosis for small values of k (fol-
lowing the previous evaluations of HEPAR II model,

Table 1: The diagnoses of the physicians and the
HEPAR II system for each patient case

1 2 3 4 5 6 7 8 9 10 A
1 — - - - - [¢] - — - [] 20.0
2 — [¢] [¢] C - [¢] - — - - 40.0
3 C — C C — — — — — — 30.0
4 [¢] - [] C - - - - - - 30.0
5 [¢] = [¢] [¢] - - C — - - 40.0
6 - [¢] [¢] ] - - C [¢] - - 50.0
7 C [¢] C [] — * — — — — 44.4
8 [¢] - C [] - - - — - - 30.0
9 [¢] [¢] [¢] [¢] - [¢] - - - - 50.0
10 — [¢] — C — [¢] C — — — 40.0
11 — C [¢] [] — — — [¢] — — 40.0
12 C - [¢] - - * - C - - 33.3
13 [¢] - [¢] [¢] - [¢] - — - - 40.0
14 — — C — [¢] — C — — — 30.0
15 - - C - - - - - - - 10.0
16 * — [¢] — — — — — — — 11.1
17 C [¢] C — — — C — — — 40.0
18 — — [¢] — — — — — — — 10.0
19 — - [¢] - - - - C - - 20.0
% 55| 37| 89| 58| 5 29[ 26| 21| 0 5 32.1

[Alcl JCl[C[C[ [CJC[ Jc[70]

I chose a “window” of k=1, 2, 3, and 4). The design
of the experiment and the instructions to the subjects
asked for a rank-ordered list of four most likely diag-
noses. However, in roughly 80% of the cases (150 di-
agnoses), the subjects indicated only one or two most
probable diseases. The results presented in this pa-
per are only for window = 1, i.e., for the most likely
diagnosis.

4.1

There was a significant difference between the diag-
nostic accuracy of the physicians and the accuracy of
the HEPAR II system. The average accuracy over all
patient cases was 32.1% and 70%' for the physicians
and the system respectively. The hypothesis that the
accuracy of physicians is the same as or better than
HEPAR IT’s was rejected at p < 0.02 level (paired, one-
sided Student-t test). Table 1 captures the results of
the experiment. It presents correct and incorrect diag-
noses made by the physicians and the HEPAR II sys-
tem. Fach row of this table corresponds to one of the
19 physicians and each column corresponds to one of
the 10 patient cases. The symbols C, —, and * stand
for correct, incorrect, and missing diagnosis respec-
tively. The next to last row presents the percentage of
decisions that matched the correct diagnosis made by
the physicians for each of 10 patient cases (i.e., the av-
erage diagnostic accuracy of the physicians per case).
The last row captures the answer of the HEpAR 11
system. Finally, the last column presents the overall
accuracy for each physician. None of the physician’s
accuracy was higher than the system’s accuracy. The

Comparison of diagnostic accuracy

!The overall diagnostic accuracy of the HEPAR II model
on the selected 10 patient cases was higher than the accu-
racy for the set of 699 patients (70% compared to 49%).
This can be attributed to a relatively small sample size
(10 out of 699 cases). A larger sample size, which we con-
sidered, would have put an unacceptable burden on the
physicians time
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Figure 2: Diagnostic accuracy for each patient case
for unaided, aided, and the HEPAR II diagnosis

highest accuracy reached by the physicians was 50%,
which means that HEPAR II’s diagnostic performance
was 40% higher than that of the best physician.

4.2 Impact of the HEPAR Il system on
physician behavior

Figure 2 shows the diagnostic accuracy for each of the
ten patient cases. The picture captures the perfor-
mance of the physicians for both unaided and aided
diagnosis and the performance for the HEPAR II di-
agnosis. By ‘unaided diagnosis’ is meant the diagno-
sis made by a physician and ‘aided diagnosis’ indi-
cates the diagnosis made by a doctor after he or she
saw the answer of the HEPAR II system. The overall
diagnostic accuracy roughly doubled, increasing from
32.6% (unaided diagnosis) to 66% (aided diagnosis),
which approaches the system’s accuracy. This increase
was significant at p < 0.003 level (paired, one-sided
Student-¢ test).

Table 2 presents the number of correct and incor-
rect diagnoses made by the physicians and HEPAR II.
Table 3 shows corresponding results, but it captures
the situation when the physicians had seen HEPAR IT’s
result and were given the opportunity to change their
diagnostic decisions. The columns of these tables cor-
respond to the user decisions and the rows capture
the system answers. When analyzing the Tables 2
and 3 we can observe ‘a migration’ of the diagnoses.
In those cases where the HEPAR II system proposed
the correct diagnoses (the second row of the tables),
the users typically changed their decisions, i.e., 49 in-
correct diagnoses made by the physicians (33% of all
diagnoses and 49% of incorrect diagnoses made by the
physicians) were changed to the correct diagnosis sug-
gested by the system. The number in the third row
and the third column of Table 3, marked by an aster-
isk, is broken into two groups: 24 decisions were the
same incorrect diagnoses provided by the system and
the users and 10 were different, incorrect diagnoses.

