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Abstract

Constraint-based causal discovery from limited data is a notoriously difficult chal-
lenge due to the many borderline independence test decisions. Several approaches
to improve the reliability of the predictions by exploiting redundancy in the inde-
pendence information have been proposed recently. Though promising, existing
approaches can still be greatly improved in terms of accuracy and scalability. We
present a novel method that reduces the combinatorial explosion of the search space
by using a more coarse-grained representation of causal information, drastically
reducing computation time. Additionally, we propose a method to score causal pre-
dictions based on their confidence. Crucially, our implementation also allows one
to easily combine observational and interventional data and to incorporate various
types of available background knowledge. We prove soundness and asymptotic
consistency of our method and demonstrate that it can outperform the state-of-
the-art on synthetic data, achieving a speedup of several orders of magnitude. We
illustrate its practical feasibility by applying it to a challenging protein data set.

1 Introduction

Discovering causal relations from data is at the foundation of the scientific method. Traditionally,
cause-effect relations have been recovered from experimental data in which the variable of interest is
perturbed, but seminal work like the do-calculus [16] and the PC/FCI algorithms [23, 26] demonstrate
that, under certain assumptions (e.g., the well-known Causal Markov and Faithfulness assumptions
[23]), it is already possible to obtain substantial causal information by using only observational data.

Recently, there have been several proposals for combining observational and experimental data to
discover causal relations. These causal discovery methods are usually divided into two categories:
constraint-based and score-based methods. Score-based methods typically evaluate models using a
penalized likelihood score, while constraint-based methods use statistical independences to express
constraints over possible causal models. The advantages of constraint-based over score-based methods
are the ability to handle latent confounders and selection bias naturally, and that there is no need
for parametric modeling assumptions. Additionally, constraint-based methods expressed in logic
[2, 3, 25, 8] allow for an easy integration of background knowledge, which is not trivial even for
simple cases in approaches that are not based on logic [1].

Two major disadvantages of traditional constraint-based methods are: (i) vulnerability to errors
in statistical independence test results, which are quite common in real-world applications, (ii) no
ranking or estimation of the confidence in the causal predictions. Several approaches address the
first issue and improve the reliability of constraint-based methods by exploiting redundancy in the
independence information [3, 8, 25]. The idea is to assign weights to the input statements that reflect
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their reliability, and then use a reasoning scheme that takes these weights into account. Several
weighting schemes can be defined, from simple ways to attach weights to single independence
statements [8], to more complicated schemes to obtain weights for combinations of independence
statements [25, 3]. Unfortunately, these approaches have to sacrifice either accuracy by using a greedy
method [3, 25], or scalability by formulating a discrete optimization problem on a super-exponentially
large search space [8]. Additionally, the confidence estimation issue is addressed only in limited
cases [17].

We propose Ancestral Causal Inference (ACI), a logic-based method that provides comparable
accuracy to the best state-of-the-art constraint-based methods (e.g., [8]) for causal systems with
latent variables without feedback, but improves on their scalability by using a more coarse-grained
representation of causal information. Instead of representing all possible direct causal relations, in
ACI we represent and reason only with ancestral relations (“indirect” causal relations), developing
specialised ancestral reasoning rules. This representation, though still super-exponentially large,
drastically reduces computation time. Moreover, it turns out to be very convenient, because in
real-world applications the distinction between direct causal relations and ancestral relations is not
always clear or necessary. Given the estimated ancestral relations, the estimation can be refined to
direct causal relations by constraining standard methods to a smaller search space, if necessary.

Furthermore, we propose a method to score predictions according to their confidence. The confidence
score can be thought of as an approximation to the marginal probability of an ancestral relation.
Scoring predictions enables one to rank them according to their reliability, allowing for higher
accuracy. This is very important for practical applications, as the low reliability of the predictions of
constraint-based methods has been a major impediment to their wide-spread use.

