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Species distribution models (SDMs) are frequently used to understand the influence 
of site properties on species occurrence. For robust model inference, SDMs need to 
account for the spatial autocorrelation of virtually all species occurrence data. Current 
methods do not routinely distinguish between extrinsic and intrinsic drivers of spatial 
autocorrelation, although these may have different implications for conservation.

Here, we present and test a method that disentangles extrinsic and intrinsic driv-
ers of spatial autocorrelation using repeated observations of a species. We focus on 
unknown habitat characteristics and conspecific interactions as extrinsic and intrinsic 
drivers, respectively. We model the former with spatially correlated random effects and 
the latter with an autocovariate, such that the spatially correlated random effects are 
constant across the repeated observations whereas the autocovariate may change. We 
tested the performance of our model on virtual species data and applied it to observa-
tions of the corncrake Crex crex in the Netherlands.

Applying our model to virtual species data revealed that it was well able to dis-
tinguish between the two different drivers of spatial autocorrelation, outperforming 
models with no or a single component for spatial autocorrelation. This finding was 
independent of the direction of the conspecific interactions (i.e. conspecific attraction 
versus competitive exclusion). The simulations confirmed that the ability of our model 
to disentangle both drivers of autocorrelation depends on repeated observations. In the 
case study, we discovered that the corncrake has a stronger response to habitat charac-
teristics compared to a model that did not include spatially correlated random effects, 
whereas conspecific interactions appeared to be less important. This implies that future 
conservation efforts should primarily focus on maximizing habitat availability.

Our study shows how to systematically disentangle extrinsic and intrinsic drivers of 
spatial autocorrelation. The method we propose can help to correctly identify the main 
drivers of species distributions.
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Introduction

Species distribution modelling is increasingly used in vari-
ous fields, including macro-ecology, biogeography, wild-
life management and conservation planning (Guisan and 
Thuiller 2005, Franklin 2010). A species distribution model 
(SDM) is a quantitative relationship between the occur-
rence of a species and a set of environmental characteristics. 
Important applications of SDMs are predicting current and 
future ranges of species and identifying and understanding 
site properties that influence species distributions (Elith and 
Leathwick 2009, Araújo et al. 2019).

Modelling approaches employed for species distribu-
tion modelling need to account for the fact that ecological 
data are typically characterized by spatial autocorrelation 
(Dormann  et  al. 2007). When this spatial structure is not 
adequately accounted for in the setup of an SDM, model 
residuals typically exhibit either positive or negative spatial 
autocorrelation (Cliff and Ord 1970, Schröder and Seppelt 
2006). Residual spatial autocorrelation can be caused by vari-
ous factors or processes not accounted for in the modelling, 
which may include extrinsic processes, such as unknown 
habitat characteristics (Legendre 1993), intrinsic processes, 
such as conspecific interactions (Wintle and Bardos 2006), 
or a combination of the two. Failure to adequately account 
for spatial autocorrelation in the modelling of species distri-
butions is known to lead to unreliable predictions of species 
ranges (Campomizzi  et  al. 2008, Wisz  et  al. 2013, Guélat 
and Kéry 2018), wrong conclusions about preferred site 
properties (Kühn 2007) and underestimated uncertainty of 
model parameters (Teng et al. 2018). For example, conspe-
cific attraction may lead to clustered distributions of wild-
life within the available habitat, which in turn may result in 
biased estimates of habitat preferences as well as increased 
type 1 errors, i.e. concluding a habitat factor is relevant when 
it is not (Dormann 2007).

Disentangling extrinsic and intrinsic drivers of spatial 
autocorrelation is challenging, as they may result in simi-
lar patterns of positive or negative clustering of individu-
als (Verhoef  et  al. 2018) that cannot be explained by the 
known habitat characteristics. Hence, spatial autocorrela-
tion is commonly tackled with a single overarching method 
(Dormann et al. 2007). Popular methods used to account for 
spatial autocorrelation in SDMs include generalized linear 
models (GLMs) with an autocovariate and generalized lin-
ear mixed models (GLMMs) with spatially correlated ran-
dom effects (Miller 2014). Combining the different drivers 
of spatial autocorrelation, however, ignores the fact that they 
may have different implications for conservation and model-
ling design (Teng  et  al. 2018). For example, if conspecific 
attraction is a major driver of the clustered distribution of a 
species, conservation measures should focus on the preserva-
tion of sufficiently large contiguous habitat for that species 
(Schipper et al. 2011).

