One-clock deterministic timed automata are
efficiently identifiable in the limit

Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen

Delft University of Technology
{S.E.Verwer, M.M.deWeerdt, C.Witteveen}@tudelft.nl

Abstract. We study the complexity of identifying (learning) timed au-
tomata in the limit from data. In previous work, we showed that in order
for timed automata to be efficiently identifiable in the limit, it is neces-
sary that they are deterministic and that they use at most one clock. In
this paper, we show this is also sufficient: we provide an algorithm that
identifies one-clock deterministic timed automata efficiently in the limit.

1 Introduction

Timed automata [1] (TAs) are finite state models that model timed events using
an explicit notion of time. They can be used to model and reason about real-time
systems [2]. In practice, however, the knowledge required to completely specify a
TA model is often insufficient. An alternative is to try to induce the specification
of a TA from observations. This approach is also known as inductive inference.
The idea behind inductive inference is that it is often easier to find examples of
the behavior of a real-time system than to specify the system in a direct way.
Inductive inference then provides a way to find a TA model that characterizes
the (behavior of the) real-time system that produced these examples.

In our case, we can monitor the occurrences of the events in a real-time
system. This results in a set of labeled (positive and negative) time stamped
event sequences. The exact problem we want to solve is to find the TA model that
(most likely) produced this data. This is called TA identification. Naturally, we
want to solve this problem in an efficient way, i.e., without requiring exponential
amounts of space or time.

Unfortunately, identifying a TA efficiently is difficult due to the fact that the
identification problem for non-timed deterministic finite state automata (DFAs)
from a finite data set is already NP-complete [3]. This property easily general-
izes to the problem of identifying a TA (by setting all time values to 0). Thus,
unless P = NP, a TA cannot be identified efficiently from finite data. Even
more troublesome is the fact that the DFA identification problem from finite
data cannot even be approximated within any polynomial [4]. Hence (since this
also generalizes), the TA identification problem from finite data is also inapprox-
imable. However, both of these results require that the input for the identification
problem is finite. While in normal decision problems this is very natural, in an
identification problem the amount of input data is somewhat arbitrary: more

data can be sampled if necessary. Therefore, it makes sense to study the be-
havior of an identification process when it is given more and more data. The
framework that studies this behavior is called identification in the limit [5].

The identifiability of many interesting models (or languages) have been stud-
ied within the framework of learning in the limit. For instance, DFAs have been
shown to be efficiently identifiable in the limit from labeled examples [6], but
non-deterministic finite state automata (NFAs) have been shown not to be effi-
ciently identifiable in this way [7]. Because of this, we restrict our attention to
deterministic timed automata (DTAs). Unfortunately, in previous work we have
shown that DTAs in general cannot be identified efficiently in the limit [8]. The
argument we used was based on the existence of DTAs such that languages of
these DTAs only contain examples of length exponential in the size of the DTA.
Therefore, if we intend to identify the full class of DTAs, we will sometimes
require an exponential amount of data in order to converge to the correct DTA.
However, this argument no longer holds if the DTAs contain at most one timed
component, known as a clock. In fact, in the same work, we even proved that the
length of the shortest string in the symmetric difference of two one-clock DTAs
(1-DTAs) can always be bounded by a polynomial. DTAs with this property are
called polynomially distinguishable. This is a very important property for identi-
fication purposes because to identify a model is basically to distinguish models
from each other based on examples. We have shown that this is a necessary
requirement for efficient identification in the limit [8].

In this paper, we provide an algorithm that identifies 1-DTAs efficiently in
the limit. The proof of convergence of this algorithm is based on the polynomial
distinguishability of 1-DTAs. The algorithm is an important step in the direc-
tion of being able to identify real-time systems efficiently. To the best of our
knowledge, our result is the first positive efficiency result for identifying timed
automata. Moreover, we do not know of any other algorithm that identifies the
complete structure of a timed automaton, including the clock resets.