Table 2: Before: Correct and incorrect diagnoses of
the users and the HEPAR II system

system / user correct incorrect total
correct 39 65 104
incorrect 9 34 43
total 48(32.6%) | 99(67.4%) | 147(100%)

Table 3: After: Correct and incorrect diagnoses of the
users and the HEPAR II system

system / user | correct | incorrect total
correct 88 16 104
incorrect 9 (24+10)* 43
total 97(66%) | 50(34%) | 147(100%)

5 Discussion

This paper addressed two problems: (1) an empirical
comparison of the diagnostic performance of a norma-
tive diagnostic system based on a Bayesian network to
the performance of physicians and (2) the impact that
a normative system has on its user. In both cases, the
conclusions from the performed empirical study are
encouraging toward normative systems.

The first result of this study is that diagnosis of liver
disorders is far from trivial. System performance of
49% correct diagnoses among all cases recorded in the
database, subject of criticism on the part of reviewers
of our earlier papers on HEPAR II, seems quite bet-
ter than average performance of general practitioners
with limited clinical practice. On a subset of 10 cases
randomly drawn from the database, HEPAR II was
twice as accurate as the physicians (70% vs. 32.1% ac-
curacy) and 40% better than the most accurate physi-
cian. The most straightforward explanation of the sys-
tem’s apparently low performance of 49% is that the
problem of diagnosing a liver disorder is hard (until
biopsy is performed).

The second result of this study is that a diagnostic
system like HEPAR II can be quite beneficial to its
users — interaction with the system more than doubled
the users’ accuracy (from 32.6% before to 66% after
seeing the system’s suggestion).

In the experiment conducted here, the answers of
HEPAR II did not include any explanation on how the
diagnoses were reached, i.e., the physicians received
simply a list of ordered posteriors for each diagnosis.
Some authors (e.g., [5; 17]) report that an explanation
module can significantly increase insight into system
recommendations and effectively increase the quality
of the ultimate diagnosis made by the physicians using
the system. An explanation facility might be more ef-
fective in convincing the doctors to modify their wrong
diagnoses when the system is right. Quite likely such
module would increase the benefit of using the system
even more.



Our future research plans include conducting a sim-
ilar evaluation study with the experts in the domain
of hepatology. A question that is worth pursuing is
whether the system performs at the expert level.
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Abstract

Decision-theoretic formalisms such as influ-
ence diagrams and POMDPs can be used
to solve complex decision problems in clin-
ical medicine. These formalisms then help
to construct a decision policy that prescribes
the best clinical actions given patient-specific
findings. The notion of diagnosis and its role
in clinical reasoning is however left implicit.
This paper shows how diagnoses can be made
explicit in multivariate POMDPs that are
used for clinical problem solving. The aim is
to facilitate the user’s understanding of the
recommendations of a decision policy. Three
types of differential diagnoses, each with its
own perspective on the importance of diag-
nostic hypotheses, are presented.

Keywords: diagnosis, POMDPs, decision-
theoretic planning

1 Introduction

The notion of diagnosis is central to everyday clini-
cal reasoning and decision making. The first thing a
doctor will usually ask himself when confronted with
a patient is, ‘What is wrong with this patient?’. If
this is not clear from the presented symptoms and
findings, considerable effort may be taken to ascer-
tain the patient’s disorder by conducting diagnostic
investigations. After having established the diagnosis
with sufficient certainty, the patient is often treated
according to a guideline or protocol that is based on
classifications of disease.

It is not surprising, then, that diagnosis has received
more attention in formalisations of medical reasoning
than any other aspect of clinical problem solving. A
large number of formal approaches to diagnosis have
been developed and applied, rooted in such diverse
fields as Bayesian probability theory [1], heuristic rea-
soning [2], qualitative simulation [3], and logical ab-
duction [4].

Recent advances in computational techniques for
probabilistic inference have yielded renewed interest

in the application of decision theory to complex, real-
world problems. Among the decision-theoretic for-
malisms that are now most widely studied are influ-
ence diagrams (IDs) and partially-observable Markov
decision processes (POMDPs).  Clinical medicine
seems to be a natural area of application for decision
theory; both IDs and POMDPs have been applied to
medical decision problems [5; 6; 7].

Decision-theoretic formalisms support the construc-
tion of decision policies. Such a policy provides a de-
cision maker, i.e. a person facing a decision problem,
with the preferred action choice given specific obser-
vations on the problem; the preferred choice then has
the property of giving the best (expected) prospects
for the future. However, for a doctor that is treating a
patient, this type of decision support will often be too
shallow as it lacks any reference to the patient’s per-
ceived disorder. The doctor is therefore not supported
in the type of diagnosis-based reasoning he feels com-
fortable with.

In this paper, we show how the notion of diagno-
sis can be made explicit in decision-theoretic reason-
ing. As a formal framework we will employ multi-
variate POMDPs; the notations on POMDPs to be
used in this paper are introduced in Section 2. We
will first formulate a Bayesian type of differential di-
agnosis within this framework in Section 3. Then, in
Section 4, we present two other types of diagnoses,
one that stresses the patient’s prognosis, and one that
stresses the next decision to be made. The paper is
concluded with a discussion in Section 5 and conclu-
sions in Section 6.

