
Nested General Recursion and Partiality

in Type Theory

Ana Bove1 and Venanzio Capretta2

1 Department of Computing Science, Chalmers University of Technology
412 96 Göteborg, Sweden

e-mail: bove@cs.chalmers.se
telephone: +46-31-7721020, fax: +46-31-165655

2 Computing Science Institute, University of Nijmegen
Postbus 9010, 6500 GL Nijmegen, The Netherlands

e-mail: venanzio@cs.kun.nl
telephone: +31+24+3652647, fax: +31+24+3553450

Abstract. We extend Bove’s technique for formalising simple general
recursive algorithms in constructive type theory to nested recursive al-
gorithms. The method consists in defining an inductive special-purpose
accessibility predicate, that characterizes the inputs on which the algo-
rithm terminates. As a result, the type-theoretic version of the algorithm
can be defined by structural recursion on the proof that the input val-
ues satisfy this predicate. This technique results in definitions in which
the computational and logical parts are clearly separated; hence, the
type-theoretic version of the algorithm is given by its purely functional
content, similarly to the corresponding program in a functional program-
ming language. In the case of nested recursion, the special predicate and
the type-theoretic algorithm must be defined simultaneously, because
they depend on each other. This kind of definitions is not allowed in
ordinary type theory, but it is provided in type theories extended with
Dybjer’s schema for simultaneous inductive-recursive definitions. The
technique applies also to the formalisation of partial functions as proper
type-theoretic functions, rather than relations representing their graphs.

1 Introduction

Constructive type theory (see for example [ML84,CH88]) can be seen as a pro-
gramming language where specifications are represented as types and programs
as elements of types. Therefore, algorithms are correct by construction or can
be proved correct by using the expressive power of constructive type theory.

Although this paper is intended mainly for those who already have some
knowledge of type theory, we recall the basic ideas that we use here. The basic
notion in type theory is that of type. A type is explained by saying what its
objects are and what it means for two of its objects to be equal. We write a ∈ α
for “a is an object of type α”.

We consider a basic type and two type formers.

R.J. Boulton and P.B. Jackson (Eds.): TPHOLs 2001, LNCS 2152, pp. 121–135, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



122 Ana Bove and Venanzio Capretta

The basic type comprises sets and propositions and we call it Set. Both sets
and propositions are inductively defined. A proposition is interpreted as a set
whose elements represent its proofs. In conformity with the explanation of what
it means to be a type, we know that A is an object of Set if we know how to
form its canonical elements and when two canonical elements are equal.

The first type former constructs the type of the elements of a set: for each set
A, the elements of A form a type. If a is an element of A, we say that a has type
A. Since every set is inductively defined, we know how to build its elements.

The second type former constructs the types of dependent functions. Let α
be a type and β be a family of types over α, that is, for every element a in α,
β(a) is a type. We write (x ∈ α)β(x) for the type of dependent functions from
α to β. If f has type (x ∈ α)β(x), then, when we apply f to an object a of type
α, we obtain an object f(a) of type β(a).

A set former or, in general, any inductive definition is introduced as a con-
stant A of type (x1 ∈ α1; . . . ; xn ∈ αn)Set, for α1, . . . , αn types. We must spec-
ify the constructors that generate the elements of A(a1, . . . , an) by giving their
types, for a1 ∈ A1,. . . ,an ∈ An.

Abstractions are written as [x1, . . . , xn]e and theorems are introduced as de-
pendent types of the form (x1 ∈ α1; . . . ; xn ∈ αn)β(x1, . . . , xn). If the name of a
variable is not important, one can simply write (α) instead of (x ∈ α), both in the
introduction of inductive definitions and in the declaration of (dependent) func-
tions. We write (x1, x2, . . . , xn ∈ α) instead of (x1 ∈ α; x2 ∈ α; . . . ; xn ∈ α).

General recursive algorithms are defined by cases where the recursive calls
are performed on objects that satisfy no syntactic condition guaranteeing ter-
mination. As a consequence, there is no direct way of formalising them in type
theory. The standard way of handling general recursion in type theory uses a
well-founded recursion principle derived from the accessibility predicate Acc (see
[Acz77,Nor88,BB00]). The idea behind the accessibility predicate is that an ele-
ment a is accessible by a relation ≺ if there exists no infinite decreasing sequence
starting from a. A set A is said to be well-founded with respect to ≺ if all its
elements are accessible by ≺. Formally, given a set A, a binary relation ≺ on A
and an element a in A, we can form the set Acc(A,≺, a). The only introduction
rule for the accessibility predicate is

a ∈ A p ∈ (x ∈ A; h ∈ x ≺ a)Acc(A,≺, x)
acc(a, p) ∈ Acc(A,≺, a)

.

The corresponding elimination rule, also known as the rule of well-founded re-
cursion, is

a ∈ A
h ∈ Acc(A,≺, a)

e ∈ (x ∈ A; hx ∈ Acc(A,≺, x); px ∈ (y ∈ A; q ∈ y ≺ x)P (y))P (x)
wfrec(a, h, e) ∈ P (a)

and its computation rule is

wfrec(a, acc(a, p), e) = e(a, acc(a, p), [y, q]wfrec(y, p(y, q), e)) ∈ P (a).



