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Preface

This thesis is the result of nearly 10 years of study, work, and fun at the University of
Nijmegen. In 1987 I started my study Informatics at the Faculty of Mathematics and
Natural Sciences, not knowing exactly what Informatics was but feeling it had a great
future. Four years later, however, I had found out that I was fascinated by the ability
of the computer to perform certain tasks that are (nearly) impossible to be executed by
human beings. A good example of such a task is the classification of multi-dimensional
feature vectors, which I studied extensively during my Master’s research period at the
Biophysics Laboratory of the University Hospital of Nijmegen. Therefore it is no wonder
that, after a brief intermezzo in the military service, I took up a related subject, i.e. the
decomposition of mixed pixels, as the basis of my PhD research.

When I started my PhD research in January 1994, this time at the Faculty of Mathe-
matics and Informatics, times were quite turbulent. The Computing Science Institute had
just gotten a new structure, the professor leading Informatics for Technical Applications—
my to be promoter—had just left, and on top of that there was no clear project descrip-
tion. Following the advice of my supervisor Theo Schouten, I took the PhD thesis of Ron
Schoenmakerst as a starting point and identified some open ends in his approach. One of
the problems of his segmentation methodology for large optical satellite images was the
handling of mixed pixels. Since these pixels each cover parts of several objects, it is not
only difficult but also incorrect to assign them to a single segment or class. In an attempt
to solve this problem I developed the decomposition technique described in Chapter 3,
before finding out that many other and simpler (but less accurate) methods had already
been proposed. After this, combining decomposition with Ron’s segmentation approach
was relatively straightforward, although many problems specific to the processing of mixed
pixels emerged on the way and had to be solved.

Now this thesis is nearly finished—the Informatics department has meanwhile become
part of the Faculty of Natural Sciences, Mathematics and Informatics—it is time to thank
the people who have contributed to this thesis in one way or the other. First and foremost
I would like to thank my supervisor and co-promoter Theo Schouten, who has been a
stronghold throughout my period as a PhD student. He was never too busy to answer my
questions or read and comment on my articles, reports and chapters of this manuscript.
Together we did a lot of research on various mixed pixel subjects, which resulted in several
chapters of this thesis as well as numerous publications [34, 35, 36, 37, 38, 39, 93, 94, 95],
and I can only hope that my work inspired him as much as his work inspired me. I am also
indebted to Jeff Settle, who voluntarily read the article I sent him and made some valuable
suggestions, which led to the improved decomposition method described in Chapter 3 as
well as a joint article [39]. Likewise, I want to thank Zheng Kai Liu for the pleasant
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collaboration with Theo and me, which resulted in Chapter 4 and a joint article [95], as
well as Hubert Voogd, Jeroen Melchiors, and Ron Grazier, whose Master’s projects were
directly related to this dissertation; especially Ron’s contribution—see Chapter 5—has
been significant. Equally valuable was the contribution of my promoter Frits Vaandrager,
who, although the subject of this thesis is not his speciality, read the entire manuscript
minutely and provided a lot of useful comments and advice. Last but not least I would
like to thank my brother Edwin klein Gebbinck for designing the front cover, even though
he was busy writing his own PhD thesis at the same time. “Bedankt jongen, nou jij nog.”

Apart from the people who contributed directly to this thesis, I also want to express
my thanks to those who supported me in any way and made the task of writing this
thesis somewhat lighter. First of all I want to thank my parents Ton en Aleid for the
unconditional love and support they gave me. “Nu ga ik aan een echte baan beginnen.” I
am also grateful to my colleagues of Informatics for Technical Applications, Frits, Marieke,
Mariélle, Marco, Ansgar, David, Bart, André, Angelika, and Jan S, those of the Real-time
Systems era, Theo, Louis, Mirese, Frans, Huub, Hanno, Hans, John, Jeroen, and Jan V.,
as as well as Toine Tax for providing a pleasant working atmosphere. In particular I
want to thank Louis “Dr. Loe” Vuurpijl, with whom I shared an office for the first two
years. Everybody who heard one of our conversations in our own style, listened to one
of our songs with our own lyrics, or saw the way we encouraged our computers to work
faster, must have thought we were completely nuts. In any case, Loe, it was great fun
having you around and you motivated me a lot to finish my thesis quickly. Also thanks
to Albert, Paul K., and Paul J. for their interesting company at the lunch table, and to
Joost, my oldest friend in Nijmegen, who never stops to surprise me. Besides work I also
spent a lot of time at the Nijmegen student athletics club 't Haasje, either following the
mawo-, S4-, or S2-training or participating in one of the relay races during the weekend.
Many thanks to Joski, Dirk, Janneke, Cheriel, Jasmijn, Kim, Werner, Ernest, Sander,
Leonie, Ursula, Jan L., Wilco, Lonneke, Rinus, Paulien, Mieke, Sandra, Yvonne, Jerry,
Rob, and all others I forgot to mention. Also thanks to the “mietjes” of the survival
group, Aloys “Flying Al”, Gaby “Haile Gebre” and Arthur “Attoe el Toro”; boys, it was
fun running through the forest carrying tree-stems and watching the astonished faces of
innocent passers-by. Furthermore I want to thank Engelbert, Robert, and Reinaud for the
interesting conversations we had after our S4-training, drinking a few “bokjes”, or during
one of our monthly S4-meals. Special thanks to Engelbert, with whom I did a lot of S2-
training to prepare for the marathons of Eindhoven and Terschelling. Together we must
have explored every forest trail for 10 miles around Nijmegen, which was an unforgettable
experience. Finally, I want to thank my closest friends, Harvey, René, Remy, Vincent,
Karel, Kees and Marco, also known as “de Jongens van Van Zanten”, “de harde kern”, “de
white-nighters”, “de super-harde-white-night-zuipkern”, “de Nijmegen kern”, or whatever
name is used nowadays. Although they caused me a lot of headaches by taking me to “De
Fuik” on Sunday evenings or to “Basje” on arbitrary working days, frequently distracted
me from work by calling me for no reason or sending me silly e-mails, and they definitely
did not contribute anything to this thesis whatsoever, life would have been not nearly as
joyful without them. “Vrienden, bedankt, enne, over 2 jaar ben ik weer terug.”

Ispra, August 30, 1998 Maurice klein Gebbinck
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Chapter 1

Introduction

In this chapter the scientific motivation for writing—and hopefully also for reading—this
thesis is given. First it is explained why area estimation of agricultural fields is so im-
portant. Next, after a brief introduction to the subject of remote sensing in Section 1.2,
some basic image classification principles upon which area estimation is normally based
are described. In addition, Section 1.3 explains why the classification approach fails to give
an accurate area estimation when dealing with mixed pixels. In the last section, finally,
the aims of this thesis are formally stated and the contents of and relationships between
the remaining chapters are summarised.

1.1 Area estimation of agricultural fields

For the European Union (EU), it is of great importance to be able to estimate the area
of an agricultural field in order to manage its agricultural subsidy system. Under this
system, which was introduced by McSharry in 1992, farmers can apply for an income
subsidy, whose height is based on the type and acreage of the crops they grow. This
way, approximately 75 billion guilders ($ 37,000,000,000) is paid to farmers throughout
the EU every year [16]. It is estimated that about 5 billion guilders of this sum is paid
wrongly because of applications that were filled out incorrectly [16]. One possibility to
commit fraud, for example, is to list the crop type of a field as cole-seed, which is heavily
subsidised but is not very profitable, while in fact potatoes, which are not subsidised but
return a reasonable profit, are grown. More often, however, a farmer either deliberately
or accidentally overestimates the area of (some of) his agricultural fields, for instance by
including the surrounding ditches. To reduce the huge amount of money spent on incorrect
applications, a reasonable fraction of the subsidy claims must be checked. In order to do
so, an accurate estimation of the area covered by each crop grown by the farmer under
observation is required.

Apart from combating fraud, the field area estimates can also be used for budget control.
By summing the area of all fields of a particular crop over an entire region, a forecast of
the total yield per crop can be made. Based on this forecast, the height of the subsidy for
each crop type can be determined, and the amount of money that has to be spent on these
subsidies can be predicted. Therefore, an accurate estimation of the area of an agricultural
field is necessary for the management of the EU’s agricultural subsidy system.
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In order to operate effectively, the crop area estimation has to be automated. According
to the McSharry regulation, the member states are obliged to check at least 5% of all
subsidy claims [4]. Since the EU counts approximately 6 million farmers, this task is too
large to be carried out by human inspectors on site [16]. A further complication is that on
many of the 150 million parcels that are in use several crops are grown in succession each
year, making a regular inspection necessary. To cope with these problems, the EU has
opted for an automated system based on satellite remote sensing to support the inspectors
in their task. Since each remotely sensed image covers a large region, many claims can be
investigated in a relatively cost-effective way; only those fields that are marked for possible
fraud need to be visited by an inspector, who performs the final check. Furthermore, the
inspection can be performed regularly because the satellite passes over the same area on
a frequent basis. It is because of these properties that an automated system based on
satellite remote sensing is ideally suited for crop area estimation.

1.2 Introduction to remote sensing

The field of remote sensing is very broad and has been described from many angles by
numerous authors, e.g. Campbell [19], Lillesand and Kiefer [66], and Sabins [88]. In his
book, Campbell tried to identify the central concepts of remote sensing and came up with
the following definition:

Remote sensing is the practice of deriving information about the earth’s land
and water surfaces using images acquired from an overhead perspective, using
electromagnetic radiation in one or more regions of the electromagnetic spec-
trum, reflected or emitted from the earth’s surface.

Although this definition certainly does not cover all areas (e.g. meteorological or extra-
terrestrial remote sensing), it does serve well as a description of remote sensing in this
thesis. In the remainder of this section, several of the above principles will be explained
and some additional concepts necessary to understand this thesis will be introduced.

As stated above, remote sensing makes use of electromagnetic radiation. The strongest
and best-known source of electromagnetic radiation is our sun, which emits radiation over
the entire electromagnetic spectrum—see Table 1.1. Besides this natural source of illumi-
nation, which is used for passive remote sensing, it is also possible to use an artificial source
of electromagnetic radiation, in which case we speak of active remote sensing. When the
radiation reaches the surface of the earth, part of it will be reflected. Another part will be
absorbed and subsequently emitted, mainly in the form of thermal (far infrared) energy.
The fraction of the irradiance that is reflected (or absorbed and re-emitted) is dependent
on the wavelength and differs for each material, as is illustrated in Figure 1.1. By measur-
ing the amount of electromagnetic radiation that is reflected or emitted and comparing it
to the spectral reflectance curves of known materials, information about the earth’s land
and water surfaces can be derived.

To measure the reflected and emitted radiation, usually an imaging scanner aboard
an airplane or satellite is used. Basically, the two types of passive imaging scanners that
exist are the mechanical scanner and the pushbroom scanner. The mechanical scanner
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Division Wavelengths
Gamma rays <0.03 nm
X-rays 0.03-3.0 nm
Ultraviolet 3.0-380 nm
Visible 0.38-0.72 pym
Blue 0.4-0.5 pm
Green 0.5-0.6 pm
Red 0.6-0.7 um
Infrared 0.72-1000 pm
Near infrared 0.72-1.30 pm
Mid infrared } reflected 1.30-3.00 pm
Far infrared emitted 3.00-1000 pm
Microwave 0.1-30 cm
Radio >30 cm

Table 1.1: Principal divisions of the electromagnetic spectrum (Campbell [19], corrected).

vegetation

spectral reflectance

0.5 0.6 0.7 0.8 0.9 1.0 1.1
wavelength (um)

Figure 1.1: Generalised spectral reflectance curves for three different materials (adopted
from Schowengerdt [98]).
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Figure 1.2: A multispectral mechanical scanner uses a scan mirror to direct the radiation
inside the instantaneous field of view towards a spectrometer. Here, the incoming enerqgy
1s dispersed into a spectrum and led to detectors that are sensitive to specific wavelength
bands. Rotation of the scan mirror moves the IFOV across-track, while the along-track
movement is provided by the platform motion (after Sabins [88]).

uses a scan mirror to direct the surface radiation onto an electronic detector, taking a
measurement at regular intervals. Figure 1.2 shows an example of a multispectral mechan-
ical scanner. The pushbroom scanner uses a linear array of detectors—usually CCDs'—to
take a number of measurements simultaneously. Apart from these across-track readings,
both scanners also take measurements in the along-track direction, which is defined by the
platform’s motion. With some effort, this two-dimensional grid of measurements can be
transformed to a digital image consisting of picture elements or pizels. Not only do the
corresponding ground locations of the measurements have to be corrected due to factors
like the earth’s curvature and irregular movements of the scan mirror and the platform
(geometric corrections), but the measurements themselves must also be corrected for at-
mospheric and sensor effects (radiometric corrections). The resolution of the resulting
image or series of images, which expresses the level of fine detail that can be distinguished,
has four aspects. The spatial resolution is the ground area that is represented by a single
pixel; this area is approximately equal to the geometrical projection of a single detector
element at the earth’s surface, which is sometimes called the instantaneous field of view
(IFOV). The radiometric resolution is defined by the number brightness levels that can
be distinguished and is dependent on the number of bits into which each measurement is
quantified. The spectral resolution denotes the width of the wavelength interval at which
the electromagnetic radiation is recorded. If a multispectral (e.g. Thematic Mapper) or
hyperspectral scanner (e.g. AVIRIS) is used, which take measurements in a few up to

! Charge-Coupled Device.



1.3 Classification of mixed pixels

Scanner ™ AVHRRY? AVIRIS®

Platform Landsat-4/5 NOAA%7/9/11/12/14 NASA® ER-2
satellite satellite airplane

Scene coverage  185x170 km? 2399x4752 km? 11x10 km?

Image size 6167x5667 pixels 2048x4320 pixels 614x512 pixels
Resolution
e spatial 30230 m? / 1.121.1 km? 20220 m?
e radiometric 8 bits 10 bits 12 bits
e temporal 16 days 12 hours not applicable
e spectral band 1: 0.45-0.52 yum  band 1: 0.58-0.86 pm 224 bands,

band 2: 0.52-0.60 pm
band 3: 0.63-0.69 pm
band 4: 0.76-0.90 pm
band 5: 1.55-1.75 um

band 2: 0.73-1.10 pym
band 3: 3.55-3.93 pum
band 4: 10.3-11.3 pm
band 5: 11.5-12.5 pm

each 10 nm wide,
over 0.38-2.45 pym

band 6: 10.4-12.5 pum
band 7: 2.08-2.35 pm

“Thematic Mapper.

bAdvanced Very High Resolution Radiometer, Local Area Coverage (LAC) mode.
¢Airborne Visible InfraRed Imaging Spectrometer.

INational Oceanic and Atmospheric Administration

¢National Aeronautics and Space Administration

fSpatial resolution of band 6 is 1202120 m?.

Table 1.2: Characteristics of a few well-known scanners.
differ for other models carried by different platforms.

The exact specifications may

several hundreds of spectral bands, the spectral resolution may well not be unique (c.f.
TM bands 3 and 4). The temporal resolution, finally, only applies to time series of images
and describes how long the interval between two successive recordings of the same scene is.
In case the scanner is carried by a satellite, the temporal resolution is determined by the
satellite’s orbit. The characteristics of a few well-known scanners are listed in Table 1.2.

1.3 Classification of mixed pixels

The most direct approach towards crop area estimation is to classify the remotely sensed
image and count the number of pixels per class over the region of interest. Although more
refined methods utilising confusion matrices or regression correction exist, see Gallego et
al. [32] for an overview, they all need an initial estimation of the number of pixels per crop.
Therefore, in Section 1.3.1 a brief description of image classification is given; Section 1.3.2
explains why this method does not work for mixed pixels.

1.3.1 Image classification

A well-known way to extract information from an image is classification, which is the
process of assigning pixels to classes (Campbell [19]). As was explained in the previous
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section, each pixel (picture element) represents a series of measurements in several spectral
bands of the reflectance from a particular ground area. Many of these pixels form groups
because they have a uniform brightness in their several spectral bands. These groups
are called spectral classes and are each characterised by a spectral signature, which is
the reflectance typical for that class. By assigning each pixel to the class whose spectral
signature it resembles most, a classification of the entire image is obtained. However,
instead of a pixel’s spectral class, a user is more interested in the informational class a
pixel belongs to. Whereas spectral classes obviously are inherent to an image, informational
classes are defined by the user and represent the categories of interest, e.g. crop types in
this thesis. Only if it is possible to define links between the spectral classes in the image
and the informational classes that are of primary interest, then the image forms a valuable
source of information [19].

A useful distinction between classification strategies is the one between supervised and
unsupervised classification. Unsupervised classification attempts to identify the spectral
classes in the image based on the premise that pixels within a given class should be close
together in the measurement space, whereas pixels in different classes should be compar-
atively well separated [90]. One of the more common methods based on this principle
is K-means clustering (e.g. see Bishop [13]). Although this procedure requires virtually
no human intervention, the analyst must supply a mapping between the spectral and the
informational classes afterwards, which, due to natural variations within a class as well as
variations in illumination, usually matches several spectral classes with a single informa-
tional class. Supervised classification, on the other hand, demands much more interaction
with the analyst. During the training or calibration stage, the analyst has to define regions
on the image that are known—either through fieldwork or because of expert knowledge—to
represent certain informational classes. Each of these training areas must be homogeneous
with respect to one class, and together the regions must cover the entire range of variability
within each information category. Therefore, often subclasses are introduced (e.g. green
grass and dry grass), which is related to the aggregation of spectral classes after unsu-
pervised classification. In the subsequent classification stage, all pixels are assigned to the
informational (sub)classes they resemble most. A good example of supervised classification
is mazimum likelihood classification, which is further explained in Appendix A.

The accuracy of a classifier can be improved by including the spatial context of a
pixel in the classification process. Usually a pixel is assigned to a class solely based on
its values measured in the separate spectral bands. This pizel-based strategy, however,
often results in misclassifications because it is very sensitive to noise and within-class
variation. As an alternative, more complex classifiers consider a pixel in the context of
its neighbourhood, just like a human interpreter does. This approach allows to take the
texture—patterns of brightness formed by adjacent pixels—of the landscape into account
as well. When dealing with objects like agricultural fields, field-based classification can
be successfully applied (see for instance Ait Belaid et al. [3] or Schotten et al. [91]). This
type of classifier first needs to determine the field boundaries, either through segmentation
of the image (Schoenmakers [90]) or, more directly, by using the geometrical data in a
geographical information system (GIS) (Janssen [54]). Next, all pixels belonging to one
field are assigned to the same class based on the average reflectance or the majority of the
class labels found after classifying the individual pixels. Furthermore, the object can be
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classified using other features that can be calculated, such as size, shape, and orientation
(Stakenborg [106]). Thus, by using a combination of spatial information and domain
knowledge, the classification accuracy can be improved.

1.3.2 The mixed pixel problem

In every remotely sensed image, a considerable number of mixed pixels is present. A
mixed pizel is a picture element representing an area occupied by more than one ground
cover type. Basically, there are two situations in which mixed pixels occur. The first
case concerns the pixels that are located at the edges of large objects like agricultural
fields, for instance. The second case arises when objects are imaged that are relatively
small compared to the spatial resolution of the scanner. This can be long linear features
such as rivers or highways, but also objects that are small in both dimensions such as
farms or ponds, or even bushes in the sparsely vegetated semi-arid rangelands of Australia
(see Pech [79]). For a given scanner, the number of mixed pixels greatly depends on the
landscape that is imaged. Irons et al. [52] reported proportions of probable mixed pixels
in TM-images ranging from 29.6% for the category water to 68.3% for grass patches, while
Schoenmakers [90] claimed that in some Mediterranean countries of the EU, where the
average field size is small, the proportion of mixed pixels can easily be as high as 30%.
These figures indicate that mixed pixels have a significant influence on the information
that can be derived.

(Classification of mixed pixels leads to errors that make the subsequent area estimation
inaccurate. These errors are caused by the premise of classification that all pixels are pure,
i.e. consisting of a single ground cover type, while in fact they are not. The resulting
problems are twofold:

1. The mixed pixel is assigned to one class only, while in fact it belongs to two or more
classes. As a result, the direct area estimates acquired by pixel counting will be
inaccurate. Suppose for instance that a pixel is composed of class A for 60% and
class B for 40%. The best decision a classifier can make is to categorise the pixel as
class A. However, this decision will lead to an overestimation of the area of A of 0.4
pixel and an equally large underestimation of the area of class B.

2. The mixed pixel may no longer match any of the spectral signatures of the categories
present. Even worse, the mixed reflectances of class A and B may resemble the
spectral signature of a totally different category C that is not even present within
the pixel—see Figure 1.3. In this case, which is a case of spectral confusion, the area
of both A and B is underestimated, while the area of C is overestimated.

Although it may seem that the above errors diminish the area estimation accuracy only
marginally, one should remember that the number of mixed pixels can be very large.
Furthermore, it must be noted that both sources of error are systematic instead of random.
Suppose for instance that the variation within class A is larger than the variation within
class B. Since most classifiers take the within-class variation into account, pixels composed
of 75% B and 25% A may well be assigned to class A instead of class B. As a result, the
area of A is overestimated much more often than the area of B, which leads to severely
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pure A

Figure 1.3: Spectral confusion caused by mizing of ground cover types. The two pure
pizels of category A and B are classified correctly as they are best represented by their class
distribution. The mized pixel is misclassified because its reflectance better resembles the
spectral signature of the third category C than that of A or B (after Campbell [19]).

inaccurate area estimates in case two agricultural fields of crops A and B are adjacent.
Spectral confusion only adds to this problem as many mixed pixels composed of A and B
will be allocated to class C, but the area of a pure pixel belonging to C will never be
divided between classes A and B. Therefore, classification of mixed pixels is inappropriate
for area estimation because the many small errors that are made do not cancel each other
out but, when aggregated, lead to serious overestimation of the area of certain crop types,
while the area of others will be underestimated.

The mixed pixel problem is not solved simply by increasing the spatial resolution. In
general, the proportion of mixed pixels decreases as the spatial resolution becomes finer,
for the smaller pixel size allows more pure pixels to be fit within the object boundaries.
In some cases, however, the proportion of mixed pixels can actually increase because the
finer detail resolves features not recorded before, thus introducing new spectral classes
(Campbell [19]). For example, the image of a forested area, which seemed uniform at
coarse resolution, may display individual trees of different species interspersed with open
spaces at finer resolution (Woodcock and Strahler [114]). But even if the spectral classes
remain the same and the proportion of mixed pixels decreases, the classification results
can still deteriorate (Markham and Townshend [67], Irons et al. [52]). The main reason for
this effect is that at finer resolutions the within-class variation increases as local differences
in humidity, elevation, illumination, etc. become more apparent. Another reason is that
the increase in spatial resolution usually is achieved at the expense of the spectral or
radiometric resolution, because the reduction in received energy due to a smaller IFOV
must be compensated for, e.g. by broadening the spectral band at which the reflectance
is measured. A further disadvantage of fine spatial resolution is that the number of pixels
can become very large, which adds to the costs of processing. Together with the fact that
there is a growing interest in data of global coverage recorded on more and smaller spectral
bands, new scanners may be designed to have coarser rather than finer spatial resolution.
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1.4 Overview of this thesis

In this section an overview of this thesis is given. Section 1.4.1 briefly describes the history
of remote sensing and how this thesis relates to previous developments. Next, Section 1.4.2
explains what goals are aimed at and Section 1.4.3 indicates how these goals have been
accomplished by summarising the structure of the remaining chapters.

1.4.1 Historical context

In the early days of remote sensing the earth’s surface was recorded using photography,
at first (1858) from a captive balloon but later (1910) from an airplane. This data was
analysed initially by visual examination of prints and transparencies, but with the intro-
duction of the computer just after the Second World War digital image analysis became
possible as well (at least in theory). It was not until the launch of the first Landsat satellite
in 1972, however, that digital remote sensing data of large regions of the earth’s surface
became routinely available to a wide range of research institutes, which greatly increased
the interest in and development of digital image analysis techniques.

Over the last decades, numerous algorithms to extract ground cover information from
remotely sensed images have been designed. Being a well-known statistical technique in
other scientific disciplines, (pixel-based) classification was the first method to be applied
to the multispectral digital image data. In 1975, Kettig and Landgrebe [62] introduced
a field-based classification approach called ECHO as a means to reduce the number of
misclassifications due to sensor noise and within-field variation. Since then, many similar
methods using a pixel’s spatial context have been proposed, but pixel-based classification
is still an important tool nowadays. Because the mixed pixel problem cannot be solved
using classification, Horwitz et al. [51] developed an alternative, decomposition technique,
which attempts to estimate the abundances of the ground cover types a mixed pixel is
composed of. Although this method was proposed already in 1971, it was not followed
up to any great degree until the mid 1980s, when Smith et al. [103] and Adams et al. [2]
used it for their geological applications. From then on, interest in spectral unmixing
has greatly increased, which resulted in a wide variety of decomposition techniques and
application areas. New developments in sensor technology like coarser spatial resolution
to achieve global coverage (AVHRR) and finer spectral resolution to record the material
characteristics more accurately (AVIRIS) increase the necessity for and possibilities of
decomposition, respectively, which only amounts to a further growth of its popularity. For
a more detailed overview of related work we refer to the introduction of later chapters in
general and the whole of Chapter 2 in particular.

This thesis deals with the use of decomposition for area estimation of agricultural fields.
In many aspects it is a follow-up to the thesis of Schoenmakers [90], who, in the frame
of the EU programme Monitoring Agriculture with Remote Sensing (MARS), developed a
hybrid segmentation method based on a pure pixel model as part of a system to distinguish,
identify, and measure the area of crops of significant importance. With the institution of
the McSharry agricultural subsidy system in 1993, however, it became more important
to get an accurate estimation of the area of an agricultural field instead of the crop area
over a larger region, which revealed the necessity of using a mixed pixel model. Quarmby
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et al. [82] already demonstrated that decomposition can be applied for local crop area
estimation with good results, but only on a per pixel basis. In this thesis decomposition is
combined with aspects borrowed from field-based classification regarding the use of spatial
information to improve the area estimates. In addition, a new mixture model is introduced
that is better suited for the decomposition of mixed pixels in agricultural scenes. On top
of this, several smaller issues related to decomposition are addressed, while keeping the
requirements of hyperspectral remote sensing in mind.

1.4.2 Objectives

The aims of this thesis are twofold. On the one hand, we attempt to solve a specific,
technical problem related to the area estimation of agricultural fields. On the other hand,
we pursue a more general, scientific goal regarding the processing of mixed pixels.

Specific goal

The main objective of this thesis can best be explained by looking at the problems that
were identified previously. As was described in the first section, it is of importance to
be able to estimate the area of an agricultural field with relatively high accuracy. The
usual approach of classifying all pixels and counting the number of pixels per crop is rather
inaccurate because of the errors that are introduced by the classification of mixed pixels.
Alternatively, decomposition techniques can be applied, after which a mixed pixel can be
assigned to several categories proportionally to the fraction of its area covered by each
class. The overall improvement of the field area estimates that can be achieved with this
decomposition approach is difficult to predict since this varies with the number of mixed
pixels present, which in turn depends on fabric of the landscape (viz. the average field
size). An estimate of the improved accuracy per mixed pixel, however, can be calculated
as follows. Suppose classification always assigns a mixed pixel to the class with the highest
proportion. Since most mixed pixels lie on the boundary of two agricultural field and hence
consist of only two classes, the proportion of the pixel’s area that is assigned incorrectly
is uniformly distributed between 0% and 50%, giving an average error of 25% per mixed
pixel. Therefore, the main objective of this dissertation can be stated as follows:

The primary aim of this thesis is to develop a method for the area estimation of
agricultural fields that makes use of mixed pizel decomposition to improve the
accuracy of a similar method based on classification with 25% per mized pixel.

Since another advantage of decomposition is that due to its mixed pixel model it is less
susceptible to spectral confusion than classification, an even better performance may be
achieved. The magnitude of this additional improvement in accuracy, however, cannot be
predicted as it depends on the spectral signatures of the classes and the precise topography
of the agricultural fields in the scene.

General goal

Although this thesis is primarily focused on estimating the area of agricultural fields, most
of the techniques and procedures developed can also be applied for other purposes. A
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very similar application, for instance, is the estimation of the forested area in develop-
ing countries to monitor the rate of deforestation (Cross et al. [23]). Some examples of
applications that are related more distantly are the estimation of the amount of sparse
(woodland) vegetation in semi-arid regions (Pech et al. [79], Williamson [112]) or deserts
(Smith et al. [104]), the estimation of water-sediment concentrations (Mertes et al. [73],
Novo and Shimabukuro [77]), and the estimation of mineral abundances (Drake and Set-
tle [24], Thomson and Salisbury [110], Bryant [18]). However, since the objects of interest
in these cases are much smaller than a single pixel, only the general decomposition tech-
niques can be used and not the methods that utilise spatial information based on knowledge
of the agricultural domain. Apart from images acquired through satellite remote sensing,
the techniques suggested in this thesis may also be applied to industrial images (e.g. to
check the production of IC bodies [37]) or medical imagery (e.g. to estimate the amount
of tumour tissue), provided that certain conditions regarding the class distributions and
the mixing process are fulfilled. Therefore, this dissertation also serves a second purpose:

Furthermore, this thesis aims at providing a deeper knowledge about the pro-
cessing of mized pizels in general by developing and comparing mizture models
as well as methods for mixed pixel detection, decomposition, and related tasks,
relatively independent of the specific application and type of imagery used.

1.4.3 Outline

This thesis consists of two parts, preceded and concluded by a separate chapter. This first
chapter serves as an introduction and describes the problem to be solved. The last chapter
(Chapter 8) summarises the conclusions and gives some directions for future work.

In Part I, several existing as well as new methods for the decomposition of mixed pixels
are discussed. In Chapter 2, the well-known linear mixture model and some of its solutions
are described, as well as some other decomposition methods found in the literature. Sec-
tion 2.2.10 briefly discusses the use of neural networks, which is a relatively new approach;
research on this subject carried out in cooperation with Theo Schouten has been published
previously in [93] and [94]. Next, Chapter 3 introduces a new variant on the (statistical)
linear mixture model that has a better physical foundation, especially when agricultural
fields are concerned. The basic idea behind this model was first presented at the 2nd Eu-
ropean Symposium on Remote Sensing [34], while a joint paper with Theo Schouten and
Jeff Settle covering the entire chapter has been submitted to the International Journal of
Remote Sensing [39]. Chapter 4, finally, ties up some loose ends concerning decomposition
methods based on the linear mixture model. The first section of this chapter discusses
some ways to restrict the set of solutions to the ones that are physically sound, while the
other section deals with some existing as well as new techniques to derive endmembers—
a concept of the linear mixture model that is closely related to notion of class (spectral)
signatures—directly from the remotely sensed image. The novel approaches to both topics,
which were the result of a joint project with Theo Schouten, Zhengkai Liu, and S.W. Chen,
have been published previously in [95]. Nearly all of the methods presented in this part
can be used for any type of area estimation application needing high accuracy.

The second part aims specifically at the area estimation of agricultural fields. Chapter 5,
which in part is based on the Master’s project of Ron Grazier [44], discusses two techniques
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Figure 1.4: Thesis structure, leading to a recommended order to read the chapters.

that use spatial information to distinguish mixed pixels from pure pixels. Chapter 6 is the
heart of this thesis because it describes a method to make an accurate estimation of the
area of an agricultural field. The basis of this method is an agricultural scene model
that can be used to determine endmember distributions and probable components of a
mixed pixel from the image itself, thus facilitating an accurate decomposition. This work
has previously been reported in [35]. In Chapter 7, finally, this method and three other
methods are applied to artificial images in order to analyse and compare their performance
quantitatively. Furthermore, an experiment using a real remotely sensed image is described
by which the conclusions based on the experiment with artificial images can be verified.
Both experiments have been published as CSl-reports [35, 36], while a joint paper with
Theo Schouten combining this chapter and Chapter 6 has been accepted for publication
(subject to revision) in the International Journal of Remote Sensing [38]. Although the
methods presented in this part are designed specifically to estimate the area of agricultural
fields, they may also be applicable when estimating the area of other large objects. An
example of such an (industrial) application, which is not included in this thesis, has been
reported in [37].

The way this thesis is structured leads to a natural reading order of the chapters, which
is shown in Figure 1.4. If, after going through the introduction, the reader only wants to
get an idea about the way a well-known decomposition method works, he or she should
read (the first part of) Chapter 2 before turning to the concluding chapter. The more
interested reader, however, may also want to study any of the Chapters 3—4. If looking
for a method to estimate the area of large objects like agricultural fields, one should also
read Chapters 5-7; reading this last chapter, however, is optional as it describes two case
studies that prove the effectiveness of the area estimation method proposed.
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Chapter 2

Methods to decompose mixed pixels

The decomposition of a mixed pixel entails the unmixing of that pixel to find the properties
of its original components; usually, however, only the proportion of the area covered by each
component is derived as the single property of interest. For this purpose, several methods
have been developed over the last few decades. The best-known technique is linear mixture
modelling, which is explained in Section 2.1. A selection of some other methods that were
proposed is described in Section 2.2.

2.1 Linear mixture modelling

Linear mixture modelling is the most widely used method for extracting compositional
information from remotely sensed images containing many mixed pixels. For instance,
it was used to eliminate the effects of topography and illumination in Viking Lander 1
images (Adams et al. [2]); to find porphyry copper deposits (Drake and Settle [24]); to
measure tropical forest cover (Cross et al. [23]); and to estimate the area of agricultural
crops (Quarmby et al. [82]). Furthermore, it has been applied in numerous other studies
estimating the coverage by rangeland vegetation, snow, and urban ground cover types
(e.g. [79, 104, 86, 41]). The linear mixture model on which this technique is based is
described in Section 2.1.1; Section 2.1.2 explains how this model is used to estimate a
mixed pixel’s proportions.

2.1.1 The statistical linear mixture model

The linear mizture model relates the spectral signature of a combination of a number of
classes within the IFOV to the signatures of the individual classes. It was introduced
by Horwitz et al. [51] in 1971 as a means to increase the crop area estimation accuracy
achieved by standard processing techniques. They assume that a resolution cell, i.e. the
ground area defined by the IFOV, contains many small objects (elements) belonging to ¢
different classes. The spectral signature of each class i is taken to be an n-dimensional
Gaussian distribution with mean m; and variance-covariance matrix N;, where n is equal
to the number of spectral bands the scanner takes measurements at. Now suppose that a
resolution cell contains elements of class ¢ only, which are represented by random variables
with mean m; and variance-covariance matrix IN7. If the number of such elements present

15
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reflectance in band 2

reflectance in band 1

Figure 2.1: Spectral signatures according to the linear mixture model. The two-
dimensional feature space shows the composite mean m(f) in the middle—f = (0.5,0.5)7 —
of the two class means my; and ms. The solid ellipses represent the various variance-
covariance matrices by showing the points at a certain (Mahalanobis) distance; the dotted
ellipses show the points at four and nine times this distance to m(f).

within the resolution cell is equal to a;, then

m; = aqm;

79

*
Ni = &iNia

and (2.1)

provided that the variables are statistically independent. Next, assume that the propor-
tions of the object classes within a resolution cell are defined by f = (fy, ..., fC)T and that
consequently the number of elements of class 7 is f;a;. As a result, the composite signature
of the objects will be given by:

i=1 =1

N(f) = ZfiaiN: = Zszz (2.4)
i=1 i=1

The latter equation only holds if the random variables associated with elements from
different classes are statistically independent as well. Assuming that the conditions for
the central limit theorem are satisfied, we can consider Equations 2.3 and 2.4 as the mean
vector and variance-covariance matrix, respectively, of a distribution that is multivariate
normal—see Figure 2.1. Thus, the composite signature of a combination of classes can be
described in terms of the signatures of the individual classes.

The validity of the linear mixture model depends on the type of application. As de-
scribed in the previous paragraph, the model is based on the assumption that the ran-
dom variables associated with the elements are statistically independent. With regards to
ground cover applications, Settle and Drake [99] translate this prerequisite to the condition
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that the amount of multiple scattering between the different ground cover types must be
negligible, i.e. (nearly) all photons reaching the scanner’s sensor have interacted with just
one cover type. According to Campbell [19, p. 405], this situation arises when the resolu-
tion cell contains two or more surfaces occurring in patches that are large relative to the
sensor’s resolution. On the other hand, if the component surfaces occur in highly dispersed
patterns, mixing is likely to be nonlinear since the probability that radiation is scattered
by one cover type and subsequently reflected by another cover type before arriving at the
sensor is much higher. When dealing with mixed pixels that occur at the boundaries of
agricultural fields, the resolution cell is usually covered by only two or three component
surfaces. Therefore, as far as the application described in this thesis is concerned, the
linear mixture model appears to be a good abstraction of the mixing process.

2.1.2 Decomposition based on the statistical model

Mixed pixels can be decomposed by inverting the statistical model described previously.
To this end, the linear mixture model is usually rewritten in matrix-vector notation:

x = Mf +e. (2.5)

If the number of spectral bands and ground cover types are given again by n and c respec-
tively, then x represents an nxz1 pixel vector or multispectral observation, while, as before,
f denotes the cx1 fractions vector with the proportions of the different ground cover types.
Each column of (nzc) matrix M contains the spectrum of a so-called endmember, which is
the reflectance typical for a resolution cell containing nothing but the cover type of interest.
According to Section 2.1.1, the i-th endmember spectrum is equal to the mean vector m;
of class i, but there exist some other views as well—see Section 4.2 for a more elaborate
description of image endmembers and their extraction. The (nz1) error vector e, finally, is
used to model the statistical fluctuations around the mean value m(f)=Mf and is assumed
to have a multivariate normal distribution with a zero mean and variance-covariance ma-
trix N(f). The mizing equations defined by Equation (2.5) are usually accompanied by two
constraints that are obvious in the model of Section 2.1.1, but which should be satisfied
explicitly when estimating f. The sum-to-one constraint is that a pixel is well-defined by
its components, whose proportions should therefore add up to unity:

Zfi =1. (2.6)

The other constraint that should be satisfied is the positivity constraint, which says that
no component of a mixed pixel can make a negative contribution:

fi>0 for i=1,...,c (2.7)

Satisfaction of the latter constraint is often difficult and may require some specialised
techniques (see Section 4.1). Together, the mixing equations and the constraints describe
a model that must be solved! for each mixed pixel that is to be decomposed, i.e. given x
and M, one has to determine f and e subject to (2.5)—(2.7).

'In this thesis, solving a model means solving the system of equations described by the model.
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An important characteristic of a decomposition method is the criterion that determines
which solution of the linear mixture model is optimal. Suppose that all endmember spec-
tra are linearly independent of each other and consider the system of equations defined by
Equations (2.5) and (2.6) (note that (2.7) is an inequality and not an equation). If the
error vector e is disregarded, then this system of n+1 linear equations in ¢ unknowns—the
fi—has infinitely many solutions if ¢>n+1, exactly one solution if c=n+1, and at most
one solution if c<n+1. To provide a general solution in the last case, error vectors unequal
to zero have to be allowed, which results in an infinity of solutions again (c+n>n+1). In
contrast to the previous underdetermined system (¢>n+1), however, it is possible to iden-
tify a solution that is optimal in some sense based on the value of the error vector e. The
solution that is selected following the popular maximum likelihood approach is the combi-
nation of fractions and error vector that has the highest probability. Since e is assumed to
have a multivariate normal distribution with a zero mean and variance-covariance matrix
N(f), the most probable solution is the one that minimises

T (N(£))""e + In [N(£)| = (x — Mf)T(N(£)) " (x — MF) + In [N(f)| (2.8)

(c.f. Equation (A.4), the criterion used for maximum likelihood classification). In this
equation, In |[N(f)| denotes the natural logarithm of the determinant of N(f), while the
other term represents the Mahalanobis distance between pixel x and point Mf. Thus,
among the infinitely many solutions for the linear mixture model, the maximum likelihood
approach is able to identify the single, most probable alternative.