The paper is organized as follows. We start with a brief introduction to 1-
DTAs (Section 2), and a formal explanation of efficient identifiability in the limit
(Section 3). We then describe our algorithm for identifying 1-DTAs (Section 4),
and give the sketch of a proof that it converges to the correct 1-DTA efficiently
in the limit(Section 5). We end our paper with some conclusions (Section 6).

2 Deterministic One-clock Timed Automata

A timed automaton (TA) [1] is an automaton that accepts (or generates) strings
with event-time value pairs, called timed strings. A timed string T over a finite
set of symbols X is a sequence (a1,t1)(ag,t2)... (an,t,) of symbol-time value
pairs (a;,t;) € X x N.! Each time value t; in a timed string represents the time
passed until the occurrence of symbol a; since the occurrence of the previous
symbol a;_1. We use 7; = (a1,%1) ... (a;,t;) to denote the prefix of length 4 of 7.

1 Sometimes R is used as a time domain for TAs. However, for identification of TAs
N is sufficient since, in practice, we always measure time using finite precision.

reset

Fig. 1. A deterministic one-clock timed automaton. The start state go is denoted by an
arrow pointing to it from nowhere. The final state g3 has two circles instead of one. The
arrows represent transitions. The labels, clock guards, and clock resets are specified for
every transition. When no guard is specified, the guard is always satisfied.

In TAs, timing conditions are added using a finite set X of clocks and one
clock guard on every transition. For the purpose of this paper, i.e., identifying
one-clock deterministic timed automata, we focus on the case where the TAs
are deterministic and contain at most a single clock. Such a TA is called a
deterministic one-clock timed automata (1-DTA). In TAs, valuation mappings
v : X — N are used to obtain the value of a clock x € X. Since we use only a
single clock x, we use v instead of v(x) to denote the value of z. Every transition
0 in a 1-TA contains a boolean value known as a reset value. When a transition
0 fires (or occurs), and the reset value of § is set to true, then the value of z is
set to 0, i.e., v := 0. In this way, z is used to record the time since the occurrence
of some specific event. Clock guards are then used to change the behavior of the
1-DTA depending on the value of x. A clock guard g = ¢ < z < ¢’ is a boolean
constraint on the value of z, where ¢ € N and ¢/ € NU {oo} are constants.? A
valuation v is said to satisfy a clock guard g, if whenever each occurrence of =
in g is replaced by v the resulting statement is true. A deterministic one-clock
timed automaton is defined as follows:

Definition 1. A deterministic one-clock timed automaton (1-DTA) is a tuple
A =(Q,x, X, A, qo, F), where Q is a finite set of states, x is a clock, X is a
finite set of symbols, A is a finite set of transitions, qq is the start state, and
F C Q is a set of final states.

A transition § € A is a tuple (q,q’,a,g,7), where q,q" € Q are the source and
target states, a € X is a symbol, called the transition label, g is a clock guard,
and r € {true, false} is a reset value. Since A is deterministic, for every source
state q € Q, every label a € X, and every valuation v € N, there exists at most
a single transition {(q,q',a,g,7) € A such that v satisfies g.

Figure 1 shows an example of a 1-DTA. Like a DFA, a 1-DTA moves from
state to state by firing state transitions § € A that connect these states. However,
in addition, a 1-DTA is capable of remaining in the same state ¢ for a while. While
doing so, the valuation v of its clock x increases. We call this action of staying in

2 Since we use the natural numbers to represent time open (z < c) and closed (z < ¢)
one-clock timed automata are equivalent.

the same state a time transition. A time transition of ¢ time units increases the
valuation v of x by ¢, i.e. v := v 4+ t. One can view a time transition as moving
from one timed state (g,v) to another timed state (¢, v + t) while remaining in
the same untimed state ¢q. The length ¢ of time transitions corresponds to the
time values in a timed string. More precisely, the occurrence of a timed symbol
(a,t) in a timed string means that before firing a transition ¢ labeled with a, the
1-DTA makes a time transition of ¢ time units. After such a time transition, ¢
can only fire if its guard g is satisfied by v + ¢. The exact behavior of a 1-DTA
is defined by what is called a run of a 1-DTA:

Definition 2. A (finite) Tun of a I-DTA A = (Q,z,X, A, q, F) over a
timed string T = (a1,t1)...(an,tn) is a sequence of timed states and transi-

tions (qo,v0) —= (q0,v0 + t1) = (q1,01) ++- (Gn-1,Vn-1) ~= (Gu1,Vn—1 +
tn) % (Gn,vn), such that for all 1 < i < n there exists a transition &; =
(Gi-1,¢i, a5y g,y € A such that v,y + t; satisfies g, vo = 0, and v; = 0 if
r = true, v; = v;_1 + t; otherwise.

