Automatic Recognition of Context and Stress to Support Knowledge Workers

Saskia Koldijk1,3, Wessel Kraaij1,3, Mark Neerincx2,3
1RU Nijmegen, 2TU Delft, 3TNO; The Netherlands

Problem

Stressed worker
- Knowledge workers get overwhelmed by information, work under high demands and often have a fragmented way of working due to interruptions.
- Consequence: Well-being at work can be declined, which may finally result in burn-out.

Goal

Happy worker
- Feeling in control, having energy, feeling good about oneself, getting everything done, better coping in stressful situations...

Approach
- Computer as means to address well-being at work.
- Much information about the user’s context or state can be captured.
- The computer can provide feedback and support that is optimally adapted to the current situation and state of the user.

Requirements
- Ease of use and requiring little or no attention from the user.
- Capturing information from a network of relatively cheap and simple sensors.
- Personalized privacy that is understandable for the user.
- Just-in-time process and reason about the captured parameters as well as to provide feedback in real-time.
- Machine learning algorithms adapting to the specific user and personalization of the tool.

How?
- Self-coaching/self-management is supported.
- Tool helps to understand activity patterns and their health consequences in a longitudinal context.
- Tool is an instrument for behavioral change.

1) Data from sensors
- Computer logging
- Camera, Kinect
- Body sensors, etc.

2) Recognizing Context & User State

3) Providing Feedback & Support

Different kinds of feedback will be tested:
- **Mirror** E.g. show overview of tasks performed.
- **Judge** E.g. too much switching in the morning.
- **Help** E.g. tip: try to focus on one task.
- **Intervene** E.g. irrelevant e-mails will be blocked.

Example of feedback

Machine learning will be used to infer different aspects of context and user state from various sensors.