Although the maximum likelihood criterion determines which of the solutions is more
probable, it does not say how these solutions can be found. Basically, there are two ways
to solve the equations of the linear mixture model: brute force and mathematical analysis.

Brute force approximation

The brute force approach is conceptually the least complex as it simply searches the en-
tire solution space. For every f that satisfies the sum-to-one and positivity constraint,
the corresponding error vector e and variance-covariance matrix N(f) are calculated, and
Equation (2.8) is evaluated; the f that minimises this cost function is taken as the fractions
vector of x. Obviously, this approach leads to an approximation of the optimal f because
the solution space is searched taking discrete steps. Furthermore, it has a considerable
computational complexity: if the sampling rate, which equals the reciprocal of the step
size, is denoted by 7, the maximum likelihood criterion has to be evaluated in the order
of r*~! times. By varying the sampling rate, the accuracy of the approximation can be
traded off against computational costs.

This method can well be illustrated using convexr geometry principles for an n-dimen-
sional feature space. According to these principles, all linear combinations of ¢ endmembers
whose proportions sum to one are contained in the (¢c—1)-dimensional subspace spanned by
those endmembers; if the proportions are also non-negative, the space is further restricted
to the simplex defined by the endmembers. The brute force approach is to apply systematic
sampling of this simplex in order to determine the point p that is closest to pixel x. The
proportions vector corresponding to p is subsequently adopted as the proportions vector
of x. Figure 2.2 shows a simple example with two endmembers in a two-dimensional space.
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reflectance in band 2

reflectance in band 1

Figure 2.2: Maximum likelihood solution of the statistical linear mizture model. In this
two-dimensional feature space, linear combinations of endmembers my and msy satisfying
the sum-to-one constraint occupy the dashed line; those that satisfy the positivity constraint
as well lte on mymy. To find the optimal solution, point p is moved along mimsy until
the Mahalanobis distance from pizel x to p (plus a log-term) is minimal. The resulting
fractions vector £ equals (Aa/( A1 + A2), A1/ (A1 + X)) T

Analytic approximation

Finding the minimum of the maximum likelihood cost function using mathematical analysis
is difficult because the variance-covariance matrix N(f) depends on the fractions vector.
However, if all matrices N; are equal to a common matrix N, then a closed expression
can be derived. Fortunately, as Horwitz et al. convincingly argued [51], N(f) can be
approximated by the mean variance-covariance matrix

1 c
> (2.9)

without much loss of accuracy, as long as the dispersion of the endmembers is relatively
large compared to the within-class variation of the individual ground cover types. Now
the minimum of Equation (2.8) can be calculated by setting the partial derivatives with
respect to each f; to zero, which gives the unconstrained estimator

f,=UM’N~'x where U= (M"N"'"M)". (2.10)

If the sum-to-one constraint is imposed, then a standard Lagrangian analysis gives a slightly
different solution (Settle and Drake [99)):

f=f+a <1 — 1Tf0) Ul, where a= (1TU1)_1 (2.11)

and 1 denotes the (¢x1) vector consisting entirely of ones. Satisfaction of the positivity con-
straint cannot be achieved with a similar transformation, but requires some post-processing
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of the initial estimate or an alternative approach to solve the model’s equations—see Sec-
tion 4.1. The simplest post-processing approach is to set any negative proportions to zero
and renormalise the fractions vector. Although this method may cause some extra loss of
accuracy, the computational costs are so low that it is often applied. Together, the simple
matrix-vector operations of Equation (2.11) and the fast renormalisation method provide
a near-optimal solution of the linear mixture model that can be calculated efficiently.

2.2 Other decomposition methods

Apart from the linear mixture modelling approach explained in the previous section, nu-
merous other techniques have been described in the literature. Some of these methods are
based on complex non-linear reflectance models derived from the structure of specific plants
(e.g. Borel and Gerstl [14], Ray and Murray [83], Jasinski [55]); they will not be considered
in this thesis. Another approach that will not be discussed is the use of vegetation indices,
which are used to measure biomass; as their ability to discriminate between different crop
types is limited and their application in general is restricted to pure instead of mixed pix-
els (but see Kerdiles and Grondona [60]), vegetation indices are considered unsuitable for
mixed pixel decomposition. What remains is a collection of in some cases closely related
techniques, which are mainly based on classic statistical principles; a selection of these
methods is briefly described in Sections 2.2.1 to 2.2.10.

2.2.1 Simple weighted averaging

The weighted averaging method introduced by Marsh et al. [68] is a simplified version of
the linear mixture modelling approach. It models a mixed pixel as a linear mixture of only
two components, thus resulting in the following well-known mixing equations:

xT; = flmil + (1 — fl)mig for 1= ]_, NN IS (212)

Since Equation (2.12) contains only one unknown (f;), the exact solution can easily be
calculated:

fi= e (2.13)
My — M2

Satisfaction of the positivity constraint is achieved by forcing f;=0 if the estimate is
negative, and f;=1 if the estimate is greater than one. The method computes a separate
proportion estimate in each spectral band, which may well be different from the estimates in
the other n—1 bands. In general, the band with the largest dispersion of the endmembers
relative to the within-class variation will yield the best estimate. However, a reliable
decision regarding the band that gives the most accurate results can only be made when
the correct proportions of a number of calibration pixels are known.

2.2.2 Simple linear regression

A classic statistical technique to find the relation between two (or more) variables is linear
regression. Marsh et al. [68] applied it to unmix pixels consisting of two components, using
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Figure 2.3: The simple linear regression approach fits a line to a set of calibration samples
such that these pizels are approzimated best. Based on the slope 31; and the intercept [ ;
of the line, the unknown proportions of other pizels can be estimated (see Equation (2.15)).

the following model:
2= Boq+ Prafi for i=1,... n. (2.14)

Richardson et al. [84] used a similar model with an extra term (5, f> to describe mixtures
of three components. The coefficients y; and 3, are found by calculating the intercept
and the slope, respectively, of the line that gives the best representation of a number of
calibration pixels—see Figure 2.3. Once (y; and (3, ; have been determined, the proportion
of class 1 can easily be calculated according to

P Ly — ﬁo,z'

fi="5t (2.15)

This equation coincides with Equation (2.13)—the simple weighted averaging estimator—if
Boi = mye and (1; = m;; — m;2, which indicates that the linear regression approach in
fact is a method to determine the endmember spectra; therefore, this technique will be
discussed in more depth in Section 4.2.3.

2.2.3 Linear discriminant analysis

Discriminant analysis is another classic statistical technique, which traditionally is used
for classification purposes. When dealing with two classes, this method transforms a mul-
tivariate set of measurements—the pixel—into a single discriminant value, which is related
to the likelihood of that pixel belonging to a particular class. While standard linear dis-
criminant analysis uses only the sign of the discriminant value to determine a pixel’s class,
Marsh et al. [68] proposed to use the magnitude of the value as well in order to determine
the proportions of the classes a mixed pixel is composed of. The estimator they suggest is
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Figure 2.4: Proportions estimated using linear discriminant analysis. The solid line is
the azis of the function 0.5(d(x,mz) — d(x,my)); left of the dotted line this function is
positive, and pixels will be assigned to class 1 during classification. The dashed arcs show a
projection of the M-distances (N = 1) between x and the class means, with point p lying in
the middle. According to Figure 2.2, the fraction fi of p can be calculated as {d(x, ms) —
0.5(d(x, ms) + d(x,m;) — d(my, my))}/d(mg, m;), which reduces to Equation (2.16).

a transformed version of the discriminant function d(x, my) — d(x, my):

d(X, mg) — d(X, ml)

fi=05+0.5 (2.16)

d(mg, ml)

where d represents the Mahalanobis distance function d(p,q) = (p — q)’N~}(p — q) and
N is the pooled variance-covariance matrix accounting for statistical noise. Projection of
the discriminant value divided by 2 onto a line joining the class means m; and ms shows
that this method in fact determines a point p, which lies in the middle of the projected
Mahalanobis distances to m; and ms, and estimates the proportions of x by calculating
the proportions of p—see Figure 2.4. A generalisation of this method to the three-class
case was considered by Foschi [31].

2.2.4 Fuzzy classification

The fuzzy classification method proposed by Wang [111] and slightly modified by Maselli
et al. [69] is an extension of the well-known maximum likelihood classification technique
(see Appendix A). Analogous to the linear discriminant analysis estimator presented in
the previous section, this method does not merely use the relative order of the class-specific
probabilities, it also utilises their actual values to determine the proportions of the classes
that make up the mixed pixel. In a fuzzy representation, each pixel is described by a group
of membership grades which indicate the degree of similarity or strength of membership
to the classes considered. Just like the class proportions, the fuzzy membership function
values must be positive and sum to one for each pixel. The basic assumption of the
fuzzy approach is that membership grades are informative about the subpixel components.
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Maselli et al. take a membership grade function that is equal to the posterior probability
p(k|x) of a pixel x belonging to a class k and show that in their study the membership
grades relate directly to the class proportions with surprising accuracy. According to the
Bayesian theorem, therefore,

p(k)p(x|k)
> iy p(0)p(xli)’

where the class-specific probabilities p(x|i), which are also calculated during maximum
likelihood classification, are given by

fi = plklx) = (2.17)

p(x]i) = 277"/ N, |72 exp(—1 (x — m;) TNy (x — my,)). (2.18)

The prior probabilities p(i) represent the likelihood that a pixel belongs to class i without
taking the pixel vector itself into consideration. A simple way to determine them is to
calculate the proportion of pixels of class ¢ in a training set representative for the entire
scene. Maselli et al., however, compute different prior probabilities for each pixel using
frequency histograms derived from training sets with good results.

2.2.5 Fuzzy c-means

Similar to fuzzy classification, the fuzzy c-means approach (Foody and Cox [29], Foody [25],
Atkinson et al. [7]) is also based on fuzzy set theory. The algorithm partitions the data
in the feature space into ¢ fuzzy groups or classes, where a fuzzy c-means partition U of p
pixels is defined by:

U= {uzk\uzk € [0, 1], Zi:l Uik > O, 1= 1, R O Z(;:l Uik = 1, k= 1, Ce ,p}. (219)

The membership grades wu;; associated with each pixel k are not directly related to the
class-specific probabilities as in Section 2.2.4, but are chosen such that

Z Z(Uik)qd(xlm m;) (2.20)

k=1 i=1

is minimal. In this equation, d(xy, m;) represents the Mahalanobis distance between the
k-th pixel and endmember i, and ¢ is a weighing parameter that indicates the degree
of fuzziness; when g=1, a conventional classification is obtained, while a greater value,
for instance in the range 1.5-3.0 which has been used in most studies, yields a truly
fuzzy classification. The actual algorithm to minimise Equation (2.20) was described by
Bezdek et al. [12] and will not be repeated here for reasons of brevity. Furthermore, the
equations to calculate class fractions from membership grades, which due to the more
complex definition of the membership function no longer share a 1:1 relationship, will not
be given either. Foody and Cox [29] use linear regression to derive this relationship for
each class separately. Since this well-known statistical technique is also described in other
parts of this thesis, the reader is referred to Sections 2.2.2 and 4.2.3 for an explanation.
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2.2.6 Relaxation

Arai and Terayama [5] proposed a decomposition method that takes compositional in-
formation about neighbouring pixels into account. Their approach was motivated by the
observation that segments of linear features such as roads often consist of mixed pixels with
a similar composition (e.g. 50% road, 20% left-hand side field, 30% right-hand side field).
By relazring an initial estimation of the proportions using the proportions of a neighbouring
pixel, a better estimate is obtained. Assuming the linear mixture model with an identity
variance-covariance matrix, the following expression is to be minimised:

(x — Mf)'(x — Mf) +r(f —g)"(f — g). (2.21)

In the above equation, the cx1 vector g represents the fractions of a connected pixel, and r
is a constraint factor that determines the strength of the relaxation effect. Setting to zero
the derivative of Equation (2.21) with respect to f gives the unconstrained estimator

f =M™ +UTU) "M%, where U=1-g17; (2.22)

I and 1 denote the (czc) identity matrix and a (czl) vector consisting entirely of ones,
respectively. The optimal value of the constraint factor » depends on the true composition
of the pixel—since this is to be estimated, the proportions of the neighbouring pixel can
be taken as a candidate mixture—and the Euclidean distance to the neighbouring pixel
in feature space. Obviously, r should be decreased (i.e. the relaxation effect should be
lessened) as the distance between the pixels increases, because greater differences in spec-
tral reflectance probably mean that the underlying compositions are less similar as well.
To provide a fast mechanism for determining r, Arai and Terayama use a look-up table
showing the optimum r for all combinations of possible mixtures and Euclidean distances;
unfortunately, their article [5] does not describe how to determine this table exactly.

2.2.7 Regularisation

The reqularisation technique suggested by Settle and Drake (Settle and Drake [99], Drake
and Settle [24]) also modifies the linear mixture modelling approach to accommodate for a
favoured mixture. The motivation for modifying the standard method is that it fits both
the data and the noise contained in each pixel to the model. Although this provides the
best proportions estimate of each individual pixel, aggregating these estimates does not
necessarily result in the best estimation of the composition of an entire region. Since the
aggregated estimate is expected to contain a certain amount noise anyway, the individual
estimates may be directed towards some favoured mixture g as long as the noise level in
the overall estimate remains the same. To achieve the desired solution,

(x — Mf)'N"Hx — Mf) + Af —g)' (f — g) (2.23)

with A being a Lagrangian multiplier must be minimised; compared to the relaxation
method described in Section 2.2.6, this expression is more general as it includes a variance-
covariance matrix IN that does not need to be equal to the identity matrix. The uncon-
strained, regularised estimator that can be derived from Equation (2.23) is

f = \Ug+UM'N"'x, where U= (A+M'N"'M)™". (2.24)



2.2 Other decomposition methods 25

Settle and Drake argue that g should be set equal to the proportions vector corresponding
to the averaged signal of the pixels in the region. In this case, an optimal value of the
parameter A can be determined; see [99] for a derivation.

2.2.8 Decomposition using higher order moments

The method developed by Bosdogianni et al. [15] also aims at identifying the fractions of
diverse coverages in a region rather than in individual pixels. Therefore, they propose a
mixture model that incorporates class distributions instead of reflectance values, which are
used for most of the methods explained in the previous sections. From their linear mixture
model it can be derived that the first and second order moments of the probability density
function for the mixed pixels in the region are the mean vector X and variance-covariance
matrix N given by

X = Mf and (2.25)
N = ) fN;, (2.26)
=1

respectively; note that the variance-covariance matrix has squared fractions as weighing
factors compared to normal fractions used by the classic linear mixture model. An advan-
tage of the model based on distributions is that it consists of more equations but has the
same number of unknowns, which means that the region can be unmixed into more classes
than the ¢c<n-+1 limit of the classic model. The optimal fit of the model to the observed
mean vector and variance-covariance matrix is defined using the least squares approach:

; <\/NT“ (Ez - ;szmik>> + ZZIJZI (;—i (Nij - ;f,ka”)) (2.27)

should be minimised to find the optimal solution for f. In this equation, N, (NN;;) de-
notes the element in the i-th row and j-th column of matrix Ny (N), and p is equal to

the number of pixels in the region. The weighing factors (p/Nj)? and 2p/N;; are intro-
duced to compensate for the different standard errors of the estimators for the mean and
variance-covariance of the sample pixels. Bosdogianni et al. claim that the minimum of
Equation (2.27) can be found by setting the partial derivatives with respect to each f;
to zero and solving the resulting equations; this analytic solution should also work when
fe=1-— Zf;ll fi is substituted in order to satisfy the sum-to-one constraint. Satisfaction
of the positivity constraint, on the other hand, can only be enforced with a brute force
approach similar to the one described in Section 2.1.2.

2.2.9 Probabilistic mixture modelling

In their study of sparsely vegetated semi-arid rangelands, Pech et al. [79] applied a method
which estimates the fractions of a mixed pixel by the linear combination of the fractions
vectors of p pixels in a training set. The weight assigned to each fractions vector f; is
equal to the likelihood p(x|f;) that pixel x has the underlying proportions of the i-th
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calibration sample, divided by the sum of these likelihoods corresponding to the entire set
the calibration samples. The resulting estimator

F— > i fip(x[f;)
]Z'D:1 p(X|fZ) ’
which Pech et al. call the “Lwin-Maritz estimator”, is considered to be non-linear because

f is not a linear function of x. However, it is still closely related to the classic linear mixture
model as the probability that x originated from f; is taken to be

(2.28)

p(x|f;) = 27"/ N[ /2 exp(—3(x — Mf;)"N~!(x — Mf;)), (2.29)

which is the probability density function of a Gaussian distribution with mean vector Mf;.
Carlotto [20] suggested a similar method that uses the calibration pixel vector x; instead
of Mf,—it also uses a matrix N that is diagonal, i.e. contains only the variances in each
of the n spectral bands—although the derivation of this estimator is based on a slightly
different theoretical foundation. An advantage of the probabilistic approach is that there
is no limitation on the number of classes a pixel can be unmixed into. Furthermore, both
the sum-to-one constraint and the positivity constraint are satisfied automatically as long
as the calibration samples satisfy these two constraints as well. Despite the advantages,
however, the method has been reported to give worse results than the classic linear mixture
modelling approach when applied to a test problem by Brown [17].

2.2.10 Neural networks

In the last decade neural networks have emerged as a powerful classification tool for,
amongst others, remotely sensed image data (Benediktsson et al. [11], Hepner et al. [47],
Kanellopoulos et al. [57]). An artificial neural network (ANN) is a system of highly con-
nected but simple processing units called neurons, which is inspired by the architecture
of the human brain. Calibration of an ANN is done by repeatedly presenting a set of
training examples to it, which has the advantage that the class distributions do not have
to be known nor need to comply to some parametric model. Another advantage of ANNs
compared to classic statistical methods is that multiple data sources can easily be inte-
grated (Civco and Wang [21]). In recent years, ANNs have demonstrated great potential
as a method to decompose mixed pixels as well. Foody [26] found that the output of an
ANN trained with pure pixels can be regarded as class membership grades, whose strength
can be used to derive class proportions. More recently, studies of both Foody [27] and
Schouten and Klein Gebbinck [93, 94] showed that ANNs can also be trained successfully
using mixed pixels. Apart from being useful when processing an image containing few pure
training pixels, the latter approach is also simpler because the network’s output can be
taken directly as class proportions.

Although many types of ANNs exist, for classification or decomposition of image data
mostly feed-forward networks such as the multi-layer perceptron (MLP) are used. A MLP
consists of units spread over an input layer, possibly some hidden layers, and an output
layer—see Figure 2.5. Each neuron in the input layer is associated with one of the n spectral
bands in which a pixel’s reflectance is measured, while the output layer contains ¢ units, one
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Input hidden layers  output
O

Figure 2.5: A multi-layer perceptron designed for the decomposition of mized pizels.

for each of the estimated class proportions; the number of hidden layers (one or two) and
the number of neurons each of these layers contains should be based on the characteristics
of the remote sensing data. Between units in successive layers, weighted connections exist,
which determine the function computed by the network. Each unit has an internal state or
activation level a;, depending on the output o; of units in a previous layer, the associated
weights w;; of the connections, and the value of a threshold 6;:

a; = ZOZ"U}Z‘]‘ — 9]'. (230)

This threshold can be seen as an ordinary weight connecting unit j with a neuron having
a constant activation level of 1. For hidden units, the output is calculated by passing its
activation through a sigmoidal function, like

1

= Tromr )’ (2.31)

0j
The output of a unit belonging to the input layer, however, is taken to be equal to the
corresponding element of the pixel vector currently presented to the network, while for
units in the output layer in general a linear activation function is used when mixed pixels
are to be decomposed. Using this feed-forward procedure, a pixel vector is transformed
into a fractions vector, whose accuracy depends on a correct setting of the weights. The
usual approach to adjust the weights is error backpropagation, where the difference between
the desired and the actual output is computed and fed back through the network, changing
the weights in proportion to the error of the neurons they connect; see Appendix B for a
detailed description of error backpropagation. This training procedure requires a number of
decisions regarding the initial weight distribution, the learning rate, the momentum term,
etc. to be made of which the influence cannot be predicted exactly. Although certain
rules of thumb exist to set some of these parameters as well as the number of units in
the hidden layer(s) (e.g. Kanellopoulos and Wilkinson [58], Klein Gebbinck [33], or Klein
Gebbinck et al. [40]), tuning the network requires some experience with both ANNs and
the specific data set to be processed. A further disadvantage of error backpropagation
is that training can be very time-consuming, even if only few trial runs are needed to
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determine the optimal configuration. Once training is completed, however, the MLP can
decompose mixed pixels with a speed comparable to the analytic approximation method
for the linear mixture model, but with an accuracy that is somewhat higher (see Schouten

and Klein Gebbinck [93]).

2.3 Summary and conclusions

In this chapter twelve methods to decompose mixed pixels were described, which is only a
fraction of all methods that have been proposed in the literature. All these methods unmix
a pixel to determine the proportion of its area covered by the various ground cover types,
although additional information concerning the spectra of the mixed pixel’s components,
for instance, can be derived as well (see Chapter 3). The most widely used technique is
based on the (statistical) linear mixture model, which defines the reflectance of a pixel as
the linear combination of the reflectances typical for the contributing ground cover types—
the endmembers—weighed by their proportion. By finding the point in the solution space
of the model that is closest to the mixed pixel under observation and computing the relative
distance of this point to the various endmembers, the proportions of the mixed pixel can be
estimated. Of the other methods discussed, some are completely different (decomposition
using higher order moments and neural networks, for instance), but most others have
some important characteristics with this linear mixture modelling approach in common:
either the same procedure is followed but the solution is directed to some favoured mixture
(relaxation and regularisation), or the (Mahalanobis) distance between the mixed pixel
and each of the endmembers is used to derive the pixel’s proportions in a slightly different
way (e.g. linear discriminant analysis, fuzzy classification).

An extensive comparison of the various methods for mixed pixel decomposition has not
appeared in the literature so far. In part this is due to the fact that some methods are
designed for different purposes than decomposing individual mixed pixels, which makes a
fair comparison difficult. The estimator using higher order moments, for instance, tries
to determine the composition of entire regions, while the relaxation technique specifically
aims at decomposing mixed pixels representing roads with the goal to improve the con-
nectivity of separated road segments. Furthermore, most authors compare the results of
their method to the results of a classification approach in order to demonstrate the ben-
efits of decomposition. To this end, they use their own data sets, which makes it next to
impossible to relate their findings. A few comparative studies, however, do exist, albeit
that the number of methods investigated usually is limited. Marsh et al. [68] compared
the methods based on weighted averaging, simple linear regression, and linear discriminant
analysis; they found that on their Landsat-MSS data the last method performed best. On
the balloon MSS-like data, on the other hand, this method was clearly outperformed by
the simple linear regression approach and, to some lesser degree, by the weighted averaging
technique as well. Pech et al. [79] found that probabilistic mixture modelling and linear
regression of the fractions on the signal—a method not discussed in this chapter—lead to
better results than the analytic solution of the linear mixture model. Brown [17], however,
reported probabilistic mixture modelling as the only estimator of the same three giving
bad results on his data set. A comparison of neural networks, fuzzy c-means, and the



2.3 Summary and conclusions 29

analytic linear mixture modelling approach was made by Atkinson et al. [7]; according to
them, neural networks gave the most accurate estimates, although the worse performance
of the other two methods could be the result of poorly defined endmembers due to the lack
of pure AVHRR pixels. Schouten and Klein Gebbinck, finally, confirmed that with neural
networks results can be obtained that are comparable to the brute force solution of the
linear mixture model and better than those achieved by the analytic approach [93] or brute
force least-squares (see Section 4.1.2) [94]. A disadvantage of neural networks, however,
is that, although they are fast at decomposing mixed pixels, training often takes a long
time. In general, when looking for a decomposition method, one should always ask oneself
the question whether the expected improvement in accuracy really outweighs the increased
computational complexity of a more advanced method. While this may be true in case the
decomposition method is designed specifically for the intended application, as is done in
Chapter 3, it often turns out that the accuracy with which mixed pixels are decomposed
depends much more on data set itself—the dispersion of the endmembers relative to the
within-class variation—than on the decomposition method selected. Therefore, the fast
and simple analytic solution of the linear mixture model is still used in most studies today.
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Chapter 3

Decomposition based on a physical
linear mixture model*

In this chapter a new linear mixture model is proposed, which has a more comprehensive
physical foundation than the classic linear mixture model described in Section 2.1.1. Be-
cause the proposed physical model is more realistic, mixed pixels can be decomposed with
higher accuracy. Furthermore, since the new approach explicitly models the components of
a mixed pixel, additional information about its composition can be extracted. Section 3.1
describes the physical linear mixture model as well as a variant that is better suited to
exploit the increased capabilities of the new model during decomposition. Section 3.2 ex-
plains how the physical model can be solved in order to estimate both the proportions and
the component spectra of a mixed pixel. Section 3.3 describes an experiment that was
designed to make a quantitative comparison between the decomposition methods based on
the statistical and the physical linear mixture model. In Section 3.4, finally, the conclusions
are presented.

3.1 The physical linear mixture model

Although the classic linear mixture model is a sensible physical model of composite re-
flectance, it assumes that the many small ground cover patches (called elements in Sec-
tion 2.1.1) making up a pixel are statistically independent, which is why it is given the
predicate “statistical” in this thesis. As a consequence, the fluctuations around the ex-
pected value Mf can be regarded as noise with certain statistical properties, while the
error vectors e of two pixels are considered to be completely independent of one another.
In reality, however, this is often not the case: the light and dark spots in an agricul-
tural field, for instance, show that the error vectors of neighbouring (pure) pixels in fact
are correlated. In order to explain these correlations—an example can be found in Sec-
tion 3.3.2—the physical linear mixture model is introduced in Section 3.1.1. Section 3.1.2
describes how the correlations between neighbouring pixels can be modelled such that a
more accurate decomposition is achieved.

*This chapter is based on publications [34] and [39].
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Figure 3.1: Mixing process according to the physical linear mizture model. The two-
dimensional feature space shows a mixture of two classes with global endmember spectra
m; and my. Pizel x is a linear combination of the component spectra p, and po, which
deviate from the global spectra due to local variations in physical factors; the proportions
of these components are Ao/ (A1 + Aa) and A1 /(A1 + Aa), respectively.

3.1.1 The basic physical model

Instead of being caused by statistical noise, the lack of an exact solution of the linear
mixture model without e can also be attributed to variations in physical factors such as
humidity, soil type, elevation, etc. The scale of the variations in these physical factors
usually is larger than a single pixel, which means that adjacent subpixel patches of the
same ground cover type will often have a similar reflectance—i.e., they are not statistically
independent—and that correlations between neighbouring pixels are likely to be found.
According to this view, it is the local variation in the endmember spectra that causes a
pixel to deviate from its expected value. Therefore, the physical linear mixture model—we
give this model the predicate “physical” to stress that the deviations are not of statistical
but of physical nature—can be described by the following mixing equations:

x = (M + E)f. (3.1)

As before, x represents the n-dimensional pixel, f the cxl proportions vector, and M the
matrix whose columns contain the ¢ global endmember spectra m;. The nxc matrix E
consists of columns e; describing the local deviations from the endmember spectra that are
due to physical factors; taken together, m; + e; define the spectrum of the i-th component
of the mixed pixel. In the physical model, the e; are assumed to have a multivariate normal
distribution with a zero mean and a variance-covariance matrix N;. This assumption is
identical to the one made for the classic linear mixture model, which can be seen by
comparing the statistical distribution of pure pixels of class 7 in both models. A graphical
representation of the physical linear mixture model is given in Figure 3.1, which shows a
simple mixture of two classes in two dimensions.
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Figure 3.2: Mizing process according to the environmental linear mixture model. In this
model, the distance between the component spectrum p; and the global endmember spectrum
m; is split into an environmental part—the dotted line from m; to m’;—and a statistical
part—the dotted line from m'; to p;. If the global endmembers m; are replaced by their
local counterparts m';, which must be done for each mixed pizel x separately, the physical
model and the environmental model are identical (except for the definition of the N; ).

3.1.2 The environmental model

Although the basic physical model provides a realistic explanation for the deviation between
the expected and the measured reflectance values, it does not explicitly model the fact
that neighbouring pixels are correlated. Consequently, it is difficult to use the information
contained in these correlations. To facilitate the exploitation of this information, the error
matrix E of the physical model was split into an environmental and a statistical part,
resulting in the environmental linear mizture model with the following mixing equations:

The environmental part E; represents the deviations from the global endmember spectra
that are typical for the local environment of mixed pixel x. This part is considered to be
deterministic as it can be calculated from other pixels in the neighbourhood of x, which
share the same deviation. The statistical part E, accounts for the small variations between
pixels with the same E; and for the smooth transitions between pixels with different Eq,
which are both due to the more or less gradual changes in (physical) conditions. Each
column e;, of E, is once again assumed to have a multivariate normal distribution with
a zero mean and a variance-covariance matrix IN;. It must be noted, however, that the
matrices used for the statistical and the physical model differ from the ones used for the en-
vironmental model: whereas the former matrices describe the variations in the endmember
spectra over the entire image, the latter matrices represent the variations in the endmember
spectra of neighbouring pixels. In Section 3.3.1 a specific example is given of how to derive
the variance-covariance matrices of the environmental model and how to determine the
environmental part of the endmember spectra from the neighbouring pixels when dealing
with agricultural scenes. Once these parameters are known, the environmental and the
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physical model can be unified: substitution of M with M'=M+E;—so M’ depends on
the pixel under observation but is still deterministic—leaves a small statistical term as the
only variable factor; compare Figures 3.1 and 3.2 to see the resemblance of the two models.

3.2 Solving the physical model

In order to decompose mixed pixels, the physical linear mixture model has to be solved
for the observed reflectance values. In contrast to classic linear mixture modelling (and all
other decomposition methods described in Chapter 2), this approach does not only yield
an estimate of the component proportions but also provides an estimate of the component
spectra. Although these spectra may be unimportant for some applications, it may be a
valuable source of information for others. As was the case with the statistical model, the
solution of the physical model has to satisfy two constraints: the sum-to-one constraint
(Equation (2.6)), which says that the proportions must add to unity, and the positivity
constraint (Equation (2.7)), which demands that each fraction is non-negative. If the
positivity constraint is abandoned, one can find an exact solution of the resulting set of
equations having a zero error matrix E for all mixtures where the number of endmembers is
at least equal to the number of spectral bands. If the number of endmembers is smaller, a
non-zero E is required, which can be used to select some sort of optimal solution among the
infinity of possibilities. The maximum likelihood approach chooses the solution that has
the highest probability, i.e. that combination of E and f that solves the mixing equations
(Equation (3.1)) while minimising

> e/N;le;. (3.3)
i=1

As can be derived from the previous section, the environmental model can be solved in a
similar fashion by substituting the global endmember matrix M with the local endmembers
M-+E;—remember that the local deviation may differ for each pixel-—and using different
variance-covariance matrices N;. Instead of minimising E itself, we now minimise Es,
which is equal to minimising the differences between the E of neighbouring pixels. Calcu-
lation of the local endmembers and variance-covariance matrices strongly depends on the
application domain and can be quite complicated. A way to derive these parameters of
the environmental model in case mixed pixels on agricultural field boundaries are to be
decomposed is described in Section 3.3.1.

The maximum likelihood approach picks the best solution from a number of alterna-
tives, but it does not come up with a solution by itself. In fact, finding a solution is rather
difficult—much more difficult than for the statistical model-—because of the complex rela-
tions between the e; that must be realised in order to comply to Equation (3.1). Currently,
two methods for a joint retrieval of E and f exist: brute force and analytic approximation.

3.2.1 Brute force approximation

To understand the complex relations between the e;, a look at the n-dimensional feature
space is helpful. According to convex geometry principles, pixels that are composed of ¢
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Figure 3.3: Maxzimum likelihood solution of the physical linear mizture model. To solve the
model, one point p; per endmember has to be determined, whose Mahalanobis distance to
m; is minimal. The sum-to-one constraint demands that these points lie on a line through
X; the positivity constraint requires that p1 and po lie on either side of x. For the subspace
defined by basis vecor by, the optimal position of p; is given by Ai;. The angle aqq that
results in the smallest sum of distances defines the best solution of the model.

linearly independent endmembers lie in the c-dimensional linear subspace spanned by the
vectors m; that represent the endmember spectra. If the proportions of the mixed pixel
sum to one, this subspace is restricted to the (¢—1)-dimensional subspace containing the
m; but not (necessarily) the origin of the coordinate system; the latter subspace is further
limited to the simplex defined by the m,; if all fractions are greater than (or equal to)
zero. As was described in Section 3.1, the physical linear mixture model attributes the
occurrence of pixels outside this simplex to local variations in the endmember spectra.
Solving the physical model, therefore, requires that for each endmember a point p; is
found such that these vectors span a c-dimensional linear subspace containing x. If the
sum-to-one constraint is to be satisfied, x must also be contained in the (¢c—1)-dimensional
subspace through the p; (but not necessarily through the origin), and satisfaction of the
positivity constraint demands that x is contained in the simplex made up of the p;. Even
with these constraints, the number of possible solutions still is infinite. The solution that is
favoured by the maximum likelihood approach—the one minimising Equation (3.3)—has
the smallest sum of Mahalanobis distances between the p; and their corresponding m.;.
Examples of this geometric view with two and three endmembers are given in Figures 3.3
and 3.4, respectively. Based on the insights gained from the above analysis, a method to
solve the physical linear mixture model can be developed.

It is important to see that once the points p; that define a (¢c—1)-dimensional subspace
containing x have been determined, a proportions vector that solves the physical model
and satisfies the sum-to-one constraint can be derived. In n-space, a linear subspace of
dimension c—1 is spanned by c—1 linearly independent nx1 vectors b;. Thus, a point p;
in the linear subspace through x can be described as

Pi = X+ Apbr + -+ Aemnyibeo1 = x + BA, (3.4)
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Figure 3.4: Solution of the physical model in a three-dimensional feature space. The basis
vectors by and by, which are controlled by aq1 and awy, respectively, define a plane through
X. Fach point p;, which also lies on this plane and is described by Ai; and Ao;, has a
minimal Mahalanobis distance to m;. The optimal solution of the model is given by the
combination of aq1 and ooy that leads to the smallest sum of distances.

where A; represents the (¢c—1)zl column vector [Ay;,..., Ae—1))" and B denotes the
nxz(c—1) matrix with columns b;. Since p;=m;+e;, substituting the above expression in
Equation (3.1) results in a system from which f can be solved. If this system is expressed
in the coordinate system defined by basis vectors by, ... ,b._; and origin x, then

fl)\1+"'+fc)\c:Af:07 (35)

with 0 denoting the ((¢c—1)z1) null vector and A being the matrix consisting of columns
A;. This system of equations has at least one non-trivial solution, because ¢ vectors—
the A;—of dimension (c—1) always are linearly dependent. Moreover, since the subspace
containing the p; has to be exactly of dimension (c¢—1), there will be precisely one solution
modulo a scaling factor. If this scaling factor is set such that the sum-to-one constraint is
satisfied, and the definition f, =1 — Zf;ll fi is taken, Equation (3.5) can be rewritten as

Nt =—-X,, where A=A =X, ., A1 — A (3.6)

and f’ is the proportions vector f minus its last element f.. This last system is well-known,
and its solution is usually given using Cramer’s rule (Strang [107]):

N(A)
Ji Y

As before, | | stands for taking the determinant; A’;(—A.) is the ((c—1)z(c—1)) matrix
A" with the i-th column replaced by —A.. A simple example of this formula is the case

(3.7)
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where a mixed pixel consists of only two components (see Figure 3.3): f = (A2/(A12 —
A1), =11/ (A2 — A1), Although more components lead to a more complex expression,
calculation of the proportions vector remains straightforward.

The first step to find the best E according to the maximum likelihood criterion is to
determine the optimal position of the p; for a single (¢c—1)-subspace. Let the subspace of
interest be given by the matrix B as described in the previous paragraph. Since e;=p;—m,;,
the deviation from the i-th endmember can be expressed using Equation (3.4):

As was explained earlier in this section, because of this construction, any choice of the
A; will lead to a solution of the physical linear mixture model. Since no other relations
between the e; have to be reckoned with, the minimum of Equation (3.3) is found by
minimising the individual parts of the summation. For the i-th component this means
that, after some manipulation, the minimum of

e?N;lei = (m'i — ]3AZ)T]_\IZ_1(I’I’1/Z - BAZ) with m'i =m,; — X (39)

has to be determined. Analogous to the derivation of Equation (2.10), successively setting
to zero the partial derivatives of this equation with respect to Ay, ..., Ac—1); gives the
following estimator:

A = (BTN7'B)"'B"N:'m/;. (3.10)

The optimal solution of the physical model for the (¢—1)-subspace defined by B can now
be calculated simply by substituting the estimated A; in Equations (3.7) and (3.8).
Before the optimal E of all (c—1)-subspaces can be derived, first the c¢—1 linearly
independent basis vectors b; have to be defined. One possibility to construct d basis vectors
for a n-dimensional space is based on the usual definition of a d-dimensional space with d
orthonormal vectors. For each dimension k higher than d, basis vector b; is multiplied by
cos aj;, and expanded with a term sin a;,. For example, if d=1, by is constructed following

COS (¥11 COS (X112
COS (11 .
] — . — sin ayq COS (rqa — .- forn=1,23,..., (3.11)
S1n &qq .
SN (9

while in case d=2, (by, by) is formed according to

1 0 CcoS (/1 0
<l0],l1}) — 0 , | cosan — - forn=2,3,... (3.12)

sin aigy sin aigy

A graphical representation of these cases is shown in Figures 3.3 (n=2) and 3.4 (n=3),
respectively. Unfortunately, except in case d=1, some subspaces are multiply defined,
while others are left out. For instance, if d=2 and n=3, all combinations of a;;=7 and
an arbitrary value of aw result in the same subspace (YZ-plane). On the other hand, no

subspace perpendicular to the XY-plane can be formed other than the YZ- and XZ-planes
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(21 = §). This problem can be solved by modifying the definition of the basis vectors for
certain values of the angles a;;,. For d=2 and n=3 this means that (b, bs) is defined by
Equation (3.12) if a11#% and ag,#7%, and by

0 COS (9
(bl, bg) = 0 s sin 91 (313)
1 0

otherwise. For higher values of d and n similar modifications can be made. Although this
construction is rather complex, it does provides a set of linearly independent basis vectors.