In a run the subsequence (g;,v; + t) Ly (gi+1,vit1) represents a state
transition like in a finite automaton without time. When this occurs, the
timed string 7 is said to fire a transition § with valuation v; + ¢ to another

timed state (g;+1,vi+1). The time transitions of a 1-DTA are represented by

t; . . .
(qi,vi) —> (qs,v; + tiz1). We say that a timed string 7 reaches a timed state

(g,v) in a TA A if there exist two time values ¢ < ¢’ such that (g, v’) N (g, v'+1")
occurs somewhere in the run of A over 7 and v = v’ +¢. If a timed string reaches
a timed state (¢, v) in A for some valuation v, it also reaches the untimed state
q in A. A timed string ends in the last (timed) state it reaches, i.e., (¢n,vn)
or ¢n. Notice that timed states in 1-DTAs are similar to the (untimed) states
in DFAs: at any point during the run of a timed string 7, the state 7 ends in
depends on the current timed state and the remaining suffix of 7. A timed string
T is accepted by a 1-DTA A if 7 ends in a final state, i.e., if ¢, € F'. The set of
all strings 7 that are accepted by A is called the language L(A) of A.

Ezxample 1. Consider the TA A of Fig. 1. The run of A over the timed string 7 =
(av5)(a76)(a72)(bv 2) is given by: (QOaO) = (0,5) — (QMO) = (Q176) —
(g2,6) 2, (22,8) = (g2,0) 2 (q2,2) N (g3,2). Since g3 is a final state, it
holds that 7 € L(.A). Note that g3 cannot be reached directly after reaching go
from g¢;: the clock guard to go is satisfied by a valuation v greater than 4, while
the guard of the transition to g3 requires v to be less than 3.

3 Efficient identification in the limit

An identification process tries to find (learn) a model that explains a set of obser-
vations (data). The ultimate goal of such a process is to find a model equivalent
to the actual concept that was responsible for producing the observations, called

the target concept. In our case, we try to find a 1-DTA model A that is equivalent
to a target language Ly, i.e., L(A) = L;. If this is the case, we say that L; is
identified correctly. We try to find this model using labeled data: an input sample
S for L, is a pair of finite sets of positive examples Sy C L; and negative exam-
ples S_ C LY = {7 | 7 € L;}. We modify the non-strict set-inclusion operators
for input samples such that they operate on the positive and negative examples
separately, for example if S = (Sy,S_) and S’ = (S, 5") then S C S” means
S, C S’ and S_ C S’. In addition, by 7 € S we mean 7 € S; US_.

The input of our 1-DTA identification problem is a pair of finite sets. Unfor-
tunately, as we already mentioned in the introduction, the 1-DTA identification
problem is inapproximable. Because of this, we study the behavior of a 1-DTA
identification process that is given more and more data. The framework for
studying such a process is called identification in the limit [5]. In this frame-
work, we do not regard the complexity for any possible input sample .S, but for
any possible target language L;. For every target language L;, there exist many
possible input samples S. An identification process A is called efficient in the
limit (from polynomial time and data) if for any target language L;, A requires
time polynomial in the size of any input sample S for L;, and if the smallest
input sample S such that A converges to L; can be bounded by a polynomial in
the size of L;. The size of a target language L; is defined as the size of a smallest
model for L;. Efficient identifiability in the limit can be proved by showing the
existence of polynomial characteristic sets [7].