We prove soundness and asymptotic consistency under mild conditions on the statistical tests for ACI
and our scoring method. We show that ACI outperforms standard methods, like bootstrapped FCI
and CFCI, in terms of accuracy, and achieves a speedup of several orders of magnitude over [8] on a
synthetic dataset. We illustrate its practical feasibility by applying it to a challenging protein data set
[21] that so far had only been addressed with score-based methods and observe that it successfully
recovers from faithfulness violations. In this context, we showcase the flexibility of logic-based
approaches by introducing weighted ancestral relation constraints that we obtain from a combination
of observational and interventional data, and show that they substantially increase the reliability of
the predictions. Finally, we provide an open-source version of our algorithms and the evaluation
framework, which can be easily extended, at http://github.com/caus-am/aci.

2 Preliminaries and related work

Preliminaries We assume that the data generating process can be modeled by a causal Directed
Acyclic Graph (DAG) that may contain latent variables. For simplicity we also assume that there is
no selection bias. Finally, we assume that the Causal Markov Assumption and the Causal Faithfulness
Assumption [23] both hold. In other words, the conditional independences in the observational
distribution correspond one-to-one with the d-separations in the causal DAG. Throughout the paper
we represent variables with uppercase letters, while sets of variables are denoted by boldface. All
proofs are provided in the Supplementary Material.

A directed edge X → Y in the causal DAG represents a direct causal relation between cause X on
effect Y . Intuitively, in this framework this indicates that manipulating X will produce a change in
Y , while manipulating Y will have no effect on X . A more detailed discussion can be found in [23].
A sequence of directed edges X1 → X2 → · · · → Xn is a directed path. If there exists a directed
path from X to Y (or X = Y ), then X is an ancestor of Y (denoted as X 99K Y ). Otherwise, X is
not an ancestor of Y (denoted as X 699K Y ). For a set of variables W , we write:

X 99K W := ∃Y ∈W : X 99K Y,

X 699K W := ∀Y ∈W : X 699K Y. (1)

We define an ancestral structure as any non-strict partial order on the observed variables of the DAG,
i.e., any relation that satisfies the following axioms:

(reflexivity) : X 99K X, (2)
(transitivity) : X 99K Y ∧ Y 99K Z =⇒ X 99K Z, (3)
(antisymmetry) : X 99K Y ∧ Y 99K X =⇒ X = Y. (4)
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The underlying causal DAG induces a unique “true” ancestral structure, which represents the transitive
closure of the direct causal relations projected on the observed variables.

For disjoint sets X,Y ,W we denote conditional independence of X and Y given W as X ⊥⊥
Y |W , and conditional dependence as X 6⊥⊥ Y |W . We call the cardinality |W | the order of the
conditional (in)dependence relation. Following [2] we define a minimal conditional independence by:

X ⊥⊥ Y |W ∪ [Z] := (X ⊥⊥ Y |W ∪ Z) ∧ (X 6⊥⊥ Y |W ),

and similarly, a minimal conditional dependence by:

X 6⊥⊥ Y |W ∪ [Z] := (X 6⊥⊥ Y |W ∪ Z) ∧ (X ⊥⊥ Y |W ).

The square brackets indicate thatZ is needed for the (in)dependence to hold in the context of W . Note
that the negation of a minimal conditional independence is not a minimal conditional dependence.
Minimal conditional (in)dependences are closely related to ancestral relations, as pointed out in [2]:
Lemma 1. For disjoint (sets of) variables X,Y, Z,W :

X ⊥⊥ Y |W ∪ [Z] =⇒ Z 99K ({X,Y } ∪W ), (5)
X 6⊥⊥ Y |W ∪ [Z] =⇒ Z 699K ({X,Y } ∪W ). (6)

Exploiting these rules (as well as others that will be introduced in Section 3) to deduce ancestral
relations directly from (in)dependences is key to the greatly improved scalability of our method.

