
An algorithm for learning real-time automata

Sicco Verwer S.E.VERWER@TUDELFT.NL
Mathijs de Weerdt M.M.DEWEERDT@TUDELFT.NL
Cees Witteveen C.WITTEVEEN@TUDELFT.NL

Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, the Netherlands

Abstract
We describe an algorithm for learning sim-
ple timed automata, known as real-time au-
tomata. The transitions of real-time au-
tomata can have a temporal constraint on
the time of occurrence of the current symbol
relative to the previous symbol. The learn-
ing algorithm is based on the red-blue fringe
state-merging algorithm for the problem of
learning deterministic finite automata. Ini-
tial results show that learning a real-time
automaton directly from timed data outper-
forms the method of first sampling the data
at a fixed frequency, and then learning a de-
terministic finite automaton from the sam-
pled data.

1. Introduction

When no model of a system is known, one can try
to construct a model automatically from observations
of the system. For example, we would like to model
the behavior of truck drivers using a discrete event
system (DES) (Cassandras & Lafortune, 1999), but
there is not enough expert knowledge available to
construct this model directly. We are therefore inter-
ested in the automatic generation (learning) of this
DES from sensor-data.

A common DES model is a deterministic finite automa-
ton (DFA). An advantage of this model is that it is
an intuitive framework, i.e., the model can be inter-
preted by domain experts. When observing a real-
world system, however, there often is more informa-
tion than just the sequence of discrete events: the time
at which these events occur may be very important.
In such a case, the DFA model is too limited. Using

Proceedings of the 18th Benelearn
P. Adriaans, M. van Someren, S. Katrenko (eds.)
Copyright c© 2007, The Author(s)

a DFA, it is impossible to distinguish between events
that occur quickly after each other, and events that oc-
cur after each other with a significant delay between
them. For example, in our project the time between
vehicle speedups and slowdowns is significant. A se-
quence of fast changes from slowing down to speed-
ing up and vice versa indicates driving in a city, while
a sequence of slow changes indicates driving on a
freeway.

A variant of a DFA that includes the notion of time
is called a timed automaton (TA) (Alur, 1999). In this
model, each symbol of a word occurs at a certain
point in time. The state transitions of a TA contain
constraints on the time values of these occurrences
relative to previous occurrences. Thus the execution
of a TA depends not only on the type of symbol occur-
ring, but also on the time that has elapsed since some
previous symbol occurrence. We are interested in the
problem of identifying such a time dependent system
from a data sample.

The problem of learning (also known as identification
or inference) a DFA from a data set is a well-studied
problem in learning theory (see e.g. (Lang et al.,
1998), (Bugalho & Oliveira, 2005)). There are, how-
ever, almost no studies of the inference of TAs from
data. Closely related work deals with the problem
of learning event recording automata (a restricted but
still powerful class of TAs) from a timed teacher us-
ing membership and equivalence queries (Grinchtein
et al., 2006).

Because of the high complexity of learning general
TAs, we focus on a another class of TAs known as
real-time automata (RTA) (Dima, 2001). An RTA
only contains time constraints relative to the previous
symbol. In this paper, we study the problem of identi-
fying an RTA from a data sample containing both pos-
itive and negative examples. But, as far as we know,
currently no other learning algorithm exists that can
identify a timed automaton from a timed sample.

b

b

a a
a

b

b accepting
rejecting

Figure 1. An augmented prefix tree acceptor for the input
sample: (S+ = {a, abaa, bb}, S− = {abb, b}).

b

a

a
b

b

a

b
a

Figure 2. A merge of two states from the APTA of Figure 1.
On the left the original part of the automaton is shown, the
nodes that are to be merged are surrounded by a dashed
ellips. On the right the result of the merge is shown. This
resulting automaton still has to be determinized.

Note that this problem is a lot harder than the prob-
lem of learning a DFA from such a sample: in addi-
tion to identifying the correct DFA structure, the al-
gorithm needs to identify the correct time contraints.
This additional problem causes a large increase in the
search space of the algorithm: each transition can be
replaced by time dependent transitions in 2N ways,
where N is the number of possible time values. In
previous work we have proven the subproblem of
just identifying the time constraints given a correct
DFA structure to be NP-complete (Verwer et al., 2006).