Definition 3. A characteristic set S¢s of a target language L, for an identifica-
tion algorithm A is an input sample (S, S_) for L; such that:

— given S.s as input, algorithm A identifies Ly, i.e., A returns an automaton
A such that L(A) = Ly, and
— given any input sample S’ O Sy as input, algorithm A still identifies Ly.

Definition 4. A class of automata C is efficiently identifiable in the limit if
there exist two polynomials p and q, and an algorithm A such that:

— given an input sample of sizen =) __g ||, A runs in time bounded by p(n),

— and for every target language Ly = L(A), A € C, there exists a characteristic
set Ses of Ly for A of size bounded by q(|Al).

In previous work [8], we showed that DTAs in general are not efficiently
identifiable. The argument we used was based on the fact that there exists DTAs
such that languages of these DTAs only contain examples (strings) of length
exponential in the size of the DTA. This was used to prove that DTAs are not
polynomaially distinguishable:

Definition 5. A class C' of automata is polynomially distinguishable if there
exists a polynomial function p, such that for any A, A" € C with L(A) # L(A’),
there exists a 7 € (L(A)UL(A"))\ (L(A) N L(A")), such that |7| < p(|A| + |A’]).

We have also shown that polynomial distinguishability is a necessary require-
ment for efficient identification [8]. Because of this, we cannot identify DTAs
efficiently. In addition, we have proved that 1-DTAs are polynomially distin-
guishable. Based on this result, we conjectured that 1-DTAs might be efficiently
identifiable in the limit. In the following sections, we prove this conjecture by
first describing an algorithm for identifying 1-DTAs. We then prove the conver-
gence of this algorithm, i.e., that it identifies 1-DTAs efficiently in the limit. This
proof is based on the polynomial distinguishability of 1-DTAs.

4 Identifying 1-DTAs efficiently in the limit

In this section, we describe our ID_1DTA algorithm for identifying 1-DTAs from
an input sample S. The main value of this algorithm is that:

— given any input sample S, ID_1DTA returns in polynomial time a 1-DTA A
that is consistent with S, i.e., such that S, C L(A) and S_ C L(A)°,

— and if S contains a characteristic subsample S.; for some target language
Ly, then ID_1DTA returns a correct 1-DTA A, i.e., such that L(A) = L;.

In other words, ID_1DTA identifies 1-DTAs efficiently in the limit. Note that, in a
1-DTA identification problem, the size of the 1-DTA is not predetermined. Hence,
our algorithm has to identify the complete structure of a 1-DTA, including states,
transitions, clock guards, and resets. Our algorithm identifies this structure one
transition at a time: it starts with an empty 1-DTA A, and whenever an identified
transition requires more states or additional transitions, these will be added to
A. In this way, ID_.1DTA builds the structure of A piece by piece. Since we claim
that ID_1DTA identifies 1-DTAs efficiently, i.e., from polynomial time and data,
we require that, for any input sample S for any target language L, the following
four properties hold for this identification process:

Property 1. Identifying a single transition § requires time polynomial in the
size of S (polynomial time per §).

Property 2. The number of such transition identifications is polynomial in the
size of S (convergence in polynomial time).

Property 3. For every transition §, there exists an input sample S.; of size
polynomial in the size of the smallest 1-DTA for L; such that when included
in S, S.s guarantees that ¢ is identified correctly (polynomial data per d).

Property 4. The number of such correct transition identifications that are re-
quired to return a 1-DTA A with L(A) = L, is polynomial in the size of the
smallest 1-DTA for L, (convergence from polynomial data) .

With these four properties in mind, we develop our ID_1DTA algorithm for the
efficient identification of 1-DTAs. Pseudo code of this algorithm is shown in
Algorithm 1. In this section, we use an illustrative example to show how this
algorithm identifies a single transition, and to give some intuition why the al-
gorithm satisfies these four properties. In the next section, we prove that our
algorithm indeed satisfies these four properties and thus prove that it identifies
1-DTAs efficiently in the limit.

a
10sxs®»
reset

Fig. 2. A partially identified 1-DTA. The transitions from state go have been completely
identified. State g1 only has one outgoing transition. State g2 has none.