Related work on conflict resolution One of the earliest algorithms to deal with conflicting inputs
in constraint-based causal discovery is Conservative PC [18], which adds “redundant” checks to the
PC algorithm that allow it to detect inconsistencies in the inputs, and then makes only predictions that
do not rely on the ambiguous inputs. The same idea can be applied to FCI, yielding Conservative FCI
(CFCI) [4, 10]. BCCD (Bayesian Constraint-based Causal Discovery) [3] uses Bayesian confidence
estimates to process information in decreasing order of reliability, discarding contradictory inputs as
they arise. COmbINE (Causal discovery from Overlapping INtErventions) [25] is an algorithm that
combines the output of FCI on several overlapping observational and experimental datasets into a
single causal model by first pooling and recalibrating the independence test p-values, and then adding
each constraint incrementally in order of reliability to a SAT instance. Any constraint that makes the
problem unsatisfiable is discarded.

Our approach is inspired by a method presented by Hyttinen, Eberhardt and Järvisalo [8] (that
we will refer to as HEJ in this paper), in which causal discovery is formulated as a constrained
discrete minimization problem. Given a list of weighted independence statements, HEJ searches
for the optimal causal graph G (an acyclic directed mixed graph, or ADMG) that minimizes the
sum of the weights of the independence statements that are violated according to G. In order to
test whether a causal graph G induces a certain independence, the method creates an encoding DAG
of d-connection graphs. D-connection graphs are graphs that can be obtained from a causal graph
through a series of operations (conditioning, marginalization and interventions). An encoding DAG
of d-connection graphs is a complex structure encoding all possible d-connection graphs and the
sequence of operations that generated them from a given causal graph. This approach has been shown
to correct errors in the inputs, but is computationally demanding because of the huge search space.

3 ACI: Ancestral Causal Inference

We propose Ancestral Causal Inference (ACI), a causal discovery method that accurately reconstructs
ancestral structures, also in the presence of latent variables and statistical errors. ACI builds on HEJ
[8], but rather than optimizing over encoding DAGs, ACI optimizes over the much simpler (but still
very expressive) ancestral structures.

For n variables, the number of possible ancestral structures is the number of partial orders (http:
//oeis.org/A001035), which grows as 2n

2/4+o(n2) [11], while the number of DAGs can be
computed with a well-known super-exponential recurrence formula (http://oeis.org/A003024).
The number of ADMGs is |DAG(n)| × 2n(n−1)/2. Although still super-exponential, the number of
ancestral structures grows asymptotically much slower than the number of DAGs and even more so,
ADMGs. For example, for 7 variables, there are 6× 106 ancestral structures but already 2.3× 1015

ADMGs, which lower bound the number of encoding DAGs of d-connection graphs used by HEJ.
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New rules The rules in HEJ explicitly encode marginalization and conditioning operations on
d-connection graphs, so they cannot be easily adapted to work directly with ancestral relations.
Instead, ACI encodes the ancestral reasoning rules (2)–(6) and five novel causal reasoning rules:

Lemma 2. For disjoint (sets) of variables X,Y, U, Z,W :

(X ⊥⊥ Y | Z) ∧ (X 699K Z) =⇒ X 699K Y, (7)
X 6⊥⊥ Y |W ∪ [Z] =⇒ X 6⊥⊥ Z |W , (8)
X ⊥⊥ Y |W ∪ [Z] =⇒ X 6⊥⊥ Z |W , (9)
(X ⊥⊥ Y |W ∪ [Z]) ∧ (X ⊥⊥ Z |W ∪ U) =⇒ (X ⊥⊥ Y |W ∪ U), (10)
(Z 6⊥⊥ X |W ) ∧ (Z 6⊥⊥ Y |W ) ∧ (X ⊥⊥ Y |W ) =⇒ X 6⊥⊥ Y |W ∪ Z. (11)

We prove the soundness of the rules in the Supplementary Material. We elaborate some conjectures
about their completeness in the discussion after Theorem 1 in the next Section.