2 POMDPs

POMDPs [8; 9] are models for action planning un-
der uncertainty with partial information, or decision-
theoretic planning for short. The underlying concept
can be described as follows. At a specified point in
time, a decision maker observes the state of a dy-
namic system. Based on this observation, he chooses
an action. The action choice produces two results: the
decision maker receives an immediate reward, and the
system evolves to a new state at a subsequent point in
time according to an effect determined by the action



choice. At this subsequent time point, the decision
maker faces a similar problem, but now the system
may be in a different state. The decision maker’s ob-
jective is to develop a decision- making policy that
maximises the expected total reward over a predefined
period of time.

This section introduces the notations on multivari-
ate POMDPs that will be used throughout the paper.
Let T ={0,1,...,N} be a set of time points, and let
X be a set of finite random variables. We will refer
to a subset T C T of subsequent elements in T as a
time segment. The set X is taken to jointly describe
a dynamic system; we use Qx to denote the set of
all possible joint value assignments to the variables of
X. An element cx € Qx is called a configuration, or
equally state, of X.

Definition 1 A multivariate POMDP over X and T
is a tuple M = (A,~v,0,7), where A is a finite set
of available actions, v : Qx x A x Qx — [0,1] is a
transition probability function, o : A — p(X) is an
observation function, and r : Qx x A = R is a reward
function.

The time points in 7" denote moments where the de-
cision maker is expected to select an action a € A to
influence and/or observe the current state of the dy-
namic system. The action effects are modelled as fol-
lows. When configuration cx € 2x characterises the
state at time point ¢ € T, selection of action a € A
will result in a transition to state ¢y € Qx at time
point ¢ + 1 with probability v(cx,a,c's). Further-
more, the decision maker is able to observe the values
of variables from the set o(a) C X at time point ¢; the
observed values are used to optimise the decisions at
future time points. No decision is made at the final
time point ¢ = N; this moment is included for evalua-
tion of the final state only.

Because we are interested in changes in the dy-
namic system over time, we define the state function
s, associated with random variable z € X over time
segment T' as a random function s, : T' — dom(z),
where dom(z) denotes the value domain of variable x.
The set Sx = {s; | x € X} of all state functions over
time segment T is called the joint state function over
T'. We will sometimes think of Sx as a function of
time and write Sx (t) = cx to indicate that cx € Qx
is the configuration of X obtained by parallel applica-
tion of all state functions in Sx to time point ¢ € T".

Now, let Py be a joint probability distribution on
the set X at time point ¢ = 0, reflecting the decision
maker’s prior beliefs on the initial state. Given Py and
a sequence a = ag,...,a;—1 of action choices up to
time point ¢ € T', a probability distribution P on the
joint state function Sx over time segment {0,...,¢}
is constructed as follows:

Pta(SX) =

t—1
Py (Sx(0)) - H’Y(Sx(i)aaiasx(i"‘l))- (1)
i=0

The distribution P represents the decision maker’s
prior beliefs on Sx once he is certain to choose ac-
tion sequence « (or has already done so); it does not
yet take into account the observations that are made
over time. If ¢ denotes the evidence, i.e. the col-
lected observations, up to time point ¢ then the condi-
tional distribution P2 (Sx (¢) | £) represents the deci-
sion maker’s beliefs with respect to the current state.
For instance, P (s, (t) = v | £) is the probability that
variable z € X has value v € dom(z) at time point ¢
after choosing action sequence a, and given evidence

The decision-making processes is guided by the ob-
jective to maximise expected wutility, which is defined
as the sum of rewards that are received at subsequent
time points. A reward r(cx,a) is received when cx
is the system’s state and the decision maker chooses
action a € A. A special reward function ry : Qx — R
is used for the final time point ¢t = N where no ac-
tion is chosen. Temporal risk preferences can be in-
corporated by employing an exponentially increasing
discount factor. The solution to a given POMDP con-
sists of a decision policy m = 7y, ..., "nN—1, where each
m; is a function that provides the decision maker with
the preferred action choice on the basis of given evi-
dence. For instance, 7;(£) = a indicates that action a
is preferred at time point ¢ if £ has been observed.

3 Bayesian diagnosis in POMDPs

Many problems of patient management in clinical
medicine require temporal action planning with un-
certain and incomplete information. POMDPs have
therefore been suggested as a suitable framework to
study these problems [6; 7; 10]. Specific value of ap-
plying POMDPs is to be expected when diagnostic
and therapeutic decisions interact, when patient man-
agement extends over a significant period of time, or
when a careful tradeoff between short-term and long-
term risks is required.

In medical applications of POMDPs, configurations
of the set X usually describe clinical conditions of
a patient, e.g. ‘healthy’, ‘diseased without clinical
signs’, or ‘diseased with clinical signs’. The respec-
tive variables of X then represent attributes of these
conditions such as the patient’s disorder, or specific
signs or test results. The set T' is chosen to cover
a sufficiently large time span to model patient man-
agement problems in the domain in question, and the
set A comprises all clinical actions that require dis-
tinction in the problem under consideration. From a
conceptual point of view, it is often convenient to sep-
arate test actions (i.e. examinations and diagnostic
procedures) from treatment actions (i.e. therapy and
interventions). We note, though, that it is sometimes
difficult to make a formal distinction between these
action types (e.g. surgery generally yields a wealth of
diagnostic information). Finally, the reward r(cx,a)
is generally the patient’s life expectancy over time in-
terval [t,t + 1) in the given circumstances, and the



reward ry(cx) is the patient’s future life expectancy
in condition cx.