Ezxample 2. Suppose that after having identified a few transitions, our algorithm
has constructed the (incomplete) 1-DTA A from Figure 2. Furthermore, suppose
that S contains the following timed strings: {(a,4)(a,6), (a,5)(d,6), (b, 3)(a, 2),
(a,4)(a,1)(a,3), (a,4)(a,2)(a,2)(b,3)} € S4 and {(a,3)(a,10), (a,4)(a,2)(a, 2),
(a,4)(a,3)(a,2)(b,3),(a,5)(a,3)} € S_. Our algorithm has to identify a new
transition § of A using information from S. There are a few possible identifiable
transitions: state ¢; does not yet contain any transitions with label b, or with
label a and valuations smaller than 9, and state ga does not yet contain any
transitions at all. Our algorithm first makes a choice which transition to identify,
i.e., it selects the source state, label, and valuations for a new transition. Then our
algorithm actually identifies the transition, i.e., it uses S in order to determine
the target state, clock guard, and reset of the transition.

As can be seen from the example, the first problem our algorithm has to
deal with is to determine which transition to identify. Our algorithm makes this
decision using a fixed predetermined order (independent of the input sample).
The order used by our algorithm is very straightforward: first a state ¢ is selected
in the order of identification (first identified first), second a transition label [is
selected in alphabetic order, and third the highest possible upper bound ¢’ for a
clock guard in this state-label combination is chosen. This fixed order makes it
easier to prove the existence of characteristic sets (satisfying property 3). In our
example, our algorithm will try to identify a transition § = (q,¢’,l,c < x <, r),
where ¢ = ¢q1,] = a, and ¢ = 9 (since there exists a transition with a clock guard
that is satisfied by a valuation v = 10) are all fixed. Thus, our algorithm only
needs to identify: (i) the target state ¢/, (ii) the lower bound of the clock guard
¢, and (iii) the clock reset 7.

Note that fixing ¢, a, and ¢’ in this way does not influence which transitions
will be identified by our algorithm. Since we need to identify a transition with
these values anyway, it only influences the order in which these transitions are
identified. We now show how our algorithm identifies ¢, r, and ¢'.

The lower bound c. Our algorithm first identifies the lower bound ¢ of the clock
guard g of §. The smallest possible lower bound for g is the smallest reachable
valuation vmin in ¢ (g1 in the example). This valuation v, is equal to the
smallest lower bound of a transition with g as target. In the example, vy, is

Algorithm 1 Efficiently learning 1-DTAs from polynomial data: ID_1DTA

Require: An input sample S = (S, 5_) for a language L., with alphabet X
Ensure: Aisa 1-DTA consistent with S, i.e. Sy C L(A) and S— C L(A)°, in addition,
if it holds that Scs C S, then L(A) = L
A= <Q = {qo},x,E,A = ®7q07F:®>
if St contains the empty timed string A then set F := {qo}
while there exist a reachable timed state (¢,v) and a symbol a for which there
exists no transition (g, ¢, a,g,r) € A such that v satisfies ¢ do
for all states ¢ € @ and symbols a € X do
Umin := min{v | (¢, v) is reachable }
¢ == max{v | =3{q,q',a,g,7) € A such that v satisfies g}
while vnin < ¢ do
create a new transition § := (¢,¢' := 0,a,g := Vmin <z < /,7), add § to A
V:={v|3r € S: 7 fires § with valuation v}
r := true and c; := lower_bound(d, V U {vmin }, 4, S)
r := false and ¢z := lower_bound(d, V U {vmin }, 4, S)
if c; <cz thenset r:=trueand g:=c; <z <¢
else set r :=false and g:=co <z < ¢
for every state ¢ € Q (first identified first) do

q/ = q//
if consistent(.A, S) is true then break else ¢’ := 0
end for
if ¢ =0 then
create a new state ¢”, set ¢/ := ¢”, and add ¢’ to Q
if 37 € S such that 7 ends in ¢’ then set F := F U {q'}
end if
¢ = min{v | v satisfies g} — 1
end while
end for