This paper is structured as follows. We start with
a brief introduction to the state merging algorithm
for the identification of DFAs in Section 2. We then
formally define RTAs in Section 3. In Section 4 we
describe our algorithm for the identification of RTAs
from data. Then, in Section ??, we compare the perfor-
mance of our RTA learning algorithm to the straight-
forward approach of first translating (sampling) the
timed input data to untimed data, and then using a
standard DFA learning algorithm (Lang et al., 1998).

2. State Merging

We assume the reader to be familiar with the basics of
language and automata theory. For an introduction
the reader is refered to (Sipser, 1997). The algorithm
we use for the identification of real-time automata is
similar to the red-blue fringe state merging algorithm for
DFAs (Lang et al., 1998). We briefly explain the main
elements of this algorithm.

R

R
B

BR

R

B

Figure 3. The red-blue framework. The red nodes (labeled
R) are the identified parts of the automaton. The blue nodes
(labeled B) are the current candidates for merging. The un-
colored nodes (not labeled) are pieces of the APTA.

Given a target DFA A, an input sample S is a pair of
finite sets of positive examples S+ ⊆ L(A) and neg-
ative examples S− ⊆ L(A)C. The idea of a state
merging algorithm is to first construct a tree automa-
ton from this input, and then merge the states of this
tree. The tree is called an augmented prefix tree accep-
tor (APTA). An APTA is an automaton representation
of the input examples: each input example is repre-
sented by a path from the root node to a node in the
tree. The node in which a positive or negative exam-
ple ends is marked positive or negative, respectively.
Figure 1 shows an example of an APTA.

A MERGE (see Figure 2) of two states combines the
states into one: all input transitions of both nodes
point to this new node and this new node contains
the output transitions of both nodes. Such a merge is
only allowed if the states are consistent, i.e. when no
positive node is merged with a negative node. When
a non-deterministic choice is introduced, i.e. two out-
put transitions with the same label, the target nodes
of these transitions are merged as well. This is called
the DETERMINIZATION process, and is continued un-
til there are no non-deterministic choices left. Note
that the consistency requirement needs to hold for all
states involved in this determinization process. The
algorithm continues the state merging process until
no more consistent merges are possible.

The red-blue framework follows the algorithm men-
tioned above, but in addition maintains a core of red
nodes with a fringe of blue nodes (see Figure 3). The
red nodes are the already identified nodes of the tar-
get DFA, and the blue nodes are the current options
for merging. A red-blue algorithm starts with the
root of the APTA colored red, and its children colored
blue. At each iteration the algorithm can either merge
a blue node with a red node, or change the color of
a blue node into red if no such merge can be found.
We call this changing of color a COLOR operation. Af-
ter this and the subsequent determinization step, all
the uncolored children of red nodes are colored blue.

Note that a red-blue fringe algorithm never makes
changes to red nodes. At each iteration the core of red
nodes is assumed to be correctly identified by previ-
ous iterations. This is an important property for the
heuristic we use in our RTA identification algorithm
(see Section 4.1).

Observe that a state-merging algorithm is capable of
producing any DFA that is consistent with the input
sample. The main goal of a DFA identification algo-
rithm is to find the smallest such DFA. Currently, the
most successful method to find this is evidence driven
state merging (EDSM) (Lang et al., 1998). In EDSM
each possible merge is given a score based on the
amount of evidence in the merges that are performed
by the merge and determinization processes. A merge
gets an evidence score equal to the amount of positive
states merged with positive states plus the amount of
negative states merged with negative states. At each
iteration of the EDSM algorithm, the merge with the
highest evidence value is performed.

3. Real-Time Automata

An automaton that accepts (or generates) strings with
a timestamp associated with each event is called a
timed automaton (Alur, 1999). These strings consist-
ing of event-timestamp pairs are called timed strings.
Since the symbols in a string represent an ordered se-
quence of events, we require that the time labels are
non-decreasing. We model the time values using nat-
ural numbers.1

In timed automata, timing conditions are added us-
ing a finite number of clocks and a clock guard for
each transition. In this section, we describe the class
of timed automata that we use in this paper, known
as a real-time automata (RTAs) (Dima, 2001). An RTA
has only one clock that represents the time delay be-
tween two events. The guards for the transitions are
then constraints on this time delay. Therefore, we rep-
resent a delay guard (constraint) by an interval in N.
We say that such a delay guard G is satisfied by a time
value t ∈ N if t ∈ G. An RTA is defined as follows:

Definition 3.1 A real-time automaton (RTA) is a tuple
A = 〈Q, Σ, T, q0, F〉, where

• Q is a finite set of states,

• Σ is a finite set of symbols,

• D is a finite set of transitions,

1This is expressive enough because in practice we al-
ways deal with a finite precision of time.