Nested General Recursion and Partiality in Type Theory 123

Hence, to guarantee that a general recursive algorithm that performs the
recursive calls on elements of type A terminates, we have to prove that A is
well-founded and that the arguments supplied to the recursive calls are smaller
than the input.

Since Acc is a general predicate, it gives no information that can help us
in the formalisation of a specific recursive algorithm. As a consequence, its use
in the formalisation of general recursive algorithms often results in long and
complicated code. On the other hand, functional programming languages like
Haskell [JHe+99] impose no restrictions on recursive programs; therefore, writing
general recursive algorithms in Haskell is straightforward. In addition, functional
programs are usually short and self-explanatory. However, there is no powerful
framework to reason about the correctness of Haskell-like programs.

Bove [Bov01] introduces a method to formalise simple general recursive al-
gorithms in type theory (by simple we mean non-nested and non-mutually re-
cursive) in a clear and compact way. We believe that this technique helps to
close the gap between programming in a functional language and programming
in type theory.

This work is similar to that of Paulson in [Pau86]. He defines an ordering
associated with the recursive steps of an algorithm, such that the inputs on
which the algorithm terminates are the objects accessible by the order. Then he
defines the algorithm by induction on the order. The proof of termination for
the algorithm reduces to a proof that the order is wellfounded. Bove’s idea is a
translation of this in the framework of type theory in a way more convenient than
the straightforward translation. Given the Haskell version of an algorithm f alg,
the method in [Bov01] uses an inductive special-purpose accessibility predicate
called fAcc. We construct this predicate directly from f alg, and we regard it
as a characterization of the collection of inputs on which f alg terminates. It
has an introduction rule for each case in the algorithm and provides a syntactic
condition that guarantees termination. In this way, we can formalise f alg in type
theory by structural recursion on the proof that the input of f alg satisfies fAcc,
obtaining a compact and readable formalisation of the algorithm.

However, the technique in [Bov01] cannot be immediately applied to nested
recursive algorithms. Here, we present a method for formalising nested recursive
algorithms in type theory in a similar way to the one used in [Bov01]. Thus,
we obtain short and clear formalisations of nested recursive algorithms in type
theory. This technique uses the schema for simultaneous inductive-recursive def-
initions presented by Dybjer in [Dyb00]; hence, it can be used only in type
theories extended with such schema.

The rest of the paper is organised as follows. In section 2, we illustrate the
method used in [Bov01] on a simple example. In addition, we point out the
advantages of this technique over the standard way of defining general recursive
algorithms in type theory by using the predicate Acc. In section 3, we adapt
the method to nested recursive algorithms, using Dybjer’s schema. In section 4,
we show how the method can be put to use also in the formalisation of partial
functions. Finally, in section 5, we present some conclusions and related work.



124 Ana Bove and Venanzio Capretta

2 Simple General Recursion in Type Theory

Here, we illustrate the technique used in [Bov01] on a simple example: the modulo
algorithm on natural numbers. In addition, we point out the advantages of this
technique over the standard way of defining general recursive algorithms in type
theory by using the accessibility predicate Acc.

First, we give the Haskell version of the modulo algorithm. Second, we define
the type-theoretic version of it that uses the standard accessibility predicate Acc
to handle the recursive call, and we point out the problems of this formalisation.
Third, we introduce a special-purpose accessibility predicate, ModAcc, specifi-
cally defined for this case study. Intuitively, this predicate defines the collection
of pairs of natural numbers on which the modulo algorithm terminates. Fourth,
we present a formalisation of the modulo algorithm in type theory by structural
recursion on the proof that the input pair of natural numbers satisfies the predi-
cate ModAcc. Finally, we show that all pairs of natural numbers satisfy ModAcc,
which implies that the modulo algorithm terminates on all inputs.

In the Haskell definition of the modulo algorithm we use the set N of natural
numbers, the subtraction operation <-> and the less-than relation << over N,
defined in Haskell in the usual way. We also use Haskell’s data type Maybe A,
whose elements are Nothing and Just a, for any a of type A. Here is the Haskell
code for the modulo algorithm1:

mod :: N -> N -> Maybe N
mod n 0 = Nothing
mod n m | n << m = Just n

| not(n << m) = mod (n <-> m) m.

It is evident that this algorithm terminates on all inputs. However, the recursive
call is made on the argument n − m, which is not structurally smaller than the
argument n, although the value of n − m is smaller than n.

Before introducing the type-theoretic version of the algorithm that uses the
standard accessibility predicate, we give the types of two operators and two
lemmas2:

− ∈ (n, m ∈ N)N less-dec ∈ (n, m ∈ N)Dec(n < m)
< ∈ (n, m ∈ N)Set min-less ∈ (n, m ∈ N;¬(n < s(m)))(n − s(m) < n).