end while

4. Thus, the lower bound ¢ has to be a value with the set {¢ | vmin < ¢ < '}
One approach for finding ¢ would be to try all possible values from this set and
pick the best one. However, since time values are encoded in binary in the input
sample S, iterating over such a set is exponential in the size of these time values,
i.e., it is exponential in the size of S (contradicting property 1). This is why our
algorithm only tries those time values that are actually used by timed strings
from S. We determine these in the following way. We first set the lower bound
of g to be vyin. There are now examples in S that fire 0. The set of valuations
V' that these examples use to fire § are all possible lower bounds for g, i.e.,
V= {v |37 € S : 7 fires § with valuation v}. In our example, we have that
{(a,4)(a,1)(a,3)} € Sy and {(a,5)(a,3), (a,4)(a,2)(a,2)} C S_. In this case,
V={441=5,543=8,4+2 = 6}. Since for every time value in V' there exists
at least one timed string in S for every such time value, iterating over this set
is polynomial in the size of S (satisfying property 1).

From the set V' U{vmin } our algorithm selects the smallest possible consistent
lower bound. A lower bound is consistent if the 1-DTA resulting from identifying

this bound is consistent with the input sample S. A 1-DTA A is called consistent
if S contains no positive example that inevitably ends in the same state as a
negative example, i.e., if the result A can still be such that S, € L(A) and
S_ € L(A)€ (satisfying property 4). Whether A is consistent with S is checked
by testing whether there exist no two timed strings 7 € Sy and 7 € S_ that
reach the same timed state (possibly after making a partial time transition) and
afterwards their suffixes are identical. We use consistent to denote this check.
This check can clearly be done in polynomial time (satisfying property 1). Our
algorithm finds the smallest consistent lower bound by trying every possible
lower bound ¢ € V' U {vmin}, and testing whether the result is consistent. We
use lower_bound to denote this routine. This routine ensures that at least one
timed string from S will fire 6, and hence that our algorithm only identifies a
polynomial amount of transitions (satisfying property 2). In our example, setting
¢ to 5 makes A inconsistent since now both (a,4)(a, 1)(a,3) and (a,4)(a,2)(a, 2)
reach (¢',6), where ¢’ is any possible target for §, and afterwards they have the
same suffix (a,2). However, setting ¢ to 6 does not make A inconsistent. Since 6
is the smallest value in V U{vmin } greater than 5, ¢ = 6 is the smallest consistent
lower bound for g.

Our main reason for selecting the smallest consistent lower bound for g is that
this selection can be used to force our algorithm to make the correct identification
(required by property 3). Suppose that if our algorithm identifies ¢*, and if all
other identifications are correct, then the result A will be such that L(A) = L.
Hence, our algorithm should identify ¢*. In this case, there always exist examples
that result in an inconsistency when our algorithm selects any valuation smaller
than c¢*. The reason is that an example that fires § with valuation ¢* — 1 should
actually fire a different transition, to a different state, or with a different reset
value. Hence, the languages after firing these transitions are different. Therefore,
there would exist two timed strings 7 € L; and 7/ € LY (that can be included
in S) that have identical suffixes after firing 6 with valuations ¢* and ¢* — 1
respectively. Moreover, any pair of string that fire 6 with valuations greater or
equal to ¢* cannot lead to an inconsistency since their languages after firing 0
are the same.

The reset r. After having identified the lower bound c¢ of the clock guard g
of 4, our algorithm needs to identify the reset r of §. One may notice that the
identification of g depends on whether § contains a clock reset or not: the value of
r determines the valuations that are reached by timed strings after firing § (the
clock can be reset to 0), hence this value determines whether A is consistent
after trying a particular lower bound for g. In our example, (a,4)(a,1)(a,3)
and (a,4)(a,1)(a,2) reach (¢’,1) and (¢, 0) respectively before their suffixes are
identical if » = true. Because of this, our algorithm identifies the clock reset r of
& at the same time it identifies its clock guard g. The method it uses to identify
r is very simple: first set » = true and then find the smallest consistent lower
bound ¢; for g, then set r = false and find another such lower bound ¢; for g. The
value of r is set to true if and only if the lower bound found with this setting is
smaller than the other one, i.e., iff ¢; < co. There always exist timed strings that