Optimization of loss function We formulate causal discovery as an optimization problem where
a loss function is optimized over possible causal structures. Intuitively, the loss function sums the
weights of all the inputs that are violated in a candidate causal structure.

Given a list I of weighted input statements (ij , wj), where ij is the input statement and wj is the
associated weight, we define the loss function as the sum of the weights of the input statements that
are not satisfied in a given possible structure W ∈ W , whereW denotes the set of all possible causal
structures. Causal discovery is formulated as a discrete optimization problem:

W ∗ = argmin
W∈W

L(W ; I), (12)

L(W ; I) :=
∑

(ij ,wj)∈I: W∪R|=¬ij

wj , (13)

where W ∪R |= ¬ij means that input ij is not satisfied in structure W according to the rulesR.

This general formulation includes both HEJ and ACI, which differ in the types of possible structures
W and the rules R. In HEJW represents all possible causal graphs (specifically, acyclic directed
mixed graphs, or ADMGs, in the acyclic case) andR are operations on d-connection graphs. In ACI
W represent ancestral structures (defined with the rules(2)-(4)) and the rulesR are rules (5)–(11).

Constrained optimization in ASP The constrained optimization problem in (12) can be imple-
mented using a variety of methods. Given the complexity of the rules, a formulation in an expressive
logical language that supports optimization, e.g., Answer Set Programming (ASP), is very convenient.
ASP is a widely used declarative programming language based on the stable model semantics [12, 7]
that has successfully been applied to several NP-hard problems. For ACI we use the state-of-the-art
ASP solver clingo 4 [6]. We provide the encoding in the Supplementary Material.

Weighting schemes ACI supports two types of input statements: conditional independences and
ancestral relations. These statements can each be assigned a weight that reflects their confidence. We
propose two simple approaches with the desirable properties of making ACI asymptotically consistent
under mild assumptions (as described in the end of this Section), and assigning a much smaller weight
to independences than to dependences (which agrees with the intuition that one is confident about a
measured strong dependence, but not about independence vs. weak dependence). The approaches are:

• a frequentist approach, in which for any appropriate frequentist statistical test with indepen-
dence as null hypothesis (resp. a non-ancestral relation), we define the weight:

w = | log p− logα|,where p = p-value of the test, α = significance level (e.g., 5%);
(14)

• a Bayesian approach, in which the weight of each input statement i using data set D is:

w = log
p(i|D)
p(¬i|D)

= log
p(D|i)
p(D|¬i)

p(i)

p(¬i)
, (15)

where the prior probability p(i) can be used as a tuning parameter.
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Given observational and interventional data, in which each intervention has a single known target (in
particular, it is not a fat-hand intervention [5]), a simple way to obtain a weighted ancestral statement
X 99K Y is with a two-sample test that tests whether the distribution of Y changes with respect to
its observational distribution when intervening on X . This approach conveniently applies to various
types of interventions: perfect interventions [16], soft interventions [14], mechanism changes [24],
and activity interventions [15]. The two-sample test can also be implemented as an independence test
that tests for the independence of Y and IX , the indicator variable that has value 0 for observational
samples and 1 for samples from the interventional distribution in which X has been intervened upon.

4 Scoring causal predictions

The constrained minimization in (12) may produce several optimal solutions, because the underlying
structure may not be identifiable from the inputs. To address this issue, we propose to use the loss
function (13) and score the confidence of a feature f (e.g., an ancestral relation X 99K Y ) as:

C(f) = min
W∈W

L(W ; I ∪ {(¬f,∞)})− min
W∈W

L(W ; I ∪ {(f,∞)}). (16)

Without going into details here, we note that the confidence (16) can be interpreted as a MAP
approximation of the log-odds ratio of the probability that feature f is true in a Markov Logic model:

P(f | I,R)
P(¬f | I,R)

=

∑
W∈W e−L(W ;I)1W∪R|=f∑
W∈W e−L(W ;I)1W∪R|=¬f

≈ maxW∈W e−L(W ;I∪{(f,∞)})

maxW∈W e−L(W ;I∪{(¬f,∞)}) = eC(f).