1 43
slowdown speedup,

[0, 50]
constant,
[0, 20]

2
constant

slowdown,
[0, 300]

5

Figure 4. The ’harmonica’ driving behavior modeled as an
RTA. The numbers used in the delay guards are amounts of
tenths of a second.

• q0 is the start state, and

• F ⊆ Q is a subset of final states.

A transition d ∈ D in this automaton is a tuple
〈q, q′, s, φ〉, where q, q′ ∈ Q are the source and target
states, s ∈ Σ is a symbol, and φ is a delay guard defined by
an interval in N.

In this paper we only regard deterministic (or un-
ambigious) RTAs. An RTA is called deterministic if
no two transitions with the same label and the same
source state have overlapping delay guards.

In an RTA it is not only possible to activate a transi-
tion to another state, but it is also allowed to remain in
the same state for some time (delay). Such a time de-
lay is possible in every state and increases the current
delay. A transition to another state is possible only
if its delay guard is satisfied by the current delay. A
transition 〈q, q′, s, φ〉 of an RTA is thus interpreted as
follows: whenever the automaton is in state q, read-
ing s, and the delay guard φ is satisfied by the current
delay, then the machine will move to state q′.

The RTA in Figure 4 models a specific driving behav-
ior known as ‘harmonica driving’. This often occurs
when a truck is driving at a somewhat higher speed
than the vehicle directly in front of it. The driver
slows down a bit, waits until there is enough distance
between him and the vehicle in front, and then speeds
up again, closing in on the vehicle. This whole pro-
cess often repeats itself a couple of times before the
driver finally adjusts the speed of the truck to match
the vehicle in front of him. The result of this whole
process is uneccesary fuel consumption, which we are
trying to reduce. Therefore, we are interested in learn-
ing these kinds of patterns, detecting them in real-
time, and giving feedback to the truck driver.

Most transitions in this example have a time interval
associated with them. These are the delay guards.
The definition of a computation as used in DFAs
needs to be adapted to deal with these guards. More-
over, also the new transition rule discussed above is
included in the following definition of a computation
of an RTA.

a
[1,2]

accepting
rejecting
inconsistent

b
[1,2]

a
[1,2]

b
[1,2]

b
[1,2]

b
[1,2]

Figure 5. A real-time APTA for the timed input sam-
ple: (S+ = {(a, 1), (a, 1)(b, 3)(b, 4), (b, 2)(b, 3)}, S− =
{(a, 1)(b, 3)(a, 4), (b, 2), (b, 1)(b, 2)}). The minimum delay
in the sample is 1, the maximum delay is 2.

Definition 3.2 A computation of an RTA
〈Q, Σ, D, q0, F〉 over a timed string (s1, t1) . . . (sn, tn)
is a finite sequence of states and transitions

q0
(s1,t1)−−−−→ q1 . . . qn−1

(sn ,tn)−−−−→ qn, such that for all
1 ≤ i ≤ n, 〈qi−1, qi, si, φi〉 ∈ D, where φi is satisfied by
the delay value ti − ti−1. A computation of an RTA over
a timed string of length n such that qn ∈ F is called an
accepting computation.

The language of an RTA A, denoted L(A), is the set of
timed strings s such that the computation of A over s
is an accepting computation. In the real world there
exist many systems that can be modeled using a time
dependent language. We try to identify such a lan-
guage from examples by using an RTA model and a
modified state merging algorithm.

4. Learning Real-Time Automata

Our algorithm for the identification of RTA A from a
timed sample S uses a framework similar to the red-
blue framework. In fact, if the algorithm is given an
untimed input sample (with all time values 0) then
its execution will be identical to an EDSM algorithm
using the red-blue framework.