In this paper, we present a new modelling approach 
that is designed to disentangle extrinsic and intrinsic driv-
ers of spatial autocorrelation in binary species distribution 

models. We focus on unknown habitat characteristics as an 
example of extrinsically caused spatial autocorrelation and 
conspecific interaction, which is often ignored in SDMs 
(Campomizzi  et  al. 2008), as an example of intrinsically 
caused spatial autocorrelation. We propose a mixed effect 
logistic regression model that includes 1) an autocovariate 
to handle spatial autocorrelation caused by conspecific inter-
actions and 2) spatially correlated random effects designed 
to handle spatial autocorrelation caused by unknown habi-
tat characteristics. Our method relies on repeated observa-
tions of a species. We assume that potential changes in the 
locations of individuals between sampling events, e.g. corre-
sponding to observations in different years, allow the model 
to identify the extent to which the spatial autocorrelation is 
caused by the environment, i.e. the selected habitat is simi-
lar but distances between conspecifics vary across sampling 
events, or by conspecific interactions, i.e. the selected habitat 
varies but distances between conspecifics are similar across 
sampling events (Fig. 1).

We tested the performance of our model using simulated 
records of a virtual species and compared it to the perfor-
mance of three other models, two of which are commonly 
used to address spatial autocorrelation. We also investigated 
whether the performance of our model depends on the direc-
tion of the conspecific interactions, i.e. conspecific attraction 
versus conspecific exclusion. Furthermore, we verified our 
premise that repeated observations of a species are required 
for our model to disentangle the two drivers of spatial 
autocorrelation.

We then applied our model, as well as the three alterna-
tive approaches, to disentangle the drivers of spatial auto-
correlation in the distribution of the corncrake Crex crex in 
the Netherlands. Populations of this migratory bird have 
been strongly declining in most western European coun-
tries (Koffijberg et al. 2016). The corncrake is a species with 
specific habitat requirements, but males are also known to 
form clusters when advertising for females (Schäffer and 
Koffijberg 2004). Knowledge of both habitat preferences and 
conspecific interactions of the species is considered vital to 
designing informed conservation measures for this species 
(Schipper et al. 2011).

Material and methods

Models

Model approach
We model the occurrence of a species as a function of vari-
ous environmental site properties, using observations of the 
species from multiple sampling events, e.g. observations in 
different years. We include two components to account for 
spatial autocorrelation: spatially correlated random effects 
êi  (Paulitz et al. 2003, Rhodes et al. 2009) with i denoting 
the site, and an additional explanatory variable ct,i commonly 
known as autocovariate (Crase et al. 2014, Wang et al. 2018), 
with t denoting the sampling event. In our approach, the key 
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difference between the two components of spatial autocor-
relation is that êi  does not depend on the observations of 
a single sampling event, but ct,i does. Thus, changes in the 
locations of the individuals between sampling can be used to 
identify the extent to which the autocorrelation is caused by 
the environment or by conspecific interactions (Fig. 1).

We combined the two different concepts used to account 
for spatial autocorrelation into a single model:
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We refer to our model as an autologistic spatial error model. 
It is a mixed effect logistic regression model that is designed 
to model the probability of occurrence of a species, pt,i, in 
sampling event t at site i. The response variable yt,i follows 
a Bernoulli distribution of the probabilities pt,i. The fixed 
part of our model is composed of an intercept β0, the linear 
combination of environmental site properties 

k

K
k k ix

=å 1
b , , 

with k running over all site properties K, and the autoco-
variate part βautoct,i. The autocovariate is calculated from the 
data prior to model fitting following Eq. 3. Here, yt,j is the 
response variable, di,j is the distance between sites i and j, 
and λ is a range parameter that determines how sharply the 
influence of neighbouring observations declines with dis-
tance. In addition, our model incorporates a random inter-
cept εt,i for each observation (Eq. 4) and a random intercept 
�et  for different sampling events (Eq. 5), which both follow 
a normal distribution. The random intercept �et  is included 
to account for differences in the population size between 
sampling events. Further, our model includes spatially cor-
related random effects ê  (Eq. 6). W is a symmetric weight 
matrix, with the entries wi,j being defined in Eq. 7. For the 

Figure 1. Conceptual representation of how repeated sampling events (e.g. observations of the same species in different years) help to dis-
entangle different drivers of spatial autocorrelation. The figure shows individuals of a hypothetical species (in red) in an environment con-
sisting of two different habitat types (dark blue and yellow) in two extreme scenarios: (a) the species is always in the same habitat yet with 
varying distances among individuals (indicating that site selection is only determined by habitat characteristics) and (b) the species is 
observed in different habitats yet with constant distance among individuals (indicating that site selection is only determined by the presence 
of conspecifics).
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spatial correlations, we chose a Matern correlation structure 

(Guttorp and Gneiting 2006) with n = 1
2

, which simplifies 

to an exponential correlation structure (Eq. 7) with a range 
parameter ρ.