ensure that the smallest consistent lower bound for g when the clock reset is set
incorrectly is larger than when it is set correctly (satisfying property 3). In our
example the timed strings that ensure this are (a,4)(a,2)(a,2)(b,3) € S; and
(a,4)(a,3)(a,2)(b,3) € S_. Because these examples reach the same valuations
in state ¢’ only if the clock is reset, they create an inconsistency when r is set
to true. In general, such strings always exists since the difference of 1 time value
is sufficient for such an inconsistency: a difference of 1 time value can always be
the difference between later satisfying and not satisfying some clock guard.?

The target state q'. Having identified both the clock guard and the reset of §, our
algorithm still needs to identify the target state ¢’ of §. Since we need to make
sure that our algorithm is capable of identifying any possible transition (required
by property 3), we need to try all possible settings for ¢/, and in order to make
it easier to prove the existence of a characteristic set (required by property 3),
we do so in a fixed order. The order our algorithm uses is the order in which our
algorithm identified the states, i.e., first qg, then the first additional identified
state, then the second, and so on. The target state for § is set to be the first
consistent target state in this order. In our example, we just try state qg, then
state g1, and finally state gs. When none of the currently identified states result
in a consistent 1-DTA A, the target is set to be a new state. This new state is
set to be a final state only if there exists a timed string in Sy that ends in it. It
should be clear that since the languages after reaching different states are dif-
ferent, there always exist timed strings that ensure that our algorithm identifies
the correct target (satisfying property 3). In our example, there exist no timed
strings that make A inconsistent when our algorithm tries the first state (state
qo), and hence our algorithm identifies a transition (g1, go, a,6 < < 9, false).

This completes the identification of § and (possibly) ¢’. This identification of
a single transition 0 essentially describes the main part of our algorithm (see
Algorithm 1). However, we still have to explain how our algorithm iterates over
the transitions it identifies. The algorithm consists of a main loop that iterates
in a fixed order over the possible source states and labels for new transitions.
For every combination of a source state ¢ and a label a, our algorithm first sets
two values: v, and ¢’. The first is the smallest reachable valuation in g. The
second is the fixed upper bound of the delay guard of a new transition. Because
our model is deterministic, this is set to be the largest reachable valuation for
which there exists no transition with ¢ as source state and a as label. After
identifying a transition § with these values, our algorithm updates ¢’ to be one
less than the lower bound of the clock guard of §. If ¢ is still greater than vy,
there are still transitions to identify for state ¢ and label a. Thus, our algorithm
iterates and continues this iteration until ¢’ is strictly less than vy;,. Our main
reason for adding this additional iteration is that it makes it easier to prove the

3 This holds unless the clock guard can only be satisfied by a single valuation v, i.e.,
unless g = ¢ < x < ¢. However, in this case any setting for r is correct since both
can lead to results such that L(A) — Ly.

convergence of our algorithm (property 4). The main loop of our algorithm con-
tinuously identifies new transitions and possibly new target states until there are
no more new transitions to identify, i.e., until there exists a transition for every
reachable timed state in A. This is necessary because identifying a transition &
can create new identifiable transitions. This happens when the smallest reach-
able valuation v, in some state is decreased, or when a new state is identified,
by the identification of 4.

5 Properties of the algorithm

We described an algorithm for the identification of 1-DTAs. We claim now,
and argued in the previous section, that the algorithm converges efficiently to
a correct 1-DTA, i.e., that it identifies 1-DTAs efficiently in the limit. In this
section, we show that the four properties mentioned in the previous section
hold. The combination of these properties satisfies all the constraints required
for efficient identification in the limit (Definition 4), and hence shows that 1-
DTAs are efficiently identifiable (Theorem 1). We only give sketches of proofs
due to space restrictions.

Proposition 1. ID_1DTA is a polynomial time algorithm (properties 1 and 2).