On the left side we have the types of the subtraction operation and the less-
than relation over natural numbers. On the right side we have the types of two
lemmas that we use later on. The first lemma states that it is decidable whether
a natural number is less than another. The second lemma establishes that if the
natural number n is not less than the natural number s(m), then the result of
subtracting s(m) from n is less than n. 3

1 For the sake of simplicity, we ignore efficiency aspects such as the fact that the
expression n << m is computed twice.

2 Dec is the decidability predicate: given a proposition P , Dec(P ) ≡ P ∨ ¬P .
3 The hypothesis (n − s(m) < n) is necessary because the subtraction of a larger
number from a smaller one is set to be 0 by default.



Nested General Recursion and Partiality in Type Theory 125

In place of Haskell’s Maybe type, we use the type-theoretic disjunction of
the set N of natural numbers and the singleton set Error whose only element is
error. The type-theoretic version of the modulo algorithm that uses the standard
accessibility predicate Acc to handle the recursive call is4

modacc ∈ (n, m ∈ N;Acc(N, <, n))N ∨ Error
modacc(n, 0, acc(n, p)) = inr(error)
modacc(n, s(m1), acc(n, p)) =

case less-dec(n, s(m1)) ∈ Dec(n < s(m1)) of
inl(q1) ⇒ inl(n)
inr(q2)⇒ modacc(n − s(m1), s(m1), p(n − s(m1), min-less(n, m1, q2)))

end.

This algorithm is defined by recursion on the proof that the first argument of
the modulo operator is accessible by <. We first distinguish cases on m. If m is
zero, we return an error, because the modulo zero operation is not defined. If m
is equal to s(m1) for some natural number m1, we distinguish cases on whether n
is smaller than s(m1). If so, we return the value n. Otherwise, we subtract s(m1)
from n and we call the modulo algorithm recursively on the values n−s(m1) and
s(m1). The recursive call needs a proof that the value n − s(m1) is accessible.
This proof is given by the expression p(n − s(m1), min-less(n, m1, q2)), which is
structurally smaller than acc(n, p).

We can easily define a function allaccN that, applied to a natural number
n, returns a proof that n is accessible by <. We use this function to define the
desired modulo algorithm:

Modacc ∈ (n, m ∈ N)N ∨ Error
Modacc(n, m) = modacc(n, m, allaccN(n)).

The main disadvantage of this formalisation of the modulo algorithm is that we
have to supply a proof that n − s(m1) is accessible by < to the recursive call.
This proof has no computational content and its only purpose is to serve as a
structurally smaller argument on which to perform the recursion. Notice that,
even for such a small example, this accessibility proof distracts our attention
and enlarges the code of the algorithm.

To overcome this problem, we define a special-purpose accessibility predicate,
ModAcc, containing information that helps us to write a new type-theoretic ver-
sion of the algorithm. To construct this predicate, we ask ourselves the following
question: on which inputs does the modulo algorithm terminate? To find the
answer, we inspect closely the Haskell version of the modulo algorithm. We can
directly extract from its structure the conditions that the input values should
satisfy to produce a basic (that is, non recursive) result or to perform a termi-
nating recursive call. In other words, we formulate the property that an input
value must satisfy for the computation to terminate: either the algorithm does

4 The set former ∨ represents the disjunction of two sets, and inl and inr the two
constructors of the set.



126 Ana Bove and Venanzio Capretta

not perform any recursive call, or the values on which the recursive calls are
performed have themselves the property. We distinguish three cases:

– if the input numbers are n and zero, then the algorithm terminates;
– if the input number n is less than the input number m, then the algorithm
terminates;

– if the number n is not less than the number m and m is not zero5, then the
algorithm terminates on the inputs n and m if it terminates on the inputs
n − m and m.

Following this description, we define the inductive predicate ModAcc over
pairs of natural numbers by the introduction rules (for n andm natural numbers)

ModAcc(n, 0)
,

n < m

ModAcc(n, m)
,

¬(m = 0) ¬(n < m) ModAcc(n − m, m)
ModAcc(n, m)

.

This predicate can easily be formalised in type theory:

ModAcc ∈ (n, m ∈ N)Set
modacc0 ∈ (n ∈ N)ModAcc(n, 0)
modacc< ∈ (n, m ∈ N;n < m)ModAcc(n, m)
modacc≥ ∈ (n, m ∈ N;¬(m = 0);¬(n < m);ModAcc(n − m, m))

ModAcc(n, m).

We now use this predicate to formalise the modulo algorithm in type theory:

mod ∈ (n, m ∈ N;ModAcc(n, m))N ∨ Error
mod(n, 0, modacc0(n)) = inr(error)
mod(n, m, modacc<(n, m, q)) = inl(n)
mod(n, m, modacc≥(n, m, q1, q2, h)) = mod(n − m, m, h).