The free parameters of our model are the intercept β0, the 
slopes βauto and βk, the standard deviations σspace, σtime and σres, 
and the parameter ρ. We treat λ as a hyperparameter and 
perform a grid search to find the best value (Claesen and De 
Moor 2015).

Alternative model specifications
To evaluate the performance of our model, we compared it to 
three models with only one or no component for spatial auto-
correlation. The models are defined by the following formulas:
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These models are based on the assumptions defined in Eq. 3–7. 
Alternative 1 (‘Baseline model’, Eq. 8) is a logistic regression 
model that does not include any component to account for 
spatial autocorrelation. Alternative 2 (‘Autologistic model’, 
Eq. 9) incorporates an autocovariate as an additional vari-
able, but no spatially correlated random effects. Alternative 
3 (‘Spatial error model’, Eq. 10) includes spatially correlated 
random effects, but no autocovariate.

Data

Virtual species data
To test the performance of the models we generated repeated 
observations of a virtual species. We simulated gridded vir-
tual landscapes of 50 × 50 cells (i.e. sites) characterized by 
four site properties. Three site properties represented habitat 
characteristics expressed on a continuous suitability gradient 
from zero (minimum suitability) to one (maximum suit-
ability). Two of these variables exhibited a spatial structure 
whereas the third was spatially randomly distributed. The 
fourth site property was a spatially structured binary vari-
able (zero or one), implemented to represent sites that are 
completely hostile to the species (i.e. suitability of zero). For 

a visual representation of the virtual landscape simulations, 
Supplementary material Appendix 1 Fig. S1.

We then generated the species records, using a two-step 
approach. In the first step, we sequentially placed a random 
number of individuals in the landscape. As the first individ-
uals selected their sites almost exclusively based on habitat 
characteristics, even in scenarios in which individuals were 
interacting, we implemented a second step in which we 
repeatedly picked one of the individuals at random and let 
it choose a site again. In both steps, individuals picked site i 
with probability pi which was determined by the dynamic site 
suitability qi with

p
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where xk,i is the value of site property k at site i, di,j is the 
distance between sites i and j and yj is the occupation status 
of site j. βk are the slopes of the environmental site prop-
erties for which we used values of β1 = 3, β2 = 3 and β3 = 2. 
The slope βauto is associated with conspecific interactions and 
determines whether they are positive (conspecific attraction, 
βauto = 1.5), neutral (βauto = 0) or negative (competitive exclu-
sion, βauto = −2.5). We assigned a larger (absolute) value to 
the competitive exclusion slope because the importance of 
a variable in the selection process of an individual is a prod-
uct of the standard deviation of that variable and the associ-
ated parameter. The standard deviation of ci is intrinsically 
higher for conspecific attraction than for competitive exclu-
sion because the former leads to clustering and the latter has 
the opposite effect. We chose all parameter values to ensure 
roughly equal variable importance. For the range parameter 
in Eq. 13, we used λ = 1.

In the simulations, each grid cell could be selected by one 
individual only. We allowed individuals to resettle 10 times 
on average, as we found that this was enough to ensure a 
stable distribution (Supplementary material Appendix 1 Fig. 
S2). For each of the three types of interactions, we simulated 
30 datasets with each dataset consisting of 10 independent 
sampling events. We resampled the number of individuals for 
each sampling event (ranging between 30 and 150) to reflect 
the fact that numbers of individuals may fluctuate between 
surveys. Per sampling event, we randomly selected a subset 
of 1000 cells without an individual as absences. We kept the 
virtual landscape constant within the datasets but varied it 
between datasets. We used the same landscapes for all three 
types of interactions. To simulate the datasets, we used the 
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programming language Python (Van Rossum and Drake 
2011), ver. 3.6.9.