The next step in finding the optimal E is to determine which (c¢—1)-subspace gives the
lowest value of the maximum likelihood criterion. In order to do so, the expressions for e;,
j\i, and b; have to be substituted in Equation (3.3), and an expression for the a;,—the
only variables left—that minimise the resulting equation has to be derived. However, due
to the complexity of the expression to be minimised and the conditional definition of the
basis vectors, finding a general analytic solution is practically impossible. Therefore, the
optimal solution is approximated by checking a large number of (c¢—1)-subspaces using
brute force. The logical set of subspaces to be checked is the one whose elements are
uniformly distributed over the entire m-space, but this set cannot easily be generated.
A more obvious set consists of the subspaces that are spread evenly over the d(n—d)-
dimensional parameter space associated with the ;. This latter set can be created more
easily by taking regularly spaced samples of oy, over the interval (—7, 5] and calculating
the corresponding b;. The computational complexity of this approach is considerable: if
the sampling rate is given by r, the maximum likelihood criterion has to be evaluated about
rle=D(=ctD) times. By varying the sampling rate, the accuracy of the approximation of E
can be traded off against computational costs.

In the physical linear mixture model, the positivity constraint, which has been ignored
so far, can be satisfied quite easily. As was described earlier in this section, satisfaction
of this constraint demands that x is contained in the simplex defined by the p;. For
each (c¢—1)-subspace for which this condition does not hold, at least one of the p; has
to be moved away from its optimal position. Analysis of Equation (3.9) shows that this
displacement should be as small as possible, which implies that x will lie on the hull of the
resulting simplex. It is of course possible to determine for each subspace how the p; can
best be displaced before the cost function (Equation (3.3)) is computed, but the optimal
solution that satisfies the positivity constraint can also be found in a more convenient way.
The fact that x lies on the hull of the simplex means that at least one of the proportions is
zero. Consequently, we can deal with all non-complying subspaces at once by decomposing
x while leaving out one endmember at the time, and comparing all ¢ solutions with the
best solution based on ¢ endmembers that does satisfy the positivity constraint. Since the
minimum of Equation (3.3) when using ¢—1 components will be at least as high as when
¢ components are used, this recursive step only needs to be taken if the optimal solution
found before did not already satisfy the positivity constraint. The second case in which
the recursion stops is that ¢ has become equal to one: as x presumably is a pure pixel, its
proportions vector will be equal to 1. Although the computational costs of this approach
may be considerable, it is a straightforward way to enforce the positivity of the proportions.
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3.2.2 Analytic approximation

As was done for the statistical model, the optimal solution of the physical model can be
approximated using a closed formula as well. Once again it is required that all variance-
covariance matrices N; are identical, which can be accomplished by taking the mean ma-
trix N = 1/¢> ¢ | N;. As long as the N; are small relative to the dispersion of the
endmembers—if not, the estimated solution is probably poor anyway—the resulting loss
of accuracy is not very large (Horwitz et al. [51]). Under the assumption of equal variance-
covariance matrices, the expression to be minimised is Y ;_, el N~'e;, subject to the con-
ditions x = (M +E)f and "7 | fi = 1. According to Lagrangian analysis, this boils down
to minimising

Trace(E'NT'E) + 2a” (x — (M + E)f) +23(17f — 1), (3.14)

where Trace(A) represents the sum of the diagonal entries of matrix A. Furthermore,
a stands for an nxl vector of Lagrangian constants, and 3 denotes another Lagrangian
constant. The minimum of Equation (3.14) is found by differentiation and setting the
result to zero. Differentiating with respect to E gives

ON'E — 2af? =0, or, equivalently, E = Naf” (3.15)
(the nxc matrix 0 is filled with zeroes); differentiating with respect to f results in
(M +E) o = f1, (3.16)

where 1 is a (cxl) vector of ones only. From this last equation, a relation between [ and
the other Lagrangian constants can be derived:

M+E)a =14 = {xfT}
f'"M+E)'a=f"153 = {(3.1), (2.6)}
x'a = . (3.17)

Based on Equations (3.15) to (3.17), a fast method for the simultaneous retrieval of E and
f can be developed.

The general principle followed to derive an estimate of the proportions was to combine
the above equations in trying to eliminate the Lagrangian constants until an expression
containing only the unknown fractions vector f was left. Starting with Equation (3.16),
one can make the following derivation:

M+ E) =173 —  {(3.15), (3.17)}
M+ Naf'a =1(x"a) — {unfold, N"=N}
M’a + (fa’N)a = 1x" « —> {rearrange}
M a - 1x"« = fa'Na — {fold}

M -x1")Ta = —f(a’Na). (3.18)
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The mixing equations described by Equation (3.1) can be transformed as follows:

(M +E)f =X = {(3.15)}

(M + Naf")f =x = {unfold, rearrange}

Mf — x = —(Naf")f = {(2.6)}

Mf — x17f = -Naf’f = {fold}

M —x1")f = -Na(f'f). (3.19)

Finally, we multiply the above result with (M — x17)TIN"! to combine it with Equa-
tion (3.18):

(M —x1)"N'M - x1")f = (M —x1")"N'(~Nea(f'f))
—(M — x1") T a(£7f)
= f(a"Na)(f'f). (3.20)

In this last expression the well-known system Af = Af can be recognised, given that
A=M-x1T)TN"IM — x17) and A = (a’Na)(f'f). The f that solve this system
are the eigenvectors of matrix A, which can be calculated in a straightforward fashion
(see Strang [107]). From these alternatives, the f that minimises Trace(ETNT!E) is se-
lected; since Trace(ETNTIE) = Trace(fa’ NN™!Naf?) = (e’ Na)(f7f), the eigenvector
corresponding to the smallest eigenvalue A is considered to be the optimal solution. Sub-
sequently, the error matrix E is calculated by combining Equations (3.15) and (3.19):

(M — x1T)ffT

E=—
frf

(3.21)

Note—expand (M + E)f—that this expression requires that the sum-to-one constraint is
satisfied. Since some standard packages supply eigenvectors that are normalised according
to Minkowski’s L2-norm, the proportions vector may have to be rescaled. In order to satisfy
the positivity constraint, some post-processing is necessary as well. Of the approaches
suggested in Section 4.1, the simplest method is to set negative proportions to zero and
rescale the fractions vector. Although this approach introduces some further inaccuracy,
its computational costs are very low. As a result, the overall method to approximate the
optimal solution of the physical linear mixture model is relatively fast.

3.3 Comparing the statistical and the physical model

In order to determine the suitability of the statistical and the physical model-—the basic
model as well as the environmental variant—several experiments were carried out. In these
experiments, the accuracy of each approach was evaluated using artificial images, which
were needed to make a quantitative comparison possible. The set-up of the experiments is
described in Section 3.3.1, while the results are discussed in Section 3.3.2.
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3.3.1 The experimental set-up

Each experiment consisted of three steps. In the first step, an image of an agricultural scene
was generated with fields having certain statistical properties. The second step comprised
the processing of the image by two methods based on each of the three mixture models.
In the third and last step, the results of the six methods were quantified using several
accuracy measures.

For the simulation of remotely-sensed images, a modified version of the method intro-
duced by Schouten and Klein Gebbinck [92] was used. First of all, the method, which is
described in more detail in Section 6.2.1, was somewhat simplified to facilitate the decom-
position of mixed pixels based on the environmental model. One simplification was that
no ground cover type was assigned to the edges, which ensured that most mixed pixels
consisted of only two classes. Although this made the images somewhat less realistic, it
was expected to have only a minor (positive) influence on the accuracy of the environmen-
tal approach in particular while the processing time needed by the brute force methods
was reduced significantly. Another simplification was that neighbouring fields were not
allowed to have the same ground cover type, which ensured that (mixed) pixels located on
field boundaries always consisted of more than one class. This restriction did not seriously
affect the outcome of the experiments either, because none of the decomposition methods
is able to make an accurate division of a mixed pixel’s area between two fields of the same
ground cover type anyway. The second type of modification to the method concerned the
compilation of the class templates. In order to prevent the correlations between neighbour-
ing pixels from being disturbed, each template was generated using a single pixel block
clipped out of the middle of a large agricultural field belonging to a particular class. Since
these clippings comprised only 15215 pixels, several copies had to be mirrored and stitched
together to get templates of sufficient size in which the correlations were preserved. This
way, four templates labelled A—D were derived from a Landsat-TM image of Portugal,
whose statistical distributions are shown in Figure 3.5. All artificial images were made
using only two templates at the same time, while the number of bands was reduced from
six to two or three. In most cases bands 3 and 5 (plus band 7 for n=3) were selected,
because they provided the best discrimination between vegetation types (Sabins [88]). The
only exceptions were two images created with templates A’ and C’, which were derived
from the six band templates A and C by selecting bands 1 and 2 (plus band 4 in case
n=3). With this method, 12 images were generated that each contained 297 mixed pixels
to be decomposed.

Each simulated image was processed by six different decomposition methods. These
methods can be grouped based on their underlying model—statistical, physical, or environ-
mental—as well as on the method of solution applied—brute force or mathematical anal-
ysis. As was described in Sections 2.1.2 and 3.2, the brute force approaches approximate
the optimal solution by searching the entire solution space; the analytic methods, on the
other hand, approximate the variance-covariance matrices of all classes by their average
such that the optimal solution can be expressed as a closed formula. The endmember
distributions used for the statistical and the physical model were estimated by calculating
the mean vector and variance-covariance matrix of the pixels of each class template. For
the environmental model, the endmember distributions had to be calculated totally dif-
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ferently, which will be described in the remainder of this paragraph. Since the simulated
images represented agricultural scenes, each mixed pixel was surrounded by pure pixels of
the fields it was composed of. The spectral response of such a pure pixel ¢ is approximately
equal to one of the local endmember spectra (say i) of the neighbouring mixed pixel p,
albeit that it also includes a small statistical term e;2,. The only consequence of this
minor inconvenience is that, after substituting x, for m; + e;;,, the term e;5, — e;2,
instead of e; 2, has to be determined in order to solve the model. The distribution of this
subtraction sum was estimated based on the differences calculated between all pairs of
neighbouring pixels in the corresponding template. As expected, the mean vector of the
subtraction sum turned out to be 0 for all templates. The only issue that remained was
which neighbouring pixels were to be used to approximate the local endmember spectra.
This problem was solved by trying all combinations of neighbouring pure pixels—one pixel
per class—and selecting the combination that minimised Equation (3.3) (note that e; now
represents the subtraction sum). Thus, by defining different endmember distributions for
all mixed pixels, the environmental approach was unified with the basic physical approach.

The performance of each method was expressed by three accuracy measures. To mea-
sure how accurately the proportions of a mixed pixel could be estimated, the pixel’s true
proportions f; were compared with their estimates ﬁ

1|
(=S |h- A ) 3.22
Er <2 g f f > ( )
In this equation, | | stands for taking the absolute value, and < > denotes that the en-

closed expression is averaged over all mixed pixels. The scalar % was introduced because
overestimation of one class automatically leads to underestimation of the other; due to this
scalar the value of €; was restricted to the interval [0,1]. The second accuracy measure
expressed how large the statistical deviations had to be in order to reconstruct the mixed
pixel and is defined by

. — <%eT(N(f))_1e> or 2, — <% iileiTNi_lei> | (3.23)

depending on whether the statistical or one of the physical linear mixture models was
assumed. Although the magnitude of the deviations is of no direct importance, it may
be an indication of the reliability of the reconstruction. Obviously, £, cannot be used to
compare the methods based on different mixture models. The third and last measure was
determined for the methods based on the physical models only and indicated how well
the component spectra of a mixed pixel could be estimated by calculating the difference
between the true value of the i-th component p; and its estimate p;:

1. 1a
5= (5 0y~ PITNT (b)) (3.21)
Note that in this equation as well as in Equation (3.23) different N; were used for the
basic physical approach and the environmental approach. With these three measures,
a quantitative comparison of the performance of the different methods was made in a
straightforward way.
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(a) Distributions statistical/physical model. (b) Distributions environmental model.

Figure 3.5: Two-dimensional feature space showing six class distributions. A-D are ex-
tracted from bands 3 and 5, while A" and C' are extracted from bands 1 and 2. (a) Class
mean m; surrounded by the ellipse XTN; 'x = 4, where N; represents the variation in the
pizels themselves. (b) Similar set-up, except that the ellipses now represent the variation
in the differences between neighbouring pixels.

3.3.2 Results and discussion

Two important factors that influence the accuracy of a decomposition method are the
relative positions of the endmembers in the feature space and the statistical distribution
of the error components. Figure 3.5(a) shows these class characteristics as computed
for both the statistical and the basic physical model, while Figure 3.5(b) displays the
characteristics as determined for the environmental model. In both figures it can be seen
that the dispersion of the endmembers A—D is relatively large, whereas the distance between
the endmembers A’ and C’ is relatively small. The latter two classes were defined by
selecting bands 1 and 2 instead of the usual bands 3 and 5, which was done in order to
simulate an image containing mixed pixels that were difficult to decompose. Addition of a
third band—band 7 for A-D, band 4 for A’ and C'—to simulate images of dimension three
did not change the relative positions of the endmembers to any great degree. A comparison
of Figures 3.5(a) and 3.5(b) clearly reveals that neighbouring pixels are correlated. If two
neighbouring pixels p and ¢ had been independent, then the environmental error component
they have in common would be zero, and the distribution of the statistical error components
€2, and e;2, would be equal to that of e;. As a result, the variance-covariance of the
subtraction sum e; s, — €;2, calculated for the environmental approach would be twice
as large as that of the noise vector e; used by both the statistical and the basic physical
approach, which would translate to ellipses that were /2 times as large. Although this
effect indeed was observed if pixels p and ¢ were chosen at random, the fact that the ellipses
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in Figure 3.5(b) are smaller than those in Figure 3.5(a) demonstrates the correlation in case
p and ¢ are neighbours. Based on this collection of endmembers, it was possible to evaluate
the performance of the different decomposition methods under a variety of conditions.

Looking at the results of the experiments presented in Tables 3.1 and 3.2, we can make
several observations. In general, the accuracy of the proportion estimates decreases as
the distance between the endmembers gets smaller, which was to be expected because the
influence of the statistical deviations becomes more important. Another anticipated result
is that the accuracy of the estimates improves as the number of bands increase (compare
Table 3.1 to Table 3.2). An explanation for this phenomenon is that the effect of the
statistical deviation in one band is compensated for by opposing deviations in the other
bands. As a consequence, however, an exact reconstruction of the spectral response of
pixel x becomes more difficult—e¢, is higher—because the deviations can not all be fitted
at the same time. The third and most important observation is that there is a clear
order in which the methods are best able to estimate the proportions of a mixed pixel. In
all experiments, the methods based on the environmental model were the most accurate,
followed at some distance by the approaches that assume the statistical model, which on
their turn performed slightly better than the methods based on the basic physical model.
This order is apparent especially in the more difficult cases, like the three-dimensional A’C’
experiment for instance (see Table 3.2). Methods based on the same model performed
approximately equally well, which is explained by the fact that only simple mixtures of
two classes having similar variance-covariance matrices were considered. As a result, the
average matrix IN was nearly identical to the N; (and thus also to N(f)), which led to
similar proportions, similar reconstruction errors €,, and similar component estimates.

A further comparison of the performance of the two physical models once again demon-
strates that neighbouring pixels are correlated. The big difference in values of €, between
the basic physical and the environmental approach indicates that in the latter model smaller
displacements are needed to reconstruct pixel x; apparently, the true spectra of a pixel’s
components are approximated well by the spectra of the components of neighbouring pix-
els. This hypothesis is confirmed by the fact that the accuracy measure €, on average
shows lower values for the environmental model than for the basic physical model, even
when the values for the environmental model are calculated using the variance-covariance
matrices of the basic physical model (see Tables 3.1 and 3.2, values given in parentheses).
Although the accuracy of the estimated components seems to be a bit disappointing in an
absolute sense, it should be noted that the estimates are considerably more accurate than
samples drawn at random: the expected value of ¢,, for a random set of samples drawn
according to the distribution of class i is equal to 1.0.

As can be seen in Table 3.3, the time needed to process one image differed significantly
per method. For each model, the analytic solution was calculated much faster than the
brute force approximation, which is not surprising since the computational complexity of
the analytic methods is polynomial in n and ¢, while that of the brute force methods is
exponential. When the number of spectral bands increased from two to three, the analytic
methods hardly needed more processing time. The processing time of the brute force
methods based on the two physical models, on the other hand, increased by a factor of
about 100, which matches the sampling rate chosen. The brute force approximation of the
statistical model did not require that much extra time, since its complexity is exponential in
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mix model method (%) ey €p1 €2
statistical brute force 5.8  0.34 - -
7 analytic 6.0 0.35 - -
AB  physical brute force 5.9  0.27 0.78 0.74
7 analytic 6.0 0.29 0.85 0.77
environmental brute force 5.5  0.06 (0.07) 0.71 (0.73) 0.84 (0.61)
K analytic 5.4 0.05(0.06) 0.75 (0.75) 0.82 (0.61)
statistical brute force 13.8  0.32 - -
7 analytic 13.8  0.32 - —
AC  physical brute force 14.7 0.23 0.77 0.79
7 analytic 14.5  0.24 0.78 0.77
environmental brute force 9.3 0.07 (0.08) 0.63 (0.66) 0.75 (0.44)
7 analytic 9.3 0.08 (0.08) 0.65(0.69) 0.77 (0.44)
statistical brute force 10.4  0.36 - -
7 analytic 10.4  0.36 - -
BC  physical brute force 10.7  0.27 0.64 0.78
7 analytic 10.6  0.27 0.66 0.77
environmental brute force 84  0.05 (0.03) 0.75 (0.56) 0.86 (0.50)
7 analytic 8.4 0.05(0.03) 0.75 (0.56) 0.85 (0.49)
statistical brute force 19.3  0.31 - -
v analytic 19.4  0.30 - -
BD  physical brute force  20.5 0.20 0.83 0.96
7 analytic 20.5 0.21 0.83 0.98
environmental brute force 13.3  0.05 (0.03) 0.62 (0.46) 0.68 (0.37)
7 analytic 13.2  0.05 (0.03) 0.62 (0.46) 0.71 (0.38)
statistical brute force 23.4  0.33 - -
7 analytic 234 0.33 - -
CD  physical brute force 25.9 0.21 0.84 0.89
7 analytic 26.2 0.21 0.85 0.91
environmental brute force 13.8  0.05 (0.03) 0.78 (0.44) 0.71 (0.36)
K analytic 13.9  0.05 (0.03) 0.81 (0.46) 0.73 (0.37)
statistical brute force 39.4  0.49 - -
7 analytic 39.8  0.49 — -
A'C’  physical brute force 45.0 0.25 0.70 0.86
7 analytic 45.6  0.25 0.73 0.86
environmental brute force 27.9  0.06 (0.08) 0.67 (0.77) 0.73 (0.75)
7 analytic 28.2 0.06 (0.08) 0.66 (0.76) 0.73 (0.75)

Table 3.1: Performance measured for two band data. Step sizes were 0.01 (statistical)
and 0.017 (other). Values in parentheses are calculated using the N; of the physical model.
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mix model method (%) ey €p1 €2
statistical brute force 5.7  0.46 - -
7 analytic 5.8  0.46 - -
AB  physical brute force 5.7  0.36 0.71 0.66
7 analytic 58  0.37 0.75 0.67
environmental brute force 5.0  0.12 (0.16) 0.66 (0.84) 0.71 (0.65)
7 analytic 5.0 0.11 (0.14) 0.68 (0.86) 0.69 (0.63)
statistical brute force 11.0  0.45 - -
7 analytic 10.9  0.46 - -
AC  physical brute force 12.3 0.34 0.69 0.69
7 analytic 12.0  0.35 0.70 0.66
environmental brute force 9.2 0.12 (0.14) 0.63 (0.84) 0.71 (0.52)
7 analytic 9.4 0.13(0.14) 0.64 (0.87) 0.75 (0.54)
statistical brute force 10.3  0.43 - -
7 analytic 10.3  0.43 - -
BC  physical brute force 10.8 0.32 0.61 0.70
7 analytic 10.8  0.32 0.62 0.70
environmental brute force 8.2  0.11 (0.11) 0.64 (0.57) 0.74 (0.52)
7 analytic 8.0 0.10 (0.10) 0.62 (0.56) 0.73 (0.51)
statistical brute force 19.3  0.43 - -
v analytic 19.6 043 - -
BD  physical brute force 23.9  0.27 0.80 0.89
7 analytic 24.0 0.30 0.85 0.92
environmental brute force 12.7  0.10 (0.08) 0.64 (0.61) 0.65 (0.46)
7 analytic 12.9  0.10 (0.09) 0.63 (0.60) 0.68 (0.48)
statistical brute force 14.9  0.47 - -
7 analytic 15.0 047 - -
CD  physical brute force 17.0 0.33 0.75 0.69
7 analytic 18.1 0.36 0.77 0.77
environmental brute force 11.5  0.10 (0.08) 0.71 (0.50) 0.61 (0.41)
K analytic 11.7  0.10 (0.09) 0.73 (0.50) 0.60 (0.41)
statistical brute force 36.4  0.53 - -
7 analytic 39.5  0.51 — -
A'C’  physical brute force 42.5 0.25 0.57 0.89
7 analytic 47.0 0.28 0.70 0.92
environmental brute force  23.7  0.10 (0.12) 0.50 (0.58) 0.73 (0.73)
7 analytic 23.7 0.10 (0.12) 0.51 (0.60) 0.73 (0.73)

Table 3.2: Performance measured for three band data. Step sizes were 0.01 (statistical)
and 0.017 (other). Values in parentheses are calculated using the N; of the physical model.
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Table 3.3: Average CPU-time (in seconds) needed to process one image made up of two
classes. The methods were implemented using MATLAB 5.0 and were executed on a SUN
SPARCstation-20 running Solaris 2.5.

c only. Compared to the basic physical model, the brute force solution of the environmental
model costs approximately eight times more; the analytic variants differ about factor of
only 5.5 due to the relatively greater impact of the evaluation routine which requires a
constant amount of time. The computational costs of the brute force methods are the
reason that the experiments were limited to at most three dimensions and two classes.
The latter restriction, however, also was more convenient for the endmember selection
mechanism applied by the environmental approaches.

3.4 Summary and conclusions

In this chapter a new linear mixture model was introduced, which attributes the variations
in the spectral response of similarly composed pixels to physical factors instead of random,
statistical noise. In this physical model, or better, the more elaborate environmental
variant, the correlations that exist between the endmember spectra of neighbouring pixels
can be described and exploited to acquire a more accurate estimation of the proportions of
a mixed pixel. Solving these physical models can be done using brute force or mathematical
analysis but is rather complicated, because it requires estimating the spectral response of
each component of the mixed pixel. However, this additional information may be a useful
feature for some applications. Based on the characteristics of the component spectra, the
proportion of the pixel area covered by each class can be calculated.

To determine the performance of several methods based on the three mixture mod-
els (statistical, physical, and environmental), a number of experiments were carried out.
In these experiments, artificial images of agricultural scenes were generated using real
Landsat-TM data and processed in order to make a quantitative comparison of the accu-
racy of the decomposition methods possible. It appeared that, independent of the approach
followed, the proportions were estimated more accurately as the dispersion of the endmem-
bers got larger; increasing the number of bands also led to a higher accuracy. However, the
choice of the mixture model had a considerable influence on the accuracy as well. Methods
based on the environmental model, which is a variant of the basic physical model that
utilises the fact that neighbouring pixels are correlated, gave the most accurate estimates.
The results of the decomposition methods based on the classic statistical model were less
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good, while those following the basic physical approach, which ignored the pixel correla-
tions altogether, had an accuracy that was even slightly lower. Based on these results,
it can be concluded that the physical linear mixture model is better suited to decom-
pose mixed pixels than the classic statistical model, but only if the correlations between
neighbouring pixels can be exploited.

In addition to the accuracy of the proportion estimates, the accuracy of the estimated
component spectra and the required processing time may be of importance. The compo-
nents of a mixed pixel could be determined more accurately based on the environmental
model than on the basic physical model; the methods based on the statistical linear mixture
model did not provide an estimate of the components at all. However, even the components
estimated by the environmental approaches did not seem to be very accurate, although this
can only be decided in relation to the purpose they are used for. The processing speed of
the decomposition methods depended primarily on the method of solution—brute force or
mathematical analysis. Whereas the analytic solutions of all models could be calculated
very fast due to their polynomial complexity, the methods utilising brute force had an
exponential complexity and were much slower. If the methods are ordered according to
their underlying models, those based on the statistical model were the fastest, followed by
those based on the basic physical model, and those based on the environmental model.
Therefore, it can be concluded that the analytic solution of the statistical linear mixture
model should be selected if processing speed is of the utmost importance. In case the
accuracy of the estimated proportions is the most important, or if the spectral response of
the components of a mixed pixel must be extracted, solving the environmental variant of
physical linear mixture model is the best choice.



Chapter 4

Linear mixture modelling: tying up
the ends”

In this chapter, two loose ends concerning many decomposition methods that are based
on the linear mixture model are tied up. Section 4.1 describes how satisfaction of the
positivity constraint in particular can be enforced, which in most cases is done after a
solution of the linear mixture model has been found. In addition, Section 4.2 discusses
several methods to determine the endmembers of an image, which must be done before
the linear mixture model can be solved. Section 4.3, finally, summarises the results and
presents the conclusions.

4.1 Satisfaction of the positivity constraint

As described in Section 2.1.2; a solution of the linear mixture model has to satisfy two
constraints in order to be physically sound. The sum-to-one constraint, which says that
the proportions of a pixel’s components must add up to one, can usually be satisfied rela-
tively easily using some sort of scaling operation. The positivity constraint, on the other
hand, is much harder to satisfy, because the requirement that each proportion is greater
than (or equal to) zero is an inequality that cannot be incorporated in an analytically de-
rived closed solution. This problem can be circumvented of course by using an alternative
method of solution such as the brute force approach explained in Section 2.1.2; Settle and
Drake [99] also mention Wolfe’s quadratic programming procedure [113] and the logit vari-
ables approach of Kent and Mardia [59]. However, the computational complexity of these
methods may be too high to use them for hyperspectral data. Therefore, most studies
simply apply the partially constrained, analytic estimator given by Equation (2.11) and
satisfy the positivity constraint in a separate post-processing step like the one described
in Section 4.1.1. An alternative to this approach is the method presented in Section 4.1.2,
which iteratively adapts the result of an unconstrained least-squares estimator to approx-
imate both the sum-to-one and the positivity constraint without disturbing the original
solution to any great degree. To determine the viability of this new approach, we made a
small comparison of the various methods, which is described in Section 4.1.3.

*This chapter is based on publication [95].

49
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Figure 4.1: Partitioning of the solution space by the constrained least-squares method.
FEstimates (f1,f2) that lie outside the shaded region need to be recalculated.

4.1.1 Standard post-processing approaches

One of the first strategies to satisfy the positivity constraint by means of a simple post-
processing step was described by Marsh et al. [68]. Dealing with mixtures of only two
classes, their approximate maximum likelihood technique—see Section 2.2.3—maps a pro-
portion f; to O if the estimate is negative, while f; is taken to be 1 if the estimate was
greater than one. Since the proportion of the other class is calculated as fo=1—f;, satis-
faction of both the sum-to-one constraint and the positivity constraint are guaranteed.
Shimabukuro and Smith [100] suggested a method that can be regarded as an extension
of the above strategy to the three class problem. Their constrained least-squares (CLS)
method shares some of the characteristics of quadratic programming as it tries to minimise
an object function whose parameter values must lie within certain bounds. The basis of
the approach of Shimabukuro and Smith is the least-squares estimator (see Section 4.1.2
for more details), which is a simplified version of the well-known linear mixture modelling
approach. The expression to be minimised is a function of only two fraction variables,
as the sum-to-one constraint is enforced explicitly by taking f3=1—f;—f,. Based on the
outcome of the estimator, one or more fractions need to be recalculated in order to satisfy
the positivity constraint. Only if both f; and f; are non-negative and their sum does not
exceed 1, the decomposition is accepted. In case (fi,f2) indicates a point in one of the
other four parts of the solution space depicted by Figure 4.1, several adjustments must
be made, which are listed in Table 4.1. For points lying in the part II, the substitution

fi fa part recalculate f3
positive  positive I 1—fi—fo
positive  positive I fi, fo=1—f1 0
negative positive I fy (f1=0) 1—f
negative negative IV (fi=f2=0) 1
positive negative V  f; (f,=0) 1-f1

Table 4.1: Recalculation scheme for the constrained least-squares method.
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Figure 4.2: Partitioning of the feature space by the renormalisation method. The fractions
estimates corresponding to points outside the shaded region need to be adjusted. Points in
part D like p have f3<0; setting f3=0 and renormalising (f1,f2) means moving p to p’.

fo=1—f1 is made prior to recalculating f;. After recalculation, at least one fraction is 0;
if the remaining two fractions still do not satisfy the positivity constraint, the negative
fraction is forced to 0 and the other fraction is taken to be 1.

Another post-processing method that can be considered as a generalisation of Marsh’s
two class strategy for mixtures of arbitrarily many classes was applied in a number of studies
(e.g. Settle and Drake [99], Pech et al. [79]). The technique is very straightforward as any
negative proportions are simply set to zero and the remaining fractions are normalised so
that they add up to one. Although this approach may give less accurate results, it does
not require the case distinction of the constrained least-squares method, which becomes
complicated if the number of classes increases. Compared to the brute force approximation
method discussed in Section 2.1.2, the reduction in computational costs is very large, which
may make the loss of accuracy acceptable. The difference between the renormalisation
method and CLS can well be explained using the feature space representation of a three
class problem—see Figure 4.2. According to the theory of convex geometry, all mixtures
satisfying the sum-to-one constraint are located on the plane containing the endmembers
m;, my, and my. Similarly, for mixtures on the line through m;m; holds that f;+f;=1, in
other words, the proportion of the remaining endmember k is zero. This line divides the
plane in two parts; the part where my, is situated contains all mixtures for which f,>0, while
at the other side of the line the mixtures for which f,<0 can be found. As a consequence,
all mixtures that satisfy both the sum-to-one constraint and the positivity constraint lie
in (or on) the triangle made up of the three endmembers. As described in Section 2.1.2,
the brute force method systematically samples this triangle to find the point resulting in
the smallest value of the error function. The analytic approach, on the other hand, finds a
point p on the plane—the sum-to-one constraint is satisfied—but not necessarily inside the
triangle. Satisfaction of the positivity constraint using the renormalisation approach entails
the following adjustments: if one fraction f; is negative, the point p is moved towards my
until the line m;m; is reached; if two fractions f; and f; are negative, then the point is
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outcome estimator renormalisation approach constrained least-squares
fi fo f3 part renormalise part recalculate

positive  positive positive A I
negative positive positive B fy, f3 (f1=0) I fy, fs3=1—fo (f1=0)
negative positive negative = C  (fo=1, fi=/3=0) I fy, f3=1—fy (f1=0)
positive  positive negative D fi, fo (f3=0) IT  fi, fo=1—f1 (f3=0)
positive negative negative E  (fi=1, fo=f3=0) V. f1, f3=1—f1 (fo=0)
positive negative positive F  f1, f3 (fo=0) V fi, fs=1=f1 (f2=0)
negative negative positive G (fs=1, fi=f2=0) IV (fs=1, fi=/f=0)

Table 4.2: Adjustment rules followed by the renormalisation approach and the constrained
least-squares method based on the partitioning given in Figure 4.2.

moved directly to my. Translation of the rules used by CLS to the example of Figure 4.2
results in Table 4.2. This table shows that both post-processing methods actually are
very similar: in all cases where the renormalisation approach moves p in a straight line
until m;m; is reached, CLS calculates which location of p on m;m; results in the smallest
error. Furthermore, mixtures in part G—and part A of course—are treated exactly the
same. Those in parts C and E, however, may be processed differently depending on the
location of the endmembers. Figure 4.3 gives an example of the asymmetric behaviour of
CLS, which is due to the exceptional handling of endmember my. Figure 4.3(a) shows the
situation where p, after recalculation of f; and f3 followed by restriction of the values to
0,1], is moved to my, which corresponds to the (1,0,0)7 proportions vector found by the
renormalisation approach. However, if endmembers ms and mg3 are interchanged as shown
in Figure 4.3(b), CLS moves p to a position between m; and mgs, which corresponds to
a proportions vector of (f1,0,1—f1)7 with 0<f;<1. Although the latter solution is better
as it results in a lower error—the (Euclidean) distance between p and p’ is smaller than
the distance between p and m;—the adjustments are different from those made for mixed
pixels in G, which are always fully allocated to class 3.

4.1.2 A new method: iterative least-squares

In the last decade, hyperspectral remote sensing has assumed an important place in earth
observation research. Hyperspectral instruments collect data in many narrowly defined
channels, e.g. AVIRIS takes measurements in 224 spectral bands of 10 nm width each
(see Table 1.2). Because of the high data volume that results, special attention has to be
paid to the efficiency of the decomposition methods, especially if the positivity constraint
is to be satisfied. Solving the linear mixture model with brute force, for instance, is not
an option because of the high computational complexity. The CLS method suggested by
Shimabukuro and Smith is much faster but rather complicated if more than three classes
are involved. Since one advantage of a high number of bands is that in theory mixed
pixels can be decomposed in many more classes than the usual number of three to five,
which is the maximum for Landsat-TM data [70], this is a serious limitation. Least-
squares in combination with the standard renormalisation approach, on the other hand,
is at least as fast and conceptually much simpler, but it usually leads to a sub-optimal
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Figure 4.3: An example of the asymmetry in the constrained least-squares method. (a) Re-
calculation of f1 and fz moves p to a position on the line through my and mgz; since f3<0,
p is moved further to my. (b) After interchanging my and mg, recalculation of f1 and fs
moves p to a different position somewhere between my and mg; equivalent points in part G,
however, are always mapped to ms.

estimate. Therefore, we developed the iterative least-squares (ILS) method as an accurate,
conceptually simple, and relatively fast way to decompose hyperspectral mixed pixels [95].

Like all least-squares methods mentioned before, ILS is based on the linear mixture
model given by Equation (2.5). In contrast to classic linear mixture modelling, however, the
within-class variations represented by the variance-covariance matrices IN; are not explicitly
accounted for. The standard least-squares approach towards solving this slightly different
model is to select the solution that has the smallest square error term, i.e. minimises e’e.
By setting the partial derivatives of this expression with respect to each f; to zero, the
following estimator can be derived:

fi, = (M"M) "M”x. (4.1)

Note that this solution is identical to the one given by Equation (2.10) if the variance-
covariance matrix N is replaced by the nxn identity matrix I. In other words, the least-
squares estimator is just a simplification of the classic linear mixture modelling approach
for the case that all spectral bands have equal weight and the error term e is uncorrelated.

In general, the solution given by Equation (4.1) satisfies neither the sum-to-one con-
straint nor the positivity constraint. In order to comply better with these rules, the function
to be minimised is extended with two additional terms:

ozoeTe + o101 (f) + Ctggg(f), where (42)
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= <1 - i fj> and (4.3)

c 2 .
wt) =3 {5 P30 (44

J=1

Note that g;(f) and go(f) penalise violations of the sum-to-one and positivity constraint,
respectively, and that they are zero in case both constraints are satisfied. Starting from
the unconstrained least-squares solution, the iterative least-squares method minimises this
cost function by means of the gradient descent approach:

(1) _ ) Oele 9g:1(f) 9gs(f)
fj —fj Qo afj (631 afj %) afj .

The coefficients «;, which must lie between 0 and 1, determine the weights of the various
error terms; by choosing relatively high values for oy and s, satisfaction of the constraints
is emphasised. The iterative process is stopped as soon as the fractions after iteration k41
are approximately equal to those after the k-th iteration: Z;Zl( f;kﬂ) — f](k))2 < t?; by
varying the threshold ¢, the accuracy of the result can be traded of against computational
costs. The partial differentials of the different contributions to the overall error are

o T a €; (* =
e e _ Zz 16 22 - :) —QZeimij, (46)
=1

(4.5)

of;
0

galfj 22 fi—2, and (4.7)
a7, _{ 0, f>0. (4.8)

In order to derive these expressions, application of the chain rule was required in several
cases. The step marked with (%) was based on the relation €z‘:$z‘—25:1mz‘j fj, which
follows directly from the linear mixture model. Substitution of Equations (4.6)—(4.8) in
Equation (4.5) defines a way how the aforementioned cost function can be minimised.

The exact procedure followed by the ILS method is a little bit different for reasons of
efficiency. As indicated by Equation (4.6), computation of the partial derivative of e’e
requires more than n multiplications, which is very time consuming as the number of bands
n can be as large as several hundreds. However, this expression can be transformed into a
more efficient formula based on the equality M?Mf;,;=M7x derived from Equation (4.1).
Using matrix-vector notation, we can rewrite Equation (4.6) as

oele

oF = —2M"e {e =x — Mf}

= —2M"(x — Mf) {unfold, rearrange}
=2M'Mf —2M'x  {M"x=M"Mf,,, fold}
= QMTM(f - fls): (49)
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which is equivalent to

oelfe < &
a5 Wik (fr — fis,), where wj, = QZmijmik. (4.10)
’ k=1 i=1

Since u;;—the element at row j column k of matrix U=M”M-—is independent of the
current iteration, it needs to be calculated only once and can subsequently be determined
quickly by table look-up. Thus, the complexity of a single iteration has become proportional
to ¢, the number of endmembers, which in general is much smaller than the number of
spectral bands. Therefore, provided that the number of iterations needed is small, ILS is
a fast alternative for the decomposition of mixed pixels in hyperspectral images in cases
where satisfaction of the positivity constraint is desired.

4.1.3 A little comparative experiment based on MAIS data

From the previous section it has become clear that the concept of ILS is simple and easily
extendible to an arbitrary number of classes. Furthermore, we have shown that the method
has the potential to be fast as its complexity depends on the number of classes instead of the
number of spectral bands. However, it must still be checked that the number of iterations
required is not too large for ILS to be applicable in practice. Besides that, the accuracy
of the fractions vector estimated by ILS needs to be determined as well. Therefore, we
carried out a little experiment with hyperspectral data in which a comparison between ILS
and two other methods based on the least-squares approach was made. The remainder of
this section subsequently covers the set-up, results, and discussion of this experiment.

Set-up

Like the test in Chapter 3, this experiment consisted of three steps, two of which are
described in more detail here. The first part explains how the artificial data used in
this experiment was generated based on the hyperspectral image available. The second
step included decomposition of the samples in this data set using the basic least-squares
approach with and without renormalisation step, the CLS method, and ILS with different
threshold settings. In the third and last step of the experiment, the performance of these
methods was evaluated quantitatively using four error measures; a description of these
error measures can be found at the end of this section.