In this paper, we usually consider the features f to be ancestral relations, but the idea is more generally
applicable. For example, combined with HEJ it can be used to score direct causal relations.

Soundness and completeness Our scoring method is sound for oracle inputs:
Theorem 1. LetR be sound (not necessarily complete) causal reasoning rules. For any feature f ,
the confidence score C(f) of (16) is sound for oracle inputs with infinite weights.

Here, soundness means that C(f) = ∞ if f is identifiable from the inputs, C(f) = −∞ if ¬f
is identifiable from the inputs, and C(f) = 0 otherwise (neither are identifiable). As features, we
can consider for example ancestral relations f = X 99K Y for variables X,Y . We conjecture that
the rules (2)–(11) are “order-1-complete”, i.e., they allow one to deduce all (non)ancestral relations
that are identifiable from oracle conditional independences of order ≤ 1 in observational data. For
higher-order inputs additional rules can be derived. However, our primary interest in this work is
improving computation time and accuracy, and we are willing to sacrifice completeness. A more
detailed study of the completeness properties is left as future work.

Asymptotic consistency Denote the number of samples by N . For the frequentist weights in (14),
we assume that the statistical tests are consistent in the following sense:

log pN − logαN
P→
{
−∞ H1

+∞ H0,
(17)

as N →∞, where the null hypothesis H0 is independence/nonancestral relation and the alternative
hypothesis H1 is dependence/ancestral relation. Note that we need to choose a sample-size dependent
threshold αN such that αN → 0 at a suitable rate. Kalisch and Bühlmann [9] show how this can be
done for partial correlation tests under the assumption that the distribution is multivariate Gaussian.

For the Bayesian weighting scheme in (15), we assume that for N →∞,

wN
P→
{
−∞ if i is true
+∞ if i is false.

(18)

This will hold (as long as there is no model misspecification) under mild technical conditions for
finite-dimensional exponential family models. In both cases, the probability of a type I or type II
error will converge to 0, and in addition, the corresponding weight will converge to∞.
Theorem 2. LetR be sound (not necessarily complete) causal reasoning rules. For any feature f ,
the confidence score C(f) of (16) is asymptotically consistent under assumption (17) or (18).

Here, “asymptotically consistent” means that the confidence score C(f)→∞ in probability if f is
identifiably true, C(f)→ −∞ in probability if f is identifiably false, and C(f)→ 0 in probability
otherwise.
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Average execution time (s)
n c ACI HEJ BAFCI BACFCI
6 1 0.21 12.09 8.39 12.51
6 4 1.66 432.67 11.10 16.36
7 1 1.03 715.74 9.37 15.12
8 1 9.74 ≥ 2500 13.71 21.71
9 1 146.66 � 2500 18.28 28.51

(a)

0.1	

1	

10	

100	

1000	

10000	

1	
10
1	

20
1	

30
1	

40
1	

50
1	

60
1	

70
1	

80
1	

90
1	

10
01
	

11
01
	

12
01
	

13
01
	

14
01
	

15
01
	

16
01
	

17
01
	

18
01
	

19
01
	

Ex
ec
ut
io
n	
tim

e	
(s
)	

Instances	(sorted	by	solution	time)	

HEJ	 ACI	

(b)

Figure 1: Execution time comparison on synthetic data for the frequentist test on 2000 synthetic
models: (a) average execution time for different combinations of number of variables n and max.
order c; (b) detailed plot of execution times for n = 7, c = 1 (logarithmic scale).

5 Evaluation

In this section we report evaluations on synthetically generated data and an application on a real
dataset. Crucially, in causal discovery precision is often more important than recall. In many real-
world applications, discovering a few high-confidence causal relations is more useful than finding
every possible causal relation, as reflected in recently proposed algorithms, e.g., [17].