Case study: real-world data
As our case study, we used records of the corncrake Crex crex 
in the floodplains of the Rhine River in the Netherlands 
(Supplementary material Appendix 1 Fig. S3), which provide 
the species with an important breeding habitat. Sovon Dutch 
Centre for Field Ornithology has been conducting systematic 
simultaneous surveys in the floodplain areas twice per breed-
ing season since 2001 (Koffijberg and Schoppers 2009). In 
these surveys, the entire study area is scrutinized for the pres-
ence of corncrakes. Presence records refer to singing males, 
which are indicative of breeding sites, and are obtained at 
night when the singing activity is highest. Males sing more 
or less continuously between 11:00 pm and 3:00 am at stable 
singing sites, and their songs can be heard over consider-
able distances (500–1000 m), ensuring a very high probabil-
ity of detection (Stowe  et  al. 1993, Wettstein  et  al. 2001, 
Sklíba and Fuchs 2004). We selected observations from 2001 
through 2007 using records from the second simultaneous 
survey only, as carried out by mid-June, to avoid poten-
tial pseudo-replication due to possible correlations in bird 
records between both surveys. We preferred data from the 
second survey because the first survey is conducted shortly 
after the corncrakes arrive from their wintering grounds, with 
limited time for interactions and resettling. For each year, we 
included observations of four days (Friday–Monday) centred 
around the survey weekend. This yielded 143 observations 
in total. Per survey year, we randomly selected 1000 pseudo-
absences across the surveyed floodplains (Barbet-Massin et al. 
2012).

We characterized the habitat of each site based on its 
vegetation characteristics and elevation. We used elevation 
as a proxy for food availability as the number of inverte-
brates found in river floodplains is highly correlated with 
elevation (Schipper  et  al. 2008). We retrieved information 
on vegetation types from an ecotope map of the Netherlands 
(Rijkswaterstaat 1998, Houkes 2008). Because of the large 
number of vegetation types (ecotopes) relative to the number 
of observations, we classified each ecotope as either a suitable 
or an unsuitable corncrake habitat, based on information on 
habitat requirements provided by Schäffer and Koffijberg 
(2004). For elevation, we used a 25 m resolution elevation 
map (Schellekens et al. 2014, Straatsma et al. 2019). For each 
record (presence or pseudo-absence), we then calculated the 
proportion of suitable habitat area (%) and the mean eleva-
tion (m a.s.l.) in a circular zone with a radius of 250 m sur-
rounding the given position, as a proxy for the home range 
(Supplementary material Appendix 1 Fig. S4). We chose a 
radius of 250 m for the home ranges, based on information 
on home range size provided by Koffijberg et al. (2007). We 
standardized all site properties before model fitting. For three 
records, the assumed home range did not overlap with the 
ecotope map and we therefore removed them, leaving a total 
of 140 records for our analysis.

Model application and evaluation

We first applied our model as well as the three alternative 
models to the 90 simulated datasets. To fit the models, we 
excluded one of the two spatially structured site properties 
(x1). This introduced clusters of individuals in the species data 
that did not originate from the site properties known to the 
model, which was necessary to test whether the models were 
able to disentangle (unknown) habitat characteristics and 
conspecific interactions as drivers of spatial autocorrelation.

To find the best value of λ (Eq. 3), we performed a grid 
search in which we tested five different values, centred 
around the true value of λ = 1 which we used in the simu-
lations: 1.25−2, 1.25−1, 1.250, 1.251 and 1.252. We investi-
gated the goodness of fit of the models by cross-validation 
(Witten et al. 2016). To that end, we trained models with the 
data of all but two sampling events and validated them with 
the data of the sampling events that were left out. In the left-
out sampling events, we calculated the area under the receiver 
operating curve (ROC; Fawcett 2004) as

AUCt
i j

y ymn t i t j
=

= =
>åå1 1

1 1
, ,

	 (14)

with yt,i and yt,j being the model responses for the sites i and j 
in sampling event t and 1y yt i t j, ,>  being the indicator function: 
it is 1 if and only if yi > yj and 0 otherwise. With i running 
over all presence sites and j running over all absence sites, 
the AUCt gives the fraction of absence sites that are ranked 
lower than presence sites. As the number of presences per 
sampling event varied considerably, we weighted the AUCt 
by the number of presences of the left-out sampling events 
to calculate a mean AUC. We selected the λ that resulted in 
the model with the highest AUC, and standardized βauto to 
the standard deviation of the autocovariate in the simulation 
to ensure comparability of the slope used in the simulation 
and the estimated slopes. This is needed for the autocovari-
ate but not for the environmental variables, because different 
values of λ only affect the former (Eq. 3). We further checked 
for remaining autocorrelation in the model residuals using 
Moran’s I (Moran 1950).