After a specific patient management problem thus
has been modelled, the expected results of following
different decision policies, possibly for different types
of patients, can compared. For problems that are rel-
atively small in size, it is also possible to compute an
optimal decision policy, i.e. a decision policy that pro-
vides for the best action choice in all perceivable sit-
uations during patient management. As the problem
of computing optimal decision policies is PSPACE-
complete [11], this is not possible for larger problems.
In either case, the type of support provided by these
models is based on decision policies, i.e. mappings
from evidence to actions. The patient’s perceived dis-
order within these decision policies is left implicit; the
rationale for prescribing a particular action is there-
fore obscured. Below, we show how to take out the
notion of diagnosis in clinical POMDPs.

We will assume that d € X is a random variable that
represents the patient’s disorder. For convenience, we
assume that dom(d) = {1,2,...,k}; that is, there
are k possible, mutually-exclusive disorders. It is the
value of variable d that we are after in diagnosing the
patient; we will refer to an expression of the form
sq(t) = j as a diagnostic hypothesis at time point t.
The variable d is assumed to be hidden from observa-
tion, i.e. there is no action a € A such that d € o(a).
Now, let as before a be the sequence of actions con-
ducted over time segment {0,...,t — 1}, and let £ be
the collected evidence so far. The decision maker faces
the decision at time point ¢.

Definition 2 Diagnostic hypothesis sq(t) =7 s
called an explanation of the evidence & at time t when
P (sa(t)=5,§) > 0. (2)
The set of all explanations of & at time t is denoted
by eaply (£)-
A hypothesis s4(t) = j is considered to be a possi-
ble explanation of given evidence ¢ if they are non-
contradictory, i.e. if PX(sq(t)=y4,&) > 0. Otherwise,
the hypothesis is not comprised in ezpl{(£), and said
to be rejected.

When uncertainty abounds in the domain of ap-
plication, the set expl(£) will often be too large to
be of practical value. The common solution in clini-
cal medicine is to order the set explf(£) by posterior
probability. We thus obtain a list of diagnoses that are
ranked from most to least probable given the available
findings with respect to the patient’s condition; we will
speak of a Bayesian differential diagnosis.

Definition 3 A Bayesian differential diagnosis is a
list (h1,01),- -, (hm,pm) ordered by decreasing values
of pi, where hy, ..., hy € exply(£) and

pi = P(hilf), (3)
foralli=1,...,m.
A Bayesian differential diagnosis provides a concise
picture of the decision maker’s beliefs with the respect

to the patient’s disorder. The more probable a hy-
pothesis is, the higher its ranking will be; the most
probable hypothesis is considered to be the most im-
portant one. From the distribution of p; values one
can estimate the uncertainty in the diagnosis, using
an information measure (e.g. Shannon entropy).

A Bayesian diagnosis focuses on events (findings)
in the past but ignores the patient’s prospects for the
future. For a doctor, a differential diagnosis will usu-
ally be a starting point for further clinical action; this
may be diagnostic testing to gather more information
on the patient’s condition, or may be therapy aimed to
improve that condition. In both cases, the objective is
to reach a better prognosis for the patient: indirectly
through better opportunities to treat the patient with
the information gathered, or directly through reaching
a hopefully better health status. A Bayesian differen-
tial diagnosis does however not consider the patient’s
prognosis in ranking the hypotheses, and may there-
fore fall short in providing directions for further man-
agement. For instance, an unlikely but highly threat-
ening disorder may guide the decision to conduct a
specific diagnostic test. In the next section we present
two other types of diagnoses that focus on the pa-
tient’s prognosis.

4 Prognostic and decisional diagnoses

We will now assume that a decision-making policy
T = T41,...,TN—1 for time points t +1,...,N — 1
is available. Let 4$*(a,n | £) be the expected utility of
choosing action a € A at time point ¢ and following
policy 7 thereafter, where, as before, action sequence
a has been carried out so far and £ is the available
evidence. Clearly,

a® = argmax,c{i;(a, [ &)} (4)
is the optimal action choice in the current situation. In
a prognostic diagnosis, we use the effects of the various
diagnostic hypotheses on expected utility to quantify
their importance. Let therefore 4(a,n | h,&) be a
similar type of utility as above, where now diagnostic
hypothesis h € expls (£) is known to be the patient’s
true disorder.

Definition 4 A prognostic differential diagnosis is a

list (h1,u1), - - -, (hm,um) ordered by increasing values
of u;, where hy, ...,y € expl{ (), and

ui = ag(a*,m | hi, ) (%)
foralli=1,...,m.

In a prognostic differential diagnosis, the hypotheses
are ranked by increasing life-expectancy, under the
assumption that action a* is chosen next and pol-
icy w is followed thereafter. Hence, the hypothesis
that presents the highest risk to the patient, under
the given decision policy, is now considered as most
important. A high value of u; indicates that the dis-
order h; is harmless, that a* is an effective cure for
h; (if a* is a treatment action), or that a* is effective
in discriminating h; from other hypotheses (if a* is a



test action). Furthermore, from the distribution of u;
values, it is possible to see how different the various
future scenarios are.