This algorithm is defined by structural recursion on the proof that the input
pair of numbers satisfies the predicate ModAcc. The first two equations are
straightforward. The last equation considers the case where n is not less than
m; here q1 is a proof that m is different from zero, q2 is a proof that n is not less
than m and h is a proof that the pair (n − m, m) satisfies the predicateModAcc.
In this case, we call the algorithm recursively on the values n − m and m. We
have to supply a proof that the pair (n − m, m) satisfies the predicate ModAcc
to the recursive call, which is given by the argument h.

To prove that the modulo algorithm terminates on all inputs, we use the
auxiliary lemma modaccaux. Given a natural number m, this lemma proves
ModAcc(i, m), for i an accessible natural number, from the assumption that
ModAcc(j, m) holds for every natural number j smaller than i. The proof pro-
ceeds by case analysis on m and, when m is equal to s(m1) for some natural

5 Observe that this condition is not needed in the Haskell version of the algorithm due
to the order in which Haskell processes the equations that define an algorithm.



Nested General Recursion and Partiality in Type Theory 127

number m1, by cases on whether i is smaller than s(m1). The term nots0(m1) is
a proof that s(m1) is different from 0.

modaccaux ∈ (m, i ∈ N;Acc(N, <, i); f ∈ (j ∈ N; j < i)ModAcc(j, m))
ModAcc(i, m)

modaccaux(0, i, h, f) = modacc0(i)
modaccaux(s(m1), i, h, f) =

case less-dec(i, s(m1)) ∈ Dec(i < s(m1)) of
inl(q1) ⇒ modacc<(i, s(m1), q1)
inr(q2)⇒ modacc≥(i, s(m1), nots0(m1), q2,

f(i − s(m1), min-less(i, m1, q2)))
end

Now, we prove that the modulo algorithm terminates on all inputs, that is, we
prove that all pairs of natural numbers satisfy ModAcc6:

allModAcc ∈ (n, m ∈ N)ModAcc(n, m)
allModAcc(n, m) = wfrec(n, allaccN(n), modaccaux(m)).

Notice that the skeleton of the proof of the function modaccaux is very similar
to the skeleton of the algorithm modacc.

Finally, we can use the previous function to write the final modulo algorithm:

Mod ∈ (n, m ∈ N)N ∨ Error
Mod(n, m) = mod(n, m, allModAcc(n, m)).

Observe that, even for such a small example, the version of the algorithm
that uses our special predicate is slightly shorter and more readable than the
type-theoretic version of the algorithm that is defined by using the predicate
Acc. Notice also that we were able to move the non-computational parts from
the code of modacc into the proof that the predicateModAcc holds for all possible
inputs, thus separating the actual algorithm from the proof of its termination.

We hope that, by now, the reader is quite familiar with our notation. So, in
the following sections, we will not explain the type-theoretic codes in detail.

3 Nested Recursion in Type Theory

The technique we have just described to formalise simple general recursion can-
not be applied to nested general recursive algorithms in a straightforward way.
We illustrate the problem on a simple nested recursive algorithm over natural
numbers. Its Haskell definition is

nest :: N -> N
nest 0 = 0
nest (S n) = nest(nest n).

6 Here, we use the general recursor wfrec with the elimination predicate P (n) ≡
ModAcc(n, m).



128 Ana Bove and Venanzio Capretta

Clearly, this is a total algorithm returning 0 on every input.
If we want to use the technique described in the previous section to formalise

this algorithm, we need to define an inductive special-purpose accessibility pred-
icate NestAcc over the natural numbers. To construct NestAcc, we ask ourselves
the following question: on which inputs does the nest algorithm terminate? By
inspecting the Haskell version of the nest algorithm, we distinguish two cases:

– if the input number is 0, then the algorithm terminates;
– if the input number is s(n) for some natural number n, then the algorithm
terminates if it terminates on the inputs n and nest(n).

Following this description, we define the inductive predicate NestAcc over
natural numbers by the introduction rules (for n natural number)

NestAcc(0)
,

NestAcc(n) NestAcc(nest(n))
NestAcc(s(n))

.

Unfortunately, this definition is not correct since nest is not yet defined. More-
over, the purpose of defining the predicate NestAcc is to be able to define the
algorithm nest by structural recursion on the proof that its input value satisfies
NestAcc. Hence, the definitions of NestAcc and nest are locked in a vicious circle.

However, there is an extension of type theory that gives us the means to define
the predicate NestAcc inductively generated by two constructors corresponding
to the two introduction rules of the previous paragraph. This extension has been
introduced by Dybjer in [Dyb00] and it allows the simultaneous definition of an
inductive predicate P and a function f , where f has the predicate P as part of
its domain and is defined by recursion on P . In our case, given the input value
n, nest requires an argument of type NestAcc(n). Using Dybjer’s schema, we can
simultaneously define NestAcc and nest:

NestAcc ∈ (n ∈ N)Set
nest ∈ (n ∈ N;NestAcc(n))N

nestacc0 ∈ NestAcc(0)
nestaccs ∈ (n ∈ N;h1 ∈ NestAcc(n);h2 ∈ NestAcc(nest(n, h1)))

NestAcc(s(n))

nest(0, nestacc0) = 0
nest(s(n), nestaccs(n, h1, h2)) = nest(nest(n, h1), h2).