Like a state merging algorithm, our algorithm starts
with an augmented prefix tree acceptor (APTA), see
Figure 1. Unlike a state merging algorithm, however,
each transition of the APTA has a delay guard, see
Figure 5. The initial values of the lower and upper
bounds all of these guards are set to the minimum
and maximum delay values respectively. These val-
ues can easily be obtained from the input sample.
Note that this allows for the possibility of inconsistent
states in the APTA. We can get rid of these inconsis-
tencies using a split operation:

Definition 4.1 A split s(d, t) of transition d, with clock
guard g = [t1, t2], at time t divides d into two new tran-
sitions d′ and d′′, with delay guards g′ = [t1, t] and
g′′ = [t + 1, t2] respectively. These new transitions have
the same label as d.

b
[1,2]b

[1,2]

b
[1,2]b

[1,1]

b
[1,2]b

[2,2]

Figure 6. A split of a part of the real-time APTA from Fig-
ure 5. On the left the original RTA is shown. The guard and
target node that are to be split are surrounded by a dashed
ellips. On the right the result of the split is shown. The split
is called using time value t = 1.

The change a split operation makes in the APTA is
determined by the future behavior of individual ex-
amples s from S. We call the suffix of s defining this
behavior a tail of s. In each node of the APTA we
maintain a set of these tails. A split divides this set
into two new sets: one with all tails with initial de-
lay values less than or equal to t and one with initial
delay values greater than t, see Figure 6.

After a split s(d, t) we need to change the APTA start-
ing from the node d pointed to. This node (and all
of its children) is replaced by two new nodes. These
nodes are the targets of the new transitions resulting
from the split. The children of the new nodes are
determined by the method used for the original con-
struction of the APTA, but now with the two tail sets
as input sample.2

The reason for using splits in order to deal with the
time information from the input sample is that we
want to use as much information as possible to de-
termine the bounds of delay guards. The amount of
inconsistencies in the TAPTA that are resolved by a
split operation gives us a great deal of this informa-
tion. The main problem we now have to solve is that
we need to find a good measure of the amount of con-
sistencies and inconsistencies in the APTA.

4.1. A Timed Evidence Value

We believe that a good heuristic should be based on
the evidence available to the algorithm. We achieve
this by calculating an evidence value (score) for the
result of each possible operation. The operation that
results in a partial solution that agrees most with the
available evidence is then chosen to be performed.

In our RTA identification algorithm we could sim-
ply use a score almost identical to EDSM. The only

2This can be implemented efficiently by reusing large
parts of the APTA structure starting from the node d
pointed to.

difference being that it has to deal with inconsistent
merges in addition to consistent merges. This score
can be something like the number of added consis-
tent merges minus the number of added conflicting
merges. Such a score, however, does not make use of
the time information that is available in the APTA in
the form of tails.

For instance, suppose we merge two states in the
APTA (in the determinization process), each with one
tail. We know that both tails start at the same red
node. Because of the red-blue framework, we know
that we are not going to change their initial execu-
tion. Also, due to the fact that they are merged in
the APTA, the untimed execution of both tails start-
ing from the red node is identical. Let the tails start-
ing from this red node onwards to be something like:
(a, 1)(b, 3)(c, 5) and (a, 2)(b, 3)(c, 4). These tails lie
close to each other in time and should get have a
higher impact on the score than say: (a, 1)(b, 3)(c, 5)
and (a, 5)(b, 6)(c, 7).

The intuition as to why we want these values to be
different is easy: tails that lie far away from each other
are more likely to be pulled apart by a future split op-
eration than tails that lie close to each other. Based on
this intuition, we define the timed distance between
two tails s and s′ as the probability that s and s′ are
not pulled apart if we were to choose a split point uni-
formely at random in each transition. Let t and t′ be
two delay values. The probability a uniformly chosen
split point divides t and t′ is calulated as follows:

P(t, t′) =
|t − t′|

tmax − tmin
(1)

Where tmax and tmin are the overall maximum and
minimum delay values repectively. Let t(s, i) be a
mapping that returns the time delay of s at index i.
The probability that two tails s and s′ are pulled apart
at or before index i when a split point is chosen at ev-
ery index is calculated as follows for i > 1:

P(s, s′, i) = P(s, s′, i− 1)+ (1−P(s, s′, i− 1))P(t(s, i), t(s′, i))
(2)