Compared methods We compare the predictions of ACI and of the acyclic causally insufficient
version of HEJ [8], when used in combination with our scoring method (16). We also evaluate two
standard methods: Anytime FCI [22, 26] and Anytime CFCI [4], as implemented in the pcalg R
package [10]. We use the anytime versions of (C)FCI because they allow for independence test
results up to a certain order. We obtain the ancestral relations from the output PAG using Theorem
3.1 from [20]. (Anytime) FCI and CFCI do not rank their predictions, but only predict the type of
relation: ancestral (which we convert to +1), non-ancestral (-1) and unknown (0). To get a scoring of
the predictions, we also compare with bootstrapped versions of Anytime FCI and Anytime CFCI.
We perform the bootstrap by repeating the following procedure 100 times: sample randomly half
of the data, perform the independence tests, run Anytime (C)FCI. From the 100 output PAGs we
extract the ancestral predictions and average them. We refer to these methods as BA(C)FCI. For a
fair comparison, we use the same independence tests and thresholds for all methods.

Synthetic data We simulate the data using the simulator from HEJ [8]: for each experimental
condition (e.g., a given number of variables n and order c), we generate randomly M linear acyclic
models with latent variables and Gaussian noise and sample N = 500 data points. We then perform
independence tests up to order c and weight the (in)dependence statements using the weighting
schemes described in Section 3. For the frequentist weights we use tests based on partial correlations
and Fisher’s z-transform to obtain approximate p-values (see, e.g., [9]) with significance level
α = 0.05. For the Bayesian weights, we use the Bayesian test for conditional independence presented
in [13] as implemented by HEJ with a prior probability of 0.1 for independence.

In Figure 1(a) we show the average execution times on a single core of a 2.80GHz CPU for different
combinations of n and c, while in Figure 1(b) we show the execution times for n = 7, c = 1, sorting
the execution times in ascending order. For 7 variables ACI is almost 3 orders of magnitude faster
than HEJ, and the difference grows exponentially as n increases. For 8 variables HEJ can complete
only four of the first 40 simulated models before the timeout of 2500s. For reference we add the
execution time for bootstrapped anytime FCI and CFCI.

In Figure 2 we show the accuracy of the predictions with precision-recall (PR) curves for both
ancestral (X 99K Y ) and nonancestral (X 699K Y ) relations, in different settings. In this Figure, for
ACI and HEJ all of the results are computed using frequentist weights and, as in all evaluations, our
scoring method (16). While for these two methods we use c = 1, for (bootstrapped) (C)FCI we use
all possible independence test results (c = n− 2). In this case, the anytime versions of FCI and CFCI
are equivalent to the standard versions of FCI and CFCI. Since the overall results are similar, we
report the results with the Bayesian weights in the Supplementary Material.

In the first row of Figure 2, we show the setting with n = 6 variables. The performances of HEJ
and ACI coincide, performing significantly better for nonancestral predictions and the top ancestral
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Figure 2: Accuracy on synthetic data for the two prediction tasks (ancestral and nonancestral relations)
using the frequentist test with α = 0.05. The left column shows the precision-recall curve for ancestral
predictions, the middle column shows a zoomed-in version in the interval (0,0.02), while the right
column shows the nonancestral predictions.

predictions (see zoomed-in version in Figure 2(b)). This is remarkable, as HEJ and ACI use only
independence test results up to order c = 1, in contrast with (C)FCI which uses independence test
results of all orders. Interestingly, the two discrete optimization algorithms do not seem to benefit
much from higher order independence tests, thus we omit them from the plots (although we add the
graphs in the Supplementary Material). Instead, bootstrapping traditional methods, oblivious to the
(in)dependence weights, seems to produce surprisingly good results. Nevertheless, both ACI and HEJ
outperform bootstrapped FCI and CFCI, suggesting these methods achieve nontrivial error-correction.