This definition may at first look circular: the type of nest requires that the
predicate NestAcc is defined, while the type of the constructor nestaccs of the
predicate NestAcc requires that nest is defined. However, we can see that it is
not so by analysing how the elements in NestAcc and the values of nest are
generated. First of all, NestAcc(0) is well defined because it does not depend on
any assumption and its only element is nestacc0. Once NestAcc(0) is defined,
the result of nest on the inputs 0 and nestacc0 becomes defined and its value is
0. Now, we can apply the constructor nestaccs to the arguments n = 0, h1 =



Nested General Recursion and Partiality in Type Theory 129

nestacc0 and h2 = nestacc0. This application is well typed since h2 must be
an element in NestAcc(nest(0, nestacc0)), that is, NestAcc(0). At this point, we
can compute the value of nest(s(0), nestaccs(0, nestacc0, nestacc0)) and obtain
the value zero7, and so on. Circularity is avoided because the values of nest can
be computed at the moment a new proof of the predicate NestAcc is generated;
in turn, each constructor of NestAcc calls nest only on those arguments that
appear previously in its assumptions, for which we can assume that nest has
already been computed.

The next step consists in proving that the predicate NestAcc is satisfied by
all natural numbers:

allNestAcc ∈ (n ∈ N)NestAcc(n).

This can be done by first proving that, given a natural number n and a proof
h of NestAcc(n), nest(n, h) ≤ n (by structural recursion on h), and then using
well-founded recursion on the set of natural numbers.

Now, we define Nest as a function from natural numbers to natural numbers:

Nest ∈ (n ∈ N)N
Nest(n) = nest(n, allNestAcc(n)).

Notice that by making the simultaneous definition of NestAcc and nest we
can treat nested recursion similarly to how we treat simple recursion. In this
way, we obtain a short and clear formalisation of the nest algorithm.

To illustrate our technique for nested general recursive algorithms in more
interesting situations, we present a slightly more complicated example: Paulson’s
normalisation function for conditional expressions [Pau86]. Its Haskell definition
is

data CExp = At | If CExp CExp CExp

nm :: CExp -> CExp
nm At = At
nm (If At y z) = If At (nm y) (nm z)
nm (If (If u v w) y z)= nm (If u (nm (If v y z)) (nm (If w y z))).

To define the special-purpose accessibility predicate, we study the different
equations in the Haskell version of the algorithm, putting the emphasis on the
input expressions and the expressions on which the recursive calls are performed.
We obtain the following introduction rules for the inductive predicate nmAcc (for
y, z, u, v and w conditional expressions):

nmAcc(At)
,

nmAcc(y) nmAcc(z)
nmAcc(If(At, y, z))

,

nmAcc(If(v, y, z))
nmAcc(If(w, y, z))

nmAcc(If(u, nm(If(v, y, z)), nm(If(w, y, z))))
nmAcc(If(If(u, v, w), y, z))

.

7 Since nest(s(0), nestaccs(0, nestacc0, nestacc0)) = nest(nest(0, nestacc0), nestacc0) =
nest(0, nestacc0) = 0.



130 Ana Bove and Venanzio Capretta

In type theory, we define the inductive predicate nmAcc simultaneously with
the function nm, recursively defined on nmAcc:

nmAcc ∈ (e ∈ CExp)Set
nm ∈ (e ∈ CExp; nmAcc(e))CExp

nmacc1 ∈ nmAcc(At)
nmacc2 ∈ (y, z ∈ CExp; nmAcc(y); nmAcc(z))nmAcc(If(At, y, z))
nmacc3 ∈ (u, v, w, y, z ∈ CExp;

h1 ∈ nmAcc(If(v, y, z));h2 ∈ nmAcc(If(w, y, z));
h3 ∈ nmAcc(If(u, nm(If(v, y, z), h1), nm(If(w, y, z), h2))))
nmAcc(If(If(u, v, w), y, z))

nm(At, nmacc1) = At
nm(If(At, y, z), nmacc2(y, z, h1, h2)) = If(At, nm(y, h1), nm(z, h2))
nm(If(If(u, v, w), y, z), nmacc3(u, v, w, y, z, h1, h2, h3)) =

nm(If(u, nm(If(v, y, z), h1), nm(If(w, y, z), h2)), h3).

We can justify this definition as we did for the nest algorithm, reasoning about
the well-foundedness of the recursive calls: the function nm takes a proof that
the input expression satisfies the predicate nmAcc as an extra argument and it
is defined by structural recursion on that proof, and each constructor of nmAcc
calls nm only on those proofs that appear previously in its assumptions, for
which we can assume that nm has already been computed.

Once again, the next step consists in proving that the predicate nmAcc is
satisfied by all conditional expressions:

allnmAcc ∈ (e ∈ CExp)nmAcc(e).