The Bayesian and prognostic types of differential di-
agnosis can be combined to obtain a wtility-theoretic
diagnosis; the expected utility u; associated with hy-
pothesis h; is then weighed with its posterior proba-
bility p;. This will descrease the rank of risky but un-
likely disorders, and increase the rank of moderately
dangerous disorders with higher probability. Note,
however, that the quantity u; - p; does not have an
intuitive semantics. It is the (absolute) contribu-
tion of hypothesis h; to the patient’s life-expectancy
4 (a*,m | €) under action choice a*, as

Yo wirp = a@3(at,m|9). (6)
hi€explg(€)
The quantity wu;-p; itself is however not a life-
expectancy. It does seem favourable, therefore, pro-
vide the probabilities and utilities separately to facili-
tate a decision maker’s understanding of the situation.
The prognostic and utility-theoretic differential di-
agnoses focus on the results of choosing the optimal
action a*. As such, they assume that the decision at
time point ¢ is already made and neglects the fact that
the decision maker is facing a choice. The third type
of diagnosis we present therefore considers the impact
of varying decisions on given hypotheses; it is called
the decisional differential diagnosis. Let

@™ = max{ay(a,m | hi,€) |a € A} (7)
and

@ = min{ad(a,n | hi &) a€ A} (8)
be the maximum and minimum expected utility, re-
spectively, when hypothesis h; € expl] (§) is the pa-

tient’s true disorder.

Definition 5 A decisional differential diagnosis is a
list (h1,q1),---,(hm,qm) ordered by decreasing values
of g, where hy, ..., hy € exply(€), and

~max ~min
WP —

P = 9
U = GO ©)

foralli=1,...,m.

In a decisional differential diagnosis, the value g; is the
maximum [oss in expected utility when hypothesis h;
is true, relative to what is to be expected when the
‘normal’, optimal decision-theoretic choice a* is made.
The loss here would be due to making the wrong de-
cision at time point ¢: @["** represents the scenario
where, considering only hypothesis h;, the best deci-
sion is made, and ™™ represents the scenario where
the worst decision is made with respect to h;. Note
though that these decisions may have rather different
properties when considering all hypotheses and their
respective probabilities.

If ¢; is high, then h; is probably the hypothesis to
focus on when making the decision at time point ¢
because of its potential impact on the patient prog-
nosis. It is possible that ¢; > 1; this occurs when

h; represents a rather improbable but well-treatable
illness in an otherwise unfavourable situation. The
hypothesis h; is then a last straw to catch in treat-
ing the patient. We will usually find that the maxi-
mum loss 4% — @M® is relatively small compared to
a$(a*, 7 | £), and therefore ¢; < 1.

If ¢; is low, then our decision at time point ¢ will
hardly influence the patient’s prognosis if hypothesis
h; is true; it is therefore reasonable to more or less ne-
glect h; when making the decision. It is possible that
g; = 0, in which case we can completely forget about
h; in our choice at moment ¢. Note, though, that this
does not preclude h; from being quite probable, or
even being the correct hypothesis.

5 Discussion

Decision-theoretic formalisms such as POMDPs incor-
porate both models of action-driven state change and
action-driven information acquisition. As such, these
formalisms can capture the interplay between diag-
nostic and therapeutic reasoning in clinical patient
management. Yet, the notion of diagnosis itself is not
made explicit: diagnostic reasoning is only covered in
the sense that information-gathering actions are pre-
scribed in some situations. The approach presented
here tries to make the notion of diagnosis explicit in
POMDPs.

The objective of our work is to facilitate the user’s
understanding of the recommendations made by a
decision-support system, by supplementing prescribed
action choices with differential diagnoses. A diagno-
sis that is based on posterior probability may how-
ever fall short in providing the rationale for a deci-
sion; we have therefore presented additional prognos-
tic and decisional types of diagnoses. Each of these
diagnosis types incorporates a different perspective on
what makes a diagnostic hypothesis important. They
are therefore, to a large extent, orthogonal; it is pos-
sible though to create rankings that use a mixture
of perspectives. The three diagnosis types were pre-
sented within the POMDP framework, but they can
be employed in any model that incorporates notions
of prognosis (utility) and choice. Others have earlier
argued that probabilistic diagnoses should be evalu-
ated in terms of utility [12], but the prognostic and
decisional types of diagnosis presented here have not
been applied before in decision-theoretic reasoning for-
malisms.

It is often complained that diagnostic programs pro-
duce moderately long lists of diagnoses, containing
many diagnoses that a knowledgeable physician would
regard as completely irrelevant [13]. When the evi-
dence ¢ is little symptomatic (i.e. does not exclude
many explanations from the differential diagnosis),
our approach carries the risk of meeting a similar com-
plaint. To anticipate this situation, one may lift the
requirement that all explanations of given evidence be
contained in a differential diagnosis. One could, for
instance, omit explanations that are improbable, pose



little or modest risks to the patients, and have low de-
cisional importance. We do note that after omitting
explanations from the differential diagnosis, however
improbable they are, the correct hypothesis may no
longer be included.

We have restricted ourselves to considering a single
diagnostic variable in the multivariate POMDP. This
implies that we assume (i) only a single disorder to be
present, (ii) that all diagnostic hypotheses are mutu-
ally exclusive, and (iii) that given findings are always
explainable by some diagnostic hypothesis. These as-
sumptions may however prove unrealistic in real-world
domains. The POMDP framework does allow a more
general approach where these assumptions are lifted;
we have investigated this approach in [14].