Since we had no hyperspectral mixed pixels with supervised information at subpixel
level at our disposal, we had to generate a set of artificial samples. The basis of the
simulation was a 30 band image acquired with the Modular Airborne Imaging Spectrometer
(MAIS) made in China; the bands had a spectral resolution of 20 nm each and ranged from
the visible to the infrared part of the spectrum. Each of the 4752512 pixels was recorded in
8 bits per band and covered an area of 20220 m?. The image, which is shown in Figure 4.4,
displays part of the Yellow River Valley in the Ganshu province in China and has water,
vegetation, and soil as its main components. For each class, a remote sensing expert who
is familiar with the region picked out one pure pixel, which formed our only source of
supervised information. Based on these pixels, the entire image was classified using the
well-known nearest neighbour algorithm, where pixels that deviated too much from the
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Figure 4.4: Band siz of the MAIS image displaying part of the Yellow River Valley.

supervised examples were allocated to a fourth class called unknown. Next, blocks of 5x5
pixels belonging to the same class were extracted from the classified image as described
in [92]. This way some 16 blocks per class were selected, whose mean vector and variance-
covariance matrix—multiplied by four to compensate for the loss of variability due to the
selection method—served as the distribution of the corresponding class. To generate the
i-th sample of the artificial data set, first its fractions were computed as

fimods = T1, f(i+1)mod3 = 7”2(1 - fimod3)7 f(i+2)m0d3 =1 — fimods — f(i+l)mod37

where 71 and ry denote random fractions drawn from a distribution uniform over [0, 1].
Next, for each of the three classes a random sample was drawn from the multivariate
normal distributions determined before, which were combined with the fractions vector
according to the standard mixing equations of the linear mixture model. Finally, a random
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Gaussian with ©=0.0 and 0=2.0 was added to each band to model sensor noise, and the
resulting intensities were rounded to the nearest integer and truncated to the interval
[0,255]. Thus, a set of 16384 mixed pixels was generated, which was used to evaluate the
different decomposition methods.
To quantify the performance of each of the decomposition methods, the following four
I

error measures were used:
fi—1; > (4.11)
ji

= () (112)
/e)

(4.13)

Esum = \/<91(f)>
Epos = 1/ <gz(f) (4.14)

With the exception of ¢, which was already presented in Section 3.3.1 as a means to assess
the accuracy of the estimates, all measures are derived directly from the cost function
minimised by the ILS method. Equation (4.12) defines €, as the root mean square (RMS)
of the error vectors needed to fit the linear mixture model to the pixels in the data set.
Note that, apart from the root, ¢, is identical to the definition given by Equation (3.23)
if the variance-covariance matrix N(f) is taken to be 2562 % I. The measures &g,,, and Epos
are simple representations of the average violation of the sum-to-one and the positivity
constraint, respectively, where the latter measure includes a term 1/c to reflect the error
per component rather than per pixel. With these four error measures the most important
aspects of the performance of ILS and the other decomposition methods can be determined.

Results

The results of the four methods applied to the artificial data set are shown in Table 4.3.
For the iterative least-squares method three different threshold settings were used, viz.
0.01, 0.001, and 0.0005. The values of the o were taken to be approximately equal to those
determined experimentally by Schouten and Klein Gebbinck [95]!, being cg=0.20/(n*256%),
a1=0.15, and as=0.25. As Table 4.3 confirms, the basic least-squares approach naturally
is the fastest decomposition method, providing the best fit (lowest ¢,) of the unconstrained
model to the data. However, the relatively high values of £, and €p,s indicate that the
sum-to-one constraint and the positivity constraint are violated rather seriously. Post-
processing these estimates with the renormalisation method takes a little extra time and
leads to a higher ¢,, but satisfaction of the constraints clearly improves the accuracy of the
estimates as ¢ decreases from 9.6% to 8.2%. The extra time needed by CLS approach is
about a factor three higher, but this pays off in terms of a better performance: ¢ is reduced
to 7.8% and e, decreases from 0.036 to 0.031. Compared to CLS, ILS has modestly higher
to considerably higher computational costs, depending on the value of the threshold used.

Due to a typo, [95] lists the value of ag as half the value actually used.



58 Chapter 4: Linear mixture modelling: tying up the ends

method er (%) Ex Esum (%) €pos (%) iterations time (s)
least-squares 9.6 0.022 4.7 3.0 - 87.6
renormalise 8.2 0.036 0.0 0.0 - 94.1
CLS 7.8 0.031 0.0 0.0 - 108.8
ILS (0.01) 8.2 0.029 1.4 0.4 2.2 143.6
ILS (0.001) 7.7 0.029 1.2 0.1 8.3 289.9
ILS (0.0005) 7.6 0.028 1.2 0.1 22.5 639.2

Table 4.3: Performance of the four methods—the figure in parentheses is the threshold
setting used by ILS—on the artificial MAIS data. The methods were implemented using
MATLAB 5.0 and were executed on a SUN SPARCstation-20 running Solaris 2.5.

Furthermore, the sum-to-one and positivity constraints are no longer satisfied perfectly but
only approximately, albeit that the violation of the constraints is much less severe than it
was for the basic least-squares solution without post-processing. On the other hand, the
estimates of ILS result in an ¢, that is closer to the optimal value of 0.022 than all other
post-processing methods. More important, though, is that the accuracy of the estimates
by ILS are surprisingly good as well, ranging from as good as the renormalisation approach
(e7=8.2% for t=0.01) to slightly better than CLS (e;=7.6% for ¢=0.0005).

In Table 4.3 it can be observed that decreasing the threshold from 0.001 to 0.0005
resulted in only a marginal improvement of the estimates by ILS. Simultaneously, however,
the CPU-time required to post-process the data set increased with a factor 2.7, as did the
average number of iterations per sample. Presumably, the extra iterations have little
effect beyond a certain minimum number. To test this hypothesis, we adapted our ILS
implementation to perform a certain number of iterations for all samples instead of using
the threshold stopping criterion described in Section 4.1.2. Figure 4.5 shows the results
for the first 20 iterations. As expected, €, €sum, and €p,s decrease sharply at first, but
display a much flatter curve after some extra iterations. The value of ¢, rises considerably
in the first iteration, but stabilises at an intermediate level soon thereafter as well. To get
a better understanding of the number of iterations performed, we also made histograms
of the number of iterations required for both t=0.001 and t=0.0005—see Figure 4.6. A
comparison of Figures 4.6(a) and 4.6(b) reveals that the general shape of the histogram
is the same for both settings. The modal value is slightly higher for ¢t=0.0005, but much
less than the difference in the average number of iterations (8.3 vs. 22.5) would suggest.
Therefore, it is concluded that lowering the threshold to 0.0005 had little influence other
than increasing the computational costs, since it resulted in refining the estimates of a
limited number of samples, which had only little effect on the overall performance.

Discussion

The results presented in the previous section make it clear that the estimates of the basic
least-squares method can be improved considerably by enforcing the sum-to-one and the
positivity constraint. Since the brute force approach towards minimising e’e under these
constraints is much too expensive for hyperspectral data, other methods are needed. The
renormalisation approach, which is widely used, is simple and fast but gives sub-optimal
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Figure 4.5: Performance of ILS after executing a number of iterations for all samples.
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estimates. The CLS method is about as fast and more accurate, but the algorithm gets
complicated if the number of classes is larger than three. Compared to CLS, ILS requires
some extra computations and does not enforce the constraints as rigorously. However, the
accuracy that can be achieved by ILS is higher than that of CLS if the threshold is set
low enough. This surprising fact is probably due to the sub-optimal behaviour of CLS in
case two of the three estimated fractions are negative—see Section 4.1.1. An advantage of
ILS is that the accuracy of the estimates can be traded off against computational costs.
Furthermore, ILS is conceptually much simpler than CLS, which means that ILS is more
suitable to handle mixtures of more than three classes. A possible disadvantage of ILS is
that several parameters have to be set, being the weighing factors oy, oy, and ay, and the
threshold. In order to determine whether the optimal values of these parameters depend
much on the data set or not, further research is needed. Future work could also be directed
towards adapting ILS to guarantee stringent satisfaction of the constraints, though this
goal can largely be achieved by selecting high values for oy and as as well. Anyway, this
experiment has shown that ILS potentially is a simple, accurate, and relatively fast method
to decompose mixed pixels in hyperspectral images.

4.2 Ways to determine image endmembers

In this section, several methods to determine the endmembers of an image are described.
The endmember spectra, which make up the columns of the matrix M used throughout
this thesis, must be known before the decomposition process can take place. Sections 4.2.1
to 4.2.3 discuss three techniques that are usable for applications where the size of the
objects in the image can be arbitrarily small. Sections 4.2.4 and 4.2.5 explain two methods
that are applicable only if the objects are at least as large as a single pixel or have a
size that is even much larger (e.g. an agricultural field). In Section 4.2.6, finally, a new
approach is described that is based on K-means clustering; subsequently, this method is
evaluated by means of two small experiments.

4.2.1 Spectral libraries

One possibility to determine the image endmembers is to extract them from a spectral
library. Such a library, whose use is usually related to geological applications (e.g. Adams
et al. [2], Smith et al. [103]), contains endmember spectra that have been measured either
in a laboratory or in the field. For applications in the agricultural domain, however, these
libraries are less suitable because they need to account for all processes and factors influ-
encing the data spectra. For example, several spectra corresponding to the same green
vegetation type over different backgrounds may have to be included, since multiple scat-
terings between leaves and a bright soil background increase the near infrared reflectance
of the leaves (Bateson and Curtiss [10]). Also, additional spectra may have to be included
to cover all stages of a crop’s growth or to compensate for the effects of other biological
processes such as fluorescence in response to stress. Thus, unless extensive field work is
done at the time of image acquisition, access to a very large library is required. A more
important problem, though, is that the image and the library need to be calibrated in or-
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der to adjust for instrumental drift, atmospheric effects, and illumination intensity. As the
necessary corrections may differ for the various parts of the image, which is often the case
for images covering a large area (e.g. AVHRR images), this step can be complicated. After
the calibration coefficients have been determined, usually the image is converted to match
the library. Analogously, however, the reference endmember spectra in the library could
be transformed into the endmember spectra of the current image. In recent years, spectral
libraries are used primarily to identify the composition of image endmembers (Smith et
al. [104], Mertes et al. [73]). First, the image endmembers themselves are determined using
a method such as principal component analysis (see Section 4.2.2). Since the spectra found
need not correspond to pure materials in the scene, their identity must subsequently be
inferred from reference spectra of known materials. Smith et al. [104] express each image
endmember as a linear combination of reference endmember spectra, just as mixed pixels
are expressed as a linear combinations of image endmembers. In their two-step method, a
function incorporating the earlier described calibration and the aforementioned alignment
(unmixing) is repeatedly evaluated for different candidate groups of reference spectra until
a suitable representation of the image endmembers determined in the first step is found.

4.2.2 Principal component analysis

Traditionally, the objective of principal component analysis (PCA) is to reduce the dimen-
sionality of a data set while retaining as much of the relevant information as possible. This
goal can be achieved by rotating the coordinate system such that most of the variation
in the data is found along a limited number of axes, the so-called principal components.
The axes where the data shows little or no variation are disregarded, which corresponds
to restricting the original feature space to a smaller linear subspace. As was described
earlier, see Section 3.2.1 for instance, linear mixtures of ¢ (c<n+1) classes that satisfy the
sum-to-one constraint define a linear subspace as well, being of dimension ¢—1. Therefore,
on the condition that mixing accounts for the greater part of the variation in the data,
calculating the first ¢—1 principal components is a major step towards determining the
¢ endmember spectra.

Smith et al. [103] developed a method based on PCA to determine endmembers from
remote sensing data, which was later applied in several other studies, e.g. Cross et al. [23]
and Bryant [18]. None of these articles explain PCA in any detail, however, a clear de-
scription of the mathematical foundations of PCA is given by Bishop [13, pp. 310-313]. In
summary, each pixel is represented using a new coordinate system, x = Y | z;u;, where
the u; constitute a set of orthonormal basis vectors spanning the original feature space.
Next, the dimensionality of the data is reduced by replacing several of the z; by values that
are identical for each pixel—the corresponding u; are virtually disregarded—and the sum
of square errors between the original pixels and their simplified counterparts is calculated.
It can be derived that this error is minimal if the basis vectors satisfy

Nu; = \;u;, or, equivalently, U'NU = I, (4.15)

where N denotes the variance-covariance matrix of the data after subtraction of their mean
vector. In other words, the eigenvectors of N define the coordinate system in which most
of the variation of the data is found along a minimum number of axes. The eigenvalue )\,
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(a) Finding the principal components. (b) Choosing the endmember spectra.

Figure 4.7: The PCA approach to determine three endmember spectra. (a) The princi-
pal components uy and Uy are chosen such that the plane they span contains most pizels.
(b) Within this plane, the endmembers are chosen such that the triangle they define coin-
cides with the triangular shape of the cloud of pizels.

represents the variance of the data on the axis u; and is commonly regarded as either a pri-
mary or a secondary eigenvalue. Whereas the primary eigenvalues are higher in magnitude
and account for the variation due to spectral mixing, the sum of secondary eigenvalues
should be equivalent to the variances arising from the instrumentation. In many cases,
the primary eigenvalues can be clearly separated from the secondary ones, which provides
a criterion to test the dimensionality of the data and consequently also the number of
endmembers. After discarding the information associated with the secondary eigenvalues,
the linear subspace spanned by the endmembers is found.

Once the ¢—1 dimensional subspace has been found, the ¢ endmember spectra must
be determined such that the positivity constraint is satisfied. According to the theory of
convex geometry, this means that m; must be chosen such that the simplex they define
contains all elements in the data set. If mixtures of only two classes are considered, then
the minimum and maximum values of the first principal component can be taken as the
endmember spectra m; and msy. For mixtures of three classes, a scatterplot of the first
against the second principal component can be made. As is shown in Figure 4.7, with this
scatterplot the smallest triangle—a three-dimensional simplex—containing all pixels in the
image can be determined; the vertices of this triangle define the three endmember spectra.
When dealing with mixtures of more than three classes, several approaches are possible.
Bryant [18] uses a scatterplot of the first two principal components to find that the data has
a pentagonal shape. By selecting one pixel near each of the five vertices, five endmember
spectra are defined. This approach, however, may fail for example if one of the endmembers
is obscured by the other four since its discriminatory features are found along the other
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three principal components. Bateson and Curtiss [10] use a visualisation technique based
on parallel coordinates that permits to extend the set of endmembers with one spectrum
at the time. Although this method solves the problem of Bryant’s approach, it requires a
lot of human effort to judge the acceptability of the endmembers. Furthermore, it is well
possible that different users come up with different endmember spectra.

4.2.3 Linear regression of known mixtures

Linear regression is a classic statistical technique that can be used to determine endmem-
ber spectra if a set of mixed pixels with known fraction vectors is available. With the
growing popularity of AVHRR data, this technique has been applied frequently in the last
few years, e.g. by Holben and Shimabukuro [50], Hlavka and Spanner [49], Kerdiles and
Grondona [60], and Oleson et al. [78]. Due to its coarse spatial resolution, AVHRR data
in general contains few if any pure pixels of the classes of interest, which are needed for
the extraction of endmembers by the more traditional methods described in Sections 4.2.4
and 4.2.5. However, with the help of relatively high-resolution data such as Landsat-TM
imagery, the composition of a number of mixed AVHRR pixels can be estimated, which
subsequently can be used to calibrate the linear mixture model for the AVHRR data. This
calibration requires that the TM-image is spatially degraded to match the characteristics
of the AVHRR scanner, and that it is accurately co-registered with the AVHRR-image.
Since both topics are considered to be beyond the scope of this thesis, we refer to Oleson
et al. [78] for further information.

Multiple linear regression is a generalisation of the simple linear regression method
briefly discussed in Section 2.2.2. Just like the difference between linear and non-linear
regression is not always clear?, the terminology simple and multiple regression may be a bit
confusing. Simple means that there is only one regressor variable, i.e. f; in Equation (2.14),
multiple means that there are more than one, for example

x; = Poi+ Prifi+ -+ Be—rife1 (4.16)

What may be confusing is that a pixel is a measurement in multiple spectral bands, but this
has nothing to do with it. In fact, to determine the endmember spectra, linear regression
has to be applied to each of the n bands separately. Another source of confusion is that
linear regression tries to find the subspace that best fits a set of calibration pixels. Although
the index to this set leads to a more complex notation, this holds for simple as well as
multiple regression since both make use of a calibration set. Multiple linear regression in
terms of the linear mixture model with sum-to-one constraint is based on the equation

y =FB+¢€, where (4.17)
1) 1) (1) 501' My
€T 1 .. '
! fl. fcfl Bui M1 — Mye
Yy = ) F = . . ; ﬁ = . - . )
(p) (p) (p) )
i 1 fl fc_l ﬁc—l,i mi(cfl) — Myie

2 According to Myers [75], a model is linear if it is linear in its parameters 3;, so y = (o + 317 + [oz?
is linear, while y = fp + 31272 is not.
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and € is a prl vector representing the model error. In this equation, which is specified for
band 7, the superscript (j) denotes the index into the set of p calibration pixels. For this
well-known system, the least-squares solution minimising e is (c.f. Equation (4.1)):

B=(FF)'Fy. (4.18)

Once B has been calculated for each of the n bands, the endmember spectra m; can be
compiled from the m;;, which on their turn can be computed by summing the corresponding
Bo; and B;,;. For simple linear regression (c=2), the exact same procedure can be used.

4.2.4 Supervised pure pixel data

The use of supervised pure pixels to derive the reflectance typical for the classes of interest
has been standard practice in classification applications for many years. Obviously, this
approach can be followed only if the size of the objects that are depicted is at least as
large as a single pixel. One possibility to determine pure pixels of a particular class is to
let a remote sensing expert pick them directly from the image. Although fast and cheap,
this method requires that the remote sensing expert is familiar with the terrain and has
an up-to-date knowledge regarding the growing stage of the vegetation present. Another
possibility that is much more time-consuming, expensive, and probably tedious is to col-
lect them by means of field work, preferably not too long before or after image acquisition.
When using a map to determine which locations to visit, one has to choose the number of
observations to be made, which sampling pattern to apply, and, given the pattern selected,
the spacing of the observations (Campbell [19]). As is known from elementary statistics,
the number of observations determines how reliably the characteristics of a class can be
estimated. Furthermore, in case of random sampling, many samples have to be taken to
make likely that the less frequently occurring classes are represented by a minimum number
of observations. The sampling pattern specifies the arrangement of observations. Camp-
bell [19] discusses four different sampling strategies (random, stratified random, systematic,
and stratified systematic), which each have their strong and weak points. Related to the
sampling pattern is the required spacing of the observations: landscapes with large homo-
geneous objects can be represented by observations spaced at larger distances than those
displaying a finer, more intricate fabric. Once sufficient samples for each class have been
taken and the field data have been registered with the image, characteristics such as the
class mean and variance-covariance matrix can be calculated. Optionally, the supervised
data can be used to find similar pixels probably belonging to the same class in order to
refine the class distribution. The pure pixel approach is less appropriate for coarse resolu-
tion data such as AVHRR, but it may work if reference images of fine spatial resolution are
used. Quarmby et al. [82] applied the technique to classify a SPOT-XS image, after which
a corresponding AVHRR image was resampled such that pure pixels emerged. Foody and
Cox [29] used the same method to classify a Landsat-MSS image, which was then spatially
degraded to create pure pixels at AVHRR resolution. From this section and Section 4.2.2,
it may be clear that an endmember spectrum is not exactly the same as a class mean
vector: whereas an endmember is a single point in the feature space lying at the extreme
of the data cloud, a mean vector is a point that represents the average reflectance of some
class and is surrounded by pure pixels deviating slightly from the class mean. However, if
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the within-class variation is small compared to the dispersion of the endmembers, which
is a prerequisite for most statistical decomposition methods anyway (see Sections 2.1.2
and 3.2.2), the class means may be a good approximation of the endmember spectra.

4.2.5 Selection of homogeneous areas

Another method to derive class characteristics needed for mixed pixel decomposition is to
calculate the mean vector and variance-covariance matrix of selected homogeneous areas.
Although many similarities with the method described in Section 4.2.4 exist, an important
difference is that this technique can only be applied if the objects in the image are much
larger than a single pixel; depending on the resolution, agricultural fields may well qualify as
such. Basically, there are two approaches towards selecting training areas directly from the
image. The first way, which is followed by Drake and Settle [24] and Gong et al. [41] among
others, is to let a remote sensing expert who is familiar with the terrain select rectangular
patches, each covering (part of) only one object. Campbell [19] lists several concerns that
the analyst must reckon with when selecting these areas. First of all, each patch should
have a minimum size to provide accurate statistics, but the size should not be too large as
large areas include undesirable variation. A related issue is the number of training areas,
which for instance depends on the variation within a class and the number of classes to
be represented. A third concern is that the area must be localisable based on landmarks
present in the image as well as on the map, if a map is used to delineate training areas
that are difficult to access. Furthermore, each patch must be placed well within the object
bounds to avoid inclusion of mixed pixels, and the areas must be distributed throughout
the image in order to capture the diversity within the scene. Last but not least, each
area should exhibit a unimodal frequency distribution for each spectral band; if the data
displays a, for example, bimodal histogram, the area should be redefined or discarded.
Based on all these considerations, Campbell suggests that it is probably better to use a
rather large number of small training areas than a few large ones.

The other approach towards selecting homogeneous areas is to make a segmentation
of the image. As is described in Chapter 5, there are several ways to go about this
automatically, including edge detection and region growing. Whereas the former method
looks for discontinuities in the image to determine the object boundaries, the latter method
groups adjacent pixels with similar spectral reflectances to determine the object’s interior.
Once the objects have been established, some of the selection criteria mentioned in the
previous paragraph could be enforced using standard image processing techniques; for
instance, finding a training area that is placed well within the bounds of an object can
be accomplished by shrinking the original object boundaries by several layers of pixels. A
disadvantage of this unsupervised approach, though, is that the algorithms define spectral
instead of informational classes. To link the spectral classes to the informational classes
the user is really interested in, a knowledgeable analyst or supervised data is required.

4.2.6 K-means clustering: experiments with MAIS imagery

In case no supervised information such as a spectral library or a set of pixels—pure or
mixed—with known composition is available, unsupervised methods are needed. As dis-
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cussed before, principal component analysis is a major step in the right direction, but
human interaction is still required to determine the endmember spectra. Calculating end-
member spectra from selected homogeneous regions, on the other hand, can be done com-
pletely automatically, but this method can only be applied if the objects in the image are
much larger than a pixel. In this section, it is shown that K-means clustering can be used
to determine the endmembers of a hyperspectral image with very little human guidance for
objects that are relatively small. After a brief explanation of the K-means clustering algo-
rithm, two experiments are described based on the MAIS image presented in Section 4.1.3.
In the first experiment, the endmembers derived by K-means clustering are compared to
the endmembers determined by a few other methods. In the other experiment, the influ-
ence of the only parameter that needs to be set manually—the value of K—is studied in
order to see if its value may be set automatically.

The K-means clustering approach

K-means clustering is a well-known method that traditionally is used for unsupervised
classification. It can however also be used to determine endmember spectra because class
means, which can be calculated after classification, are closely related to endmembers.
Since the classification procedure is meant for pure pixels only, endmember spectra deter-
mined with the K-means clustering approach are more accurate as the ratio of pure vs.
mixed pixels increases. Therefore, in practice K-means clustering can be applied only if
objects in the image cover at least one pixel.

Prior to executing the K-means algorithm, one has to decide on the number K of
classes or, in our case, endmembers (so K=c) to be discerned. Usually the choice of K
is based on domain knowledge, but it may be possible to determine it from the image
itself—see the second experiment below. The algorithm begins with initialisation of the
K cluster means m;. In [95] several possibilities are described, which nearly all lead to
approximately the same solution in the end; we started with m;;=256%j/(K+1), which
represent equally spaced flat spectra. Next, each pixel in the image is assigned to the
cluster to which its Euclidean distance is minimal. After all pixels have been dealt with,
each cluster mean is recomputed by averaging the pixels assigned to it. The cycle of
assignation and recomputation is repeated until there is virtually no change in the cluster
means: y ., Z]K:l(mg?ﬂ) — mgf)f < t? for some threshold ¢. Finally, as is necessary
for any unsupervised classification method, the spectral classes represented by the clusters
have to be linked to the informational classes the user is interested in. As described before,
this step requires some sort of expert knowledge after all.

If many of the pixels processed by the K-means algorithm are mixed, the cluster means
will no longer be good representations of the endmember spectra. A solution to this prob-
lem is to post-process the cluster means by separating the pure from the mixed pixels
using one of the techniques discussed in Chapter 5. As will be shown in the comparative
experiment described later, one possibility is to derive impure endmembers using K-means
clustering, decompose all pixels using these spectra, and recalculate the spectrum of end-
member j by averaging the pixels with f;>85%. Another possibility, which only applies
when the size of the objects is large enough, is to locate regions in the image where all
pixels belong to the same cluster; by excluding the outer two layers of pixels, which are
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more likely to be mixed, and replacing the cluster means by the mean vectors calculated
based on the remaining pixels, purer endmember spectra are obtained.

Comparison with a few other methods

In the following little experiment, the quality of the endmembers derived by K-means
clustering is compared to the quality of endmembers obtained with several other methods
in order to test the suitability of the K-means clustering approach for the extraction of
endmember spectra from an image. As usual, the division between set-up, results, and
discussion of the experiment is made.

Set-up

The first step of the experiment was to apply the different methods to the hyperspectral
MAIS image of the Yellow River Valley shown in Figure 4.4. Six methods were used to
determine the image’s endmembers, two of which used supervised data, whereas the other
four were based on unsupervised techniques. The first set of endmember spectra consisted
of the three pixels—one per class—selected on-screen by a remote sensing expert familiar
with the region. With these spectra, areas of 5z5 pure pixels all belonging to the same class
were identified as described in Section 4.1.3, which were used to calculate the second set
of endmember spectra. The third set, also containing three endmembers, was determined
using principal component analysis—see Section 4.2.2. The last three sets were derived
by applying the K-means (K=3) clustering approach, combined with either (or none) of
the post-processing methods mentioned above; one method selected the inner 8x8 pixels of
10210 pixel areas of one class, the other selected pixels having a fraction of at least 85%.

The simplest way to determine the quality of the endmember spectra would be to
compare them to the real spectra to see how well they correspond. However, since the real
endmember spectra were unknown?®, a different approach was needed. As an alternative, we
decomposed all pixels in the MAIS image using each of the six sets derived. If supervised
information about the composition of some pixels had been available, we could have taken
the accuracy of the decomposition as a quantitative measure to select the best endmember
set. Instead, we determined the other three error measures described in Section 4.1.3, i.e.
€y Esums aNd €05 (see Equations (4.12)—(4.14)). The measures ¢, and €4, indicate how
well the pixels can be represented by the plane through the three endmembers used; in the
absence of sensor noise and within-class variation, both should be zero if the endmember
spectra are perfect. Under the same assumption, the value of ,,, should be zero as well; a
non-zero value may be an indication that the endmember spectra are impure (Drake and
Settle [24]). Obviously, the value of ¢,,s is an important measure to assess the quality of
the endmembers. Most of the decomposition methods for hyperspectral data suggested in
the first half of this chapter, however, always give an €,,, equal to zero. Therefore, iterative
least-squares was chosen as the decomposition method to be used in this experiment.

3The three supervised pixels picked by the expert were only his best guess.
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method o Esum (%0)  Epos (%0)
supervised 0.080 4.2 0.2
supervised/areas 0.082 4.8 0.1
PCA 0.137 3.4 0.6
K-means 0.072 2.8 0.6
K-means/areas 0.061 2.6 0.5
K-means/f>85%  0.061 2.7 0.4

Table 4.4: Performance of the iterative least-squares method (t=0.001) on the MAIS
image for various endmember sets.

Results

In Figure 4.8 the endmember spectra derived by the various methods are shown. Based
on the reflectance of the pixels picked by the remote sensing expert, the other endmember
spectra could be labelled as water, vegetation, or soil as well. However, the endmember
spectra found by principal component analysis, see Figure 4.8(c), did not resemble the
supervised spectra much and consequently were not linked to these informational classes.
Table 4.4 presents the values of €, €4um, and e, after decomposition of all pixels using the
iterative least-squares method (t=0.001). The results achieved with the PCA endmembers
are much worse than those achieved with other endmember sets, which was no surprise
because the PCA spectra were quite different. Compared to the supervised methods,
the methods based on K-means clustering give endmembers with which the pixels could
be reconstructed better: both e, and e4,,, are considerably lower. However, since the
supervised methods resulted in a lower €,,,, their endmembers probably were more pure.
Figure 4.9 shows the distribution of the negative fractions which were used to calculate
€pos- The graphs of supervised methods clearly enclose the smallest area, meaning they
resulted in a smaller number of negative fractions. Furthermore, their peaks are quite close
to 0%, which suggests that most violations of the positivity constraint were minor. The
graph corresponding to PCA shows two strange peaks at —1% and just before —2%; this
probably indicates that the corresponding spectra were not pure but mixtures of the true
endmember spectra—see Figure 4.10 for an explanation of how impure spectra can cause
the aforementioned peaks. The graph of the basic K-means clustering approach also shows
two extra (less pronounced) peaks, indicating that its spectra were somewhat impure as
well. At least one of these peaks is absent in the graphs of the other two methods using
K-means clustering; combined with the fact that the latter two graphs enclose smaller
areas as well, this confirms that post-processing of the basic K-means spectra indeed led
to purer endmember spectra.

Discussion

Although the results presented the previous section are based on a single image, which
makes any fact being far from conclusive, several interesting observations can be made.
First of all, the endmember spectra derived using supervised data appeared to be better
in accordance with the (unknown) true endmember spectra than those obtained with the
unsupervised methods. Although the pixels could be reconstructed better with the latter
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Figure 4.8: Endmember spectra determined using the various methods.
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Figure 4.9: Distribution of the negative fractions for various endmember sets.

spectra, the former spectra led to less and less serious negative fractions, which is an
indication that the spectra were more pure. The use of pure pixel areas identified using
supervised data increased the purity of the endmembers slightly. From the unsupervised
methods, principal component analysis has the highest potential to determine the true
endmember spectra. In our experiment, however, PCA performed poorly, probably because
the first two principal components that were used to determine the three endmembers did
not contain sufficient information to described the true spectra correctly. The fact that
the spectra derived were much flatter and closer to each other than the supervised spectra,
as well as the fact that the distribution of the negative fractions displayed two unexpected
peaks, suggested that the PCA spectra were mixtures of the true endmember spectra. The
same two observations can be made for the endmembers derived with the basic K-means
clustering approach. An explanation for the extraction of impure spectra by K-means
clustering is simple: the mixed pixels in the image draw the cluster means away from their
optimal position. As is shown in Figure 4.10, this leads to endmembers that lie closer
together as well as to a larger number of negative fractions; decomposition of the pure
pixels may be the cause of the unexplained peaks mentioned earlier. Both post-processing
methods applied improve the spectra of K-means clustering by making them purer, which
can be inferred from the larger distance between the spectra and the lower value of €.
The method selecting pixels with a fraction of at least 85% appeared to perform a little bit
better than the method selecting the 8x8 pixels inside areas of 10210 pixels belonging to
the same class, but it requires a far greater number of computations. On the other hand, it
can be applied successfully if the objects in the image cover about one pixel instead of the
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Figure 4.10: The influence of mized pizels on K-means clustering. Clustering of mixed
pizels draws the cluster means m; away from the positions of the true endmembers. Decom-
position of pizels in the grey region will result in one or more negative fractions (compare
Figure 4.2). Pure pizels of the same class will have approximately the same negative frac-
tions, causing a peak in the distribution of the fractions if there are many.

block of pixels needed by the area selecting method, which makes it applicable in a wider
number of situations. In summary, the endmember spectra of images containing relatively
small objects can be determined best using supervised data; in case no such information
is available, K-means clustering is a good alternative to the PCA approach as it is more
reliable and requires virtually no human guidance.

Varying the number of clusters

A disadvantage of K-means clustering is that the number of classes K has to be decided
on in advance. In some cases the value of K can be set by an expert familiar with the
terrain, but this knowledge may not always be available. Therefore, for the method to be
truly unsupervised, it should be possible to determine K from the image itself, preferably
automatically. The feasibility of this approach is studied in the next experiment, of which
the set-up, results and discussion are presented below.

Set-up

The MAIS image of the Yellow River Valley, which was also used for the other two exper-
iments described in this chapter, was subjected to K-means clustering using a number of
different values of K. The resulting endmember spectra were post-processed using the area
selection method rather than the method selecting pixels with high proportions. Although
the latter approach proved to perform a little better in the previous experiment, the former
method is much faster, especially for larger K. As before, the endmembers were evaluated
by applying iterative least-squares decomposition to the entire image, while calculating the
€ITOr Measures €, €sym, and €p0s. The idea behind this set-up is that, as K increases, new
endmembers will eventually be just mixtures of earlier discovered endmembers without
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K €x  Esum (N0)  Epos (%)
2 0.091 3.4 0.4
3 0.061 2.6 0.5
4 0.052 2.5 0.4
5 0.050 2.6 0.4

Table 4.5: Performance of ILS (t=0.001) for endmember sets found using various K.

any additional information content. Although the reconstruction of the pixels will always
be more accurate if more endmembers can be used, this improvement will eventually be
marginal. The value of K that resulted in the last substantial decrease of the reconstruction
error is likely to give the correct number of endmembers.

Results

Figure 4.11 displays the endmember spectra derived with the K-means/areas approach
for K ranging from two to five. The spectra of water, vegetation, and soil, which were
identified by a remote sensing expert during the previous experiment, were found and
labelled accordingly for all values of K, except K=2 of course. One of the two spectra
extracted in case K=2 could be identified as vegetation, the other appeared to be a mixture
of water and soil. Figures 4.11(e) and 4.11(f) show the similarity of the spectra for these
three classes, and also confirm that the supposedly mixed spectrum found for K'=2 indeed is
a mixture of water and soil: the mixed spectrum (the thick solid line) is situated precisely in
between the spectra of water and soil. The results of iterative least-squares decomposition
(t=0.001) using the different endmember sets are presented in Table 4.5. Clearly, the image
is composed of more than two endmembers, since K =3 leads to a much lower ¢, than K=2.
The use of a fourth endmember decreases the error a little more, but the fifth endmember
derived when K=5 brings no real improvement anymore. The remaining reconstruction
errors are most likely due to within-class variation and sensor noise.

For the task of automatically selecting the value of K, the error measure ¢, calculated
for the entire image seems to be a useful criterion. However, repeatedly decomposing the
image requires many computations, especially when the number of classes increases. Since
the main idea is to increase K until the new spectra are mixtures of the endmember spectra
found earlier, the optimal value of K may also be determined directly by decomposing the
spectra of K=k using the spectra of K=k—1, which is much faster. As before, the recon-
struction error will be high if the new spectrum cannot be represented by the previously
found spectra, while it will be small if the larger endmember set contains nearly identical

k €x  Esum () Epos (%)
3 0.081 3.4 0.2
4 0.034 1.7 0.5
5 0.017 1.2 0.3

Table 4.6: Results of iterative least-squares decomposition of the endmember set corre-
sponding to K=k using the set corresponding to K =k—1.
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Figure 4.11: Endmember spectra determined for various values of K.
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endmembers as the smaller set plus one that is a mixture. Table 4.6 shows the results
of this approach. As expected, the information content of the additional endmembers de-
creases as K increases, but the choice of the right K is not as simple as before. However,
based on the reconstruction error due to within-class variation and sensor noise expected,
it may be concluded that no more than three endmembers are needed: £,=0.081 for K=3
is still higher than the expected level of 0.050, but £,=0.034 corresponding to K=4 is not.

Discussion

The MAIS image which was used for the experiment appeared to be composed of three
distinct endmembers, which already had been identified by a remote sensing expert familiar
with the region. This conclusion is based on the fact that nearly identical endmember
spectra corresponding to water, vegetation, and soil were found independent of the value
for K. The status of the fourth endmember is unclear as it did lead to a somewhat
smaller reconstruction error, but it could also be a mixture of the other three. Fieldwork
to determine the true composition of the pixels belonging to this cluster can answer this
question; a less expensive solution is to compare this spectrum with those in a spectral
library to find out whether it corresponds to a known ground cover type or not. In any case,
more than four endmembers definitely were not needed to decompose the image; spectrum
five clearly was a linear combination of the other endmember spectra. Based on these
results, it can be concluded that a reasonable estimate of the number of endmembers can be
made based on the image itself, at least for the image used in this experiment. Furthermore,
the procedure to determine K can easily be automated by monitoring the value of ¢,. If
g, is calculated using all pixels in the image, the extraction of extra endmembers can be
stopped if the decrease in €, is below a certain threshold. If, to speed up the process, not the
pixels in the image but the endmember spectra themselves are decomposed to determine
€z, the procedure can be stopped if €, reaches a level due to within-class variation and
sensor noise. Further experimentation with other images—for which ideally the true value
of K is known—is needed to decide whether the latter approach is truly applicable.

4.3 Summary and conclusions

In this chapter two subjects were dealt with, being satisfaction of the positivity constraint
and determination of endmember spectra. Although these problems are in principle inde-
pendent, they were put in the same chapter because they both need to be solved when
applying the classic linear mixture modelling approach.

If the linear mixture model is solved by analytic approximation, which is the usual
method to decompose mixed pixels nowadays, satisfaction of the positivity constraint is
a problem because it cannot be reckoned with when deriving the solution. This does not
hold for other methods of solution such as brute force approximation, but the computa-
tional complexity of these approaches often is too high when decomposing hyperspectral
data. Therefore, the positivity constraint is usually satisfied by post-processing the analyt-
ically derived estimates. Two examples of this approach are the standard renormalisation
technique and the constrained least-squares (CLS) method of Shimabukuro and Smith.
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Whereas the former method is extremely simple and fast but results in sub-optimal es-
timates, the latter approach is more accurate but requires a case distinction that gets
complicated if the number of endmembers exceeds three. An alternative introduced in
this thesis is the iterative least-squares (ILS) method, which adapts the estimates of the
standard least-squares estimator in order to enforce the sum-to-one and the positivity con-
straint to some degree. Since ILS uses gradient descent to minimise a cost function in such
a way that the computational complexity depends on the number of endmembers instead
of the number of spectral bands, the procedure is well suited to decompose hyperspectral
data. To compare the above three methods, an experiment based on artificial MAIS data
(n=30) was carried out. As expected, the renormalisation approach proved to be faster
but less accurate than CLS. The performance of ILS depended on its threshold setting:
as the threshold was lowered, the positivity constraint was satisfied better at the cost of
a higher number of computations. A surprising observation was that ILS could achieve
an accuracy that was even higher than that of CLS provided the threshold was set low
enough. Combined with the fact that its concept is relatively simple, ILS appears to be a
decomposition method for hyperspectral data worthy of further investigation.

The other subject dealt with in this chapter is how to determine the image endmembers,
which must be known before the linear mixture model can be solved. Apart from using
spectral libraries, several techniques based on supervised data can be applied, e.g. linear
regression of mixed pixels of known composition and calculation of the mean of pure pixels
belonging to the same class. If no supervised data is available, unsupervised methods
can be used to determine the endmember spectra from the image itself, like principal
component analysis (PCA) and selection of homogeneous areas based on segmentation.
Unfortunately, PCA needs human guidance and is difficult if more than three endmembers
are involved. The area selection method, on the other hand, requires that the image
contains objects that cover a considerable number of pixels each, which may not always
be the case. As an alternative, K-means clustering can be applied, because the clusters it
finds define unsupervised classes whose means may be taken as endmembers. Compared
to the other unsupervised methods, this approach has the advantage that virtually no
human guidance is required and that the objects need to have a minimum size of only one
pixel. In an experiment based on the same MAIS image used before, the results of several
supervised and unsupervised methods were compared. Although the image pixels could
be reconstructed less well with the endmembers found by the supervised methods, the
spectra themselves appeared to be relatively pure. The performance of PCA was rather
poor, probably because too few principle components were used to define the endmember
spectra. With the spectra found by K-means clustering, the pixels could be reconstructed
well; however, the spectra appeared to be less pure than those of the supervised methods,
which was due to the presence of mixed pixels throughout the image. The use of post-
processing methods selecting relatively pure pixels improved the purity of the spectra
considerably. A disadvantage of the K-means clustering approach is that the number of
classes K has to be specified in advance. However, a second experiment showed that, in
case K-means clustering is applied to determine image endmembers, the optimal value
of K can probably be determined automatically in a fast way. To decide whether the
suggested procedure truly is applicable in practice, futher research is needed.