To do this, we first show that the constructors of the predicate nmAcc use in-
ductive assumptions on smaller arguments, though not necessarily structurally
smaller ones. To that end, we define a measure that assigns a natural number
to each conditional expression:

|At| = 1 and |If(x, y, z)| = |x| ∗ (1 + |y|+ |z|).
With this measure, it is easy to prove that

|If(v, y, z)| < |If(If(u, v, w), y, z)|, |If(w, y, z)| < |If(If(u, v, w), y, z)|
and |If(u, v′, w′)| < |If(If(u, v, w), y, z)|

for every v′, w′ such that |v′| ≤ |If(v, y, z)| and |w′| ≤ |If(w, y, z)|. Therefore, to
prove that the predicate nmAcc holds for a certain e ∈ CExp, we need to call nm
only on those arguments that have smaller measure than e8.

Now, we can prove that every conditional expression satisfies nmAcc by
first proving that, given a conditional expression e and a proof h of nmAcc(e),
8 We could have done something similar in the case of the algorithm nest by defining
the measure |x| = x and proving the inequality y < s(x) for every y ≤ x.



Nested General Recursion and Partiality in Type Theory 131

|nm(e, h)| ≤ |e| (by structural recursion on h), and then using well-founded re-
cursion on the set of natural numbers.

We can then define NM as a function from conditional expressions to condi-
tional expressions:

NM ∈ (e ∈ CExp)CExp
NM(e) = nm(e, allnmAcc(e)).

4 Partial Functions in Type Theory

Until now we have applied our technique to total functions for which totality
could not be proven easily by structural recursion. However, it can also be put to
use in the formalisation of partial functions. A standard way to formalise partial
functions in type theory is to define them as relations rather than objects of
a function type. For example, the minimization operator for natural numbers,
which takes a function f ∈ (N)N as input and gives the least n ∈ N such that
f(n) = 0 as output, cannot be represented as an object of type ((N)N)N because
it does not terminate on all inputs. A standard representation of this operator
in type theory is the inductive relation

µ ∈ (f ∈ (N)N;n ∈ N)Set
µ0 ∈ (f ∈ (N)N; f(0) = 0)µ(f, 0)
µ1 ∈ (f ∈ (N)N; f(0) 
= 0;n ∈ N;µ([m]f(s(m)), n))µ(f, s(n)).

The relation µ represents the graph of the minimization operator. If we indi-
cate the minimization function by min, then µ(f, n) is inhabited if and only if
min(f) = n. The fact that min may be undefined on some function f is expressed
by µ(f, n) being empty for every natural number n.

There are reasons to be unhappy with this approach. First, for a relation to
really define a partial function, we must prove that it is univocal: in our case,
that for all n, m ∈ N, if µ(f, n) and µ(f, m) are both nonempty then n = m.
Second, there is no computational content in this representation, that is, we
cannot actually compute the value of min(f) for any f .

Let us try to apply our technique to this example and start with the Haskell
definition of min:

min :: (N -> N) -> N
min f | f 0 == 0 = 0

| f 0 /= 0 = s (min (\m -> f (s m))).

We observe that the computation of min on the input f terminates if f(0) = 0
or if f(0) 
= 0 and min terminates on the input [m]f(s(m)). This leads to the
inductive definition of the special predicate minAcc on functions defined by the
introduction rules (for f a function from natural numbers to natural numbers
and m a natural number)

f(0) = 0
minAcc(f)

,
f(0) 
= 0 minAcc([m]f(s(m)))

minAcc(f)
.



132 Ana Bove and Venanzio Capretta

We can directly translate these rules into type theory:

minAcc ∈ (f ∈ (N)N)Set
minacc0 ∈ (f ∈ (N)N; f(0) = 0)minAcc(f)
minacc1 ∈ (f ∈ (N)N; f(0) 
= 0;minAcc([m]f(s(m))))minAcc(f).

Now, we define min for those inputs that satisfy minAcc:

min ∈ (f ∈ (N)N;minAcc(f))N
min(f, minacc0(f, q)) = 0
min(f, minacc1(f, q, h)) = s(min([m]f(s(m)), h)).

In this case, it is not possible to prove that all elements in (N)N satisfy the
special predicate, simply because it is not true. However, given a function f , we
may first prove minAcc(f) (that is, that the recursive calls in the definition of
min are well-founded and, thus, that the function min terminates for the input
f) and then use min to actually compute the value of the minimization of f .

Partial functions can also be defined by occurrences of nested recursive calls,
in which case we need to use simultaneous inductive-recursive definitions. We
show how this works on the example of the normal-form function for terms of
the untyped λ-calculus. The Haskell program that normalises λ-terms is

data Lambda = Var N | Abst N Lambda | App Lambda Lambda

sub :: Lambda -> N -> Lambda -> Lambda

nf :: Lambda -> Lambda
nf (Var i) = Var i
nf (Abst i a) = Abst i (nf a)
nf (App a b) = case (nf a) of

Var i -> App (Var i) (nf b)
Abst i a’ -> nf (sub a’ i b)
App a’ a’’ -> App (App a’ a’’) (nf b).

