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Abstract Logically constrained term rewriting systems (LCTRSs) are a
formalism for program analysis with support for data types that are not
(co)inductively defined. Only imperative programs have been considered
through the lens of LCTRSs so far since LCTRSs were introduced as a first-
order formalism. In this paper, we propose logically constrained simply-
typed term rewriting systems (LCSTRSs), a higher-order generalization
of LCTRSs, which suits the needs of representing and analyzing functional
programs. We also study the termination problem of LCSTRSs and define
a variant of the higher-order recursive path ordering (HORPO) for the
newly proposed formalism.
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1 Introduction

It is hardly a surprising idea that term rewriting can serve as a vehicle for
reasoning about programs. During the last decade or so, the term rewriting
community has seen a line of work that translates real-world problems from
program analysis into questions about term rewriting systems, which include, for
example, termination (see, e.g., [8,10,15,37]) and equivalence (see, e.g., [13,36,9]).
Such applications take place across programming paradigms due to the versatile
nature of term rewriting, and often materialize into automatable solutions.

Data types are a central building block of programs and must be properly
handled in program analysis. While it is rarely a problem for term rewriting
systems to represent (co)inductively defined data types, others such as integers
and arrays traditionally require encoding; think of neg (suc (suc (suc zero)))
encoding −3. This usually turns out to cause more obfuscation than clarification
to the methods applied and the results obtained. An alternative is to incorporate
primitive data types into the formalism, which contributes to the proliferation of
subtly different formalisms that are generally incompatible with each other, and
it is often difficult to transfer techniques between such formalisms.

Logically constrained term rewriting systems (LCTRSs) [27,12] emerged from
this proliferation as a unifying formalism seeking to be general in both the
selection of primitive data types (little is presumed) and the applicability of
varied methods (many are extensible). LCTRSs thus allow us to benefit from the
broad term rewriting arsenal in a wide range of scenarios for program analysis
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(see, e.g., [32,24,23]). In particular, rewriting induction on LCTRSs [12,30] offers
a powerful tool for program verification.

As a first-order formalism, LCTRSs only naturally accommodate imperative
programs. This paper aims to generalize this formalism in a higher-order setting.

Motivation. Below is a first-order LCTRS implementing the factorial function:

fact n → 1 [n ≤ 0] fact n → n ∗ fact (n− 1) [n > 0]

where n ≤ 0 and n > 0 are logical constraints, which the integer n must satisfy
respectively when the corresponding rewrite rule is applied. Suppose we have
access to higher-order functions, a defining feature of functional programming;
now we have the following alternative implementation of fact:

fact n → fold (∗) 1 (genlist n)

genlist n → nil [n ≤ 0] genlist n → cons n (genlist (n− 1)) [n > 0]

fold f y nil → y fold f y (cons x l) → f x (fold f y l)

Here fold takes an argument f , which itself represents a function. Higher-order
functions such as fold do not fit into first-order LCTRSs, which leads to the first
reason to generalize this formalism: to overcome the limitation of its expressivity.

There is another reason for higher-order LCTRSs. The latter implementation
of fact reflects a pattern of functional programming: the combination of “standard”
higher-order building blocks such as fold and map, and functions that are specific
to the problem at hand. We note that a higher-order formalism can reveal more
modularity in programs. It would be valuable to exploit such modularity in
analyses as well.

With higher-order LCTRSs, we would like to explore automatable solutions
to the termination problem of functional programs in the same fashion as the
first-order case [27,25], or even better, to the finding of their complexity by
term rewriting. Moreover, given two programs supposedly implementing the
same function, a method that derives whether they are indeed equivalent is
also desirable. For example, a proof that the above two implementations of
fact are equivalent may serve as a correctness proof of the latter, less intuitive
implementation (which in general might be an outcome of code refactoring). Such
methods have been explored in a first-order setting [12,7].

Higher-order LCTRSs will broaden the horizons of both LCTRSs and higher-
order term rewriting. The eventual goal is to have a formalism that can be
deployed to analyze both imperative and functional programs, so that through
this formalism, the abundant techniques based on term rewriting may be applied
to automatic program analysis. This paper is a step toward that goal.

Contributions. The presentation begins with our perspective on higher-order
term rewriting (without logical constraints) in Section 2. The contributions of
this paper follow in subsequent sections:
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– We propose the formalism of logically constrained simply-typed term rewriting
systems (LCSTRSs), a higher-order generalization of LCTRSs, in Section 3.