For the case study, we performed a seven-fold cross-val-
idation to identify the λ value resulting in the best model 
performance. We trained models with the data of all but one 
year and validated them with the data of the year we left out, 
reasoning that correlations between years can be considered 
to be negligible due to the high mortality rates of corncrakes 
(Green 2004). As we did not know the true value of λ, we 
tested a larger range of possible values for λ, ranging from 0.1 
to 10.0. The models were evaluated as explained above.

We further investigated the performance of our model 
approach when fitted with data of a single sampling event, in 
order to verify whether our approach indeed needs repeated 
measurements. For both the simulation study and the case 
study, we used only one sampling event (year) for model 
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fitting and the rest of the data for model validation. We sepa-
rately performed the single-event analysis for each year. In 
this analysis, we put in the true parameter value (simulation 
study) and the optimal parameter value (case study) for λ 
upfront. We computed the AUC following Eq. 14 and aver-
aged across the years as outlined above.

We fitted all models using the Integrated Nested Laplace 
Approximation (INLA; Rue et al. 2009, Martins et al. 2013). 
INLA is a Bayesian framework in which model parameters 
are optimized using the Laplace Approximation, i.e. approxi-
mating distributions with normal distributions. INLA works 
on a large range of models, including the spatial models that 
we are interested in here (Lindgren  et  al. 2011). We per-
formed all model fitting and evaluation in R (R Core Team), 
ver. 3.6.3, including the r-INLA package (Lindgren  et  al. 
2015), ver. 19.09.03, for model fitting, the pgirmess package 
(Giraudoux 2018), ver. 1.6.9, for calculating residual auto-
correlation and the pROC package (Robin et al. 2011), ver. 
1.15.3, for calculating AUC values.

Results

Virtual species data

Compared to the alternative models, our autologistic spatial 
error model generally had the best performance in terms of 
AUC (Fig. 2) and resulted in the most accurate slope esti-
mates (Fig. 3). We obtained accurate slope estimates for the 
environmental variables in all three conspecific interaction 
scenarios. Slope estimates for the conspecific interactions 
were accurate for the competitive exclusion and no conspe-
cific interaction scenarios, and less biased compared to the 
alternative model in the scenario of conspecific attraction. 
The autologistic model overestimated the conspecific interac-
tion slope in all three scenarios. For the baseline model and 

the spatial error model, the spatially correlated variable slopes 
were overestimated in the scenario of conspecific interaction 
and underestimated in the scenario of competitive exclusion. 
The spatially uncorrelated variable slope was underestimated 
by the same models in the scenario of conspecific attraction.

Using Moran’s I, we did not detect any remaining spatial 
autocorrelation in the residuals of our model. There was also 
no remaining autocorrelation in the residuals of the spatial 
error model, while the models without spatially correlated 
random effects (the baseline model and the autologistic 
model) were unable to completely remove spatial autocor-
relation (Supplementary material Appendix 1 Table S1).

When applied to single sampling events, our model 
underestimated the slope of conspecific interactions in all 
three scenarios. Further, the environmental variable slopes 
were overestimated in the scenario of no conspecific interac-
tion and associated with high uncertainty in the other two 
scenarios (Supplementary material Appendix 1 Table S2). 
This finding confirms that repeated observations of a spe-
cies in the same environment are required for our model 
approach to disentangle extrinsic and intrinsic drivers of spa-
tial autocorrelation.

Corncrake case study

In the case study application, the AUC of our autologistic spa-
tial error model (0.89 ± 0.01) was slightly higher than that of 
the autologistic model (0.88 ± 0.01) and significantly higher 
than the AUCs of the spatial error model (0.83 ± 0.03) and 
the baseline model (0.73 ± 0.03) (Fig. 4). Our model classi-
fied the proportion of suitable habitat in the home range as 
the most important predictor of the presence of corncrakes. 
Conspecific interactions and elevation were classified as 
equally important. While the ranking for the environmental 
variables was the same for the other models, the autologistic 
model classified conspecific interactions as more important 

Figure 2. Results of the virtual species study. Boxplots of the AUC obtained for the autologistic spatial error model (in red), the baseline 
model (in green), the autologistic model (in blue) and the spatial error model (in turquoise) on sampling events that have been left out in 
the model fitting. From left to right, the figures show the results for the scenarios of conspecific attraction (left), no conspecific interaction 
(centre) and competitive exclusion (right).
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than elevation (Fig. 5). The application of our model to single 
years of data did not provide a clear ranking, as the slopes 
for all three explanatory variables were associated with large 
estimated standard deviations. For elevation, the 1σ confi-
dence interval overlapped with zero (Supplementary material 
Appendix 1 Table S4).