The elements of Lambda denote λ-terms: Var i, Abst i a and App a b denote
the variable xi, the term (λxi.a) and the term a(b), respectively. We assume
that a substitution algorithm sub is given, such that (sub a i b) computes the
term a[xi := b].

Notice that the algorithm contains a hidden nested recursion: in the second
sub-case of the case expression, the term a’, produced by the call (nf a), ap-
pears inside the call nf (sub a’ i b). This sub-case could be written in the
following way, where we abuse notation to make the nested calls explicit:

nf (App a b) = nf (let (Abst i a’) = nf a in (sub a’ i b)).

Let Λ be the type-theoretic definition of Lambda. To formalise the algorithm,
we use the method described in the previous section with simultaneous induction-
recursion definitions. The introduction rules for the special predicate nfAcc, some



Nested General Recursion and Partiality in Type Theory 133

of which use nf in their premises, are (for i natural number, and a, a′, a′′ and b
λ-terms)

nfAcc(Var(i))
,

nfAcc(a) nfAcc(b) nf(a) = Var(i)
nfAcc(App(a, b))

,

nfAcc(a)
nfAcc(Abst(i, a))

,
nfAcc(a) nf(a) = Abst(i, a′) nfAcc(sub(a′, i, b))

nfAcc(App(a, b))
,

nfAcc(a) nfAcc(b) nf(a) = App(a′, a′′)
nfAcc(App(a, b))

.

To write a correct type-theoretic definition, we must define the inductive
predicate nfAcc simultaneously with the function nf, recursively defined on nfAcc:

nfAcc ∈ (x ∈ Λ)Set
nf ∈ (x ∈ Λ; nfAcc(x))Λ

nfacc1 ∈ (i ∈ N)nfAcc(Var(i))
nfacc2 ∈ (i ∈ N; a ∈ Λ;ha ∈ nfAcc(a))nfAcc(Abst(i, a))
nfacc3 ∈ (a, b ∈ Λ;ha ∈ nfAcc(a);hb ∈ nfAcc(b); i ∈ N; nf(a, ha) = Var(i))

nfAcc(App(a, b))
nfacc4 ∈ (a, b ∈ Λ;ha ∈ nfAcc(a); i ∈ N; a′ ∈ Λ;

nf(a, ha) = Abst(i, a′); nfAcc(sub(a′, i, b)))
nfAcc(App(a, b))

nfacc5 ∈ (a, b ∈ Λ;ha ∈ nfAcc(a);hb ∈ nfAcc(b);
a′, a′′ ∈ Λ; nf(a, ha) = App(a′, a′′))
nfAcc(App(a, b))

nf(Var(i), nfacc1(i)) = Var(i)
nf(Abst(i, a), nfacc2(i, a, ha)) = Abst(i, nf(a, ha))
nf(App(a, b), nfacc3(a, b, ha, hb, i, q)) = App(Var(i), nf(b, hb))
nf(App(a, b), nfacc4(a, b, ha, i, a

′, q, h)) = nf(sub(a′, i, b), h)
nf(App(a, b), nfacc5(a, b, ha, hb, a

′, a′′, q)) = App(App(a′, a′′), nf(b, hb)).

5 Conclusions and Related Work

We describe a technique to formalise algorithms in type theory that separates the
computational and logical parts of the definition. As a consequence, the resulting
type-theoretic algorithms are compact and easy to understand. They are as
simple as their Haskell versions, where there is no restriction on the recursive
calls. The technique was originally developed by Bove for simple general recursive
algorithms. Here, we extend it to nested recursion using Dybjer’s schema for
simultaneous inductive-recursive definitions. We also show how we can use this
technique to formalise partial functions. Notice that the proof of the special
predicate for a particular input is a trace of the computation of the original



134 Ana Bove and Venanzio Capretta

algorithm, therefore its structural complexity is proportional to the number of
steps of the algorithm.

We believe that our technique simplifies the task of formal verification. Often,
in the process of verifying complex algorithms, the formalisation of the algorithm
is so complicated and clouded with logical information, that the formal verifica-
tion of its properties becomes very difficult. If the algorithm is formalised as we
propose, the simplicity of its definition would make the task of formal verification
dramatically easier.

The examples we presented have been formally checked using the proof as-
sistant ALF (see [AGNvS94,MN94]), which supports Dybjer’s schema.

There are not many studies on formalising general recursion in type theory,
as far as we know. In [Nor88], Nordström uses the predicate Acc for that purpose.
Balaa and Bertot [BB00] use fix-point equations to obtain the desired equalities
for the recursive definitions, but one still has to mix the actual algorithm with
proofs concerning the well-foundedness of the recursive calls. In any case, their
methods do not provide simple definitions for nested recursive algorithms. Both
Giesl [Gie97], from where we took some of our examples, and Slind [Sli00] have
methods to define nested recursive algorithms independently of their proofs of
termination. However, neither of them works in the framework of constructive
type theory. Giesl works in first order logic and his main concern is to prove
termination of nested recursive algorithms automatically. Slind works in classical
HOL. He uses an inductive principle not available in TT but closely silimar to
structural induction over our special purpose accessibility predicate.