6 Conclusions

Decision-theoretic reasoning is characterised by the
fact that each situation of choice is ultimately reduced
to a utility-theoretic tradeoff. Yet from a conceptual
point of view, these choice situations may be very dif-
ferent. In medical decision making, differences be-
tween choice situations typically stem from the per-
ceived diagnosis of the patient; the notion of diagno-
sis is however left implicit in many decision-theoretic
formalisms. In this paper we have shown how the
notion of diagnosis can be made explicit in decision-
theoretic planning problems, without losing the under-
lying utility-theoretic tradeoff. We believe that this
will facilitate the user’s understanding, and hence, ac-
ceptance, of the recommendations made by a decision-
support system.

We have compared a Bayesian notion of diagno-
sis with two new notions of diagnosis that focus on
the patient’s future prospects. The prognostic notion
of diagnosis highlights the differences in expected life
time associated with different diagnostic hypotheses;
the decisional notion of diagnosis highlights the maxi-
mum losses in expected utility under different diagnos-
tic hypotheses. The three notions of diagnosis jointly
provide a clear picture of the role of diagnosis in clin-
ical decision making.

In the future we plan to evaluate the presented no-
tions of diagnosis on a POMDP model that is devel-
oped to support paediatric cardiologists in the man-
agement of children with a ventricular septal defect;
this model is described in [7]. Furthermore, we intend
to develop a heuristic solution method for POMDP
problems based on the notions described here. Most
heuristic problem-solving knowledge from clinicians is
centred on the patient’s diagnosis. Once the notion
of diagnosis is made explicit in a decision-theoretic
formalism, this knowledge is therefore easier to in-
corporate in the associated reasoning methods. For
instance, most physicians are able to provide fairly
reliable treatment rules for given disorders. If a par-
ticular disorder stands out in a differential diagnosis,
application of the associated rule may be a reasonable
option.
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Abstract

Bayesian networks are widely accepted as
tools for probabilistic modeling in the medi-
cal domain. In modeling Bayesian networks
in collaboration with domain experts, the
definition of the network structure is rela-
tively easy. The assessment of the condi-
tional probability tables (CPT) is often a
much more difficult task, even though there
is a lot of statistical information available
in the medical literature. The problem is
twofold. In the first place it is usually not
possible to use this information directly to
fill in the CPTs. In the second place, the in-
formation is usually insufficient for a unique
definition of the CPTs. A standard approach
to define a probabilistic model on the basis of
insufficient statistical information is to apply
the Maximum Entropy Method (MaxEnt).
MaxEnt searches for the unique model that
maximizes the entropy under the constraints
that it satisfies the given statistical informa-
tion. In standard applications of MaxEnt
for models defined by one joint probability
table, these constraints are linear in the ta-
ble entries. However, if MaxEnt is applied
to a Bayesian network, i.e. the joint distri-
bution is factorized into a product of CPTs,
these constraints are typically nonlinear in
the CPTs. In this paper we show how these
nonlinear constraints can be dealt with, and
we describe an algorithm that (locally) max-
imizes entropy under constraints in Bayesian
networks. The method is illustrated by an
example.

1 Introduction

Computer-based diagnostic decision support systems
will play an increasingly important role in health care.
They may improve the quality of the diagnostic pro-
cess in accuracy and efficiency, while costs and bur-
den of patients may be reduced. In addition, they can
play an invaluable role in medical education. Poten-

tial users include general internists, super specialists,
residents in internal medicine, and medical students.

The modern view is that decision support systems
should be based on a probabilistic model. This ap-
proach has the advantage that it can deal with un-
certainty in a consistent and mathematically correct
way. In particular Bayesian networks[5; 3] provide a
powerful and conceptually transparent formalism for
probabilistic modeling.

Modeling of a Bayesian network consists of two
parts, a qualitative and a quantitative part. The qual-
itative part is the determination of the structure of the
network. If the network is build in collaboration with
domain experts, the determination of the structure is
often considered as a relatively easy task, since this
task usually fits well with knowledge that medical ex-
perts often have about causal relationships between
variables. The quantitative part consists of quantify-
ing the conditional probability tables (CPTs) in the
network. This part is often considered by medical ex-
perts as a much harder or even impossible task [2].
The reason is that medical domain experts themselves
often have no idea about these probabilities. In most
medical domains some statistical information Z is pro-
vided in the literature. In such a case, one may try
to choose the CPTs in the network such that network
fits with Z. Unfortunately, Z often does not trans-
late directly into network CPTs, that is to say, it is
often not clear to the experts how Z should be trans-
lated into quantitative CP'Ts in the Bayesian network.
Typically, Z consists of conditional probabilities in the
‘wrong direction’, from ‘effect’ to ‘cause’. In addi-
tion, these 'reversed’ CPTs are often insufficient to
uniquely define the desired CPTs in the network. The
toy problem in the last section in the paper is an ex-
ample where 7 has wrong direction and is insufficient
for unique determination of the model. Often Z can
be formulated as linear probabilistic constraints, i.e.,
constraints of the form } ., p(z)fa(z) = 0, and/or
> (s P(@)gp(z) < 0, where p(z) is the (joint) proba-
bility distribution and f,(z) and gg(z) are functions
of the state space {z} = {z1,... ,z,}. A typical ex-
ample is a constraint on the conditional probability
p(z1 = a|lza = b) = ¢ which can be expressed as



> e P(%) (62100256 —Czyp) = 0, where we used the Kro-
necker delta (0,y = 1if z =y and 6,y =0 if  # y).