Discussion

The performance of the models

In this study, we investigated the performance of a new SDM 
approach designed to account for spatial autocorrelation 
caused by both extrinsic and intrinsic factors, as represented 
by unknown habitat characteristics and conspecific interac-
tion, respectively. We showed that it is important to explicitly 
account for these different drivers of spatial autocorrelation, as 
this clearly improved model performance. The goodness of fit, 
measured in terms of AUC, increased, while the bias of slope 
estimates decreased in comparison to models that included no 
or only one component to account for spatial autocorrelation.

The autologistic model overestimated the slope of the con-
specific interaction across all scenarios. As there is only one 
overarching term for spatial autocorrelation in this model, 
conspecific interactions and unknown habitat characteris-
tics as drivers of spatial autocorrelation were merged. In our 
setting, this led to an inflation of the conspecific interac-
tion slope (spatial confounding; Hanks et al. 2015). We also 
found that the autologistic model underestimated the impor-
tance of the spatially correlated environmental predictor. As 

Figure 3. Results of the virtual species study. Boxplots of the slope estimates for the conspecific interaction (top), the spatially correlated 
habitat property (centre) and the spatially uncorrelated habitat property (bottom) obtained with the autologistic spatial error model (in 
red), the baseline model (in green), the autologistic model (in blue) and the spatial error model (in turquoise). Note that the baseline model 
and the spatial error model do not give estimates of the conspecific interaction slope. From left to right, the figures show the results for the 
scenarios of conspecific attraction (left), no conspecific interaction (centre) and competitive exclusion (right). The true slopes are repre-
sented by the horizontal lines.

Figure 4. Results of the corncrake case study. AUCs obtained for the 
autologistic spatial error model (in red), the baseline model (in 
green), the autologistic model (in blue) and the spatial error model 
(in turquoise) on data of years left out in the model fitting. Each 
data point corresponds to the weighted mean AUC across all folds 
of the cross-validation and error bars show the weighted standard 
deviation.
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our virtual species data included multiple environmental site 
properties, individuals were more likely to choose sites that 
were suboptimal when considering a single site property. 
Thus, excluding one of the spatially correlated site properties 
from the model fitting, resulted in an underestimation of the 
importance of the other spatially correlated site property in 
the autologistic model. For a similar reason, i.e. having only 
one term to account for spatial autocorrelation, the spatial 
error model overestimated the importance of the spatially 
correlated environmental property in the scenario of con-
specific attraction and underestimated the importance in the 
scenario of competitive exclusion, showing that it incorrectly 
attributed (part of ) the conspecific interactions to the envi-
ronmental properties.

Our results show that the autologistic model provided 
biased slope estimates even in the absence of conspecific inter-
action, while the random error model was unbiased in that sce-
nario. This result is in line with the findings of Dormann et al. 
(2007) and Crase et al. (2012) who focused on extrinsic drivers 
of spatial autocorrelation only, excluding conspecific interac-
tions. Our study thus extends their conclusions to a setting in 
which different drivers of spatial autocorrelation are at play. 
Importantly, our results also showed that slopes were not biased 
homogenously (Fig. 2), implying that the baseline model, the 
autologistic model and the spatial error model may give flawed 
rankings of site property importance.

Case study results

Compared to the three alternative models, our autologistic 
spatial error model showed a better fit to the case study data. 

The slope estimates of our model indicate that the amount 
of suitable habitat is the most important predictor of the 
presence of corncrakes within the floodplains of the Rhine 
River in the Netherlands. Although this result was shared 
by all four models, our model showed that the amount of 
suitable habitat is more important than suggested by both 
the baseline model and the autologistic model, emphasizing 
that future conservation efforts should focus on maximizing 
habitat availability. On the other hand, our model estimated 
a lower importance of conspecific interaction compared to 
the autologistic model. This finding suggests that there are 
indeed hidden site properties that partly drive the clustering 
of the corncrakes.