This function returns 0 if i is no index of s and
P(t(s, 1), t(s′, 1) if i = 1. Let B denote the set of
tails in one blue node. Our evidence value is deter-
mined by the amount of overlap within the tails of
each blue node. Two tails have a high amount of over-
lap if their untimed strings (obtained by removing all
timestamps) are identical and their probability of be-
ing pulled apart (at or before their final index) is low:

o(s, s′) =

{
P(s, s′, |s|) if UT(s) = UT(s′)
1 otherwise

(3)

Here UT(s) is a function that returns the untimed ver-
sion of s. Thus for each pair of tails (s, s′) we can ob-
tain a value between 0 and 1, which is close to 1 if s
and s′ almost certainly overlap, and close to 0 if they
almost certainly do not. Let l(s) be a mapping that
returns the label (true or false) of the example string s
is a suffix of. We define the consistency value of a tail
s to be the highest overlap value when paired with a
tail s′ with the same label:

c(s) = max({1− o(s, s′) | s, s′ ∈ B ∧ l(s) = l(s′)})
(4)

The inconsistency value of a tail is the highest of over-
lap values when paired with tail with a different label:

i(s) = max({1− o(s, s′) | s, s′ ∈ B ∧ l(s) 6= l(s′)})
(5)

Thus, instead of the EDSM score which is either 0 or 1
for each tail, we calculate two values between 0 and 1
for each tail. Let B be the set of all sets of tails in blue
nodes. We sum the consistency and inconsistency val-
ues over all tails in sets of tails in B and add them
to the amount of consistent merges in red nodes, de-
noted by RED MERGES to obtain the timed measure
we use:

score = RED MERGES + ∑
B∈B

∑
s∈B

c(s)− i(s) (6)

This measure is calculated for all merge, split and
color operations and the highest scoring operation is
performed. In the case of ties preference is given to
the operation that minimizes the total size of the RTA,
i.e. we use the preference order: merge, split, color. In
the often occurring case where two splits have identi-
cal scores, we choose the one that maximizes the size
of the smallest delay guard resulting from the split.
The intuition here is that we want to maximize the
amount of information in both delay guards. Since
then, if we have to perfom a second split to remove
an inconsistency, this second split will be based on a
fair amount of evidence.

4.2. The Algorithm

Our algorithm is a timed version of the EDSM algo-
rithm using the red-blue framework. In addition to

merging a blue node b, or coloring it red, it is capable
of splitting any transition d to a blue node b at any
time point t. Since we can obtain a minimal and max-
imal time value there is a finite amount of possible
splits.

Many of these splits have an identical and/or similar
result on the APTA. We can calculate these values effi-
ciently as follows. We obtain the time values of all the
tails in b, and store them in increasing order, result-
ing in a set (t1, t2, . . . , tn). We calculate the score of
every split (d, t) such that t = (ti + ti+1)/2 for some
0 < i < n. This can be computed efficiently because
each next split we try only changes the path of one
tail (or a few if their first delay value is identical and
thus cannot be split).

The merge and determinize operations of the DFA
identification algorithm are modified slightly to deal
with delay guards. Because of the clock guards, it is
possible that two nodes that should be merged have
different transitions, with different guards. Because
we use the red-blue framework, this will only be the
case when we merge a node b with a red node r. Also,
b will always still have its initial delay guards. Thus
we simply split b at exactly the same values as r be-
fore merging the two.

Due to our timed heuristic the operation of coloring a
blue node red can also get a positive score. This is due
to the way we count consistent merges in red nodes,
and because we evaluate a new set of tails. That is
why we calculate the score for every possible opera-
tion. We only disallow merges and colorings that cre-
ate inconsistencies in a red node. Algorithm 1 shows
the pseudo code of the main routine of our algorithm.

5. Testing

In order to test our algorithm we compared the results
with a straightforward approach for the same prob-
lem. This involves first sampling the data using some
fixed frequency, and then use a DFA learning algo-
rithm to learn the language of the sampled data. We
tested the solutions found by both approaches on the
size of the solution and the error made when asked
to label new data. In the two sections below we will
discuss our results.