76

Chapter 4: Linear mixture modelling: tying up the ends




Part 11

Area estimation of agricultural fields
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Chapter 5

Detection of mixed pixels™

In some cases it is advantageous to discriminate between pure and mixed pixels. One
example is the determination of endmember spectra, which can be done more accurately
and with greater ease using pure pixels. Another example is area estimation based on
counting the pixels (or fractions of pixels) per class: although decomposition is needed
for mixed pixels, classification is a more accurate and faster technique for pure pixels.
An obvious approach to detect mixed pixels, which was applied in Section 4.2.6, is to
decompose all pixels and consider those without one clearly high proportion to be mixed;
Wang [111] as well as Foody and Cox [29] suggest using membership grades—acquired
with fuzzy classification (Section 2.2.4) or fuzzy c-means (Section 2.2.5), respectively—for
the same purpose. However, such an approach is not particularly suitable for the above
examples as the endmember spectra need to be known in advance and pure pixels are still
decomposed, which is computationally expensive. When dealing with large objects such
as agricultural fields, alternative detection methods based on segmentation can be applied,
which are reviewed in Section 5.1. Section 5.2 describes an experiment to validate the
segmentation approach, while Section 5.3 gives a summary and presents the conclusions.

5.1 Segmentation of agricultural scenes

An agricultural field, just like any other object whose size is large given the resolution of the
scanner, can be regarded as a cluster of pure pixels surrounded by a layer of mixed pixels.
This knowledge can be used to separate pure from mixed pixels by means of segmentation,
which is a well-known field of research in image processing. As Nalwa [76] states informally,
the segmentation of an image is the division of the image into fragments, or segments, each
of which is homogeneous in some sense, but the union of no two adjacent segments is
homogeneous in the same sense. The sense in which each segment is usually sought to be
homogeneous is that it does not exhibit any abrupt intensity changes in its interior. This
definition of segments corresponds nicely with the notion of pure pixel clusters, provided
that the variation in intensity within each cluster is smaller than the difference in intensity
between any two adjacent clusters. Thus, by using segmentation to extract sufficiently
large clusters, pure pixels can be identified. Alternatively, segmentation techniques can be

*This chapter is partially based on Master’s thesis [44].
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(a) Left region grown first. (b) Right region grown first.

Figure 5.1: The order dependence problem. Since the central pixel and the one below
resemble both the light and the dark region, they are added to the region grown first.

applied to find the boundaries between the clusters, identifying the mixed pixels themselves.
Basically, three types of segmentation methods exist; an example of each category is given
in Sections 5.1.1 to 5.1.3.

5.1.1 Region growing

Region growing methods operate by gathering adjacent pixels with similar characteristics
into sets called regions, i.e. they try to find the pure pixel clusters themselves. The criterion
to group pixels in the same set is usually based on spectral similarity, but more complex
properties such as conformity to some local texture measure may be used as well. An
important issue related to region growing is the order dependence problem: depending on
the order in which the pixels are processed, the final segmentation may not always be the
same. An example of this problem is shown in Figure 5.1. If the dark region is grown first,
the central pixel and its neighbour below will be added to the left segment (Figure 5.1(a));
if, on the other hand, region growing starts with the light region, the same two pixels will
end up in the right segment (Figure 5.1(b)). A way to overcome the order dependence
problem is the best merge approach, which merges only the single most similar pair of
adjacent regions in each iteration. However, care must be taken that order independence
is maintained in case multiple pairs having the same, maximum similarity exist.

The simultaneous order independent iterative merging (SOIM) algorithm by Schoen-
makers [90] is a segmentation method based on best merge region growing that was designed
specifically to handle pairs of regions with identical merging costs. Unlike the best merge
algorithms by Beaulieu and Goldberg and by Tilton (see [90]), which in case of ambiguity
select an arbitrary pair or the one containing the lowest region label, SOIM merges all
pairs with maximum similarity in the same iteration. As is shown by Algorithm 5.1, SOIM
uses a dissimilarity rather than a similarity criterion to determine which regions are to be
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initialise each pixel as a region;

while (true) {
compute the dissimilarity of all pairs of adjacent regions;
determine the set of region pairs with minimum dissimilarity;

if (stopping criterion 5.2 is met) break;

merge all pairs of regions in the set;
update the statistics of the new regions;

Algorithm 5.1: Simultaneous order independent iterative merging.

merged. Currently, the criterion is based only on the spectral reflectance of the regions,

n

Cig =Y (mg; —my;)?, (5.1)

k=1

although other statistics concerning region size or shape could easily be accommodated
for. Equation (5.1) defines the cost of merging regions ¢ and j as the (squared) Euclidean
distance between the two region means, which are calculated by averaging the values of the
corresponding pixels in each the ¢ spectral bands. The stopping criterion used by SOIM is
related directly to the dissimilarity criterion:

IIliIl(CZ‘J‘)

>t 5.2
n ) (5.2)

which boils down to the condition that the RMS distance between the two most similar,
adjacent regions must be below (or equal to) some threshold ¢ if the merging process is to
continue. What cannot be deduced from Algorithm 5.1 is what course of action is taken
if two (or more) of the pairs to be merged have a region in common. In this case, which
rarely occurs except in the first iteration, all regions in question are merged into one as they
obviously are spatially contiguous. For a more formal description of the SOIM algorithm
including optimisation the reader is referred to [90]'.

5.1.2 Edge detection

A segmentation approach that is dual to finding the homogeneous interior of a region is to
determine where the region boundaries are located. This strategy is usually implemented
using edge detection methods, which look for local discontinuities in the grey level distribu-
tion of an image. Since in general the strongest edges coincide with region boundaries, edge

'Note that step 2(ii) of Schoenmaker’s Algorithm 5.4 is incomplete; a correct formulation of the set is
CSnbr = {{Su, Sk) | (Su, Sk) € CS A (({Su, Sv) € CSmin N v#k) V{(Sy,Su) € CSmin)} U
{<Sk’7Su> | <Sk7‘s’u> cCS A (<Su; S’u> € C‘Sm'm \ (<S1)7‘Su> S CSmin AN 7& k))}
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Figure 5.2: The normalised Frei-Chen edge templates.

detection can be used to locate the layer of mixed pixels surrounding each pure pixel clus-
ter. In the last decades many edge detection methods have been proposed, which Ballard
and Brown [8] classify as mathematical gradient operators, template matching operators,
or operators based on a parametric edge model. Though their principles may be very dif-
ferent, (nearly) all these operators regard an edge as having a direction, which aligns with
the direction of the maximum grey level change, and a magnitude, which describes the
severity of this change. By calculation of these features for each pixel, edge magnitude and
edge direction images are derived, from which one pixel wide boundary structures can be
extracted by connecting the most likely edge pixels. Optionally, closed boundaries can be
formed by bridging small gaps between the boundary structures found before and pruning
those fragments whose ends could not be linked. A detailed description of procedures for
contour following, linking, and pruning is given by Schoenmakers [90].

An example of an edge detection method based on template matching is the modified
Frei-Chen operator, which is also explained by Schoenmakers [90]. The idea behind this
operator is to represent the image in a different coordinate system which permits an easy
separation of edge and non-edge features. Calculation of edge information is done for each
band separately and is based on windows of 3z3 pixels. Each window can be conceived as
a vector in the nine-dimensional space? spanned by the nine natural basis vectors b;, which
consist of all zeroes but a one on position i. The same space, however, is also spanned by
templates T1—T,4 shown in Figure 5.2 completed with five other templates T5—Ty, which
are all normalised and orthogonal to each other. The templates T1—T, form the so-called
edge subspace onto which the projection of a window W representing an ideal edge is equal
to W itself. By calculating the angle 6 between W and its projection or, more efficiently,
the ratio r between the squared lengths of W and its projection (cosf = /r), the edge
magnitude can be determined:

Z?:l (W ) Ti)2 _ Z?:l(w ) Ti)2
Z?:l (W ) Ti)2 W- W '

(5.3)

r =

In this equation, where W - T; = ik Wiktis, advantage has been taken of the fact that
the T; are normalised, which makes the (squared) length of W under the new basis equal
to the (squared) length under the natural basis. As is shown in Figure 5.3, calculating the
edge magnitude as an angle (or ratio) provides a better way to discriminate between edge

2A possible conversion between window W and vector v is w;; =V(i—1)ntj-
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(a) Conventional thresholding. (b) Frei-Chen thresholding.

Figure 5.3: Thresholding techniques for edge detection. (a) Separation of edge and non-
edge pixels based on the gradient magnitude alone fails to detect likely edge pixels with a
small gradient magnitude like W1. (b) Taking the angle 6, between W1 and its projection on
the edge subspace as a criterion does mark W1 as an edge; pixels with a large magnitude who
do not resemble an edge like Wo are now excluded (adopted from Ballard and Brown [8]).

and non-edge pixels than taking the gradient magnitude alone. Whereas W, has a short
projection and would not be considered an edge using the conventional thresholding tech-
nique (Figure 5.3(a)), its angle to the edge subspace is sufficiently small to be considered
an edge under the Frei-Chen criterion (Figure 5.3(b)). For Wy, whose projection is long
but whose resemblance to an edge is small, the opposite holds.

Just like the edge magnitude, the edge direction can also be determined using templates.
If the edge direction is defined as the direction in which the transition from low grey levels
to high grey level is maximum, angle a—see Figure 5.4—can be calculated as

W.-T,
W . T,y

~—

a = arctan ( . (5.4)

N———

In his dissertation [90], Schoenmakers presents a simple algorithm to deal with the situation
where the numerator or denominator of the above fraction is zero, as well as to correct «
to a value in the interval [0, 27). However, if the edge direction is to be used by a contour
following operation later, it is more convenient to convert « into an index to one of the
eight neighbours of the central pixel.

5.1.3 Map-based segmentation

The third way by which an image segmentation can be obtained is to derive it directly from
ancillary data such as topographical maps. Janssen [54], for instance, used a map onto
which farmers indicated their land use to determine segments representing agricultural
fields. To the same end, Schotten et al. [91] utilised a cadastral map, which apart from
parcel boundaries also showed the location of objects like roads and ditches; the field
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\ O

Figure 5.4: The edge direction « is the direction of mazimum change from low (dark) to
high (light) grey levels. Mixed pizels are shown at subpizel resolution for reasons of clarity.

boundaries, which are subject to change several times a year, were determined using a
SPOT-XS image of a recent date. The fact that the scene under observation is constantly
changing seriously limits the usefulness of maps; since keeping a map up-to-date requires a
lot of work, which is only done for certain areas, map-based segmentation cannot always be
applied successfully. If, however, the map is stored on a geographical information system
(GIS), minor changes to it may be carried through on-screen. Another possibility to obtain
an up-to-date map is to create one based on aerial photography or satellite imagery. The
resolution of these images—as should be the scale of the maps mentioned before—should
be finer than the resolution of the image to be segmented in order to get a segmentation
that is accurate at the pixel level®>. Furthermore, an experienced remote sensing specialist
is needed to recognise the object boundaries and digitise them with sufficient accuracy.
To segment an image based on a paper map, a number of steps have to be taken. First
the map has to be digitised, which is usually done by placing the map on a digitising
table and marking points with a cursor at regular intervals while following the contour
of an object. Each time the operator marks a point, a pair of coordinates is sent to a
computer, which combines the successive points to polygons. Next, this vector data is
co-registered with the satellite image using a set of ground control points (GCPs) located
in both data sources. Good GCPs are features that are as small as a single pixel and which
can be identified easily against their background; usually, however, road intersections or
edges of land cover parcels are selected—see Figures 5.5(a) and 5.5(b). The actual co-
registration is performed by mapping the vector data onto the image by means of an affine
transformation; converting the image to match the vector data is possible as well, but the
necessary resampling operation may render the pixels unsuitable for subsequent operations
(viz. decomposition). An affine transformation scales, rotates, and translates the vector
data (see Figure 5.5(c)) by evaluating the same equation for all points (z,y) digitised:

/
T = oqx + oY + as,

Y = aur + asy + os. (5.5)

3Besides the accuracy of the (digitised) map, the quality of the segmentation also depends on the
accuracy with which the map and the image can be co-registered.
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At least three GCPs are needed to calculate the constants aq, ..., ag, but using a higher
number may increase the accuracy of the transformation, provided the quality of the addi-
tional GCPs is not significantly lower than the quality of the best three. More important
than a high number, though, is that the GCPs are dispersed throughout the image with
good coverage near the edges of the scene (Campbell [19]). Another advantage of using
more than three GCPs is that an indication of the accuracy of the transformation can be
derived, since the p (p>3) GCPs of the vector data after transformation in general do not
exactly match the GCPs of the image—see Figure 5.5(d). An obvious measure to express
this deviation is the RMS error between the transformed coordinates (z',y’) of the vector
GCPs and the coordinates (u,v) of the image GCPs:

\/z f —w+ ) 5.6

Instead of taking the mean error, one can also calculate the error of each GCP separately;
by discarding GCPs giving a relatively large contribution to the overall error, a supposedly
more accurate transformation is acquired. After the vector data has been co-registered
with the image, it only needs to be converted to a raster data structure to obtain the
desired segmentation. Each pixel for which the minimum distance from its centre to the
nearest vector is less than a certain threshold value, —\/_ 2 pixel (half the pixel’s diagonal)
for instance, is considered to contain a boundary and therefore be a mixed pixel. The
remaining pixels are regarded to be pure and are given the label of the enclosing polygon.

5.2 Experiments with artificial imagery

To determine how well mixed pixels can be detected using segmentation techniques, two
of the methods described previously were applied to an artificial image. The use of ar-
tificial imagery was necessary because we had no real image with corresponding ground
truth suitable to make a quantitative analysis at our disposal. As a consequence, it was
senseless to apply map-based segmentation as transformation of the single available map,
which formed the basis of the artificial image, would yield the perfect segmentation. The
two methods we did apply were region growing and edge detection, of which the results
are presented in Sections 5.2.2 and 5.2.3, respectively. Furthermore, it was investigated
whether their combination would lead to better results than those achieved by both meth-
ods separately—see Section 5.2.4. A detailed description of the entire experimental set-up
can be found in Section 5.2.1, while a brief discussion of the different approaches is provided
by Section 5.2.5.

5.2.1 Set-up

The set-up of the experiments was straightforward. First an artificial image of an agri-
cultural scene was generated together with its true segmentation. Next, the different
segmentation methods were applied and all pixels were labelled individually as either pure
or mixed. Finally, the accuracy of the detection process was determined by comparing the
designated label of each pixel with its status according to the true segmentation.
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(a) Digitised map with GCPs. (b) Satellite image with GCPs.
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Figure 5.5: Co-registration of vector data and image data using an affine transformation.
(a) In the digitised vector data a number of GCPs are selected. (b) The same GCPs are
located in the image as well. (c¢) By means of an affine transformation, the GCPs (x;,y;)
are transformed to (x},y;) to match the GCPs (u;v;). (d) If more than three GCPs are
used, an exact match may not be possible; in this case, the RMS error is minimised.
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To generate an artificial image, the same procedure as used in Section 3.3.1 was applied,
albeit that more complex image characteristics were chosen. Not only did we use 10 instead
of 2 different classes and all six bands of our Landsat-TM templates, we also assigned the
ground cover type soil to the edges and replaced 1.0% of all pixels by isolated mixed pixels.
As before, we made sure that fields having a boundary in common were mapped to different
classes; this way, the transition from one field to another became more distinct, which
prevented the segmentation methods from seeing two or more fields as one. The end result
was virtually identical to Image III, which is shown in Figure 6.9. For an exact description
of the image simulation methodology and class templates used, see Section 6.2.1.

The various strategies to detect mixed pixels all need certain parameters to be set. As
described in Section 5.1.1, the SOIM algorithm, which was chosen as a representative of
the region growing approach, requires the setting of a threshold to define the stopping
criterion. After the image has been segmented using a particular threshold, large regions
are considered to be pure pixel clusters, while small regions are thought to consist of
mixed pixels. Therefore, another threshold needs to be set to define the maximum size
of regions containing mixed pixels. The edge detection approach, for which the modified
Frei-Chen operator (see Section 5.1.2) was selected, also requires setting a threshold in
order to separate edges from non-edge features. Subsequently, edge pixels are labelled as
being mixed and non-edge pixels as being pure, which can be done without the need for
further parameters. The performance of the edge detection approach may be improved by
contour following and edge linking/pruning; depending on the specific implementation, it
may be necessary to set additional parameters. A way to combine the region growing and
edge detection approaches is to carry out both operations separately and label a pixel as
mixed if it is regarded as such by either one or both of the approaches. Although this
procedure does not introduce any new parameters, it is unlikely that the parameters for
region growing and edge detection can be set independently of each other, which makes
the optimisation process more complex.

To determine the optimal parameter settings as well as to compare the different de-
tection methods, a quantitative measure for the detection accuracy is needed. To this
end, a confusion matrix expressing the relative performance of a detector was used. As is
shown in Figure 5.6, our confusion matrix has 2x2 entries, denoting the percentage of pure
and mixed pixels according to both the true and the derived segmentation. In analogy to
medicine, the percentage of pure pixels (healthy patients) that are classified as being pure
(healthy) is called the specificity of the detector, while the percentage “true positives”—
mixed pixels (ill patients) that are classified as being mixed (ill)—is referred to as the
detector’s sensitivity. The decision to use relative instead of absolute figures was taken
to compensate for the fact that the number of pure pixels (35,215) was much larger than
the number of mixed pixels (5,185); if absolute figures were used to measure the overall
accuracy, the performance on the mixed pixels would have little influence. Ideally, both
the specificity and the sensitivity should be 100%, but in practice this is not achievable
at the same time. Depending on the purpose for which pure and mixed pixels are to be
separated, maximisation of one of the two percentages may be preferred. If, for instance,
endmember spectra are to be determined based on pure pixels, the specificity should be
maximised while keeping the sensitivity above a certain minimum value, provided a higher
number of pure pixels outweighs the inclusion of some extra mixed pixels with respect to
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detector
pure mixed

pure specificity | 100%-spec. | (100%=35,215 pixels)

true

mixed | 100%-sens. sensitivity | (100%= 5,185 pixels)

Figure 5.6: Relative confusion matriz for two classes. The rows add up to 100%.

the accuracy of estimated spectra. If, however, mixed pixels are to be detected in order to
decompose instead of classify them, it is more important to have a high sensitivity than a
high specificity: decomposition of pure pixels may be unnecessarily slow, but classification
of mixed pixels will yield inaccurate area estimates. In our experiments we decided to
maximise the sum of the specificity and the sensitivity because our goal was to investigate
the effectiveness of the different detection methods in general. However, if one focuses on
some specific application, it may be necessary to use a different criterion to optimise the
detection of mixed pixels.

5.2.2 Results of region growing

A complication of the region growing approach is that the two parameters that need to
be set—the SOIM threshold and the maximum size of regions consisting of mixed pixels—
cannot be optimised independently of each other, because the SOIM threshold affects the
average region size. Therefore, we conducted an exhaustive search of the parameter space,
of which the results are shown in Figure 5.7.

From Figure 5.7(a) it appears that the specificity—the measure for correct recognition
of pure pixels—soon reaches 100% when the threshold is raised and the region size is
kept constant. This was to be expected as a higher threshold setting (more within-region
variation is allowed) results in larger regions, and all regions larger than a certain minimum
size are assumed to consist of pure pixels. If the threshold is kept constant and the region
size is increased the specificity decreases, although this is visible only at low threshold
settings. Figure 5.7(b) shows that the sensitivity displays exactly the opposite pattern. If,
for a particular region size, the threshold is raised, then the percentage of mixed pixels that
is detected decreases considerable. However, if the region size is increased while keeping
the threshold constant, the sensitivity gets slightly higher.

Figures 5.7(c) and 5.7(d) give the average percentage correct, which in our case is de-
fined as the average of the specificity and the sensitivity. For low thresholds the average
percentage correct clearly displays the same behaviour as the specificity, whose value obvi-
ously varies the most. At higher thresholds the pattern of the sensitivity is followed because
the sensitivity still changes considerably while the specificity remains 100%. Furthermore,
it turns out that optimising the SOIM threshold is much more important than an optimal
setting of the region size. In Figure 5.7(e), which shows the optimal performance for the
various threshold settings, it can be seen that a threshold of 3 or 4 gives the best results. As
expected, the optimal region size increases as the threshold is raised. Figure 5.7(f) shows
the optimal performance for different region sizes. Again it appears that the best thresh-
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Figure 5.7: Performance of region growing for various settings of its two parameters.
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old setting in (nearly) all cases is equal to 3 or 4, while the choice of region size is not so
important (note the different range of the left y-axis). All settings considered, a threshold
of 4 combined with a region size of 28 proved to result in the highest average percentage
correct: 87.4%. By comparing Figures 5.9(a) and 5.9(b), it can be seen that with these set-
tings mixed pixels on field boundaries as well as isolated mixed pixels can well be detected.
A good alternative was a SOIM threshold setting of 3 and a maximum region size of 28,
which gave an average percentage correct of 86.9%. Although both results seem to be very
similar, they turn out to be rather different when the specificity /sensitivity is considered:
whereas a threshold of 4 leads to 93.9%/80.9%, a threshold of 3 gives 85.2%/88.5%*. As
described in Section 5.2.1, the decision which settings to use can be made only when the
application requiring detection of mixed pixels is known.

5.2.3 Results of edge detection

The performance of the Frei-Chen edge detector is dependent on the setting of its threshold.
Figure 5.8 shows the specificity, sensitivity, and average percentage correct achieved for a
wide range of threshold settings®. As expected, at low thresholds many pixels are marked
as edge and therefore mixed pixels, which leads to a high sensitivity but a low specificity. If
the threshold is raised, the sensitivity decreases while the specificity increases, ultimately
reaching 100%. The best performance is obtained with a threshold setting of 181, which
results in an average percentage correct of 77.7%, a specificity of 76.8%, and a sensitivity
of 78.6%. A comparison of Figures 5.9(a) and 5.9(c) demonstrates that mixed pixels on
field boundaries are detected reasonably well, although many neighbouring pure pixels are
found to be mixed as well. Isolated mixed pixels, however, are recognised considerably
less well. As is shown in Figure 5.9(d), often the eight pure pixels surrounding an isolated
mixed pixel are regarded as being mixed, while the mixed pixel itself is considered to be
pure. This behaviour is caused by the fact that the (modified) Frei-Chen templates T;—
T, are designed specifically to detect ideal edge elements. To locate ideal points, which
correspond to isolated mixed pixels, other templates are required.

In an attempt to improve the performance, we also carried out some experiments using
the options available in the edge detection program at our disposal [90]. The first option
was contour following, which thins the edges to 1-pixel wide contours. As described by
Schoenmakers [90], this is done by calculating the likelihood of being an edge (LBE) for
each pixel based on its edge magnitude and direction, and, starting from virtually sure
edge pixels, forming 8-connected chains of pixels having the highest LBE. The result of this
operation applied to Figure 5.9(c) is displayed by Figure 5.9(e); although this image is less
noisy and appears to agree more with the true segmentation represented by Figure 5.9(a),
the performance in fact is worse: the average percentage correct has fallen to 60.2%, with a
specificity of 87.6% and a sensitivity of 32.8%. The main cause for this deterioration is that
the contours found in many cases lie just next to the true field boundaries. A second reason
is that in the true segmentation diagonal borders are 4-connected whereas the contour is
constructed as an 8-connected chain; as a result, the label of many edge pixels is erroneously

4This difference is reflected by the discontinuities between size 20 and 24 in Figure 5.7(f).
5Since the edge magnitudes were mapped to grey levels to create an edge image, the threshold was
given a value in the interval [0,255] as well.
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Figure 5.8: Performance of edge detection for various settings of its threshold.

changed from mixed to pure. Furthermore, due to within-field variation and the presence
of isolated mixed pixels, a large number of small contours are found which do not exist in
“reality”. It is for this reason that a higher threshold leads to slightly better results: with
a setting of 205 the average percentage correct increases to 61.1% (specificity /sensitivity
is 91.4%/30.8%).

Another option in Schoenmaker’s implementation is edge linking&pruning, where first
non-edge pixels in between edge fragments are marked as edges to bridge gaps of one pixel
wide, after which dangling edge fragments are deleted to create closed polygons. Besides
that, very small regions are removed and care is taken that the polygons created are not
wider than one pixel. The result of the edge linking&pruning operation carried out on
the image acquired after contour following is displayed by Figure 5.9(f). The most visible
difference with Figure 5.9(e) is that all small edge fragments have disappeared, but a
number of field boundaries have been removed as well. As a consequence, the sensitivity
is somewhat lower (27.6% vs. 32.8%) and the specificity somewhat higher (92.8% vs.
87.6%), but the overall performance has not improved—the average percentage correct is
still 60.2%. To avoid the removal of long edge fragments corresponding to field boundaries
due to gaps of more than one pixel, the Frei-Chen threshold should be lowered. With a
setting of 165 instead of 181 the average percentage correct becomes 60.4%, composed of
a specificity of 89.1% and a sensitivity of 31.7%. The edge linking&pruning operation can
also be applied directly to the edge image (Figure 5.9(c)), which gives Figure 5.9(g). These
results are better than when the contour following step is included, but compared to edge
detection alone the performance is still worse instead of better: specificity /sensitivity is
88.9%/42.4%, while the average percentage correct is only 65.7%. This result is rather
disappointing, because small edge fragments have been removed while retaining the field
boundaries and most diagonal boundaries are now 4-connected instead of 8-connected,
which leads to a higher specificity. The sensitivity, however, is considerably lower because
the part of the pruning process responsible for the creation of 1-pixel wide polygons often
comes up with edges lying just next to the true field boundaries, which is a problem that
was also encountered during contour following.
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R 2

(a)

Figure 5.9: Location of the mized pizels after applying various detection methods. (a) Po-
sitions according to the true segmentation. (b) Results of region growing (t=4, s=28). The
white squares are due to the way the class templates were generated. (c) Results of edge
detection (t=181). (d) Blow-up of the centre right part of (c).
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Figure 5.9: (continued) (e) Results of contour following applied to (c). (f) Results of edge
linking€pruning applied to (e). (g) Results of edge linking€pruning applied to (c) directly.
(h) Results of combining region growing (t=4, s=28, see (b)) with edge detection (t=195),
contour following, and edge linking€pruning.
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method threshold percentage correct —specificity (%) sensitivity (%)
RG - 87.4 93.9 80.9

RG & ED 240 87.6 (58.5) 87.6 (93.4)  87.7 (23.7)
RG & ED/CF 230 87.7 (59.1) 87.6 (93.4)  87.8 (24.7)
RG & ED/LP 250 87.4 (50.0) 93.8 (99.9)  80.9 ( 0.1)
RG & ED/CF/LP 195 88.0 (60.4) 83.2 (94.0)  87.8 (26.7)

Table 5.1: Results of region growing (RG) with a threshold of 4 and a mazimum region
size of 28, combined with edge detection (ED). The performance of edge detection alone is
given in parentheses. Options: CF=contour following, LP=edge linkingépruning.

5.2.4 Results of a hybrid approach

In the last two sections, both region growing and edge detection proved to be valuable
techniques for the detection of mixed pixels. In this section, we try to improve the perfor-
mance of the most promising approach, region growing, by combining it with the possibly
complementary information acquired via edge detection. As was already mentioned in Sec-
tion 5.2.1, this is done by labelling a pixel as mixed if it was given this label by either region
growing or edge detection (or both), i.e. by applying the OR-operator to Figures 5.9(b)
and 5.9(c) for instance. This approach can only boost the sensitivity; the specificity will
at best be equal to the lowest value achieved by either of the two underlying methods.

As far as region growing is concerned, only the best two images were used, correspond-
ing to a SOIM threshold of 3 or 4 and a maximum region size of 28 (see Section 5.2.2).
These images were combined with the results of edge detection using a wide range of
threshold settings and applying none, one, or both of the options—contour following and
linking&pruning—discussed in Section 5.2.3. It turned out that the results of region grow-
ing with the threshold set at 3 could not be improved. This was mainly due to the fact
that the sensitivity was already high (88.5%) and could not be increased without allowing
a larger decrease in the specificity. The results of combining edge detection and region
growing with a SOIM threshold of 4 are presented in Table 5.1. With an optimal setting
of the Frei-Chen threshold, a small improvement in the average percentage correct was
achieved except when edge detection was directly followed by linking&pruning. In this
last case the optimal threshold for edge detection was approximately equal to the maxi-
mum value of 255, which provides no additional information since all pixels are given the
label pure. In all other cases the sensitivity increased with 7%, while the specificity de-
creased with a slightly smaller percentage. The thresholds with which these results were
reached were higher than the optimal settings found in Section 5.2.3. As a consequence,
the specificity of edge detection was about as high as that of region growing (93.9%), which
prevented the specificity from becoming too low when the two approaches were combined.
The best performance was achieved by combining region growing with edge detection, con-
tour following, and linking&pruning, giving an average percentage correct of 88.0% and
a specificity /sensitivity of 88.2%/87.8%. Figure 5.9(h) gives a graphical representation of
these results; by finding the subtle differences between this figure and Figure 5.9(b) and
matching those with the true segmentation given by Figure 5.9(a), an idea of the beneficial
influence of adding information derived using edge detection can be acquired.
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5.2.5 Discussion

In the previous sections it was shown that segmentation techniques are able to detect mixed
pixels with an accuracy of 85%-90%. It must be noted, however, that these results to some
degree are influenced by the use of artificial imagery and standard software.

The success of the segmentation approach depends on a number of image characteristics.
The most important aspect is the contrast between the agricultural fields. The more the
average grey levels of two neighbouring fields differ, the better the boundary composed
of mixed pixels can be located. Another factor is the amount of within-field variation
compared to the contrast between fields. If the within-field variation is relatively large,
many false edge fragments and isolated mixed pixels will be found. The average field size,
finally, also plays an important role when region growing is applied. Since large fields in
general lead to the recognition of large pure pixel clusters, regions of mixed pixels, which
usually are small, can be detected more easily. By generating an artificial image, we were
able to fulfill all these conditions. The resulting image, however, is not unrealistic, except
for the fact that neighbouring fields were forced to have different cover types. This last
restriction, however, is not very serious since the detection of mixed pixels lying on the
boundary of two fields belonging to the same class is of little importance. If these pixels are
found to be pure when determining endmember spectra, little is lost because the pixels in
fact are nearly pure. If the same error is made when estimating the area of individual fields,
the accuracy is hardly affected either since these pixels cannot reliably be decomposed on
a field basis anyway. It is for these reasons that we feel that the positive influence of using
artificial images on the overall performance is limited and that the results can well be used
to assess the suitability of segmentation techniques for mixed pixel detection.

With regard to the segmentation methods applied, several remarks can be made. Region
growing implemented by the SOIM algorithm proved to be superior to edge detection using
modified Frei-Chen templates. Not only was the average percentage correct about 10%
higher, the former approach also groups pure pixels, which can be useful when determining
endmember spectra afterwards. This grouping is also possible after edge detection by
creating closed polygons and labelling pure pixels using a floodfill algorithm, but since
the edges marking field boundaries often show some gaps, this is not very practical. The
performance of the edge detection approach, however, does appear to be susceptible of
improvement. On the one side, the options contour following and edge linking&pruning,
which were developed specifically to segment large satellite images, can be optimised for
the detection of mixed pixels. A major increase in performance, for instance, can be
achieved by exact alignment of the 1-pixel wide contours with the field boundaries. On
the other side, the processing of isolated mixed pixels provides a number of opportunities
for improvement as well. Besides the introduction of additional templates matching ideal
points, the noisy behaviour due to within-field variation could be reduced by subjecting
possible edge pixels that are isolated to a different, higher threshold to determine their
label. Another (ad hoc) post-processing option is to find pixels with a probably incorrect
label, for instance by locating “window” structures like those displayed in Figure 5.9(d),
and change them accordingly. A promising alternative to either region growing or edge
detection seems to be a hybrid approach. First, pure pixel clusters are located by applying
region growing with a high threshold, which avoids the noisy pattern due to within-field
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variation. Subsequently, mixed pixels that erroneously were included in these clusters can
be removed using the information acquired with edge detection. The result is a more
accurate segmentation where, as a bonus, pure pixels are grouped as well. By tuning edge
detection to detect mixed pixels, the performance of this combined approach is bound to
become even better.

5.3 Summary and conclusions

In this chapter we investigated whether or not segmentation techniques can be used to
detect mixed pixels in agricultural scenes. This approach is based on the model of an
agricultural field as a homogeneous cluster of pure pixels surrounded by a layer of mixed
pixels. Region growing attempts to find these pure pixel clusters by grouping neighbouring,
spectrally similar pixels. Edge detection, on the other hand, looks for local discontinuities
in order to locate the layer of mixed pixels. A third way to detect mixed pixels is map-based
segmentation, but for this approach ancillary information (the map) is required.

To determine the potential of edge detection as well as region growing for the detection
of mixed pixels, we carried out a comparative experiment on an artificial though realistic
image. The main reason for generating an artificial image was that the ground truth
information necessary for a quantitative analysis of the detector’s performance could be
obtained simultaneously, but this way it could also be guaranteed that the contrast between
fields was large relative to the within-field variation, which is a prerequisite for achieving
a good segmentation. On this image region growing gave a good performance, labelling
approximately 87% of both mixed and pure pixels correctly. As expected, the optimal
settings of the two parameters, the SOIM threshold and the maximum size of regions
containing mixed pixels, showed a positive correlation. However, since the performance
proved to depend much more on a good setting of the threshold than on an optimal setting
of the region size, finding the optimum is relatively easy. Edge detection performed less
well, which resulted in an average percentage correct of 78%. In addition, pure pixels are
not grouped automatically like region growing does, which may be a disadvantage when
endmember spectra are to be determined. The main reason for the worse performance is
that a lot of false edge pixels due to within-field variation are detected. Furthermore, the
implementation of edge detection used was not very well suited to handle isolated mixed
pixels. However, a lot of possibilities to improve the performance exist, which may make
edge detection as successful as region growing. The best option to achieve an optimal
detection of mixed pixels is to combine both approaches. Despite the fact that the results
of edge detection were not particularly good, combining them with the results of region
growing led to an average percentage correct of 88%), which is slightly higher than optimal
performance achieved with region growing alone. The fact that edge detection is dual
to region growing apparently leads to complementary information, which can be used to
compensate for the flaws region growing. This, in combination with the fact that pure
pixels are grouped as well, makes that the hybrid approach probably is the best method to
detect mixed pixels when used for applications such as calculation of endmember spectra
and area estimation of agricultural fields.



Chapter 6

Data-driven decomposition and its
application to artificial images*

Data-driven decomposition (DDD) is a new method introduced in this thesis to make an
accurate estimation of the area of an agricultural field based on two ideas. The first thought
is that mixed pixels should be split into their composing parts (pure pixels may still be
classified). The second idea is that knowledge of the application domain can be used to
improve the accuracy of the crop area estimation. In Section 6.1 it is explained how DDD
works. Section 6.2 describes an experiment in which the method is evaluated quantitatively
based on artificial images. Section 6.3 gives a brief summary and presents the conclusions.

6.1 Data-driven decomposition

In most studies where the crop area is to be estimated, each pixel is classified or decomposed
individually without considering its context, using class or endmember distributions derived
from training data. Adopting the terminology of Rosin [87], we call this a model-driven
approach. A data-driven approach, on the other hand, derives local (class or endmember)
distributions directly from the image data, using spatial information based on knowledge of
the application domain. Data-driven decomposition follows the latter approach to imple-
ment classic linear mixture modelling (Section 2.1.1, analytic approximation), which was
selected because of its relatively good performance combined with low computational costs.
Section 6.1.1 shows how DDD uses contextual information related to agricultural fields to
“drive” the decomposition process. Section 6.1.2 describes how knowledge of objects other
than agricultural fields is incorporated to obtain even more accurate area estimates.

6.1.1 Data-driven aspects

The accuracy of the classic linear mixture modelling estimator can be increased by incor-
porating some knowledge of the application domain. So far, most studies have used no
domain-specific knowledge whatsoever, but have employed the estimator to decompose all
image pixels, assuming the same endmember distributions for the entire image, and using

*This chapter is based on publications [35] and [38].
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all available endmembers at the same time. Data-driven decomposition, on the other hand,
makes use of known spatial relationships between the pixels to locate the mixed pixels that
need to be split, to determine local endmember distributions from the image itself, and to
select only those endmembers that are probable components of a mixed pixel.

A first way to obtain a more accurate area estimation is to separate the pure pixels from
the mixed pixels by making a segmentation of the image. As was described in Chapter 5,
any agricultural field that is relatively large given the resolution of the scanner can be
regarded as an inner cluster of pure pixels surrounded by a layer of mixed pixels at the field
boundaries. Since we know that our images depict agricultural fields, we can discriminate
between pure and mixed pixels by locating the pure pixel clusters. These clusters can
sometimes be found with the help of ancillary information sources such as topographical
maps, see Section 5.1.3, but it is also possible to segment the image using standard image
processing techniques. Schoenmakers [90], for instance, developed a hybrid segmentation
method that combines region growing (Section 5.1.1) and edge detection (Section 5.1.2) to
find pure pixel regions in large optical satellite images. Once the pure pixels belonging to
a region, which is considered to be the same as a pure pixel cluster from now on, have been
identified, they can be classified individually or as part of the covering fields to achieve
a higher accuracy (Janssen [54]). Most remaining pixels are probably mixed and should
be decomposed rather than classified. Thus, the accuracy of a crop area estimate can be
increased by segmenting the image in order to classify pure and decompose mixed pixels.

Data-driven decomposition is also more accurate than the classic decomposition ap-
proach because of the way in which it defines the endmember distributions. Traditionally,
the statistical distribution of every ground cover type that was to be distinguished was
determined using training pixels, laboratory measurements, or feature space analysis (see
Section 4.2). However, since we know that our scene consists of agricultural fields that
can be modelled as pure pixel clusters with mixed pixels in between, we can determine
more accurate endmember distributions by calculating the statistical distribution of each
region. The advantage of taking the distributions of fields instead of crops is that the
former endmember distributions, which are in fact crop distributions as well, are better
adapted to the local variations in ground slope, elevation, soil type, etc.; as a result, the
estimation of the fractions of a mixed pixel will become more accurate too. However, the
size of a field may be too small to estimate its distribution reliably. In this case, data-driven
decomposition determines the crop type through maximum likelihood classification of the
field’s mean vector, and selects the corresponding crop distribution from a database with
endmember distributions that were determined in a traditional manner after all.