In this paper, it is assumed that 7 is consistent, i.e.
that there is at least one parameter setting of the dis-
tribution that satisfies the constraints. However, since
7 is in general insufficient for a unique determination
of the model p, a whole set of distributions will satisfy
the constraints. A standard way to proceed is to select
a representative of this set of distributions by applying
the Maximum Entropy Method (MaxEnt) [4]. Max-
Ent searches the distribution that maximizes entropy
under the given constraints. Roughly spoken, it se-
lects the distribution p that satisfies the constraints
without introducing any additional information.

In this paper, we apply MaxEnt to a Bayesian net-
work with a given structure p(z) = [], p(z;i|m;) to
quantify its CPTs. The difference with MaxEnt ap-
plied to a general model p(x) is that MaxEnt applied
to a Bayesian network has to deal with a set of con-
straints and a set of independency statements. One
approach could be to try to formulate the indepen-
dency statements as as additional constraints to a
general model p(z) and apply standard MaxEnt to
p. The way we proceed is, however, to keep the fac-
torization into CPTs, and try to find the CPTs that
maximizes the entropy of the joint distribution. As
a consequence, a technical difference with standard
MaxEnt is that the constraints, which are linear in
the joint probability p(z), are non-linear in the CPTs
p(zi|m;). This causes some complications in the opti-
mization scheme of MaxEnt. However, one can effec-
tively deal with these complications.

This workshop paper is organized as follows. In
section 2 standard MaxEnt is shortly reviewed. In
section 3, we show how the method applies to Bayesian
networks. In section 4, the method is applied to a toy
problem. We end the paper with a short discussion in
section 5.

2 Maximum Entropy (MaxEnt)

In this section, we shortly review the standard Max-
imum Entropy (MaxEnt) method with linear proba-
bilistic constraints [4]. We consider probability dis-
tributions p(z) on a set of discrete variables z =

Z1,...,%, with a finite domain, z; € {1,... ,n;}. If a
set of linear constraints on p,
Zfa(w)p(a:):O a=1...k (1)
{=}
Zfa(x)p(a:)>0 a=k+1l...m (2
{=}

is given, MaxEnt tries to find the probability distri-
bution p(z) that maximizes the entropy

==Y p(z)logp(x (3)
(=}

under these constraints.

Introducing Lagrange multipliers A = {\,}, and a
Lagrange multiplier v to ensure normalization of p,
we can formulate the optimization problem by La-

grangian
=HP)+Y_ > Aafal@)p(z)

L(p, A,7)
o {z}
7O pE)-1) (4)
{z}

which should be maximized with respect to p and
minimized with respect to the Lagrange multipliers
A (within the domain A, < 0 for @ > k) and ~. Tak-
ing the gradient of L with respect to p(z), setting it to
zero, and eliminating -y, we can solve p as explicitely
as a function of A. The solution p* has the well known
exponential form

P(@) = Zep Y Aafale) (5)

where Z is a proper normalization constant resulting
from elimination of v. Now we substitute the solu-
tion p* into the Lagrangian L, which now becomes a
function of A only,

FQ)=H®)+ YY) Xafal@)p*(®)  (6)

o {z}
which has to be optimized numerically , leading to
the solution A*. According to the theory of Lagrange

multipliers, the constrained optimization problem is
now solved by the distribution p* at A*.

3 MaxEnt in Bayesian networks

In this section, we show how the MaxEnt method
under linear probabilistic constraints operates for a
Bayesian network

T) = Hp(xi|77i) (7)

Again we want the maximize the entropy

= - p(z)logp(x ®)
{z}
under a set of linear constraints in p

> fal@a)p(@) =0 a=1...k 9)
{=}
> fala)p(x) > 0 a=k+1...m (10)
{2}

In which f,(z4) is a function that depends on a subset
of variables z,. Introducing Lagrange multipliers A,
for these constraints, and ~y; for normalization of the
CPTs we can can formulate the optimization problem
with the Lagrangian

L({pi}a A, '7) = H(p) + Z Z )‘afa(ma)p(x)
a {z}
+ () (O pilwilm) — 1) (11)
{z}



which should be maximized with respect to the CPTs
{p;} and minimized with respect to the Lagrange mul-
tipliers. Now we cannot solve {p;} directly by taking
the gradient of (11) with respect to all parameters,
since this would only lead to a set of coupled non-
linear equations for the CPTs.