5.1. Data

We created random data in order to test our algo-
rithm. We first created a random RTA, with a fixed
number of states, and a fixed number of split inter-
vals. The split intervals were generated by applying
the SPLIT routine to a randomly picked transition, us-

Algorithm 1 State merging and splitting for RTAs
Require: A timed input sample.
Ensure: The result is a small RTA that is consistent

with the input sample.
Construct the timed APTA from the input sample.
Color the root node red and all of its children blue.
while Some nodes are colored blue do

Evaluate all possible consistent merges, splits,
and colorings of blue nodes.
if A MERGE(r, b) scores highest then

Apply all splits of transitions in r to b.
Perform MERGE(r, b) and call DETERMINIZE().

end if
if A SPLIT(d, t) scores highest then

Perform SPLIT(d, t) (including the creation of
new nodes and children)

end if
if A COLOR(b) scores highest then

Perform COLOR(b).
end if
Color all uncolored children of red nodes blue.

end while
return The constructed RTA

ing a time value chosen uniformly between the upper
and lower bound of the guard of the transition. The
minimum and maximum time values are 0 and 10000.
Each state of the RTA has a chance of 0.5 to be a final
state. We disallowed the case that all or none states
were chosen to be final.

Next, we randomly generated different amounts of
timed strings: 50, 500, 1000, 2000, 5000, 10000, and
100000. For each symbol of a timed string we uni-
formly picked a value from the interval (0, 10000),
which we used as its time value. Each timed string
has a chance of 1

10 to stop in each state it visits (uni-
formly pick a random value v between 0 and 1, gen-
erate the next symbol only if v is greater then 1

10).
The label of each string was determined by the state
it ended in.

We generated these data sets for RTAs with 2, 4, 8, 16,
and 32 states. All RTAs had 3 different amounts of
splits: half, equal, and two times the amount of states
of the RTA. We ran our algorithm on the samples of
all sizes up to 100000, and used the 100000 sample
to evaluate the performance. We use the percentage
of correctly labeled new examples as an indicator for
the algorithm performance.

The RTA learning algorithm is an alternative to the
straightforward approach of first mapping the timed
input sample to an untimed input sample, and then to

learn a DFA from the untimed data. We sampled the
data using fixed sampling sizes: 100 and 1000. Thus,
for each symbol s, replace s with n untimed copies
of s, where n equals the delay of s divided by the
sampling size. We used normal rounding to get rid
of fractions.

It is interesting to compare the solutions found by
the RTA learning algorithm and a sampling approach.
For this, we ran a standard state merging algorithm
on the sampled datasets. The algorithm we tested is
the red-blue algorithm, which we downloaded from
the Abbadingo web-site. Figure 7 shows the result
of the red-blue learning algorithm when applied to
the sampled data compared to the results of the RTA
learning algorithm applied to the unsampled original
datasets.

5.2. Results

In the graphs in Figure 7 we can observe a couple of
things. First of all our timed state merging/splitting
algorithm seems to perform really well when com-
pared to a sampling method. Our algorithm is capa-
ble of achieving 80% of correctly classified new exam-
ples for RTAs up to 16 states and 8 splits (number 9 in
the graphs). Which shows that it is possible to apply
an algorithm such as ours to real-world problems.

Furthermore, the bad performance of the sampling
methods shows us the difficulty of the problems.
For larger sizes the sampling methods perform only
slightly better than flipping a fair coin to classify new
examples.

An interesting phenomenon is that for the perfor-
mance of the algorithm when given 10000 examples
is worse than when given 2000 examples. We are not
really sure why this happens. A possible explanation
could be that with more input, there are more pos-
sible splits and more states in the APTA. Because of
this, there are more ways in which the algorithm can
make a mistake. This is supported by the fact that the
sizes of the found solutions are also larger when there
are more examples in the input sample. Finding out
why this occurs, and what to do about it, is subject to
future work.

Another interesting result is that the sampling size
does not really seem to matter: the results for the two
sizes are almost identical. One would have expected
the more accurate method (size 100) to have a better
performance. But in most cases it even seems to per-
form slightly worse.

The amount of time it took to calculate all these re-
sults is nearly two weeks. But the results of our al-

gorithm only took a weekend to compute. Thus our
algorithm does not only obtain a better performance,
but it is also more efficient than the sampling method.