The third way in which data-driven decomposition tries to increase the accuracy of the
crop area estimates is to use contextual information for selecting probable endmembers of
a mixed pixel. The classic decomposition approach, which decomposes a mixed pixel into
all endmembers at the same time, has two drawbacks. The first is that the decomposition
is usually sub-optimal because fractions are allocated to incorrect endmembers, and the
second is that the number of ground cover types that can be distinguished in the image
is severely limited by the number of spectral bands because of the way the linear mixture
model is solved. The latter limitation in particular is a serious problem for data-driven
decomposition as it regards every agricultural field as a possible endmember. However,
by restricting the large set of possible endmembers to a small set of probable endmem-
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for (each possibly mixed pixel) {
determine the regions from its 8-connected pure pixels;
construct a set containing all pairs of two regions;

for (each element of the set)
calculate the unreliability of decomposition using this combination;

if (the lowest unreliability is below the threshold)
divide the pixel according to the corresponding combination;
else mark the pixel;

Algorithm 6.1: First stage of DDD based on the simple scene model.

bers, which can be different for each pixel, an accurate decomposition using a virtually
unlimited number of endmembers can be achieved. According to our simple scene model,
the components of a mixed pixel are the agricultural fields that surround it; therefore, the
endmembers that are needed to decompose a mixed pixel can be found by searching its
neighbourhood for pure pixel clusters. An implementation of this view is given by Algo-
rithm 6.1, which is written in C-like pseudo code. In this algorithm, the smallest possible
symmetrical neighbourhood—a 3z3 window centred at the mixed pixel—is examined to
determine the pure pixel clusters. This way only regions containing one or more of the
eight pixels directly connected to the mixed pixel are considered, which ensures that these
regions remain contiguous even after assignation of mixed pixels. Furthermore, only a small
fraction of all possible combinations are tried in order to save time as well as to prevent
unlikely class mixtures from being chosen. For instance, combinations of three or more
surrounding regions could be investigated, but they would give only marginal improvement
because few such pixels exist, and probably only the classes that contribute little to the
pixel are wrongly estimated. The (un)reliability measure that is used to distinguish be-
tween the different combinations depends on the decomposition method selected. As we
selected the classic linear mixture modelling approach, the maximum likelihood criterion
defined by Equation (2.8) is an obvious choice!. Since this measure equals the Mahalanobis
distance between the pixel and its approximation by the decomposition algorithm, a rough
indication of a reasonable threshold setting can be derived. Suppose that the classes the
mixed pixel is to be decomposed into show no correlation between the different spectral
bands. If for each band a deviation of say 20 is allowed, the M-distance is equal to:

og 0 201
oy 209

[ 201 205 ... 20, ] ' | =4n. (6.1)
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This value is different in case the spectral bands are correlated of course, but a threshold of

INote that N(f) is substituted by the average of the IN;, which is different for each combination.
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Figure 6.1: The white and black squares are pure pizels belonging to different fields, the
grey and striped squares represent mixed pizels. The fields contributing to the striped pizels
cannot be determined by looking at the pure pizels in a 3x3 window.

four times the number of bands seems to be a reasonable setting. Using Algorithm 6.1 with
a threshold setting of 4n, the true endmembers of most mixed pixels can be determined.
The endmember selection mechanism presented in the previous paragraph can be im-
proved by deferring the decomposition of the more difficult pixels to a later stage. Fig-
ure 6.1 depicts two situations in which Algorithm 6.1 fails to find the correct endmembers.
In both cases the 323 neighbourhoods of the striped mixed pixels consist of some other
mixed pixels and some pure pixels, but they do not contain all contributing fields at the
same time. Figure 6.1(a) shows the common problem that mixed pixels hardly ever occur
isolated but nearly always appear clustered. Expansion of the neighbourhood with another
or even two layers of pixels could solve the problem, but it could also result in fields that
are no longer contiguous. For objects like the one in Figure 6.1(b), which represents a
river? flowing into a lake, this strategy is not applicable since the necessary expansion of
the neighbourhood could be arbitrarily large. A much better solution to these problems is
given by Algorithm 6.2, which can be considered as the second stage of an overall algorithm
started by Algorithm 6.1. In the second stage, the spatial information of the mixed pixels
which were processed in the first stage is used to find fields that were not considered before
because the neighbourhood did not contain pure pixels of those regions. The second stage
is executed iteratively, using new spatial information obtained in the previous iteration.
An advantage of this strategy is that the contingency of each field is guaranteed since
there always exists a path from the mixed pixel to a pure pixel of each contributing region.
Another advantage is that narrow structures can now also be handled without the need
to expand the neighbourhood enormously. Although the iterative nature of Algorithm 6.2
may lead to a significant increase in computation time in theory, this proved to be not
the case in practice. Not only was the vast majority of the mixed pixels handled by the

2 Although this is not an agricultural field, we will consider these objects as well; see Section 6.1.2.
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while (previous iteration decomposed at least one pixel)
for (each pixel marked) {
determine new regions from its 8-connected pixels decomposed in last iteration;
construct a set containing all pairs of two new regions;
add all pairs of one new and one old region to the set;

for (each element of the set)
calculate the unreliability of decomposition using this combination;

if (the lowest unreliability is below the threshold)

divide the pixel according to the corresponding combination;
else

mark the pixel for the next iteration;

Algorithm 6.2: Second stage of DDD based on the simple scene model. “New” regions
have not been discovered before, while “old” regions were found in a previous iteration.

first stage, most remaining mixed pixels were of the type shown in Figure 6.1(a) and could
nearly all be dealt with in the first iteration. Pixels belonging to narrow structures may
need more iterations—Figure 6.1(b) needs three—depending on the position of the closest
pure pixel in the corresponding cluster, but they are small in number.

In summary, the data-driven decomposition method overcomes three important weak-
nesses of the classic decomposition approach. The first improvement is that, instead of
decomposing all pixels, a discrimination between pure and mixed pixels is made in order
to handle them by classification and decomposition, respectively. The second enhancement
is achieved by taking local endmembers, whose distributions are well adapted to local crop
variations, instead of endmembers that are global to the entire image. The third weak-
ness that is resolved is the necessity of decomposing a mixed pixel into all endmembers
simultaneously; our method is able to predict the probable components of a mixed pixel
prior to its decomposition. All these improvements make use of the contextual information
included in the image. By formalising some knowledge of the application domain into a
simple scene model, the spatial relationships between the pixels can be used to make a
more accurate estimation of the area of an agricultural field.

6.1.2 Further improvements based on domain knowledge

The accuracy of the data-driven decomposition method can be increased further by in-
corporating additional knowledge of the application domain in our scene model. So far,
a scene was modelled as a collection of adjacent agricultural fields. This simple model,
however, is not very accurate since in reality agricultural fields are often bounded by lanes,
ditches, strips of grass, etc. Furthermore, usually the scene also contains a number of small
objects such as farmhouses, ponds, and groves. Therefore, the scene model is extended
with two object types, called “narrow boundary structures” and “isolated objects”.



102 Chapter 6: Data-driven decomposition applied to artificial images

Narrow boundary structures require a different approach than agricultural fields in
order to process them accurately. Given that the typical ground resolution of a satellite
scanner is 20-30 m, a narrow boundary structure of less than 20 m wide will be depicted
as an elongated series of mixed pixels that is one or two pixels wide. Since such a structure
does not have a pure pixel cluster, it is impossible to derive its statistical distribution
directly from the image as can be done for agricultural fields. Instead, we have to fall back
on more traditional techniques, for instance based on training pixels, to determine a few
endmember distributions which approximate the distributions of that type of structure.
Some examples of endmembers which should be determined because they are components
of some well-known boundary structures are: asphalt (roads), soil (uncultivated land and
dirt roads), grass (uncultivated land), deciduous forest (tree rows), and water (ditches and
canals). Another difficulty due to the lack of a pure pixel cluster is that the presence
of a boundary structure cannot be detected, which prevents the endmember selection
mechanism introduced in Section 6.1.1 from finding all components of a mixed pixel. Again,
the answer is to revert to the classic approach by including all endmembers typical of narrow
boundary structures when decomposing a mixed pixel. The problems that arise from this
large number of endmembers—infinitely many solutions of the linear mixture model and an
inaccurate decomposition—can be solved with some domain-specific knowledge. According
to this knowledge, nearly all mixed pixels are formed by one of three possible combinations:
two agricultural fields; two agricultural fields and one narrow boundary structure; or one
agricultural field and one narrow boundary structure, in case the structure lies in between
two pixels. Since it can be derived which agricultural fields are probable components
of a particular mixed pixel, and a set of endmembers that covers all types of boundary
structures is available, a list of every possible composition can be made. To determine the
optimal composition, we once again select the alternative that has the maximum likelihood,
i.e. the combination that results in lowest value of Equation (2.8). An implementation of
this approach is given by stages 1 and 2 of Algorithm 6.3 3. Thus, with a few changes to
the DDD algorithm, narrow boundary structures can be processed accurately.

Isolated objects are processed in roughly the same way as narrow boundary structures.
Since isolated objects are small not only in width but also in length, they will usually
appear as isolated mixed pixels in the image. Just like narrow boundary structures, an
isolated object does not result in a pure pixel cluster, which is needed to determine its sta-
tistical distribution and to mark it as a probable endmember. Therefore, the distributions
of those endmembers that are characteristic of this type of object have to be determined
with traditional techniques. The endmember selection strategy that was devised to handle
boundary structures, however, should not be used for isolated objects because their variety
is too large and their number is too small. As a result of their large variety, many distri-
butions are needed to describe all possible objects, which slows down the decomposition
process considerably. More important, though, is that many mixed pixels will be decom-
posed less accurately because fractions can be assigned to a large number of additional
endmembers that are characteristic of isolated objects only, while the probability that the
mixed pixel indeed represents an isolated object is small. To solve these problems, data-
driven decomposition sets apart all mixed pixels that probably represent isolated objects

3Stages 1 and 2 could be merged into one loop, but this is not done for reasons of clarity.
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for (each possibly mixed pixel) { /* stage 1 */
determine the regions from its 8-connected pure pixels;
construct a set containing all pairs of two regions;
add all pairs of one region and one edge class to the set;
add all triplets of two regions and one edge class to the set;

for (each element of the set)
calculate the unreliability of decomposition using this combination;

if (the lowest unreliability is below the threshold)
divide the pixel according to the corresponding combination;
else
mark the pixel;
} /x end stage 1 x/

while (previous iteration decomposed at least one pixel) /* stage 2 */
for (each pixel marked) {
determine new regions from its 8-connected pixels decomposed in last iteration;
construct a set containing all pairs of two new regions;
add all pairs of one new and one old region to the set;
add all pairs of one new region and one edge class to the set;
add all triplets of two new regions and one edge class to the set;
add all triplets of one new region, one old region, and one edge class to the set;

for (each element of the set)
calculate the unreliability of decomposition using this combination;

if (the lowest unreliability is below the threshold)

divide the pixel according to the corresponding combination;
else

mark the pixel for the next iteration;

} /*x end stage 2 x/

for (each pixel marked) { /x stage 3 %/
determine the regions from all its 8-connected pixels;
construct a set containing all pairs of one region and one arbitrary class;

for (each element of the set)
calculate the unreliability of decomposition using this combination;

divide the pixel according to the combination with the lowest unreliability;
} /*x end stage 3 x/

Algorithm 6.3: All three stages of DDD based on the extended scene model.



104 Chapter 6: Data-driven decomposition applied to artificial images

and decomposes them in a separate stage—see stage 3 of Algorithm 6.3. The criterion
that is used to make this decision is based on the same reliability measure used before:
a mixed pixel is regarded as an isolated object only if the (maximum) likelihood of its
decomposition into the usual endmembers is too low. The endmember selection strategy
that is followed in this case makes use of the knowledge that most of these pixels are a
mixture of the isolated object and one of the agricultural fields it is surrounded by. By
trying all combinations of one endmember typical of isolated objects and one agricultural
field that is located in the pixel’s neighbourhood, the optimal decomposition can be found
by selecting the solution that has the highest probability. Thus, in a way that is very
similar to the way narrow boundary structures are handled, isolated objects are processed
efficiently by data-driven decomposition.

In conclusion, the accuracy of the classic decomposition approach can be increased
by using the available knowledge of the application domain. Besides our knowledge of
agricultural fields, which led to the exploitation of the contextual information in the image,
we can also make use of our knowledge of other existing objects. By extending the simple
scene model of Section 6.1.1 with narrow boundary structures and isolated objects, much
greater realism is introduced. As a result, the accuracy of the area estimation of an
agricultural field by data-driven decomposition will be improved further.

6.2 Application to artificial images

To evaluate the data-driven decomposition method, it was applied to several simulated
Landsat-TM images of agricultural scenes. The reason for using artificial instead of real
images was that for the latter data no ground truth at subpixel level was available, which
is needed for a quantitative analysis of the method. For the simulated images this in-
formation is available because of the way they are constructed—see Section 6.2.1. As is
described in Section 6.2.2, DDD was applied to images of increasing complexity while mon-
itoring its performance. Based on the results of these experiments, which are discussed in
Section 6.2.3, the strong and weak points of the DDD algorithm could be determined.

6.2.1 Simulation of remote sensing images

The generation of artificial satellite images can be done in many ways with varying degrees
of realism. A method which preserves both first- and second-order statistics has been
described by Schouten and Klein Gebbinck [92] and is briefly summarised in this section.

The first step in generating an artificial image is to draw the boundaries of objects
such as agricultural fields, roads, and ponds on a white piece of paper using a black pen.
Figure 6.2(a) shows an example, which we used as the basis of our own images. The next
step is to digitise the image using an optical scanner, which we set at a modest resolution
of 100 dpi and 256 grey levels. After a thresholding operation to produce a binary image,
1-pixel gaps in the edges are filled and the resulting boundaries are thinned to obtain 1-
pixel wide closed polygons—see Figure 6.2(b). Next, a standard blob colouring algorithm is
applied to label each non-boundary pixel with a number identifying the object it is part of.
With this information, a mapping between the objects and the available ground cover types
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(a) (b)

Figure 6.2: First products in the simulation chain. (a) Hand-drawn image scanned at 100
dpi and 256 grey levels. (b) Field boundaries represented as 1-pizel wide closed polygons.

is made. The boundary or edge pixels can be related to a ground cover type—a so-called
edge class—as well, thus implementing the concept of narrow boundary structures.

Before we can proceed with the next step of the simulation protocol, we first have to
generate the so-called class templates. The idea behind these templates is that each class is
represented by a small image of say 1002100 pixels, which not only captures the distribution
of the class—i.e. mean vector and variance-covariance matrix—but also its texture. In our
case the templates were derived from a Landsat-TM image of Portugal. First, each pixel is
classified using a nearest neighbour algorithm based on a set of supervised training pixels.
From the resulting classified image, numerous blocks of 5x5 pixels having the same label
are extracted per class; obviously, these blocks will all be located inside the boundaries of
real objects (mainly agricultural fields). With these blocks the templates are constructed
using a strategy that places the most common blocks in the middle and arranges the
others around them such that the transitions between the blocks are as smooth as possible.
Furthermore, several selection criteria are applied to exclude those blocks that deviate too
much from the standard; see Schouten and Klein Gebbinck [92] for a detailed description of
these exceptions. In the resulting templates the texture of the original Landsat-TM image
is preserved very well.

The last steps in the simulation protocol are reducing the resolution of the hand-drawn
image and calculating the intensity of the resulting pixels. The spatial resolution is reduced
simply by dividing the processed hand-drawn image into blocks of pzp pixels (p=4 in our
experiments). Each block is used to create one pixel of the artificial image, which thus
may cover a number of classes. The intensity values of each artificial pixel is taken as a
linear mixture of the intensities of the classes it is composed of, using weights that are
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proportional to the number of subpixels covered by each class. In vector notation this
approach translates to

X(i’j) _ kai,j) tgjmods,jmods)7 (62)
k=1

where x is the pixel vector that is generated for position (i, j), f,i” ) denotes the proportion

of class k, and t,(f’v) represents the pixel vector at the corresponding location of the k-th
class template. Since the size s of the (square) templates usually is smaller than the size
of the artificial image, the modulo operator is used to make sure the index into the class
templates stays within bounds. Discontinuities in the grey level distribution of adjacent
pixels that might result as the operator passes through 0 are prevented by extending the
templates with mirrored copies in both dimensions. With the above method, the textures
of the original Landsat-TM image that were preserved in the class templates are preserved
in the artificial image as well.

Optionally, the artificial image can be adapted to incorporate some isolated objects.
For this purpose, a number of pixels chosen at random are replaced by isolated mixed
pixels. These mixed pixels are assumed to consist of one ground cover type of a nearby
field and one totally different ground cover type, where the latter class is given a fraction
of at least 75%. The intensity of the resulting pixel is determined in the same manner as
explained before. By applying the method described in this section, a realistic artificial
image is generated that is comprised of agricultural fields, narrow boundary structures,
and isolated objects.

6.2.2 The experimental set-up

In the experiments, three images of increasing complexity were processed by the data-driven
decomposition algorithm. In the first image the edges were ignored, which led to simple
transitions between the neighbouring regions. In the second image the edges were assigned
the ground cover type bare soil, which gave mixed pixels that were more complex. In the
third image a number of isolated mixed pixels were added in order to determine the ability
to detect these pixels and to evaluate the threshold setting. During the decomposition
process, the performance of DDD was monitored using two measures.

The first metric that was calculated measured the accuracy of the decomposition. This
measure had to reflect the errors that could be made, which was in the first place that the
estimated fraction of a region deviated from the true fraction, and secondly that the chosen
region itself was incorrect. However, it was much more practical to calculate the accuracy
based on ground cover types than on region numbers. Suppose for instance that two regions
with the same ground cover type contribute to the same mixed pixel. While the fractions
of the individual regions can never be recovered, calculating the total proportion of that
ground cover type is well possible. However, this does require that the ground cover type of
each region is determined, which we did through maximum likelihood classification of the
region’s mean vector (see Appendix A). The above problem could also be circumvented
by assigning different ground cover types to neighbouring regions and using edge classes
differing from all regions in the entire image, but a measure based on ground cover types
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was found to be more flexible. Furthermore, with the latter approach the two error types
mentioned earlier could be unified: a mixed pixel was considered to be composed of all
ground cover types present in the image, taking fractions of classes that did not belong to
a pixel’s composition equal to zero. The accuracy measure that was calculated for each
pixel is Minkowski’s L1-metric scaled by %:

C

1
€acc = 5 Z

i=1

~

fi—fi

) (6.3)

where f and f represent the estimated and real fractions vector, respectively. This expres-
sion is identical to Equation 3.22 except that €j=<eu..>, i.e. €5 is the average e of all
pixels. The errors in accuracy can be presented in a histogram to show the global statistics
as well as in an image to view any spatial relations.

The other measure that was computed monitored the (un)reliability of each decompo-
sition. This measure is directly related to the classic linear mixture modelling estimator
in that it determines how well the estimator can reconstruct the pixel:

ere = (x — MF)TN"!(x — Mf). (6.4)

The higher the value of e,.;, the more unreliable the decomposition is assumed to be. As was
described in Section 6.1.1, this expression is also used to select the probable endmembers
of a mixed pixel, hence it is very useful to evaluate DDD. Analogous to the accuracy
measure, the results of the reliability measure can be presented using both a histogram
and an image. With these means it is possible to assess the threshold setting and to identify
certain problem areas.

Last but not least, there are a few choices made during the design of the experiments
that need to be mentioned. First of all, we decided to derive a perfect segmentation for
each of the satellite images, which was easy because of the way they were generated. This
decision was motivated by the fact that the negative influence of a bad segmentation on
the performance of DDD would be quite considerable. Since an investigation into optimal
segmentation methods was considered to be beyond the scope of this study, we used a
perfect segmentation in order to guarantee a proper evaluation of DDD itself. The other
decision that was made is that the performance of DDD would only be monitored on mixed
pixels. The reasons for this decision were threefold. Firstly, in agricultural scenes the
number of pure pixels compared to the number of mixed pixels is so overwhelming that the
performance of DDD on the latter ones would hardly be noticeable, while the mixed pixels
provide the best possibilities for improvement of the area estimates. Secondly, pure pixels
are easily processed by most methods, therefore their performance is not very interesting.
Thirdly, the perfect segmentation provides much more information on pure than on mixed
pixels, for example the fact that their fractions vectors contain all zeroes except for one
place, or which nearby pixels are pure as well and have the same ground cover type. To
minimise the positive influence of using an artificial segmentation, therefore, we ignored
the pure pixels when evaluating the performance of DDD.
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(a) (b)

Figure 6.3: Image I, in which the edges are ignored. (a) The most contrast-rich band 5.
(b) Location of the mized pizels, which are shown in white.
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(a) Error in accuracy. (b) Error in reliability.

Figure 6.4: Statistics collected when decomposing Image 1. (a) Histogram of the number
of pizels (vertical) vs. the error in accuracy (horizontal). The 40%-100% interval (not
shown) contained 8 pizels. (b) Histogram of the reliability values calculated after stage 2.
The last bin holds the number of pixels with an e, of 36.0 and more.
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6.2.3 Results and discussion

The three images on which the experiments were carried out comprised 203x205 pixels in
six spectral bands. These pixels were constructed out of 4x4 subpixels, using 10 different
ground cover types. In Image I no ground cover type was assigned to the edges, which
resulted in 2479 mixed pixels that were relatively easy to decompose. Figure 6.3(a) displays
band 5 of this image, while the positions of the mixed pixels are shown in Figure 6.3(b).
Data-driven decomposition of the mixed pixels in Image I resulted in an average error
in accuracy of 2.7%. The threshold was set at 4zn—the number of bands (6)—i.e. 24.0.
In stage 2 of the algorithm, two iterations were performed in which subsequently 1 and
0 mixed pixels were processed; 12 pixels were (wrongly) assumed to represent isolated
objects. The majority of these pixels consisted of three or more regions, something the
algorithm could not handle. Another source of inaccuracy was that some mixed pixels
could be decomposed a little bit more reliably using a wrong combination of regions than
using the correct combination. A last cause of error was that in a few cases the pixel could
be decomposed correctly but with an unreliability that was just above the threshold. As
a result, these pixels were subjected to the third stage, which was meant for truly isolated
pixels only. Figure 6.4 shows how the errors in accuracy and reliability were distributed.
Figure 6.4(b) confirms that a threshold setting of 24.0 was a good choice.

In Image II the edges were assigned the ground cover type soil, which resulted in an
image very similar to Image I. The difference between these images can only be seen by
zooming in on for instance the lower left corner, as is done in Figure 6.5. Not only did the
composition of the mixed pixels become more complex, the number of mixed pixels also
increased to 4928—compare Figures 6.3(b) and 6.6(a). As a result, Image II contained
several narrow structures consisting largely of mixed pixels, see Figure 6.6(b), which were
good test cases for the second stage of DDD. With a threshold setting of 24.0, the mixed
pixels were decomposed with an average error in accuracy of 4.9%. For Image II a total
of 5 iterations were needed during stage 2, in which subsequently 29, 14, 4, 4 and 0
mixed pixels were decomposed. Iterations 3 and 4 were required to process the narrow
structure depicted in Figure 6.6(b), which contained a massive block of mixed pixels of
height 10. A total of 5 mixed pixels remained after the second stage and were marked
isolated, which in fact they were not. In addition to the reasons already mentioned in the
previous paragraph, spectral confusion was another source of error. Several pixels being
composed of rice (£90%) and soil (£10%) were estimated to have a much smaller fraction of
rice (£60%), and more soil (£20%) and water (£20%). Much more frequent, however, was
the confusion between soil, barley and grass. It appeared that the class mean of grass was
a linear combination of the class means of soil and barley, leading to spectral confusion for
all pixels containing both soil and barley. Since the variance-covariance of grass was higher
than the ones of soil and barley, the area covered by grass was systematically overestimated
while soil and barley were underestimated. In Figure 6.7 the histograms of the errors in
accuracy and the unreliability are presented, while Figure 6.8 shows these measures for
each pixel individually. The line fragments in Figure 6.8(a) (e.g. the diagonal line west of
the centre) were located at the boundaries between fields of barley and grass. With edges
of soil, spectral confusion occurred along the entire border. As can be seen in Figure 6.8(b),
these pixels could not be identified based on a low reliability.
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Figure 6.5: The difference between Image I and II can be found at the field boundaries.

(a) Lower left corner of Image 1. (b) Lower left corner of Image I1.
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Figure 6.6: Image II with edges consisting of soil. (a) Positions of the mized pizels shown
in white. (b) Blow-up of the narrow structure in the south-west quadrant.
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Figure 6.7: Statistics collected for Image II. (a) Histogram of the error in accuracy; the
interval cut-off (40%-100%) contained 28 pizels. (b) Histogram showing the number of
pizels with a certain (un)reliability calculated after stage 2.

(a) Error in accuracy.

(b) Error in reliability.

Figure 6.8: Spatial distributions of the performance measures on Image II. (a) Errors in
accuracy represented as grey levels. Darker pizels have a higher inaccuracy. (b) Reliability
of decomposition in stage 1 or 2; the less reliable the decomposition, the darker the pizel.
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Figure 6.9: Image III, which was simulated to contain a number of isolated objects.
(a) Location of the mized pixels shown in white. (b) Lower left corner of Image III.

Image Il was similar to Image II, except for the isolated pixels that were added—see
Figure 6.9. An unrealistically high number of 1.0% of the image pixels was selected at ran-
dom to be replaced by isolated mixed pixels. Of the 416 isolated pixels that were added,
47 replaced pixels that were already mixed, resulting in 5297 mixed pixels to be processed.
Data-driven decomposition of these pixels with a threshold setting of 24.0 gave an average
error in accuracy of 5.0%. During the 5 iterations of the second stage, 36, 14, 4, 4, and 0
mixed pixels were decomposed, leaving 369 pixels for stage 3. Experiments with images
where a more tractable percentage (0.1%) of the pixels was isolated showed that most iso-
lated mixed pixels were recognised as such. Those that were not identified were frequently
placed at positions already occupied by mixed pixels. Since their neighbourhoods usually
contained multiple regions, often an erroneous decomposition in stage 1 or 2 was accepted
because of spectral confusion. Another reason was that some isolated pixels had soil as
their main component. Because soil also was the class of the edges and therefore always
was considered as a possible component, a correct decomposition could already be achieved
in stage 1. As can be seen in Figures 6.10(a) and 6.11(a), isolated mixed pixels could be
decomposed as accurately as ordinary mixed pixels. Figures 6.10(b) and 6.11(b) show that
with a threshold of 24.0 isolated mixed pixels could easily be identified.

The data-driven decomposition algorithm used a threshold to determine whether a
mixed pixel could be decomposed reliably enough or not. If the threshold was set too
low, pixels which could be decomposed correctly were marked isolated and erroneously
processed in stage 3. On the other hand, if the threshold was set too high, isolated pixels
were not recognised but were incorrectly decomposed in stages 1 and 2. Furthermore,
mixed pixels with contributing regions that could only be determined in the second stage
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Figure 6.10: Statistics collected during decomposition of Image II1. (a) Histogram of the
number of pixels against the error in accuracy; range 40%-100% contained 41 pizels. (b)
Histogram of the measure of (un)reliability after stage 2. The last bin shows the number of
pizels having a value of e..; greater than 36.0.

(a) Error in accuracy. (b) Error in reliability.

Figure 6.11: Spatial distributions of €ae. and e. calculated for Image II1. (a) Errors in
accuracy; higher errors are shown as darker pizels. (b) Reliability of decomposing pizels in
stages 1 and 2. Many of the isolated objects can be identified as having a high e, (black).
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Figure 6.12: Average error in accuracy after decomposition of Image II (with isolated
objects) and Image III (without isolated objects) for different settings of the threshold.

were decomposed prematurely as well. In Section 6.1.1 it was derived that four times
the number of spectral bands might be a good setting for the threshold, something which
proved to be the case in the previous experiments. In the last experiment of this section,
Images IT and I1I were repeatedly decomposed using different thresholds. The results shown
in Figure 6.12 confirm that a threshold of 24.0 (Landsat-TM imagery has 6 bands) was
an excellent setting. The effect of prematurely decomposing pixels whose regions could
only be determined in stage 2 can be observed in the slightly rising curve of Image II. The
much stronger effect of incorrectly decomposing isolated pixels is shown by the curve of
Image III.

6.3 Summary and conclusions

In this chapter we presented a method to estimate the area of an agricultural field as
accurately as possible. This data-driven decomposition method is a combination of the
classic (pixel-based) decomposition approach and the field-based classification approach,
and has two underlying concepts. The first concept is that pure pixels can be classified
as usual, but mixed pixels must be decomposed such that the area of each pixel can be
divided between the contributing fields. The other main concept is the application of
domain-specific knowledge based on a scene model comprising agricultural fields, narrow
boundary structures, and isolated objects. Aspects of this knowledge are that the spatial
relationships between the pixels of an agricultural field can be used to locate mixed pixels
that should be decomposed, to determine local endmember distributions from the image,
and to select endmembers that are probable components of a mixed pixel. An important
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advantage of this endmember selection mechanism is that it permits the decomposition
of a scene into a far greater number of endmembers than can be considered by classic
linear mixture modelling. Further aspects incorporated in our approach are that fields
are often bounded by narrow structures with well-known compositions, e.g. roads and
ditches, and that isolated objects, which are composed of ground cover types not found
in their surroundings, can be detected because their spectral response is not a mixture of
the responses of neighbouring pixels. Since all these knowledge rules help to improve the
correct allocation of mixed pixels, the crop area estimates by data-driven decomposition
are expected to be more accurate than those of traditional crop area estimators.

In order to test the data-driven decomposition method, it was applied to three artificial
Landsat-TM images of increasing complexity. From the results on the first image, which
contained only simple mixed pixels, it appeared that most mixed pixels could be decom-
posed in the first stage of DDD. Not only were the correct endmembers derived from the
pixel’s neighbourhood, the estimation of its proportions was good as well, which led to an
average error in accuracy of only 2.7%. The few errors that did occur were the result of
two factors: the spectra of the pixel’s components deviated significantly from their class
mean, which caused a wrong combination of endmembers to look more reliable or the right
combination to be not reliable enough, or the mixed pixel was composed of three or more
agricultural fields, which DDD could not handle. Only the latter source of error is related
to DDD and could be removed by adapting the algorithm, but the more complex decompo-
sition method would probably achieve a lower accuracy on the simpler pixels. The second
image contained mixed pixels with a more difficult composition, which resulted in the
emergence of several complex narrow structures. These narrow structures could be dealt
with very well in stage 2 of DDD: based on a threshold, the iterative algorithm was able
to determine whether the correct endmembers had been found already using a minimum
number of iterations. Due to the more complex mixtures, spectral confusion turned out
to be the third and most important cause of inaccuracy. Although the impact of spectral
confusion was considerable—the average error in accuracy increased to 4.9%—DDD cannot
be adapted to remove its influence as it has a natural cause. Processing of the third image,
which contained a large number of isolated objects, showed that by thresholding the relia-
bility measure the ordinary mixed pixels could be separated well from the isolated mixed
pixels. Pixels of the latter type were decomposed incorrectly only in case they were located
on a field boundary, because that increased the possibility of spectral confusion. However,
the average error in accuracy remained acceptably low (5.0%). Setting the threshold to
four times the number of bands, something which was derived mathematically, proved to
be an excellent choice.

Data-driven decomposition appears to be a fast and accurate method to estimate the
area of an agricultural field. This conclusion, however, is based on experiments with arti-
ficial images, which were simulated using the same scene and mixing models that underly
DDD itself. Furthermore, to determine whether the two concepts of DDD actually improve
the area estimates or not, the results of the method have to be compared with the results
achieved by traditional estimators. Therefore, a comparative experiment with preferably
genuine satellite images is required, which will be presented in the next chapter.
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Chapter 7

Comparison between DDD and three
other area estimators®

In this chapter, the performance of the data-driven decomposition method introduced
previously is compared to the results of three other area estimators. These other methods,
which are described in Section 7.1, are well-known and have been carefully selected to
make an evaluation of the two concepts behind DDD possible. Section 7.2 describes a
comparative experiment based on artificial images; Section 7.3 discusses the set-up and
results of an experiment in which a genuine Landsat-TM image was used. Section 7.4,
finally, gives a brief summary of the main results and the conclusions.

7.1 Three related area estimators

As was described in Chapter 6, the two concepts of DDD are decomposition of mixed pixels
and application of domain-specific knowledge. To evaluate these concepts, we compared
DDD with three other methods in which the first, second, or both concepts are disregarded.
Section 7.1.1 describes the most basic method called pixel-based classification. Slightly
more advanced is pixel-based decomposition, which decomposes mixed pixels but ignores
knowledge of the application domain—see Section 7.1.2. Equally sophisticated in that it
considers domain-specific knowledge but does not decompose mixed pixels is field-based
classification, which is described in Section 7.1.3. Since most of these methods are still
widely used today, a comparison helps to determine the value of data-driven decomposition
in practice as well.

7.1.1 Pixel-based classification

The oldest, simplest, and most widespread technique to relate pixels to ground cover types
is pizel-based classification (PBC)—see for instance Robertson [85], Markham and Towns-
hend [67], Irons et al. [52], Mather [70], and Kershaw and Fuller [61]. This approach applies
neither concept of DDD, but allocates each pixel to only one of a number of selected classes
based solely on the values measured in the different spectral bands. Of the many classifiers

*This chapter is based on publications [35], [36], and [38].
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that exist, we chose the maximum likelihood classifier (see Appendix A), because it is well
suited to handle data with a multivariate normal distribution such as agricultural fields,
and it has a low computational complexity. Each class is characterised by a mean vector
and a variance-covariance matrix, which are stored in a database. Since the distributions
of the classes are modelled in advance, pixel-based classification is also called model-driven
classification, which nicely illustrates the differences with DDD. Clearly, the results of
pixel-based classification can easily be transformed to crop area estimates by counting the
number of pixels assigned to a particular class. The area of an agricultural field can be
determined in a similar fashion provided that the crop type of the field is known. However,
if, as usually is the case, other fields of the same crop type are depicted by the same
image, only those pixels of that class located in a particular region of interest—the part
of the image containing the field under observation but none of the others with the same
crop—should be counted.

7.1.2 Pixel-based decomposition

A more recent approach to extract compositional information from remotely sensed images
is pizel-based decomposition (PBD), which was designed to handle scenes containing many
mixed pixels (e.g. see Horwitz et al. [51], Adams et al. [2], Smith et al. [104], Cross et
al. [23], and Quarmby et al. [82]). With this method, each pixel is unmixed individually
to determine its true composition without regarding its spatial context or knowledge of
the application domain. After decomposition, fractions of the pixel’s area are assigned to
the different classes proportional to their contribution. For the decomposition task, we
selected the analytic solution of the classic linear mixture model described in Section 2.1,
mainly because of its high speed combined with a relatively high accuracy. A disadvantage
of this method, though, is that it can handle at most n+1 classes simultaneously, where
n represents the intrinsic dimensionality of the data (n=4 for Landsat-TM data [70]).
The spectral signatures of the classes that are needed by this estimator are taken from
a database, which is identical to the one used for pixel-based classification. Therefore,
pixel-based decomposition is also referred to as model-driven decomposition. Crop area
estimates can be determined by summing the fractions allocated to each class. To estimate
the area of a particular field, one has to know the field’s crop type and possibly its general
location in the image in order to sum the appropriate fractions of the right pixels—see
Section 7.1.1.

7.1.3 Field-based classification

The third method applied is field-based classification (FBC), which was designed to reduce
the number of misclassifications by the pixel-based approach due to within-field variation.
Although the exact strategy differs for each study in which it was applied (e.g. Staken-
borg [106], Ait Belaid et al. [3], Janssen [54], Schoenmakers [90], Schotten et al. [91]), the
common idea is that first the pixels belonging to the same field are identified, after which
the field is classified as a whole. The implementation of FBC used in this chapter is based
on the same concept as DDD with respect to the application of domain knowledge. This
means that FBC uses spatial information to locate mixed pixels, to determine local class
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/* stage 1 %/

for (each possibly mixed pixel) {
determine the regions from its 8-connected pure pixels;
construct a set containing all regions;
add all edge classes to the set;

for (each element of the set)
calculate the unreliability of classification to this class;

if (the lowest unreliability is below the threshold)
allocate the pixel to the corresponding class;
else
mark the pixel;

}

/* stage 2 x/
while (previous iteration classified at least one pixel)
for (each pixel marked) {

determine new regions from its 8-connected pixels classified in the last iteration;

construct a set containing all new regions;

for (each element of the set)
calculate the unreliability of classification to this class;

if (the lowest unreliability is below the threshold)
allocate the pixel to the corresponding class;
else
mark the pixel for the next iteration;

}

/* stage 3 x/
for (each pixel marked) {
construct a set containing all classes;

for (each element of the set)
calculate the unreliability of classification to this class;

allocate the pixel to the class with the lowest unreliability;

Algorithm 7.1: Field-based classification based on the extended scene model.
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distributions from the image itself, and to select only those classes the pixel probably be-
longs to. Furthermore, FBC also uses knowledge about narrow boundary structures and
isolated objects to improve the classification. The resulting Algorithm 7.1 is very similar
to that of DDD—compare Algorithm 6.3: all regions and other classes that DDD consid-
ers as probable components are considered as possible classes by FBC. To emphasise this
similarity, field-based classification is also called data-driven classification. The method
we selected for the actual classification of pixels was the standard maximum likelihood
approach, which was chosen for PBC as well. A natural measure for the (un)reliability
of a classification by this method is the Mahalanobis distance between the pixel and the
class mean. Just like PBC (and PBD), FBC consults a class database, however, only to
obtain the possible class distributions of narrow boundary structures (edge classes) and
isolated objects. Despite the use of this database with global crop distributions, FBC—as
is DDD—is a field area estimator rather than a crop area estimator; by counting the num-
ber of pixels allocated to a region, the area of a field can easily be determined. On the
other hand, crop area estimates can be derived with little extra effort by classifying the
region’s mean vector followed by counting the number of pixels per crop.

7.2 Comparison based on artificial imagery

In order to make a quantitative comparison between DDD and the three other area estima-
tors, ground truth information at subpixel level is required. Since this kind of supervised
data was unavailable for any of the real satellite images in our archive, we had to turn to
the artificial images once more. The set-up of the comparative experiment is described in
Section 7.2.1. In Section 7.2.2, the results are presented and briefly discussed.

7.2.1 Set-up of the experiment

The experimental set-up was straightforward, consisting of three steps. In the first step,
several artificial Landsat-TM images were generated using the method described in Sec-
tion 6.2.1. Next, these images were processed by data-driven decomposition and the three
other area estimators, while their performance was monitored using two accuracy mea-
sures. Afterwards, the accuracies of the methods were compared such that the concepts
behind DDD could be evaluated; by comparing DDD and FBC, for instance, the influence
of decomposing mixed pixels could be determined, while a comparison between DDD and
PBD revealed the influence of applying domain knowledge.

Two of the images used in the experiment were already described in Section 6.2.3.
Image II was based on the scene model with narrow boundary structures but without iso-
lated objects; Image III was identical to Image II but had 1.0 % of its pixels converted
to isolated mixed pixels. In addition to Images II and III, we also generated Images Ila
and IIla, which contained only five instead of ten different ground cover types. This restric-
tion of the number of classes was necessary because pixel-based decomposition can handle
at most n+1 classes simultaneously. Since the intrinsic dimensionality (n) of Landsat-TM
data, which our images are based upon, is only four according to Mather [70] as well as
our own experience, five ground cover types was the absolute maximum. As a bonus, by
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comparing the performance on the images with ten classes and those with five classes, the
effect of more or less heterogeneous landscapes on the usability of DDD’s concepts can be
determined.