What we can do, however, is taking the gradient
of L with respect to a single CPT p;(x;|m;), for fixed
A and remaining CPTs{p;} ji- Setting the gradient
to zero, and eliminating ~;(7;), we again get an ex-
plicit solution of p;(x;|m;), as a function of A and the
remaining CPTs {p;},_;:

p; (z4|m;) =

Zi(lﬁi) €Xp Z Aafa(Ta) — Z Ingj(leﬂ'j)>

€C; JED;

Ti, T4

(12)
The average (...),, .. is taken with respect to the con-
ditional distribution p(x|z;, ;) (which only depend on
the CPTs {p; }#i). In (12), C; is the subset of the con-
straints « such that the distribution of z, depends
on the state of x;. In other words, a ¢ C; implies
p(zal|zi) = p(z4). In a similar way, D; is the subset
of the nodes j # 4, such that the child-parent combi-
nations {z;,7;} depends on the state of z;. Again, in
other words, j ¢ D; implies p(z;,7;|z;) = p(z;,7;).
Finally, Z;(m;) are normalization constants for the
CPTs.

Since the solution (12) is unique, it corresponds to
the global maximum of L given that the other CPTs
(and the Lagrange multipliers) are fixed. This means
that in a sequence where at each step different CPTs
are selected and updated (while keeping A fixed) ,
the Lagrangian increases at each step (or remain con-
stant). Since the Lagrangian is bounded for fixed A we
conclude that this iteration over all clusters of CPTs
leads to a local maximum of L.

To find saddle points of L we propose the following
two-step gradient descent procedure.

Initialization

e Initialize with random A and random CPTs
{pi}.

e Fix A and iterate (12) sequentially until a
local maximum of {p;} is obtained.

A - step Fix the CPTs and take a A step into the
direction of the negative gradient of the La-
grangian (some components, related to inequality
constraints, will be set equal to zero if this step
would push them outside their domain).

p -step Fix A\ and iterate (12) sequentially, with
CPTs initialized at their previous values, until
convergence is reached.

In this way, we minimize with respect to A in its do-
main, while remaining on a ridge 0L/0p;(z;|m;) = 0.
If we converge, we obtain a local maximum of the en-
tropy under the required constraints.

Figure 1: Structure of the network for coronary hart
disease with four variables: age (a), sex (s), hart-
disease (d), and chest-pain (c)

sex age | asympt non-AP atyp-AP typ-AP
m  30-39 1.9 5.2 21.8 67.7
m  40-49 5.5 14.1 46.1 87.3
m  50-59 9.7 21.5 58.9 92.0
m  60-69 12.3 28.1 67.1 94.3
f 30-39 0.3 0.8 4.2 25.8
f 40-49 1.0 2.8 13.3 55.2
f 50-59 3.2 8.4 32.4 79.4
f  60-69 7.5 18.6 54.4 90.6

Table 1: Conditional probabilities (percentages) of
hart disease given age, sex and type of chest-pain
(asymptomatic, non-AP pain, atypical AP-pain, typi-
cal AP-pain). This table is taken from literature and
served as a constraint for the probability model in fig-
ure 1

4 An example: coronary hart disease

We illustrate the method by example involving the
diagnosis of coronary hart disease, taken from [1]. In
this example, we have four variables: age (a), sez (s),
hart-disease (d), and chest-pain (c) . Following the
example, age has four states (30-39, 40-49, 50-59, 60-
69), sex has two states (male, female), hart-disease has
two states (true, false), and chest-pain has four states
(asymptomatic, non-AP pain, atypical AP-pain, typi-
cal AP-pain). We build a graphical structure accord-
ing to figure 1.

The information that we have is a probability table
q(d|a, s, ¢) with conditional probabilities for all states
of d,a, s, ¢, tabulated in table 1. Furthermore, there is
no information, but we assume that we have the ad-
ditional information that s and a are homogeneously
distributed. The constraints p(d|a, s,¢) = g(d|a, s, c),
p(a) = 0.25, p(s) = 0.5 are insufficient to uniquely
specify the CPTs p(d|a,s) and p(c|d). We have ap-
plied MaxEnt to this problem. The CPTs that we
obtained in this way are given in tables 2 and 3.

5 Conclusion and future work

If direct quantitative assessment of CPTs is to difficult
for domain experts, and if other statistical informa-
tion about the domain is available, but in the ‘wrong
direction’ and insufficient to uniquely define the de-
sired CPTs in the network, then MaxEnt for Bayesian



age | male female
30-39 19 4
40-49 42 12
50-59 55 29
60-69 64 51

Table 2: Conditional probabilities (percentages) of
hart disease (d = true) conditioned on age and sex.
These CPTs are obtained by MaxFEnt.

d | asympt. non AP  atypical AP typical AP
true 3 7 35 55
false 31 33 30 6

Table 3: Conditional probabilities (percentages) of
having a certain state of chest pain (asymptomatic,
non-AP pain, atypical AP-pain, typical AP-pain),
given the state of hart disease (true or false). This
CPTs is obtained by MaxEnt.

networks may provide a useful method for assessment
of the quantitative CPTs. MaxEnt is not the only
method for quantitative assessment of CPTs. Other
methods have been proposed previously [2]. One of
the features of MaxEnt for Bayesian networks is that
the optimization procedure requires only local compu-
tations (if the constraints are local, i.e. involve only a
few variables). This feature is crucial for application
to large scale models.

Currently we collaborate with domain experts to
study the feasibility of the construction of large scale
Bayesian networks for medical diagnosis. Typically
these networks will consists of several hunderds of
nodes. One of the bottlenecks is the quantitative as-
sessment of CPTs in these network, for reasons de-
scribed in this paper. Our future work will include
the study of the practical usefulness of the MaxEnt
method for quantitative assessment of CPTs in such
models.
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