In the second row of Figure 2, we show the setting with 8 variables. In this setting HEJ is too slow. In
addition to the previous plot, we plot the accuracy of ACI when there is oracle background knowledge
on the descendants of one variable (i = 1). This setting simulates the effect of using interventional
data, and we can see that the performance of ACI improves significantly, especially in the ancestral
preditions. The performance of (bootstrapped) FCI and CFCI is limited by the fact that they cannot
take advantage of this background knowledge, except with complicated postprocessing [1].

Application on real data We consider the challenging task of reconstructing a signalling network
from flow cytometry data [21] under different experimental conditions. Here we consider one
experimental condition as the observational setting and seven others as interventional settings. More
details and more evaluations are reported in the Supplementary Material. In contrast to likelihood-
based approaches like [21, 5, 15, 19], in our approach we do not need to model the interventions
quantitatively. We only need to know the intervention targets, while the intervention types do not
matter. Another advantage of our approach is that it takes into account possible latent variables.

We use a t-test to test for each intervention and for each variable whether its distribution changes
with respect to the observational condition. We use the p-values of these tests as in (14) in order to
obtain weighted ancestral relations that are used as input (with threshold α = 0.05). For example, if
adding U0126 (a MEK inhibitor) changes the distribution of RAF significantly with respect to the
observational baseline, we get a weighted ancestral relation MEK99KRAF. In addition, we use partial
correlations up to order 1 (tested in the observational data only) to obtain weighted independences
used as input. We use ACI with (16) to score the ancestral relations for each ordered pair of variables.
The main results are illustrated in Figure 3, where we compare ACI with bootstrapped anytime CFCI
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Figure 3: Results for flow cytometry dataset. Each matrix represents the ancestral relations, where
each row represents a cause and each column an effect. The colors encode the confidence levels:
green is positive, black is unknown, while red is negative. The intensity of the color represents the
degree of confidence. For example, ACI identifies MEK to be a cause of RAF with high confidence.

under different inputs. The output for boostrapped anytime FCI is similar, so we report it only in
the Supplementary Material. Algorithms like (anytime) (C)FCI can only use the independences in
the observational data as input and therefore miss the strongest signal, weighted ancestral relations,
which are obtained by comparing interventional with observational data. In the Supplementary
Material, we compare also with other methods ([17], [15]). Interestingly, as we show there, our
results are similar to the best acyclic model reconstructed by the score-based method from [15]. As for
other constraint-based methods, HEJ is computationally unfeasible in this setting, while COMBINE
assumes perfect interventions (while this dataset contains mostly activity interventions).

Notably, our algorithms can correctly recover from faithfulness violations (e.g., the independence
between MEK and ERK), because they take into account the weight of the input statements (the weight
of the independence is considerably smaller than that of the ancestral relation, which corresponds
with a quite significant change in distribution). In contrast, methods that start by reconstructing the
skeleton, like (anytime) (C)FCI, would decide that MEK and ERK are nonadjacent, and are unable to
recover from that erroneous decision. This illustrates another advantage of our approach.

6 Discussion and conclusions

As we have shown, ancestral structures are very well-suited for causal discovery. They offer a
natural way to incorporate background causal knowledge, e.g., from experimental data, and allow a
huge computational advantage over existing representations for error-correcting algorithms, such as
[8]. When needed, ancestral structures can be mapped to a finer-grained representation with direct
causal relations, as we sketch in the Supplementary Material. Furthermore, confidence estimates on
causal predictions are extremely helpful in practice, and can significantly boost the reliability of the
output. Although standard methods, like bootstrapping (C)FCI, already provide reasonable estimates,
methods that take into account the confidence in the inputs, as the one presented here, can lead to
further improvements of the reliability of causal relations inferred from data.

Strangely (or fortunately) enough, neither of the optimization methods seems to improve much with
higher order independence test results. We conjecture that this may happen because our loss function
essentially assumes that the test results are independent from another (which is not true). Finding a
way to take this into account in the loss function may further improve the achievable accuracy, but
such an extension may not be straightforward.
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