The accuracy of the crop area estimators was measured at the level of individual pixels
as well as the entire region. Since all estimators operated on individual pixels, the direct
way to determine their performance was to measure how well the composition of a pixel
was estimated. For this purpose, we used the same metric as in Section 6.2.2 (€4e.):

engz

i

fp,i - fp,i ) (71)

whose value averaged over multiple pixels is denoted by <e,>. As before, 7 ranges over all
ground cover types, which means that the field area estimates by data-driven decomposition
and field-based classification had to be transformed to crop area estimates by relating each
field to a crop type. It is clear that the methods based on classification will probably give
high values of e, for mixed pixels. However, the crop area estimate for a larger region
can still be accurate if opposite errors in pixel area allocation cancel each other out, e.g.
overestimating the grassland area of one pixel by 40% is nullified by underestimating the
grassland area of two other pixels by 30% and 10%, respectively. Therefore, the accuracy
of the crop area estimators was also determined on a larger scale:

ea=3 3 JAi- 4

In this equation, A; = > fp,i represents the estimated area and A; = ) f,,; the true area
covered by crop 7 as calculated from all pixels p belonging to the area of interest. Although
in a practical situation the area of interest probably consists of only one or a couple of
agricultural fields, we decided to sum the crop area estimates over the entire region depicted
by the image because the same effects could be observed in a more convenient way. Whereas
the former approach involved a laborious aggregation of the crop area estimates by the
pixel-based estimators in particular, the latter approach required no additional processing
at all. Just like in Section 6.2.2, pure pixels were excluded from the calculation of e4 (and
<e,>) for three reasons: firstly, the results were not very interesting, secondly, their vast
number obscured the performance on the mixed pixels, and, thirdly, we wanted to minimise
the positive influence of using a perfect segmentation!. Compared to Section 6.2.2, this
last reason has become even more important, because the perfect segmentation is used by
DDD and FBC but not by PBD or PBC. By calculating the two accuracy measures based
on mixed pixels only, it was possible to make a fair comparison between the crop area
estimation capabilities of the four methods on both a small and a large scale.

. (7.2)

7.2.2 Results and discussion

The discussion of the results is organised as follows. First, we describe some details about
the way the results were derived. Next, the performance of the four area estimators is

'We only want to compensate for the fact that the segmentation is perfect, not for the fact that a
segmentation is used, which is an important aspect of the application of domain knowledge.
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reference DDD PBD FBC PBC

<e,> (%) - 49 n 38.2 48.0
ea - 26.6 0 7346 1720.2
t
Aqgand 173.7 1751 148 112
Ao 1429.0  1420.6 a 937 350
Afresh water 251.1 2525 v 115 76
Avheat 663.6  663.4 a 771 787
Apariey 4977 489.9 i 686 206
Apaize 485.1  484.4 1 403 371
Avice 409.5  406.1 a 546 667
Avineyards 207.8  205.0 b 285 476
Agrass 5472 569.6 1 715 1142
Adgeciduous forest 266.0  261.6 e 322 741

Table 7.1: Performance of the estimators applied to Image II. The column “reference”
lists the area of each ground cover type determined from the perfect segmentation. The
value of <e,> 1is based on proportions expressed as percentages, while the error measure e 4
as well as the estimates A; are gien in pizel area units.

compared to determine the value of decomposing mixed pixels. Furthermore, the meth-
ods are compared to evaluate the second concept of data-driven decomposition, i.e. the
application of domain knowledge. Finally, the performance on images with five classes is
compared to that on images with ten classes in order to determine the sensitivity of the
different methods to the number of ground cover types.

The performance of the different area estimators on Images II, ITa, III, and IIla are
presented by Tables 7.1-7.4, respectively. For all tables, <e,> was calculated based on
proportions expressed as a percentage of the area of a pixel instead of a fraction. The
estimated area per crop A; and the derived error measure e4 are given in pixel area units.
Because all figures except <e,> are absolute values, it must be noted that the number of
mixed pixels used to calculate the tables depended on the underlying image: Tables 7.1
and 7.2 were computed using the 4928 mixed pixels contained in Images II and Ila, while
Tables 7.3 and 7.4 were based on the 5297 samples extracted from Images III and Illa.
The results of data-driven decomposition and field-based classification were obtained with
the threshold set at a value that gave the lowest average error per pixel <e,>. With this
setting, the corresponding value of e4 was close to its optimum as well, while minimising
ea, which as a function of the threshold was less smooth, often resulted in a relatively high
<e,>. For FBC, the optimal threshold was found to be dependent on the image, being
1734 (6x17% 10), 864 (62122%; Tla), 726 (6x11%; III), and 384 (628%; I1la); DDD’s threshold
was always set at 24 (6x22), which is equal to the value recommended in Section 6.1.1.

A first look at Tables 7.1-7.4 shows that data-driven decomposition was by far the
most accurate method in all instances, followed by pixel-based decomposition, and, at
some distance, by field-based and pixel-based classification. This order is quite distinct as
the differences in accuracy are large, and it is the same regardless of whether the accuracy
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reference DDD PBD FBC PBC

<ep> (%) - 3.9 13.0 32.7 40.6
ea - 11.7 2035 9151  1409.3
Ao 1853.8  1844.6  1699.3 1159 820
Apariey 973.2 9735  957.1 1293 826
Apraize 947.7 943.9  913.6 725 718
Avineyards 772.6 7827  776.0 1296 1467
Adeciduous forest 383.3 383.3  582.2 455 1097

Table 7.2: Performance of the estimators applied to Image Ila.

reference DDD PBD FBC PBC

<e,> (%) - 5.0 n 41.1 46.4
ea - 22.9 o 738.7  1743.7
t
Aand 216.1 217.8 176 155
Agoi 1446.3  1439.2 a 1027 378
Afresh water 290.2  291.4 v 101 87
Awheat 699.8 700.0 a 770 813
Apariey 542.0  535.9 i 717 243
Apnaive 521.5 520.8 1 430 408
Ayice 435.7 433.1 a 675 726
Avineyards 244.4  243.1 b 330 522
Agrassiand 594.1 612.6 1 742 1181
Adeciduous forest 309.8  303.1 e 329 784

Table 7.3: Performance of the estimators applied to Image III.

reference DDD PBD FBC PBC

<e,> (%) - 3.9 13.1 35.3 38.9
e - 12.6 2047  961.9  1426.8
Aot 1906.0 18984 17604 1179 872
Abariey 1047.9 10467 10259 1279 889
Apaize 1017.3  1013.8 9788 781 782
Avpineyards 847.9  859.0  847.9 1372 1540
Adeciduous forest 480.8  479.0  684.1 686 1214

Table 7.4: Performance of the estimators applied to Image Illa.
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comparison IT ITa 111 [IIa average

DDD/FBC 33.3 ( 708.0) 28.8 ( 903.4) 36.1 ( 715.8) 31.4 ( 949.3) 32.4 ( 819.1)
PBD/PBC - 27.6 (1205.8) - 25.8 (1222.1) 26.7 (1214.0)
DDD/PBD - 9.1 ( 191.8) - 9.2 ( 192.1) 9.2 ( 192.0)

FBC/PBC 9.8 ( 985.6) 7.9 ( 494.2) 5.3 (1005.0) 3.6 ( 464.9) 6.7 ( 737.4)

DDD/PBC  43.1 (1693.6) 36.7 (1397.6) 41.4 (1720.8) 35.0 (1414.2) 39.1 (1556.6)

Table 7.5: Difference in performance between the estimators. The figures indicate the
improvement achieved by the first method compared to the second method. The values of
<ep> are based on percentages, while the es (given in parentheses) are expressed in pizels.

was measured on the basis of individual pixels or the entire region. Furthermore, the
estimates by DDD seem to be remarkably accurate in an absolute sense, although this
observation is of limited value as the results are based on artificial images. To assess
the different concepts of DDD, a more detailed comparison is needed, which is presented
in Table 7.5. The first concept—decomposition of mixed pixels—can be evaluated by
comparing DDD with FBC, or PBD with PBC. It appears that application of this concept
results on average in an improvement of <e,> of 32.4% in the former and 26.7% in the
latter case. The first reason for this increase in accuracy was that decomposition did
not suffer from intrinsic misallocation of fractions as classification does. For instance, a
mixture of 60% A and 40% B can at best be classified as class A, thus resulting in an e,
of 40%, while decomposition can split the pixel and allocate the correct fractions to the
two classes. The second reason for the large difference in accuracy was that classification
was much more susceptible to spectral confusion than decomposition. As described in
Section 6.2.3, sometimes the decomposition approach was inaccurate due to the linear
dependency of certain endmember spectra—e.g. soil, barley, and grass. FBC and PBC,
however, were affected by spectral confusion much more because they use a pure pixel
model to classify mixed pixels. As a result, a mixture of classes A and B often resembled
the signature of a totally unrelated class C, whereas this confusion was non-existent in the
linear mixture model. Both sources of error systematically overestimate the proportion of
some ground cover types and the underestimate that of others. If for instance the variation
of class A is larger than that of B, a pixel composed of 50% A and 50% B is nearly always
allocated to A instead of B. Another example concerns ground cover types like soil, which
are typical for narrow boundary structures. Since the proportion of such a class in a mixed
pixel usually is small, it is unlikely that the pixel is ever allocated to that class. Spectral
confusion due to the inadequate pure pixel model also results in systematic errors, because
a mixture of A and B may well be classified as C, but a pixel of class C will never be
divided between A and B. The fact that these errors are not random explains why the e4
of the classification approaches was relatively poor: if the area of a particular ground cover
type is systematically overestimated (or underestimated) at the level of individual pixels,
its aggregated regional crop area estimate will be as well. Based on all these observations,
it can be concluded that decomposing instead of classifying mixed pixels increases the crop
area estimation accuracy not only on a pixel basis, but also on a larger scale.
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method II vs. III Ila vs. I1la average

DDD 0.1 0.0 0.1
PBD - 0.1 0.1
FBC 2.9 2.6 2.8
PBC -1.6 -1.7 -1.7

Table 7.6: Difference in performance after addition of isolated objects. Only the values of
<e,> based on percentages are given; the differences in es are omitted because the compared
images had a different number of mized pizels.

The merits of applying domain-specific knowledge—the second concept of DDD—can
be determined by comparing the results of the knowledge-based methods with the results
of their pixel-based counterparts. Table 7.5 shows that the average error per pixel achieved
by DDD decreased with 9.2% compared to PBD, while the difference in accuracy between
FBC and PBC was 6.7% on average. The improvement in performance was mainly due to
the mechanism for selecting probable endmembers. As the number of possibilities is much
smaller when only a few classes are tried compared to the situation where all classes are
considered either simultaneously (PBD) or one after another (PBC), spectral confusion was
reduced. Data-driven decomposition resulted in a further increase in accuracy relative to
pixel-based decomposition because the selection mechanism also stopped the so-called area
leakage: as classic linear mixture modelling in general allocated at least a small fraction
to each endmember, part of the area leaked away to classes that did not belong to the
actual composition of the pixel. The positive effects of reduced spectral confusion were less
clear when comparing the performance of the classification methods on images containing
isolated objects. On the one hand, the average error per pixel of PBC decreased with 1.7%
(c.f. Table 7.6) when isolated mixed pixels were added, because they could be classified
much better than ordinary mixed pixels due to the high proportion (> 75%) of one of
the components. Field-based classification, on the other hand, was somewhat hindered—
<e,> increased by 2.8% on average, see Table 7.6—because the domain knowledge about
isolated objects could not be applied effectively. According to this knowledge, isolated
objects have a different ground cover type and therefore a different spectral response than
the agricultural fields surrounding them. Ordinary mixed pixels, however, have a spectral
response which differs from that of neighbouring pure pixels as well and which cannot be
discerned easily from the response of isolated mixed pixels based on the pure pixel model
used by classification. As a consequence, the threshold of field-based classification could not
be set such that a clear separation between ordinary and isolated mixed pixels was made,
which invalidated the mechanism for selecting probable endmembers for a certain number
of pixels. This also explains why the optimal threshold setting for FBC depended so much
on the image: for images mainly consisting of ordinary mixed pixels the threshold should
be set to a high value to guarantee an accurate estimation of the proportions per pixel in
the first two stages, but for images containing a lot of isolated mixed pixels the threshold
should be lowered to prevent them from being processed before stage 3. The decomposition
methods based on the linear mixture model were not affected by the addition of isolated
objects, which was reflected by the minutely higher error in accuracy (0.1%) and the fact
that the optimal threshold setting for DDD was the same for all images. Therefore, it can
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method [Ta vs. II [TTa vs. III average
DDD 1.0 ( 14.9) 1.1 ( 10.3) 1.1 ( 12.6)
PBD - - -

FBC 55 (-180.5) 5.8 (-223.2) 5.7 (-201.9)
PBC 74 (310.9) 75(316.9) 7.5 (313.9)

Table 7.7: Difference in performance after doubling the number of classes. For PBD no
figure could be calculated. The values of <e,> are based on percentages, while the e (given
in parentheses) are expressed in pizel area units.

be concluded that the use of knowledge of the application domain has a positive influence
on the crop area estimation accuracy provided it can be expressed in the pixel model used.
As a final exercise, we compared the performance of the methods on Images ITa and Il1a
with that on Images II and III to determine the influence of doubling the number of classes.
The results, which are presented in Table 7.7, show that data-driven decomposition was
hardly affected by the increased heterogeneity of the landscape. Field-based classification
exhibited an increase in <e,> of 5.7%, while the increase in the average error per pixel of
pixel-based classification was even higher (7.5%). For pixel-based decomposition no such
figure could be determined, because it could not handle the higher number of ground cover
types contained in Images II and III. These results confirm the conclusions drawn earlier
in this section regarding the sensitivity of the different estimators to spectral confusion.
Since the main impact of doubling the number of classes was that the possibilities for
spectral confusion increased, the slightly worse performance of DDD was to be expected.
The higher increase of the error per pixel obtained with FBC was caused by the use of a
pure instead of a mixed pixel model, which made it more sensitive to spectral confusion.
The fact that the increase in <e,> achieved by PBC was even higher can be explained
by the omission of the endmember selection mechanism, whose use limited the number of
possibly confusing cases considered by the knowledge-based methods. The only surprising
result in Table 7.7 is that the regional crop area estimate (given in parentheses) of FBC
showed some improvement, while the average error in accuracy per pixel deteriorated at
the same time. However, this was due to opposing instances of spectral confusion, which
led to simultaneous under- and overestimation of certain ground cover types. In summary,
of the four area estimators applied, data-driven decomposition is the least sensitive to the
number of classes, because both its underlying concepts reduce spectral confusion.

7.3 Comparison based on Landsat-TM imagery

A problem of using artificial data is that the necessary model to simulate the data will
always be a considerable simplification of reality. A more important weakness of the
experiment presented in Section 7.2, though, is that the scene and mixing model used
to generate the images were also part of the data-driven decomposition approach itself.
Therefore, we carried out an experiment to determine the relative accuracy of data-driven
decomposition on a real Landsat-TM image as well. In Section 7.3.1 it is described how
the experiment was set up such that a quantitative analysis of the accuracy could be made
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with the limited information at subpixel level available. A discussion of the results can be
found in Section 7.3.2.

7.3.1 Set-up of the experiment

The study site that was selected is located near the village of Zeewolde in the south of
the Flevoland polder. The land, which was reclaimed from the lake named “IJsselmeer”
in 1968, is flat with an altitude of 3.30 m below sea level and is mainly used for the
cultivation of arable crops. A network of roads, canals, and ditches divides the area into
lots, which are basic units of approximately 50021600 m? that can be rented or bought.
Many farmers subdivide their lots into several agricultural fields, which are characterised
by the cultivation of a single crop. The location of the field boundaries is determined by
the farmers themselves and is subject to change every year. In his study of the nearby
Biddinghuizen test site, Janssen [54] calculated that the average field size was 6.9 ha. This
relatively large size made the area most suitable for field-based methods such as DDD
and FBC, since it permitted an accurate calculation of the statistical distribution of the
average field.

For a quantitative analysis of the different area estimation methods, supervised topo-
graphical data having an accuracy that went beyond the resolution of the scanner was
needed. For this purpose, the boundaries of 17 lots were digitised from a 1:10,000 topo-
graphical map—see Figure 7.1. If we assume a digitising error of £0.5 mm, the boundaries
had a positional accuracy of £5 m, which was several times higher than the 30 m resolution
of the Landsat-TM scanner. Co-registration of the topographical data with a Landsat-TM
image of the same region was accomplished by an affine transformation, which translated,
rotated, and scaled the vector data. The alternative was to geocode the satellite image in
the map’s coordinate system, but this method would deteriorate the image quality because
it required resampling of the image. The parameters of the affine transformation were
calculated using several ground control points (GCPs), which were identified in both the
image and the digitised map. The root mean square (RMS) error of resulting transfor-
mation was only 0.283 pixel, which was relatively low compared to the values (0.4 and
0.9) that were achieved by Janssen. Furthermore, the factor by which the boundaries were
scaled was approximately 29.99, which corresponded with the 30 m resolution of Landsat-
TM images very well. Based on these figures as well as on careful visual inspection of the
lot boundaries superimposed on the satellite image (c.f. Figure 7.2), it was assumed that
co-registration with an error in accuracy of less than one pixel was achieved.

To evaluate the accuracy of the area estimators, several options were considered:

[. Compare the estimated and true proportions per pixel. This approach was preferred
because it provides the most detailed information about the performance of the area
estimator. Unfortunately, both the resolution of the topographical data and the
accuracy of the co-registration were too low to determine the true composition of
each pixel. A better co-registration may be achieved by using many more GCPs
or by applying a different registration algorithm, while more accurate topographical
data may be acquired from the Land Registry in Apeldoorn (the Netherlands), where
the “Grootschalige Basiskaart van Nederland”, a map with a resolution of 0.5 m, is
maintained. However, this data is in general only commercially available, may not be
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Figure 7.1: Dugitised boundaries of the 17 lots used in the experiment. The lots are
separated from each other by ditches or major boundary structures such as tree rows (light
grey), asphalt roads (dark grey), and canals (black).

II.

I1I.

digitised for the Zeewolde area, and may still be not detailed enough. Furthermore,
it remains questionable whether the results will be meaningful, because the fact that
the vegetation often gets more sparse towards the field boundaries, where the mixed
pixels are situated, is not reflected by the topographical data.

Compare the estimated and true area per field. An accurate estimation of the area
per field is one of the goals of the EU, because it is needed to check a farmer’s subsidy
claim. Unfortunately, no topographical map includes field boundaries because they
change too frequently. Janssen [54] derived the crop types and field boundaries of his
Biddinghuizen test site from maps that were provided by the farmers themselves, but
he found that the field boundaries could have been added just as well by means of on-
screen digitising. Since the resulting positional accuracy is rather poor, a quantitative
analysis on this basis would not be very accurate either.

Compare the estimated and true area per crop. Since an estimation of the area per
crop is needed to make a prediction of the agricultural production, which is used
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to determine the subsidy for each crop, this is another goal of the EU. Because the
topographical map was our only source of supervised information, the true area per
crop had to be derived by summing the areas of all fields on which the crop was being
grown. But since the field boundaries could not be located very accurately—see the
discussion of alternative II-—this approach would not give very reliable results.

IV. Compare the reliability of the estimates with the distribution of the reliability mea-
sure based on an image for which the accuracy of the estimates is known as well. If it
is found that an estimator can process the mixed pixels as reliably as before, for in-
stance when processing the artificial images of Section 7.2, one might assume that the
area estimation accuracy achieved for the real Landsat-TM image also shows a similar
pattern. Although this approach can always be used because no topographical infor-
mation is required, it has some severe drawbacks. One of them is that classification
and decomposition use different reliability measures, so no straightforward compar-
ison of their results can be made. Another drawback is that the conclusions are at
best indirectly related to the area estimation capabilities of the methods applied.

Although none of the four alternatives seemed to be particularly suitable, a slightly al-
tered Approach II was adopted as the basis for our experiment. Instead of comparing the
estimated and true area per field, a comparison was made between the estimated and true
area per lot. For this purpose the accuracy of the topographical data was high enough:
the true area of a lot could be calculated with an error of only +2.6%?2. An estimation
of the lot area could also be determined relatively easy for field-based methods such as
DDD and FBC. Under the assumption that the outer boundaries of the agricultural fields
within a lot coincided precisely with the boundaries of the lot itself, the lot area could be
calculated by summing the area of all the fields situated within the lot. Therefore, we first
carried out a vector-to-raster conversion of the topographical data to find out which pixels
belonged to what lot; based on the resulting image, a mapping could be made between
the agricultural fields provided by the area estimators and the lots of the topographical
data. However, care had to be taken that the lot area thus estimated was compensated
for the area allocated to narrow boundary structures inside a lot, as these structures were
not present on the topographical map. For example, a strip of grass separating two fields
within a lot can be the cause of an area leakage to the edge class grassland, which leads to
an underestimation in case the strip of grass is uncharted. Our solution to this problem
was to count the number of the pixels located completely inside the lot under observation
and add the pixel fractions assigned to one of the fields constituting the lot for each pixel
that, according to the vector-to-raster conversion, was located on the lot’s boundary. Af-
ter a simple multiplication—Landsat-TM pixels cover exactly 30230 m?>—the area estimate
could be compared directly to the true lot area derived from the topographical map.
Apart from data-driven decomposition, the only area estimation method that was ap-
plied was field-based classification. The pixel-based approaches PBD and PBC were ex-
cluded for three reasons. First of all, the number of endmembers that were present in the

2Given an average lot size of 50021600 m? and a digitising error of &5 m, a rectangular lot is un-
derestimated by at most (1 — (49021590)/(50021600))2100% = 2.6% and overestimated by at most
((51021610)/(50021600) — 1)2100% = 2.6%.
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Figure 7.2: False colour composite (RGB: 453) based on a Landsat-TM image of the Zee-
wolde study site. Lot boundaries (numbers) are given in white, field boundaries (numbers)
are shown in black. Visual inspection suggests a co-registration error of less than one pizel.
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image was too large to be handled by PBD. Secondly, since both pixel-based methods allo-
cated area to ground cover types instead of to agricultural fields, calculation of the area per
lot was much more complicated. The third reason was that according to the topographical
data, which was used to evaluate the crop area estimators, all pixels inside the boundaries
of a lot belonged entirely to that lot; because this view is shared by the knowledge-based
methods with regard to agricultural fields, they were favoured during evaluation, while the
pixel-based approaches were not. Leaving out PBD and PBC had one other advantage: we
could use a supervised segmentation to drive DDD and FBC without biasing the order of
most accurate estimators. To obtain this segmentation, the lot boundaries were extended
with field boundaries by means of on-screen digitising. After vector-to-raster conversion
using a sufficient margin to account for co-registration errors and positional inaccuracy
of the field boundaries, a segmentation of high quality was available. It was calculated
that 19.4% (15.6%) of the digitised area was occupied by pixels on field (lot) boundaries,
which suggested that, even when surveying an area with relatively large fields like the
Flevoland polder, the accuracy of the area estimates may be improved considerably by
applying techniques specialised in mixed pixels.

In addition to a segmentation, both area estimators needed a class database containing
the distribution of all ground cover types present in the image. Since these distributions had
to reflect the same bias due to sunlight intensity, atmospheric effects, sensor calibration,
etc. as the mixed pixels, they had to be derived directly from the image. The Landsat-TM
image of the Zeewolde study site that was used was acquired on 24th May 1990, showing no
clouds and less scanner anomalies than more recent images. However, it was taken rather
early in the growing season, as a result of which many fields lay fallow, while the remaining
fields were covered with only cole-seed, alfalfa, winter wheat, and grass. Based on a 1:25,000
topographical map® of the same area, we assumed that the narrow boundary structures
were composed of water, forest, grass, soil, and asphalt. Each class was characterised by
one distribution in the database, but for some classes several distributions were added in
order to cover their spectral variety, e.g. shallow, deep, and canal water; coniferous and
three types of deciduous forest ranging from green to brown; and three types of grass
ranging from green to yellow. A remote sensing expert determined the distribution of each
class by selecting a sufficiently large area completely covered by that class and calculating
the mean vector and variance-covariance matrix of the corresponding pixels. Only for the
classes canal water and asphalt road no such regions could be found; the distributions of
these classes were determined by collecting a number of non-contiguous pure pixels of the
same class and calculating the set’s statistics.

To simplify a quantitative comparison of the results of the area estimators, it was
desirable to have a single measure based on the area estimates of the individual lots.
Furthermore, the measure was also needed to select the optimal configuration from a series
of trial runs of the experiment in which the threshold setting and the set of edge classes were
varied. A measure that meets these requirements was already introduced in Section 7.2.1:

GAZ%Z’AZ—AZ

3Topographical map of the Netherlands, sheet 26D, 1991.

. (7.3)




132 Chapter 7: Comparison between DDD and three other area estimators

However, the above accuracy measure expresses an error that is slightly different due to
the different meaning of A; and AZ whereas in Equation (7.2) A; and AZ represented the
true and estimated area covered by the i-th crop, in Equation (7.3) they denote the true
and estimated area of the i-th lot, respectively. The scalar % could be removed, since
underestimation of lot ¢ does not necessarily result in the overestimation of lot j because
of the presence of unmapped boundary structures. However, since the scalar had no effect

on the order of best area estimators, we saw no reason to remove it either.

7.3.2 Results and discussion

In this section, we try to verify some of the conclusions drawn based on the experiments
with artificial images. In the first part, the lot area estimates by DDD and FBC are
compared in order to determine the impact of decomposing mixed pixels. DDD’s second
concept—the application of domain knowledge—could not be evaluated because no fair
comparison with the results of PBD and PBC could be made. The other part of this section
deals with the errors due to spectral confusion; because of the format of our supervised
data, this was the only source of inaccuracy that could be studied.

Estimation of the lot area

In Table 7.8, the area of 17 lots derived from the digitised topographical map are presented,
together with their estimates by data-driven decomposition and field-based classification.
The set of edge classes that was used in these experiments contained all ground cover
types mentioned previously, except for cole-seed, alfalfa, and winter wheat. Leaving one or
more classes out of this set resulted in a higher average error, at least as far as DDD was
concerned. The threshold setting with which the results were obtained was chosen such
that e4 was minimal. While the optimal setting could be determined unambiguously in
case of DDD, for FBC the choice was less clear because e 4 as a function of the threshold had
many local minima that were close to the global minimum. Anyway, even the lowest value
of e4 achieved by FBC (222.9) was still more than three times as high as the best value
achieved by DDD (66.7). More important, though, was that the decomposition approach
gave a more accurate area estimate than classification for 13 of the 17 lots, while in one
case—lot 4—their estimates differed by less than one pixel.

To determine whether DDD was affected by other major error sources than spectral
confusion, we investigated why FBC was more accurate than DDD in estimating the area
of lots 1, 8, and 9. The problem with lot 1, whose area was overestimated by both methods,
was that the pixels at the south-west boundary partially covered an undigitised field of the
same crop. As a result, the crop area of lot 1 was overestimated during decomposition;
the classification approach, on the other hand, allocated these pixels to an incorrect class
due to spectral confusion, thus decreasing the already overestimated area. The area of
lot 8 was severely underestimated by DDD and slightly overestimated by FBC. A close
look at its north-east boundary, however, revealed an uncharted strip of bare soil, which
invalidated the requirement that field and lot boundaries should coincide. Consequently,
underestimation of the lot area indicated a more accurate crop area estimate. The area of
lot 9 was overestimated for about the same reason as lot 1. Because of spectral confusion
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supervised data DDD incl. soil FBC incl. soil | FBC excl. soil
lot main class area area  deviation | area deviation | area deviation
1 cole-seed 825.6 | 840.7 15.1 830 4.4 830 4.4
2 alfalfa 945.0 | 953.6 8.6 904 -41.0 904 -41.0
3 winter wheat 928.8 | 933.4 4.6 954 25.2 954 25.2
4 winter wheat 888.7 | 886.8 -1.9 887 -1.7 887 -1.7
5 bare soil 932.8 | 932.7 -0.1 904 -28.8 930 -2.8
6 bare soil 617.8 | 624.2 6.4 590 -27.8 631 13.2
7 bare soil 886.1 | 866.8 -19.3 810 -76.1 845 -41.1
8 cole-seed 890.7 | 862.6 -28.2 895 4.3 895 4.3
9 winter wheat 886.4 | 898.7 12.3 894 7.6 894 7.6
10 bare soil 879.8 | 884.0 4.2 864 -15.8 914 34.2
11  bare soil 1055.9 | 1055.5 -0.4 1013 -42.9 1037 -18.9
12 bare soil 1004.6 | 1009.8 5.2 969 -35.6 999 -5.6
13 bare soil 880.8 | 879.2 -1.6 840 -40.8 871 -9.8
14 bare soil 901.2 | 887.4 -13.8 847 -54.2 877 -24.2
15 grassland 3 76.9 75.1 -1.9 84 7.1 94 17.1
16 bare soil 826.1 | 835.9 9.8 795 -31.1 814 -12.1
17 winter wheat 883.6 | 883.8 0.2 882 -1.6 897 13.4
ea - 66.7 222.9 138.3

Table 7.8: Lot area estimates by data-driven decomposition and field-based classification
for the Zeewolde study site. The column “main class” lists the dominant ground cover
type according to a remote sensing expert. The columns under “FBC excl. soil” give the
results of classification with soil excluded from the set of possible components of boundary
structures. All values are expressed in pizel area units.

between winter wheat and the mixture of grass and water, a number of pixels situated
north-east of the lot’s boundary were incorrectly allocated to this lot. But whereas DDD
assigned fractions of the boundary pixels themselves to lot 9 as well, FBC allocated them to
an incorrect class altogether, which compensated for the overestimation mentioned before.
In summary, it appeared that the few cases in which FBC seemed more accurate than
DDD were due to spectral confusion as well as the way in which the results were evaluated.

The experiment was repeated under the assumption that soil was not one of the possible
components of the narrow boundary structures. We took this step because it was obvious
from Table 7.8 that FBC underestimated the area of nearly all lots largely covered by bare
soil. Presumably, this approach allocated considerable fractions of these lots to narrow
boundary structures composed of soil, which in reality might not even exist. The results
of FBC after removing soil of the set of edge classes are presented in the last columns
of Table 7.8; the results of DDD are not shown as they deteriorated over the entire line.
As expected, FBC underestimated the area of most lots covered by soil less severely or
even overestimated them, thus resulting in an ey that decreased from 222.9 to 138.3,
which is only twice the value achieved by DDD. A qualitative comparison of the error
per lot, however, showed virtually no improvements: DDD was still more accurate in 12
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cases, approximately as accurate (£1 pixel) in two cases, and less accurate in only three
cases compared to FBC. Despite the positive effects on the overall performance of FBC,
excluding soil as a possible boundary component probably was not legitimate. For one,
it led to the (further) overestimation of the area of two lots—numbers 15 and 17—whose
main ground cover type was completely different from soil. Furthermore, the performance
of DDD decreased dramatically, which also suggested that the image did contain narrow
boundary structures composed of soil. Therefore, it was concluded that FBC was much
more confused by the slight differences in soil distributions than DDD, which resulted in
the allocation of pixels to the edge class soil which in fact belonged to fields that lay fallow.

Based on the above results, we conclude that decomposition of mixed pixels leads to
more accurate area estimates of agricultural fields than classification. Compared to the
experiments with artificial images, the difference in performance between DDD and FBC
was less pronounced due to several reasons. First of all, the number of mixed pixels used
to calculate Table 7.8 (2337) was only half the number used in Section 7.2 (4928 and
5297). Furthermore, the indirect method to determine the performance—based on lots
instead of fields—obscured the true accuracy of the estimators in some cases (e.g. lot 8),
because the requirement that lot and field boundaries coincided was not always met. As
a result, accurate area estimates appeared to be inaccurate, while an inaccurate estimator
could seem to be more accurate if its deviation was compensated for by the error in the
supervised data. Finally, the fact that the mixing model assumed by DDD probably was
not as good an abstraction for the real image as it was for the artificial images will also
have had a negative influence on its performance. The validity of the scene model, upon
which the second concept of DDD—application of domain knowledge—is based, could not
be determined since no comparison could be made with the pixel-based approaches. A
related issue is to what degree the Zeewolde image was representative of other agricultural
scenes to which the area estimators might be applied. As far as the large average field size
is concerned, the positive influence probably was limited as the performance on lots with
small fields (e.g. lots 12, 13, and 15) was as good as that on large fields (e.g. lots 1-4).
A greater diversity of crop types will probably be more beneficial, provided that the new
classes do not lead to more spectral confusion with the classes of the narrow boundary
structures in particular. On the other hand, considerable variations in terrain altitude will
probably decrease the overall accuracy, partially because the distribution of a field’s crop
type may no longer be derived as reliably as before, and partially because the linear mixture
model may be invalidated. Although many factors exist that could be investigated, we are
confident that in general the area estimation accuracy of DDD is higher than that of FBC.

Spectral confusion

Based on the available supervised data, spectral confusion was the only source of inaccuracy
of DDD and FBC that could studied. In this thesis, the term spectral confusion is used to
describe the resemblance of one (mixture of) ground cover type(s) to another (mixture of)
ground cover type(s). Basically, we distinguish three different kinds of spectral confusion.
The first sort occurs during decomposition of mixed pixels based on the linear mixture
model; if several linear combinations of classes all result in the same reflectance observed
for an actual pixel, errors in area allocation are eminent. Since a pure pixel can be regarded
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as a mixed pixel of which all classes but one have a zero fraction, this problem can occur
with pure pixels as well. The second type of spectral confusion emerges when mixed pixels
are classified using a pure pixel model. As a result, a mixed pixel may no longer match any
of the spectral signatures of the contributing classes, but that of an unrelated class instead
(see Figure 1.3). The third category includes the errors made during the classification of
pure pixels based on the pure pixel model. In this case, misclassification is not caused by
an inadequate pixel model, but by a deviation from the correct class mean that is too large
given the natural variation within that class in relation to the distribution of other classes.
The experiment with the Zeewolde image showed only one error of the last type, which was
made during classification of the field mean vectors. According to a remote sensing expert,
field 22 was covered with grass, but the classification algorithm had a minor preference?
for alfalfa. The other two types of spectral confusion could be studied by comparing
the approximate composition of several narrow boundary structures determined from the
1:25,000 topographical map® with their estimated composition by DDD and FBC. Thus,
we examined three types of boundary structures: a tree row, asphalt roads, and canals.

The tree row that was studied was located along lots 1, 6, and 11—see Figure 7.1. FBC
detected the presence of the boundary structure along the entire line, although some small
gaps, where pixels had been allocated to the adjacent fields, were present. Most pixels
along lots 6 and 11 were classified as asphalt road instead of forest, while the pixels along
lot 1 were predominantly labelled as grassland. Similarly, DDD found the latter part of
the tree row to consist of grassland and water, but the pixels along lots 6 and 11 were
correctly decomposed into deciduous forest and grass. An explanation for the discovery of
grassland could be that the trees along lot 1 had been cut down. However, since lot 1 was
covered by cole-seed, while lots 6 and 11 lay fallow, it is more probable that the former
mixture gave rise to spectral confusion, while the latter did not.

As can be seen in Figure 7.1, the Zeewolde image contained two main roads: the Kluut-
weg, which continued along the south-west boundary of lots 4 and 5, and the Gruttoweg.
FBC labelled most pixels of the Kluutweg as asphalt road, but several segments of con-
siderable length remained undetected. A large part of the Gruttoweg was classified as
grassland; although the topographical map showed that grassland verges were indeed part
of this structure, it is questionable whether this was truly their main component. DDD
allocated large fractions of the Kluutweg between lots 3 and 4 to the class bare soil instead
of asphalt; decomposition of the part along lots 4 and 5, on the other hand, did reveal the
presence of the asphalt road. Most pixels of the Gruttoweg were unmixed perfectly: both
the asphalt road as well as the grassland verge were identified. In addition to the two main
roads, both methods found several asphalt structures inside a lot, where, according to the
map, no (permanent) structure was located. Since these road fragments were small, did
not connect to other roads, and were mainly located between fields of winter wheat and
bare soil, they were probably due to spectral confusion.

The last structures we examined were three canals named Duikertocht, Gruttotocht,
and Wulptocht (see Figure 7.1). Although FBC did detect these boundary structures,
it allocated nearly all of their pixels to asphalt instead of water; in fact, not a single
pixel was classified as water in the entire image. DDD, on the other hand, discovered

4The M-distance between the field’s mean and alfalfa was 72.3, compared to 76.1 for grassland 2.
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class band 1 band 2 band 3 band 4 band 5 band 7
shallow water 83.5 36.4 31.3 18.2 7.4 4.1
deep water 79.9 33.8 28.3 17.1 7.0 3.9
canal water 81.6 31.6 28.1 33.5 23.3 9.3
coniferous forest 75.4 28.5 25.2 50.3 28.3 9.9

deciduous forest 1 78.5 32.0 28.9 52.3 60.3 26.5
deciduous forest 2 77.3 31.2 26.0 74.3 41.3 12.4
deciduous forest 3 77.8 32.2 27.3 77.8 52.4 17.5

grassland 1 85.4 36.3 32.1 103.8 92.1 34.0
grassland 2 80.6 32.1 27.1 1154 59.8 18.0
grassland 3 82.7 35.0 31.2 91.2 74.8 27.8
asphalt road 92.2 40.0 42.4 56.2 60.8 32.2
bare soil 96.8 42.2 46.8 55.8 75.3 46.3
cole-seed 86.0 45.7 46.3 111.5 54.3 19.4
alfalfa 82.5 34.9 29.1 119.9 68.9 20.0
winter wheat 80.7 31.6 27.1 90.3 47.6 14.5

Table 7.9: Class mean vector of all ground cover types present in the Zeewolde image.

considerable fractions of water in all three canals and even identified some of the ditches
separating the lots. Especially the Duikertocht and the part of the Gruttotocht along
lots 1-3 were found to consist of water for a large proportion; as mentioned before, the
part of the Gruttotocht parallel to the Kluutweg was—understandably—Ilargely allocated
to asphalt. The Wulptocht proved to be the most difficult structure to decompose, with
pixels containing a fair amount of water found only along lot 9. Because of spectral
confusion, deciduous forest was estimated to be the main component of the pixels along
lots 6, 7 and 10, whereas the pixels along lot 8 were thought to contain large fractions of
winter wheat (the class of field 19, which was adjacent to lot 8).

