IR2 – Data Mining 2002–2003

Exercises I

 $\begin{array}{c} Peter\ Lucas \\ \text{Institute for Computing and Information Sciences} \\ \text{University of Nijmegen} \end{array}$

1 Basic probability theory

Let \mathcal{B} be a Boolean algebra, and $P:\mathcal{B}\to[0,1]$ be a probability distribution.

- a. Explain by means of a Venn diagram what it means if it holds that $P(a \lor b) < P(a) + P(b)$.
- b. Prove that if a is a subevent of b, $a, b \in \mathcal{B}$, then $P(a) \leq P(b)$.
- c. Explain in words why $P(a \mid a) = 1, \forall a \in \mathcal{B}$.
- d. Sampling without replacement. Consider a room with 10 computers with Windows XP, of which 3 are unable to boot. If you try to use two successive computers at random, what is the probability that you can actually use both of them? (Hint: use Bayes' rule.)

2 Mathematical expectation

- a. Consider the function g defined as $g(X) = X^2$ for random variable X. Let X be uniformly distributed on the closed interval [-1,1]. What is $\mathrm{E}(g(X))$?
- b. Determine the expectation for the function h, with h(X) = aX + b, where the random variable X is uniformly distributed on the closed interval [0, 1].
- c. Prove that E(X E(X)) = 0.

3 Bias-variance decomposition

Consider the following functions

$$f(x) = a_1x + a_0$$

$$g(x) = a_2x^2 + a_1x + a_0$$

$$h(x) = a_3x^3 + a_2x^2 + a_1x + a_0$$

and Table 1 with results of these functions after they have been fitted using least-squared approximation to data of 1000 different training sets. The function r underlies the process that generated the data.

a. What is your opinion about the amount of bias in each individual function?

x	r(x)	$\mathrm{E}(f)$	E(g)	E(h)	V(f)	V(g)	V(h)
1	2.50	2.48	2.48	2.49	$0.34 \\ 0.25$	0.61	0.84
2	3.00	2.99	2.98	2.98	0.25	0.27	0.29
3	3.50	3.49	3.49	3.48	0.18	0.18	0.33
4	4.00	3.99	4.00	3.99	0.13	0.20	0.32

Table 1: Results of experiments.

- b. What is your opinion about the amount of variance in each individual function?
- c. By looking at these results, what is the most likely form of the function r?

4 Discrete distributions

We carry out a number of experiments n, where x results are successful (i.e. yield event e) and n-x yield failure (i.e. yield event $\neg e$). If p=P(e) and $q=P(\neg e)$, then the probability that x trials are successful is:

$$f(x) = \binom{n}{x} p^x q^{n-x} = \binom{n}{x} p^x (1-p)^{n-x}$$

i.e. is described by a binomial distribution, also called Bernoulli distribution. A binomial distribution describes sampling with replacement.

If the events e concern objects that have or have not particular properties (e.g. are defective or not), and if we assume that there is a maximum of N of these objects that can be observed, of which M have that particular property. Then

$$P(e) = p = \frac{M}{N}$$

Next, consider the situation that we again carry out a number of experiments n, but now we assume that each object that is observed is deleted afterwards. The probability that out of n experiments x are successful (yield event e rather than $\neg e$) is

$$h(x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{x}}$$

This is because:

- There are $\binom{N}{n}$ ways of picking n objects from N.
- There are $\binom{M}{x}$ ways of picking x objects from M with the same property.
- There are $\binom{N-M}{n-x}$ ways of picking n-x objects that do not have the property from the total of N-M objects that do not have the property either.

This is the hypergeometric distribution that describes sampling without replacement. Reconsider exercise 1(d).

- a. Use the hypergeometric distribution to compute the probability that you can use both computers.
- b. Use the binomial distribution to compute the probability that you can use both computers. Compare the two results.