6. Conclusions and Future Work

We have described an identification algorithm for
real-time automata. These automata can be used to
model systems for which the time between consecu-
tive events is important for the system behavior. We
adaptated the state-merging algorithm for the identi-
fication of deterministic finite automata to the setting
of timed automata. To the best of our knowledge,
ours is the first algorithm that can identify a timed
automaton from a timed input sample. Our results
show that learning an RTA is a good idea when the
data is generated by a timed system.

In the future, we would like to generalize this al-
gorithm to probabilistic timed automata. Probabilis-
tic automata are equivalent to commonly used hid-
den Markov models (in the sense that they generate
the same distributions) (Dupont et al., 2005). Since a
probabilistic DFA defines a distribution over strings,
it is possible to learn a probabilistic DFA solely from
positive examples. This makes it easier to apply in a
real-world setting.

An adaptation of the state merging algorithm to the
problem of learning probabilistic DFAs from just pos-
itive examples is given in (Carrasco & Oncina, 1994).
In the probabilistic setting there is also some work on
learning timed systems. In (Sen et al., 2004), for exam-
ple, the state merging algorithm is adapted in order
to learn continuous-time Markov chains in the limit
with probability one. We would like to adapt our state
merging algorithm in a similar way to the problem of
learning a probabilistic RTA.

References
Alur, R. (1999). Timed automata. International Con-

ference on Computer-Aided Verification (pp. 8–22).
Springer-Verlag.

Bugalho, M., & Oliveira, A. L. (2005). Inference of
regular languages using state merging algorithms
with search. Pattern Recognition, 38, 1457–1467.

Carrasco, R., & Oncina, J. (1994). Learning stochas-
tic regular grammars by means of a state merging
method. Proceedings of the 2nd International Collo-
qium on Grammatical Inference (pp. 139–150).

Cassandras, C. G., & Lafortune, S. (1999). Introduc-
tion to discrete event systems, vol. 11 of The Kluwer In-

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

pr
ob

ab
ili

ty
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

n

problem number (increasing in size exponentially)

timed
sampled 100

sampled 1000

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

pr
ob

ab
ili

ty
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

n

problem number (increasing in size exponentially)

timed
sampled 100

sampled 1000

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

pr
ob

ab
ili

ty
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

n

problem number (increasing in size exponentially)

timed
sampled 100

sampled 1000

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

pr
ob

ab
ili

ty
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

n

problem number (increasing in size exponentially)

timed
sampled 100

sampled 1000

Figure 7. Results from our experiments. Each of the graphs shows the results obtained with different input sample sizes: 50
examples top-left, 500 examples top-right, 2000 examples bottom-left, and 10000 examples bottom-right. We do not show
the results of the sets with 1000 and 5000 examples because they are very similar to the results with 2000. The probability
that a new example is classified correctly (from a test set of 100000 examples) is shown for each of the tested problem
instances (5 of each size). The problem instances range from 2 states, with 1 split, to 32 states with 64 splits. All of the found
results are shown as points. The shown lines are the averages of these points.

ternational Series on Discrete Event Dynamic Systems.
Springer Verlag.

Dima, C. (2001). Real-time automata. Journal of Au-
tomata, Languages and Combinatorics, 6, 2–23.

Dupont, P., Denis, F., & Esposito, Y. (2005). Links be-
tween probabilistic automata and hidden markov
models: probability distributions, learning models
and induction algorithms. Pattern Recognition.

Grinchtein, O., Jonsson, B., & Petterson, P. (2006). In-
ference of event-recording automata using timed
decision trees. CONCUR (pp. 435–449). Springer.

Lang, K. J., Pearlmutter, B. A., & Price, R. A. (1998).
Results of the abbadingo one dfa learning compe-
tition and a new evidence-driven state merging al-
gorithm. ICGI. Springer.

Sen, K., Viswanathan, M., & Agha, G. (2004). Learn-
ing continuous time markov chains from sample
executions. Proceedings of the The Quantitative Eval-
uation of Systems (pp. 146–155).

Sipser, M. (1997). Introduction to the theory of computa-
tion. PWS Publishing.

Verwer, S., de Weerdt, M., & Witteveen, C. (2006).
Identifying an automaton model for timed data.
Proceedings of the BENELEARN (pp. 57–64).