From these examples it has become clear that both DDD and FBC suffered from spectral
confusion, being of type 1 and 2, respectively. The most frequent error was the discovery
of asphalt in pixels on boundaries between fields of soil and winter wheat, and in pixels
covering two lots of bare soil separated by a ditch. In order to check the possibility of
spectral confusion within the linear mixture model, some of these pixels could be decom-
posed to see if a slightly less probable but more logical composition would be possible as
well. Instead of decomposing individual pixels, we decomposed the class mean of asphalt,
because this way we could deal with most pixels having a high proportion of asphalt si-
multaneously. It turned out that unmixing asphalt using two endmembers resulted in a
reliability error e, (see Equation 6.4) of less than 10.0 if and only if one of the components
was bare soil. A few of the mixtures closely resembling asphalt were 71.5% bare soil and
28.5% canal water (e,.=2.634), and 80.9% bare soil and 19.1% winter wheat (e,.;=4.602).
Decomposition in three components also gave a e, of less than 10.0 only if one of the
components was bare soil; 71 of the 78 possible 3-tuples containing soil had a sufficiently
low error. Of these, the mixture of 67.2% bare soil, 15.4% shallow water, and 17.4% winter
wheat was one of the best alternatives, having an e,, of only 0.946. These results, seen
in the light of the two errors mentioned earlier in this paragraph, strongly suggest that



7.4 Summary and conclusions 137

spectral confusion occurred during DDD. Although these examples simultaneously explain
many of the misclassifications by FBC, the fact that asphalt was likely to be overestimated
can also be inferred directly from the class means themselves. In Table 7.9 it can be seen
that the spectral signatures of bare soil and asphalt were remarkably similar: the mean
value of asphalt was a bit lower than that of soil in all bands except band 4, where the
mean value of asphalt was slightly higher. Since all other classes displayed a similar though
larger deviation from the mean vector of bare soil, a mixed pixel consisting of bare soil and
an arbitrary, not too large fraction of another class was easily confused with asphalt if a
pure pixel model was assumed. Given the fact that the Zeewolde image contained many
fields of soil, the multitude of pixels that FBC misclassified as asphalt was to be expected.
The errors made by DDD, though more diverse, were smaller in number, because spectral
confusion within the linear mixture model was much more bound to ground cover types
having specific fractions.

7.4 Summary and conclusions

In this chapter, the performance of data-driven decomposition was compared to the results
of three other area estimators in order to determine the influence of the two concepts un-
derlying DDD. The other methods—pixel-based decomposition, field-based classification,
and pixel-based classification—are well-known from the literature and were selected be-
cause they applied only the first (PBD) or the second concept (FBC), or neither (PBC) of
the concepts of DDD. Thus, by comparing the estimates by DDD and FBC, for instance,
the impact of decomposing mixed pixels could be assessed, while a comparison between
DDD and PBD showed the influence of applying domain-specific knowledge.

Application of the different methods to artificial images showed that DDD was much
more accurate than the other three estimators. Decomposition of mixed pixels had as first
advantage that misallocation of fractions, which is intrinsic to classifying mixed pixels, was
counteracted. Furthermore, the errors due to spectral confusion were reduced because the
linear mixture model is less sensitive to spectral confusion than a pure pixel model. This
difference in sensitivity became especially clear when the number of classes was doubled,
which deteriorated the performance of FBC and PBC in particular. The main benefit of
using domain knowledge was that the endmember selection mechanism, which was based
on this knowledge, led to a further reduction of spectral confusion. If combined with
the decomposition approach, this mechanism also prevented small fractions from being
allocated to unrelated classes. Addition of isolated mixed pixels to the images revealed
that the knowledge regarding isolated objects could not be formalised in the pure pixel
model very well. As a result, the optimal threshold setting for FBC differed per image
and was difficult to determine. The increase in accuracy achieved by DDD was found
not only at the level of individual pixels, but also at a larger scale. The explanation for
this result was that the errors due to spectral confusion as well as intrinsic misallocation
were not random but caused systematic overestimation of some ground cover types and
underestimation of others. Since data-driven decomposition counteracted both sources of
error, its crop area estimates were more accurate than those of the other methods for single
pixels, agricultural fields, and entire regions.
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In order to exclude the possibility that DDD was favoured as it was based on the same
mixture and scene models used for image simulation, DDD and FBC were also applied to
a real Landsat-TM image. Because of the characteristics of the image and the available
supervised data, the pixel-based estimators could not be applied such that a fair comparison
of their performance could be made. Compared to the results of FBC, DDD gave a more
accurate estimation of the lot area in 13 out of 17 cases, while in one case their estimates
were approximately equally well. FBC seemed to be more accurate in the remaining three
cases, but this was due to coincidentally opposing instances of spectral confusion or the way
in which the results were evaluated. Even after excluding soil as a possible component of
narrow boundary structures because FBC, unlike DDD, clearly was confused by the small
differences in the various distributions of soil, this qualitative ordering did not change. The
only source of inaccuracy that could be studied with our limited ground truth information
was spectral confusion. After examining the true and estimated composition of several
boundary structures, it appeared that FBC incorrectly classified most of the corresponding
pixels as asphalt due to spectral confusion caused by an inadequate pure pixel model. The
type of spectral confusion DDD suffered from led to more diverse errors, but the extent of
the errors was much less as spectral confusion within the linear mixture model is limited
to more specific mixtures.

In general, the findings of the experiment with the artificial images were confirmed by
the results of the experiment with the real satellite. Although the merits of using domain-
specific knowledge could not be verified as the pixel-based estimators could not be applied,
we feel that, based on the former experiment, both this concept and the decomposition
of mixed pixels lead to more accurate estimates. Therefore, we conclude that DDD can
estimate the area of agricultural fields with higher accuracy than many of the other, well-
known methods used today.



Chapter 8

Conclusions

In this final chapter, the conclusions of the study underlying this thesis are presented.
Section 8.1 briefly summarises the main findings, while Section 8.2 discusses to what extent
the goals set in the introductory chapter have been achieved. Section 8.3, finally, suggests
possible improvements of the methods proposed as well as other topics for future research.

8.1 Summary

As described in Chapter 1, the European Union needs to be able to estimate the area of an
agricultural field in order to manage its agricultural subsidy system. A cost-effective way
to estimate the area of many fields on a frequent basis is to use an automated system that
determines the area of each field from satellite remote sensing images. In general, such a
system works by allocating each pixel to the class it resembles most, followed by counting
the number of pixels per class over the region of interest. This approach, however, results in
inaccurate estimates when mixed pixels are involved: since these pixels each cover several
ground cover patches belonging to different classes, classifying them will overestimate the
area of some classes while that of others will be underestimated. Alternatively, one can
try to estimate the composition of a mixed pixel, after which it can be allocated to several
categories proportionally to the fraction of its area covered by each class. Under the
assumption that most mixed pixels are situated on the boundary of two agricultural fields,
the latter approach is expected to have an accuracy that is at least 25% per mixed pixel
higher than the former (classification) method. Apart from developing such an accurate,
decomposition based method to estimate the area of agricultural fields, which is our main
goal, this thesis also aims at providing a deeper knowledge about the processing of mixed
pixels in general, i.e., (relatively) independent of the specific application studied and type
of imagery used.

As a first step, the literature was studied to find decomposition techniques suitable for
our purposes. Chapter 2 reviews twelve methods, which are different in some aspects but
have many properties in common as well. The most widely used estimator by far is the
analytic solution of the (statistical) linear mixture model; when provided with certain class
characteristics, viz. the endmember distributions, this generalised least-squares method is
able to determine the proportion of each component from the overall pixel vector measured.
So far, no extensive study comparing the different approaches has been carried out. Several
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smaller studies suggest that with some of the more advanced methods, e.g. artificial neural
networks, better results can be achieved, but at the cost of a significant increase in the
number of computations. Since the accuracy with which mixed pixels can be decomposed
in many cases seems to depend much more on the characteristics of the data itself than on
the decomposition method selected, the fast and simple analytic estimator based on the
linear mixture model is still used for most applications today.

A way to improve the decomposition accuracy, however, is to use a method that has
been tailored to the application domain. In Chapter 3, a new linear mixture model is pro-
posed in which the correlations that exist between the endmember spectra of neighbouring
pixels in, for instance, agricultural images can be described. Solving this physical, or more
correctly, environmental model entails estimating the spectral response of each component
of a mixed pixel in addition to the component proportions. Although this rather com-
plicated operation requires more processing time than solving the statistical model, the
estimated component spectra contain information that cannot be extracted using classic
decomposition techniques. Furthermore, as was shown experimentally, the accuracy of the
proportion estimates obtained with the novel approach is higher than that of the usual an-
alytic estimator mentioned in the previous paragraph, provided the correlations between
adjacent pixels are exploited. Especially in case the data set is difficult to decompose, the
improvement in accuracy is considerable.

Chapter 4 deals, in the context of hyperspectral remote sensing, with two problems of
most analytic decomposition methods based on the linear mixture model. First, several
post-processing methods to satisfy the positivity constraint—no fraction may be negative—
are described, after which a new, iterative least-squares (ILS) approach is introduced.
Compared to the standard renormalisation technique, ILS is considerably more accurate;
compared to constrained least-squares (CLS) ILS also prevails, because its concept is sim-
pler. An experiment with hyperspectral data showed that ILS can be more accurate than
CLS, provided its threshold is set low enough. A less rigid threshold setting results in
a small decrease in accuracy, but also in a significant reduction of computational costs.
The second part of Chapter 4 describes five standard methods to determine image end-
members, which must be known before the mixture model equations can be solved. In
addition, a new approach based on K-means clustering is explained. An experiment with
hyperspectral data made likely that the cluster means found by this unsupervised method
can be regarded as relatively pure endmembers, whose quality can be slightly improved
with simple post-processing techniques. The endmember spectra of K-means clustering
appeared to be less pure than those found by supervised methods, but the latter methods
cannot be applied without appropriate ground truth information. Of the unsupervised
techniques applied, K-means clustering had the best performance and needed the least
human guidance. Another experiment suggested that the value of K, which is the only
parameter to be specified in advance, can be determined automatically in a fast way.

Up to this point, all subjects dealt with are related to the decomposition of individual
mixed pixels. Starting with Chapter 5, however, we focus on the area estimation of agri-
cultural fields, using knowledge that is specific for this application domain. Chapter 5 is
dedicated to the discrimination between pure and mixed pixels based on the perception
of an agricultural field as a homogeneous cluster of pure pixels surrounded by a layer of
mixed pixels. If no ancillary information such as a topographical map is available, mixed



8.1 Summary 141

pixels can be detected by finding the local discontinuities in the image that correspond to
the layer surrounding each field. Apart from this edge detection approach, mixed pixels
can also be recognised as the small regions remaining after region growing, which aims at
locating the large pure pixel clusters by grouping neighbouring, spectrally similar pixels.
An experiment showed that region growing can label both pure and mixed pixels correctly
in 85%-90% of the cases. The performance of edge detection was about 10% lower, but
this may be due to the fact that the implementation used was not optimised for the de-
tection of mixed pixels. Inherent to edge detection, however, is that pure pixels are not
grouped automatically as is done by region growing, which may be a problem for some
applications. A hybrid approach integrating the results of both methods appears to be
ideal as it combines two sources of information that to some extent are complementary.

Chapter 6 presents data-driven decomposition (DDD) as a new method to make accu-
rate area estimates of agricultural fields. In correspondence with the primary aim of this
thesis, the first concept of DDD is that mixed pixels are decomposed in order to divide
their area between the contributing fields; pure pixels are still classified as usual. The other
concept is that knowledge of the application domain is used to improve the accuracy of
the area estimates. Aspects of this knowledge related to agricultural fields are that spatial
information can be used to 1) separate pure and mixed pixels as described in Chapter 5,
2) determine local endmember distributions from the image, and 3) select endmembers
that are probable components of a mixed pixel. A big advantage of this last aspect is that
the image can be decomposed into a far greater number of endmembers than can be con-
sidered by classic pixel-based decomposition. Other aspects included in our approach are
that 4) fields are often bounded by narrow structures (e.g. roads, ditches) with well-known
compositions, and 5) isolated objects can be detected because their spectral response is
not a mixture of that of neighbouring pixels. Experiments with artificial Landsat-TM
images representing agricultural fields, narrow boundary structures, and isolated objects
demonstrated that DDD can be very accurate: on average only 5% of a mixed pixel’s area
was allocated incorrectly. This error was largely due to natural phenomena like within-
field variation and spectral confusion. The optimal value of the threshold controlling DDD
agreed well with its theoretically derived setting.

Chapter 7, finally, describes two experiments designed to determine the influence of the
two concepts underlying DDD on the area estimation accuracy. In the first experiment,
DDD was compared to field-based classification (FBC), which does not decompose mixed
pixels, pixel-based decomposition (PBD), which does not use domain-specific knowledge,
and pixel-based classification (PBC), which applies neither of these concepts. On a number
of artificial images, the error in accuracy per mixed pixel was on average 4.4% for DDD,
13.1% for PBD, 36.8% for FBC, and 43.5% for PBC. Decomposition of mixed pixels proved
to be superior to classification, mainly because misallocation of fractions, which is intrinsic
to classification, is largely avoided, but also because errors due to spectral confusion occur
less frequently in a mixed than in a pure pixel model. Application of domain-specific
knowledge turned out to result in more accurate area estimates as well, primarily because
the endmember selection mechanism reduces the possibilities for spectral confusion. Both
spectral confusion and intrinsic misallocation lead to systematic overestimation of some
classes and underestimation of others; therefore, DDD is also considerably more accurate
than the other methods when the results of individual pixels are aggregated to estimate
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the area of agricultural fields. In the second experiment, DDD was compared to FBC
based on a real Landsat-TM image in order to remove possible bias resulting from the
image simulation process. Compared to the results of FBC, DDD gave a more accurate
estimation of the agricultural lot area in 13 out of 17 cases, while in one case their estimates
were approximately equally accurate. FBC seemed to be more accurate in the remaining
three cases, but this was caused by coincidentally opposing instances of spectral confusion
or the way in which the results were evaluated. Due to the limitations imposed by the
ground truth information, the only source of inaccuracy that could be studied was spectral
confusion. In accordance with the first experiment, we found that this phenomenon affects
FBC much more than DDD), though this conclusion could be verified only qualitatively.

8.2 Evaluation

In retrospect, it can be said that the first objective of this thesis—see Section 1.4.2 for a
precise formulation—has been fully accomplished, since a comparison between the accuracy
of DDD and FBC (or PBD and PBC) shows an improvement of more than 30%. As
discussed before, this increase in accuracy is caused not only by the fact that misallocation
of fractions intrinsic to classification is largely avoided, but also because spectral confusion
is less apparent in a mixed pixel model. However, it must be noted that the assumption
that most mixed pixels lie on the boundary of two agricultural fields and therefore consist
of only two classes was not always true, because in many cases a narrow boundary structure
was present. Consequently, the largest fraction could have been below 50%, which made an
improvement of more than 25% per mixed pixel possible. The influence of using knowledge
of the application domain is less pronounced, but unmistakably positive: a comparison
between DDD and PBD or between FBC and PBC revealed an increase in accuracy of
5%-10%. Overall, DDD was about 40% more accurate than PBC. Unfortunately, these
percentages could only be determined using artificial data, but the experiment based on
a real Landsat-TM image made very likely that the accuracy of DDD is relatively high in
practice as well. Therefore, it can be concluded that DDD is a method to estimate the
area of an agricultural field that is considerably more accurate than most if not all other
methods used today.

In addition, we feel that the second goal of this thesis, i.e. providing a deeper knowledge
about the processing of mixed pixels, has been achieved as well. The reason for this is
that, unlike other studies that have appeared in the literature, this thesis covers the entire
processing path, including the separation of pure and mixed pixels, the determination of
endmembers, the decomposition of mixed pixels, and the post-processing of the estimated
fractions. Furthermore, a new mixture model with which the correlation existing between
adjacent pixels in certain images can be described has been introduced, and a number
of knowledge rules about the composition of mixed pixels in agricultural satellite images
have been formalised. The extent to which the various methods suggested can be applied,
however, depends on the type of imagery available and the application domain for which
they are used. Many decomposition methods, for instance, assume that the endmember
distributions are multivariate normal, while the proposed physical mixture model appeared
to be useful only when the local endmember spectra are correlated as well. Also, the
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detection of mixed pixels was accomplished with standard segmentation techniques, but
these can be applied only if the objects of interest are considerably larger than a single pixel.
Finally, the knowledge rules mentioned before are specific for the agricultural domain,
although some of them may also be valid in other domains. Despite these limitations, the
methods discussed in the first part of this thesis can probably be used for most applications,
while most of those in the second part can be applied provided the objects in the image
are relatively large. Therefore, we hope that this thesis will become a valuable source of
information for all kinds of area estimation applications dealing with mixed pixels.

8.3 Future research

In the previous chapters, we have already indicated some possible improvements of this
thesis and the methods proposed, which we will summarise below. Chapter 2 signalled
the lack of a broad comparative study into the strong and weak points of well-known
decomposition methods. Once these results are available, the selection of a suitable de-
composition method will be much simpler. In Chapter 3, a method to determine the local
endmember spectra M+E; from a pixel’s neighbourhood has been described. A disadvan-
tage of this approach, however, is that it only works if the mixed pixel is surrounded by
pure pixels, which may not be the case when dealing with objects other than agricultural
fields. Therefore, to increase the applicability of the environmental model, a method to
estimate M+E; from a number of adjacent mixed pixels needs to be developed. Chapter 4
briefly mentioned that it may be desirable to adapt iterative least-squares (ILS) such that
satisfaction of the sum-to-one and positivity constraints is guaranteed. More important,
though, is the application of ILS to other images in order to find rules of thumb for setting
its threshold, «ap, a1, and ay. Likewise, more experiments with other images are needed
to decide whether finding the optimal value of K automatically is possible in practice.
In Chapter 5, it was noticed that the edge detection implementation was not particularly
well suited for our purposes. If the program is tuned for the detection of mixed pixels,
it will probably become more accurate, as will be the hybrid approach combining region
growing and edge detection. As before, it should be investigated whether rules of thumb
for setting the various thresholds and the maximum region size can be determined. Last
but not least, the experiment presented in Chapter 7, which made a comparison between
DDD and three other area estimation methods based on a real Landsat-TM image, must
be repeated when ground truth information of better quality becomes available. Ideally,
this supervised data should give details about the composition of individual pixels, but
reliable information about the exact area of certain agricultural fields will do as well. With
this new data, it will be possible to quantify the improvements in accuracy achieved by
DDD in practice. Furthermore, any problem DDD might encounter when handling real
instead of artificial objects can be identified more easily. If such a problem results in a
serious decrease in accuracy, the DDD algorithm may have to be adapted to deal with it.

In addition, we can give a number of suggestions for future research in new directions.
For instance, it would be interesting to integrate some of the methods discussed earlier in
this thesis with DDD. Instead of using a map-based segmentation!, one could also apply

'The perfect segmentation of an artificial image is in some way map-based as well.
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region growing, possibly in combination with edge detection, to calculate the endmember
distributions and detect the mixed pixels to be decomposed. Although the resulting area
estimates will probably become somewhat less accurate, they will have been derived fully
automatically, provided a good setting of the parameters of the segmentation method can
found without human intervention as well. Alternatively, the classic linear mixture mod-
elling approach, which was used by DDD so far, could be replaced by an estimator based
on the physical linear mixture model, for example, to see if a further increase in accuracy
can be achieved. Another possibility to improve the performance is the introduction of
additional endmembers which in fact represent mixtures of already existing endmembers.
This way, errors due to spectral confusion may be reduced, because a mixed pixel that
was partially allocated to a completely unrelated class before may now be largely assigned
to the new endmember that is composed of the pixel’s true classes. A different direction,
which corresponds to our second objective, is to apply the techniques discussed in this the-
sis in other areas. Section 1.4.2 lists a number of possible applications which all in one way
or the other measure the area (or concentration) per class. However, the decomposition of
mixed pixels may also be very useful for the extraction of road networks from satellite im-
agery, for instance. An even more challenging enterprise is to use the information acquired
with mixed pixel decomposition to create an image of a finer spatial resolution. Although
some results in this direction have already been published [20, 89], the subject is still that
new and relatively unexplored that major contributions to this field are well possible.



Appendix A

Maximum likelihood classification

The most widely used method to classify remote sensing data is maximum likelihood clas-
sification [13, 19]. This supervised classification technique assumes that the distribution of
each class 7 is multivariate normal, meaning that each distribution is completely described
by a mean vector m; representing the reflectance typical for that class, and a variance-
covariance matrix N;, which models the within-class variation due to natural variability.
In general, these parameters are determined using a training set of pure pixels:

1 Dpi ‘
m; = —Zx(”) and (A.1)
L
1 Di ‘ ‘
N, = pi_ljzz;(x(”)—mi)(x(”)—mi)T, (A.2)

where x(%) denotes the j-th pixel of class i and p; equals the total number of pixels belonging
to class ¢. During classification, a pixel of unknown composition is assigned to the class
from whose distribution vector x is most likely to be drawn. These probabilities can be
calculated by evaluating the probability density function (PDF) for each class, which in
case of multivariate normal distributions is given by (| | is the determinant operator):

p(x[i) = 27~ /? \Ni\_lﬂ exp(—2(x — m;)"'N; ' (x — m;)). (A.3)

As is shown in Figure A.1, for n=2 the PDF resembles a mountain with a peak at m; and
a slope depending on N;. Instead of maximising p(x|i), one often chooses to minimise

(x — rni)Tszl(x —m;) + In|N;|, (A.4)

which equals —2In(p(x|¢)) minus constants. The first term in Equation (A.4) is the sin-
gle deciding factor if all variance-covariance matrices are (approximately) equal and is
commonly referred to as the Mahalanobis distance between x and m;. Pixels lying at a
particular Mahalanobis distance of the mean of class ¢ make up an ellipse; the shape of
these ellipses can be found by intersecting the i-th PDF mountain at the corresponding
heights—see Figure A.1.
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band 1

Figure A.1l: Probability density function of two multivariate (n==2) normal distribu-
tions. Class 1 is defined by m;=[63; 132] and N1=[16 4; 4 4], while class 2 is given
by my=[69; 126] and Ny=[9 0; 0 9]. The ellipses show which pizels lie at the same height

of a PDF, i.e. have equal probability of belonging to class i. Consequently, all pizels on a
particular ellipse have the same Mahalanobis distance to m,;.
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Error backpropagation in a MLP

Backpropagation is a supervised technique of training, which means that the training pro-
cedure needs to know the class or composition of the pixels in the training set. If the MLP
is used as a classifier for ¢ classes, each pixel of class ¢ is paired up with an c-dimensional
target vector where all but one elements are low and the i-th element is high; during the
classification stage, the class of an input vector is determined by the element of the output
vector that has the highest value. If the network is used to decompose mixed pixels, the
target vector of each training pixel is its true proportions vector, and the output of the
MLP during the decomposition stage is taken as an estimate of the fractions of the pixel
presented. Training the network involves adjusting the weights, which are initialised at
small random values, until the network approximates the desired output closely enough.

A measure of how much a network (having weight vector w) used for decomposition is
deviating from the desired performance is expressed by the error function

B(w) = 3 3 S (7 — o) (B.1)

where f and o represent the desired and output fractions vector, i ranges over the output
units and p over the training vectors. In this view, training coincides with minimising the
error function. This is achieved by iteratively changing the weights using gradient descent:
OE(w)

8wij

Awgj = =1 , (B.2)
where the learning rate n controls the speed of learning. While in Equation (B.2) the
weights are adjusted after all training vectors have been presented, i.e. after an entire
iteration, usually the weights are changed after presentation of a single vector. If the
vectors are drawn at random from the training set, the training procedure is extended with
stochastic noise, which improves the performance of the network [48]. For this strategy, it
can be derived [48, 13] that in case of a sigmoidal activation function

o o (f; — 0j)o;(1 — 0)), J is output unit
sz] - 77015]7 5] - { (Zk 5kwjk)0j(1 — oj), otherwise. (BB)

An update rule for the thresholds 6; can be derived in a similar way. It is this mechanism
where the ¢ of a neuron is calculated using the ds of the neurons in the next layer that has
provided the name (error) backpropagation.
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One well-known extension of the basic backpropagation procedure, whose use is more
or less standard practice nowadays, is the addition of a momentum term:
E(w
Awgﬂ) = _naﬁT(ij) + ozAwg). (B.4)
In this equation, ¢t represents the time at which the network is adjusted and parameter
a (0<a<1) determines the influence of the momentum term. Thus, changes made in the
previous update of the weights are still reckoned with during the present update. The result
of this strategy is that in case the gradient of the error function is constant for a longer
period, the learning rate is effectively increased from 7 to approximately n/(1—«); think of
a ball picking up speed as it rolls down a hill. However, the risk of a high learning rate—the
network can show oscillatory behaviour—is avoided because successive contributions from
the momentum term will tend to cancel when a minimum of the error function is reached
and the sign of the gradient changes. Therefore, using a momentum term is advantageous
as it can lead to faster convergence towards the minimum of Equation (B.1) without causing
divergent oscillations. There exist many more variations on the training procedure such as
weight decay and distortion of the training vectors, but they are not described here. For
an explanation of these and other variations the reader is referred to [13].
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Samenvatting

Voor de Europese Unie (EU) is het van groot belang de oppervlakte van agrarische velden
automatisch te kunnen schatten. Sinds 1992 is de hoogte van de subsidie die een agrariér
bij de EU kan aanvragen namelijk afhankelijk van het soort en de oppervlakte van het
gewas dat hij verbouwt. Jaarlijks geeft de EU ongeveer 75 miljard gulden uit aan land-
bouwsubsidies, waarvan naar schatting zo'n 5 miljard gulden wordt besteed aan onjuiste
aanvragen. Zo kan het gebeuren dat een agrariér opgeeft koolzaad—gesubsidieerd maar
niet erg winstgevend—te verbouwen, terwijl hij in werkelijkheid aardappels—winstgevend
maar niet gesubsidieerd—verbouwt. Het komt echter vaker voor dat hij de oppervlakte
van zijn velden (al dan niet bewust) overschat, bijvoorbeeld door de sloten rondom een
veld mee te tellen. Om het enorme bedrag dat onterecht wordt uitgegeven zo klein moge-
lijk te houden, zijn de lidstaten verplicht minstens 5% van alle aanvragen te controleren.
Aangezien de EU 6 miljoen agrariérs telt die samen 150 miljoen percelen bebouwen is het
ondoenlijk deze taak door controleurs in het veld te laten uitvoeren. Daarbij komt nog dat
op veel percelen meerdere gewassen per jaar worden verbouwd, zodat er regelmatig gecon-
troleerd moet worden. Vandaar dat de EU gekozen heeft voor een geautomatiseerd systeem
dat gebruik maakt van remote sensing beelden die vanaf een satelliet worden opgenomen.
Elk beeld beslaat een groot gebied, zodat veel aanvragen op een relatief goedkope manier
onderzocht kunnen worden: alleen die velden waarvan de oppervlakte schatting (door het
systeem) niet overeenkomt met de opgave (door de agrariér) hoeven door een controleur te
worden bezocht. Bovendien kan de controle geregeld herhaald worden omdat de satelliet
met een zekere regelmaat over hetzelfde gebied komt.

Het doel van dit proefschrift, zie hoofdstuk 1, kan het best uitgelegd worden aan
de hand van het huidige systeem voor oppervlakteschatting. In het algemeen werkt zon
systeem door elke pizel toe te wijzen aan de klasse waar hij het meeste op lijkt. De
oppervlakte per gewas wordt vervolgens bepaald door het aantal pixels per klasse te tellen.
Deze aanpak geeft echter onnauwkeurige resultaten wanneer het beeld veel gemengde pixels
bevat: aangezien een gemengde pixel meer dan één gewas beslaat, zal zijn classificatie het
oppervlak van de gekozen klasse overschatten en dat van de andere klassen onderschatten.
Een andere aanpak is het achterhalen van de samenstelling van de gemengde pixel, waarna
zijn oppervlak verdeeld wordt over meerdere klassen. Onder de aanname dat de meeste
gemengde pixels op de grens van twee agrarische velden liggen, is de nauwkeurigheid van de
laatstgenoemde decompositie aanpak naar verwachting gemiddeld 25% per gemengde pixel
nauwkeuriger. Behalve het ontwikkelen van zo'n nauwkeurige, op decompositie gebaseerde
oppervlakteschattingsmethode voor agrarische velden, probeert dit proefschrift tevens meer
kennis over het verwerken van gemengde pixels in het algemeen te verschaffen, dat wil
zeggen (relatief) onafhankelijk van de bestudeerde toepassing en de gebruikte beelden.
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Als een eerste stap is de literatuur bestudeerd om te kijken of reeds bestaande technie-
ken gebruikt kunnen worden. Hoofdstuk 2 bespreekt een 12-tal verschillende decompo-
sitiemethoden, ook wel schatters genaamd, die op sommige punten veel op elkaar lijken.
De veruit meest gebruikte schatter is de analytische oplossing van het statistische lineaire
mizmodel. Aan de hand van de zogenaamde endmember distributies, welke min of meer
overeenkomen met het gemiddelde en de variantie van de verschillende klassen, kan deze
gegeneraliseerde kleinste-kwadraten methode voor elke pixel de bijdrage van de verschil-
lende klassen berekenen. Helaas is er tot nu toe nog geen uitgebreide vergelijking van de
verschillende methoden in de literatuur verschenen. Sommige kleine studies suggereren
wel dat met de meer geavanceerde methoden wat betere resultaten kunnen worden be-
reikt, maar deze methoden vereisen in het algemeen veel meer berekeningen. Aangezien de
nauwkeurigheid waarmee pixels ontbonden kunnen worden in veel gevallen meer af lijkt te
hangen van de karakteristieken van de data dan van de gebruikte decompositiemethode,
wordt de eenvoudige, snelle analytische schatter voor het lineaire mixmodel vandaag de
dag nog steeds gebruikt voor de meeste toepassingen.

De nauwkeurigheid van het decompositieproces kan verbeterd worden door de methode
toe te spitsen op het toepassingsgebied. In hoofdstuk 3 wordt een nieuw lineair mixmodel
voorgesteld waarin de correlaties die bestaan tussen de endmember spectra van naburige
pixels in bijvoorbeeld agrarische beelden kunnen worden beschreven. Het oplossen van
dit fysische, of beter, omgevingsmodel houdt in dat behalve het ingenomen oppervlak ook
de spectrale reflectie van elke component van de gemengde pixel geschat wordt. Hoewel
deze gecompliceerde operatie meer rekentijd kost dan het oplossen van het statistische
model, vertegenwoordigen de geschatte component spectra informatie die niet verkregen
kan worden met klassieke decompositie technieken. Bovendien bleek uit een experiment
dat de proporties die geschat zijn volgens de nieuwe aanpak nauwkeuriger zijn dan de
proporties die verkregen zijn met de standaard schatter. Vooral in het geval de data
moeilijk te ontbinden is, kan de verbetering in nauwkeurigheid aanzienlijk zijn.

Hoofdstuk 4 behandelt twee problemen die zich voordoen bij analytische decomposi-
tiemethoden die gebaseerd zijn op het lineaire mixmodel. Eerst worden enkele bestaande
post-processing methoden beschreven die de geschatte proporties van de componenten
zo aanpassen dat ze altijd positief zijn, waarna een nieuwe, kleinste-kwadraten aanpak
genaamd iterative least-squares (ILS) wordt geintroduceerd. In vergelijking met renorma-
lisatie is ILS aanzienlijk nauwkeuriger, terwijl in vergelijking met constrained least-squares
(CLS), een andere, bekende kleinste-kwadraten methode, ILS eenvoudiger is. Een expe-
riment liet zien dat ILS tevens nauwkeuriger is dan CLS indien de in te stellen drempel-
waarde laag genoeg is. Het tweede deel van het hoofdstuk beschrijft een vijftal standaard
methoden om de endmember distributies uit het beeld te bepalen. Daarnaast wordt een
nieuwe methode gebaseerd op K-means clustering uitgelegd. Experimenteel werd aange-
toond dat de gemiddelde reflectie van de clusters die door deze methode worden gevonden
beschouwd kunnen worden als relatief pure endmembers. De kwaliteit van deze endmem-
bers kan naderhand nog iets verbeterd worden met simpele post-processing technieken. De
endmember spectra gevonden door het K-means cluster algoritme leken minder puur te
zijn dan die gevonden met behulp van supervised methoden, maar deze kunnen alleen wor-
den toegepast als informatie over de werkelijke structuur van het beeld bekend is. Van de
toegepaste unsupervised technieken leverde K-means clustering de beste resultaten. Een
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tweede experiment suggereerde dat de waarde van K, de enige parameter die nog moet
worden ingesteld, automatisch en op een snelle manier bepaald kan worden.

Hadden alle onderwerpen tot nu toe te maken met het ontbinden van individuele ge-
mengde pixels, de rest van dit proefschrift richt zich op de oppervlakteschatting van agra-
rische velden op grond van kennis specifiek voor dit domein. Hoofdstuk 5 is gewijd aan
het onderscheiden van pure en gemengde pixels, waarbij een agrarisch veld gezien wordt
als een homogeen cluster van pure pixels omgeven door een rand van gemengde pixels.
Gemengde pixels kunnen opgespoord worden door het vinden van lokale discontinuiteiten
in het beeld die overeenkomen met de rand om elk veld. Behalve deze edge detectie aanpak
kunnen gemengde pixels ook herkend worden als de kleine gebiedjes die overblijven na
region growing, een methode die probeert de grote pure pixel clusters te lokaliseren door
naburige pixels met eenzelfde spectrale reflectie te groeperen. Een experiment liet zien
dat region growing zowel pure als gemengde pixels in 85%-90% van de gevallen correct
labelt, terwijl de prestatie van edge detectie ongeveer 10% lager lag. Een hybride aanpak
die de resultaten van beide methoden integreert lijkt ideaal te zijn omdat het twee soorten
informatie combineert die in zeker opzicht complementair zijn.

Hoofdstuk 6 presenteert data-driven decompositie (DDD) als een nieuwe methode om
nauwkeurige oppervlakteschattingen van agrarische velden te maken. Het eerste principe
achter DDD is dat gemengde pixels worden ontbonden om vervolgens hun oppervlak te ver-
delen tussen de velden die ze representeren. Pure pixels worden nog steeds geclassificeerd
zoals gebruikelijk. Het andere principe is dat kennis van het toepassingsgebied gebruikt
wordt om de nauwkeurigheid van de oppervlakteschattingen te verbeteren. Aspecten van
deze kennis met betrekking tot agrarische velden zijn dat ruimtelijke informatie gebruikt
kan worden om 1) pure en gemengde pixels te scheiden, 2) lokale endmember distributies
uit het beeld zelf te halen, en 3) endmembers te selecteren die waarschijnlijk onderdeel
uitmaken van een gemengde pixel. Een groot voordeel van dit laatste punt is dat het
beeld in een veel groter aantal endmembers ontbonden kan worden dan mogelijk is met de
klassieke decompositie aanpak. Verdere domeinkennis die in deze methode is verwerkt is
dat 4) velden vaak begrensd worden door smalle structuren met een bekende samenstelling
(bijvoorbeeld wegen of sloten) en 5) geisoleerde objecten (bijvoorbeeld boerderijen, ven-
netjes) opgespoord kunnen worden omdat hun spectrale reflectie geen mix is van die van
naburige pixels. Experimenten met artificiéle Landsat-TM beelden demonstreerden dat
door DDD gemiddeld slechts 5% van het oppervlak per gemengde pixel aan het verkeerde
veld werd toegewezen. Deze foutjes hadden grotendeels natuurlijke oorzaken zoals variatie
in de spectrale reflectie binnen een veld en spectrale verwarring, waar sprake van is als
bepaalde klassen of combinaties van klassen op elkaar lijken. Verder bleek dat de experi-
menteel gevonden optimale instelling van de drempel die de werking van DDD controleert
goed overeenkwam met het theoretisch voorspelde optimum.

Hoofdstuk 7 tenslotte beschrijft twee experimenten om de invloed van de twee prin-
cipes achter DDD op de nauwkeurigheid van de oppervlakteschattingen te bepalen. In
het eerste experiment werd DDD vergeleken met field-based classificatie (FBC), waarbij
gemengde pixels niet ontbonden worden, pizel-based decompositie (PBD), waarbij geen ge-
bruik wordt gemaakt van domeinkennis, en pizel-based classificatie (PBC), waarbij van
geen van beide principes gebruik wordt gemaakt. Over een aantal artificiéle beelden was
de fout per pixel gemiddeld 4.4% voor DDD, 13.1% voor PBD, 36.8% voor FBC en 43.5%
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voor PBC. Decompositie van gemengde pixels bleek voornamelijk nauwkeuriger te zijn dan
classificatie omdat het verkeerd toewijzen van gedeeltes van een gemengde pixel—hetgeen
inherent is aan de classificatie aanpak—grotendeels wordt vermeden, maar ook omdat fou-
ten als gevolg van spectrale verwarring minder vaak voorkomen in een gemengd pixelmodel
dan in een model voor pure pixels. Ook het toepassen van domeinkennis bleek nauwkeu-
rigere oppervlakteschattingen op te leveren, hoofdzakelijk omdat het selectiemechanisme
voor endmembers de mogelijkheden voor spectrale verwarring beperkt. Aangezien zowel
spectrale verwarring als het verkeerd toewijzen van pixelfracties tijdens classificatie leidt
tot het systematisch overschatten van sommige klassen en het onderschatten van andere,
geeft DDD ook een aanzienlijk nauwkeuriger schatting van het oppervlak van een agrarisch
veld als de resultaten voor individuele pixels worden gesommeerd. In het tweede experi-
ment werd DDD vergeleken met FBC op grond van een echt Landsat-TM beeld om de
mogelijke invloed van het gebruik van artificiéle beelden te elimineren. Vergeleken met de
resultaten van FBC gaf DDD een nauwkeuriger schatting van de oppervlakte voor 13 van
de 17 percelen, terwijl in een geval hetzelfde resultaat werd behaald. De overige 3 gevallen
konden eenvoudig worden verklaard. Net als in het eerste experiment werd gevonden dat
spectrale verwarring een veel groter probleem vormt voor FBC dan voor DDD, alhoewel
deze conclusie alleen op grond van een kwalitatieve vergelijking kon worden getrokken.

Gezien de resultaten van de vergelijkende experimenten kan geconcludeerd worden dat
het hoofddoel van dit proefschrift—het verbeteren van de nauwkeurigheid met 25% per
gemengde pixel door decompositie in plaats van classificatie toe te passen—gehaald is. Im-
mers, de nauwkeurigheid van DDD is ruim 30% hoger dan die van FBC, evenals de nauw-
keurigheid van PBD in vergelijking met die van PBC. Ook het toepassen van domeinkennis
leidt tot enige verbetering, aangezien de nauwkeurigheid van DDD ten opzichte van PBD,
net als die van FBC in vergelijking met PBC, zo'n 5%-10% hoger ligt. De combinatie van
beide principes geeft een verbetering van ongeveer 40%, zoals de vergelijking tussen DDD
en PBC aangeeft. Hoewel deze resultaten behaald zijn op artificiéle data bevestigde een
experiment met echte Landsat-TM data dat DDD ook in werkelijkheid aanzienlijk nauw-
keuriger is dan een soortgelijke methode gebaseerd op classificatie. Naast het hoofddoel
is ook het nevendoel van dit proefschrift bereikt, namelijk het verkrijgen van een beter
inzicht in het verwerken van gemengde pixels in het algemeen. In de verschillende hoofd-
stukken zijn namelijk een groot aantal aspecten van het verwerken van gemengde pixels
besproken en gerelateerd, waarbij tevens een aantal nieuwe modellen en methoden zijn
geintroduceerd. Hiervan kunnen de technieken die in het eerste deel besproken zijn waar-
schijnlijk voor de meeste toepassingen worden gebruikt, terwijl de methoden in het tweede
deel in het algemeen gebruikt kunnen worden zodra de objecten in het beeld relatief groot
zijn. Aangezien kennis die zeer specifiek is voor het agrarische domein slechts sporadisch
wordt gebruikt en eenvoudig weggelaten kan worden, wordt dit proefschrift hopelijk een
waardevolle bron van informatie voor iedereen die zich bezig houdt met het verwerken van
gemengde pixels in het kader van oppervlakteschatting.
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