The superior performance of our model in terms of AUC 
suggests three relevant implications. First, despite its com-
plexity and thus the danger of overfitting (Lever et al. 2016), 
our model did not overfit the data, as indicated by the high 
performance when tested on temporally independent data 
(i.e. from a different year) that had been left out from the 
model training. Second, as mentioned above, the results of 
our model indicate that there are additional habitat factors 
that drive spatial autocorrelation of the corncrake, as includ-
ing spatially correlated random effects resulted in improved 
model performance. Third, conspecific interactions are more 
important to the corncrake than unknown site properties, as 
the performance of the autologistic model was much better 
than that of the spatial error model (Fig. 4).

Although identifying additional habitat factors is beyond 
the scope of this study, we hypothesize that floodplain man-
agement – in particular, mowing – could be one of these. 
Parts of the grasslands and meadows in the Rhine River 

Figure 5. Results of the corncrake case study. Slope estimates obtained with the autologistic spatial error model (in red), the baseline model 
(in green), the autologistic model (in blue) and the spatial error model (in turquoise). From left to right, the figures show the estimates for 
the conspecific interaction (left), the amount of suitable habitat (centre) and the elevation (right). Each data point corresponds to the aver-
aged mean estimate across all folds of the cross-validation and error bars show the average estimate of the standard deviation. Note that the 
baseline model and the spatial error model do not give estimates of the conspecific interaction slope.
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floodplains are mown before corncrakes arrive, which ren-
ders these potential breeding habitats unsuitable (Green et al. 
1997). As a result, corncrakes may cluster in the remaining 
habitats where mowing takes place later. As mowing was not 
included in our environmental site properties, the spatially 
correlated random effect term may have captured this addi-
tional clustering.

Applicability

In this study, we build on autologistic regression because auto-
covariate models are 1) easy to interpret, with explicit slope 
estimates for both the autocovariate and the environmental 
site properties, which are not provided by other methods 
(Dormann 2007), and 2) very popular in the research com-
munity (Ramakers et al. 2014, Gallien et al. 2015, Carman 
and Jenkins 2016). We confirmed our premise that repeated 
species observations are needed to disentangle intrinsic and 
extrinsic drivers of spatial autocorrelation, as models fit-
ted with data of single sampling events led to biased slopes 
with large uncertainty. This reflects that a single sampling 
event does not provide enough information for the model 
to adequately ascribe spatial autocorrelation to either the 
autocovariate or the spatial error term. While we applied our 
approach to occurrence data, the method is easily general-
ized to other types of data (e.g. count data). Furthermore, 
the key concept to disentangle drivers of spatial autocorrela-
tion by using longitudinal data of multiple sampling events 
in the same environment can be transferred to many meth-
ods, including more advanced forms of Bayesian modelling 
(Kéry and Royle 2016) and dynamic range models (Soriano-
Redondo et al. 2019). Finally, our concept is not limited to a 
single species, but could also be used in joint species distribu-
tion models (Pollock et al. 2014, Lany et al. 2019).

Note that we assumed that the unknown habitat character-
istics do not change between sampling events. This assump-
tion may not be justified in some cases, e.g. for a species that 
clusters due to an unmeasured weather-related phenomenon 
but is observed in different seasons of the year. Likewise, dif-
ficulties may arise if observations are carried out with huge 
time lags in between. Our approach will also be unable to 
distinguish conspecific interaction and other drivers of spa-
tial autocorrelation that vary between sampling events, e.g. 
varying sampling effort. This is especially important for 
presence-only data. In our case study, the data was gathered 
comprehensively and systematically, minimizing potential 
observation biases. However, in settings in which this is not 
the case, it is important that the data sample is unbiased, see, 
e.g. Warton et al. (2013).

We argue that disentangling drivers of spatial autocorrela-
tion is relevant particularly because any species distribution 
modelling study is likely to miss potentially relevant environ-
mental site properties. Our approach can pick up such signals 
via the spatially correlated random effects. We further showed 
that the slope of the conspecific interaction term converged 
towards zero when individuals do not interact (scenario of 
no conspecific interaction). Thus, our model will help to 

diagnose whether conspecific interactions influence the dis-
tribution of a species. We, therefore, advocate the application 
of our methodology regardless, as it explicitly accounts for 
potential interactions as well as habitat factors as drivers of 
spatial autocorrelation and yields accurate estimates of both.
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