Some work has been done in the area of formalising partial functions. Usually
type theory is extended with partial objects or nonterminating computations.
This is different from our method, in which partiality is realized by adding a new
argument that restricts the domain of the original input; the function is still total
in the two arguments. In [Con83], Constable associates a domain to every partial
function. This domain is automatically generated from the function definition
and contains basically the same information as our special-purpose predicates.
However, the definition of the function does not depend on its domain as in our
case. Based on this work, Constable and Mendler [CM85] introduce the type
of partial functions as a new type constructor. In [CS87], Constable and Smith
develop a partial type theory in which every type has a twin containing diverging
objects. Inspired by the work in [CS87], Audebaud [Aud91] introduces fix-points
to the Calculus of Constructions [CH88], obtaining a conservative extension of
it where the desired properties still hold.

Acknowledgement

We want to thank Herman Geuvers for carefully reading and commenting on a
previous version of this paper.



Nested General Recursion and Partiality in Type Theory 135

References

[Acz77] P. Aczel. An Introduction to Inductive Definitions. In J. Barwise, editor,
Handbook of Mathematical Logic, pages 739–782. North-Holland Publishing
Company, 1977.

[AGNvS94] T. Altenkirch, V. Gaspes, B. Nordström, and B. von Sydow. A User’s
Guide to ALF. Chalmers University of Technology, Sweden, May 1994.
Available on the WWW
ftp://ftp.cs.chalmers.se/pub/users/alti/alf.ps.Z.

[Aud91] P. Audebaud. Partial Objects in the Calculus of Constructions. In 6th
Annual IEEE Symposium on Logic in Computer Science, Amsterdam, pages
86–95, July 1991.

[BB00] Antonia Balaa and Yves Bertot. Fix-point equations for well-founded re-
cursion in type theory. In Harrison and Aagaard [HA00], pages 1–16.

[Bov01] A. Bove. Simple general recursion in type theory. Nordic Journal of Com-
puting, 8(1):22–42, Spring 2001.

[CH88] Thierry Coquand and Gérard Huet. The Calculus of Constructions. Infor-
mation and Computation, 76:95–120, 1988.

[CM85] R. L. Constable and N. P. Mendler. Recursive Definitions in Type Theory.
In Logic of Programs, Brooklyn, volume 193 of Lecture Notes in Computer
Science, pages 61–78. Springer-Verlag, June 1985.

[Con83] R. L. Constable. Partial Functions in Constructive Type Theory. In The-
oretical Computer Science, 6th GI-Conference, Dortmund, volume 145 of
Lecture Notes in Computer Science, pages 1–18. Springer-Verlag, January
1983.

[CS87] R. L. Constable and S. F. Smith. Partial Objects in Constructive Type
Theory. In Logic in Computer Science, Ithaca, New York, pages 183–193,
June 1987.

[Dyb00] Peter Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. Journal of Symbolic Logic, 65(2), June 2000.

[Gie97] J. Giesl. Termination of nested and mutually recursive algorithms. Journal
of Automated Reasoning, 19:1–29, 1997.

[HA00] J. Harrison and M. Aagaard, editors. Theorem Proving in Higher Order
Logics: 13th International Conference, TPHOLs 2000, volume 1869 of Lec-
ture Notes in Computer Science. Springer-Verlag, 2000.

[JHe+99] Simon Peyton Jones, John Hughes, (editors), Lennart Augustsson, Dave
Barton, Brian Boutel, Warren Burton, Joseph Fasel, Kevin Hammond, Ralf
Hinze, Paul Hudak, Thomas Johnsson, Mark Jones, John Launchbury, Erik
Meijer, John Peterson, Alastair Reid, Colin Runciman, and Philip Wadler.
Report on the Programming Language Haskell 98, a Non-strict, Purely
Functional Language. Available from http://haskell.org, February 1999.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
[MN94] L. Magnusson and B. Nordström. The ALF proof editor and its proof

engine. In Types for Proofs and Programs, volume 806 of LNCS, pages
213–237, Nijmegen, 1994. Springer-Verlag.

[Nor88] B. Nordström. Terminating General Recursion. BIT, 28(3):605–619, Oc-
tober 1988.

[Pau86] L. C. Paulson. Proving Termination of Normalization Functions for Con-
ditional Expressions. Journal of Automated Reasoning, 2:63–74, 1986.

[Sli00] K. Slind. Another look at nested recursion. In Harrison and Aagaard
[HA00], pages 498–518.


	1 Introduction
	2 Simple General Recursion in Type Theory
	3 Nested Recursion in Type Theory
	4 Partial Functions in Type Theory
	5 Conclusions and Related Work
	References