Proof. (sketch) Identifying a single transition can be done in polynomial time as
argued in the previous section. In addition, every transition is guaranteed to be
fired by at least one timed string from S. Hence, our algorithm will stop after
identifying a polynomial amount of transitions. The proposition follows.

Lemma 1. There exist polynomial characteristic sets of the transitions of 1-
DTAs for ID_IDTA (property 3).

Proof. (sketch) As shown by the example in the previous section, we can always
find a polynomial amount of timed strings such that our algorithm identifies
the correct transition ¢. In addition, we can bound each of these strings by a
polynomial since 1-DTAs are polynomially distinguishable. Moreover, because
the order in which our algorithm identifies transitions is independent of S, it
is impossible to add additional examples to S such that our algorithm will no
longer identify é. This proves the lemma.

Lemma 2. ID_IDTA converges after identifying a polynomial amount of tran-
sitions (property 4).

Proof. (sketch) Since 1-DTAs are polynomially distinguishable, any state can
be reached by timed strings 7 of polynomial length. Hence, the main loop will
be run at most |7| times before the smallest reachable valuation in any state
of A; can be reached. Once the smallest reachable valuation can be reached,
every transition can be identified. In a single run of the main loop, at most |.4;|
new correct transitions can be identified. Thus, our algorithm identifies at most
|7| % |A¢| transitions before every transition can be identified. By Lemma 1, our
algorithm is capable of identifying any possible transition correctly. Hence, every
transition of A, can be identified correctly after identifying |7| x |A;| transitions.

Theorem 1. 1-DTAs are efficiently identifiable in the limit.

Proof. By Proposition 1 and Lemma 2, if all the examples from Lemma 1 are
included in S, our algorithm returns a 1-DTA A such that L(A) = L; in poly-
nomial time and from polynomial data. We conclude that Algorithm 1 identifies
1-DTAs efficiently in the limit.

6 Conclusions

In this paper we described an algorithm that identifies 1-DTAs efficient in the
limit. This algorithm is an important step in the direction of being able to iden-
tify timed systems efficiently. To the best of our knowledge, our result is the first
positive efficiency result for identifying timed automata. The fact that 1-DTAs
can be identified efficiently has important consequences for anyone interested in
identifying timed systems. Most importantly, it is a reason to model timed sys-
tems with 1-DTAs. However, when 1-DTAs are too restrictive, our result is still
useful because identification algorithms for other DTAs could identify the class
of 1-DTAs efficiently. This is a desirable property since 1-DTAs are efficiently
identifiable. For instance, in related work, a query learning algorithm is described
for identifying event recording automata (ERAs) [9]. However, the used query
learning algorithm requires an exponential amount of queries (data). It would
be interesting to either adapt the timed query learning algorithm to the class of
1-DTAs, or to show that the algorithm does in fact identify 1-DTAs efficiently.
This could result in an efficient query learning algorithm for timed systems.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126 (1994) 183-235

2. Larsen, K.G., Petterson, P., Yi, W.: Uppaal in a nutshell. International journal on
software tools for technology transfer 1(1-2) (1997) 134-152

3. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37(3) (1978) 302-320

4. Pitt, L., Warmuth, M.: The minimum consistent DFA problem cannot be approxi-
mated within any polynomial. In: Annual ACM Symposium on Theory of Comput-
ing, ACM (1989) 421-432

5. Gold, E.M.: Language identification in the limit. Information and Control 10(5)
(1967) 447-474

6. Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time. In:
Pattern Recognition and Image Analysis. Volume 1 of Series in Machine Perception
and Artificial Intelligence. World Scientific (1992) 49-61

7. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Machine
Learning 27(2) (1997) 125-138

8. Verwer, S., de Weerdt, M., Witteveen, C.: Polynomial distinguishability of timed
automata. In: ICGI. Volume 5278 of LNAI, Springer (2008) 238-251

9. Grinchtein, O., Jonsson, B., Petterson, P.: Inference of event-recording automata
using timed decision trees. In CONCUR. Volume 4137 of LNCS, Springer (2006)
435-449