– We adapt reduction orderings and rule removal to the newly proposed formal-
ism, and define (as well as prove the soundness of) constrained HORPO—a
variant of HORPO [21]—in Section 4. This includes changes to fit HORPO to
curried notation and partial application, and to handle theory symbols and
logical constraints in a similar way to RPO for first-order LCTRSs [27]. While
this version of HORPO is not the most powerful higher-order termination
technique, it offers a simple yet self-contained solution, and serves to illustrate
how existing techniques may be extended.

– We have developed for our formalism the foundation of a new open-source
analysis tool, in which an implementation of constrained HORPO is provided.
It requires several new insights, especially with regard to the way theories
and logical constraints are handled, and is discussed in Section 6.

2 Preliminaries

One of the first problems that a student of higher-order term rewriting faces is
the absence of a standard formalism on which the literature agrees. This variety
reflects the diverse interests and needs held by different authors.

In this section, we present simply-typed term rewriting systems (STRSs) [29]
as the unconstrained basis of our formalism. This is one of the simplest higher-
order formalisms, and closely resembles simple functional programs. We choose
this formalism as our starting point because it is already powerful, while avoiding
many of the complications that may be interesting for equational reasoning
purposes but are not needed in program analysis, such as reduction modulo β.

Types and Terms. Types rule out undesired terms. We consider simple types:
given a non-empty set S of sorts (or base types), the set T of simple types
over S is generated by the grammar T ::= S | (T → T ). Right-associativity is
assigned to → so we can omit some parentheses. The order of a type A, denoted
by ord(A), is defined as follows: ord(A) = 0 for A ∈ S and ord(A → B) =
max(ord(A) + 1, ord(B)).

Given disjoint sets F and V, whose elements we call function symbols and
variables, respectively, the set T of pre-terms over F and V is generated by the
grammar T ::= F | V | (T T). Left-associativity is assigned to the juxtaposition
operation, called application, so t0 t1 t2 stands for ((t0 t1) t2), for example.

We assume that every function symbol and variable is assigned a unique
type. Typing works as expected: if pre-terms t0 and t1 have types A → B and
A, respectively, t0 t1 has type B. The set of terms over F and V, denoted by
T (F ,V), is the subset of T consisting of pre-terms with a type. We write t : A if a
term t has type A. The set of variables occurring in a term t ∈ T (F ,V), denoted
by Var(t), is defined as follows: Var(f) = ∅ for f ∈ F , Var(x) = {x } for x ∈ V
and Var(t0 t1) = Var(t0) ∪Var(t1). A term t is called ground if Var(t) = ∅. The
set of ground terms over F is denoted by T (F , ∅).
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Substitutions and Contexts. Variables occurring in a term can be seen as place-
holders: the occurrences of a variable may be replaced with terms which have the
same type as the variable does. Type-preserving mappings from V to T (F ,V) are
called substitutions. Every substitution σ extends to a type-preserving mapping
σ̄ from T (F ,V) to T (F ,V). We write tσ for σ̄(t) and define it as follows: fσ = f
for f ∈ F , xσ = σ(x) for x ∈ V and (t0 t1)σ = (t0σ) (t1σ).

Term formation gives rise to the concept of a context: a term containing a hole.
Formally, let □ be a special terminal symbol denoting the hole, and the grammar
C ::= □ | (C T) | (T C) with the above rule for T generates pre-terms containing
exactly one occurrence of the hole. Given a type for the hole, a context is an
element of C which is typed as a term is. Let C[]A denote a context in which the
hole has type A; filling the hole with a term t : A produces the term C[t]A defined
as follows: □[t]A = t, (C0[]A t1)[t]A = C0[t]A t1 and (t0 C1[]A)[t]A = t0 C1[t]A.
We usually omit types in the above notation, and in C[t], t is understood as a
term which has the same type as the hole does.

Rules and Rewriting. Now we have all the ingredients in our recipe for higher-
order term rewriting. A rewrite rule ℓ → r is an ordered pair of terms where ℓ
and r have the same type, Var(ℓ) ⊇ Var(r) and ℓ assumes the form f t1 · · · tn for
some function symbol f . Formally, a simply-typed term rewriting system (STRS)
is a quadruple (S,F ,V,R) where every element of F ∪ V is assigned a simple
type over S and R ⊆ T (F ,V)× T (F ,V) is a set of rewrite rules. We usually let
R alone stand for the system and keep the details of term formation implicit.

The set R of rewrite rules induces the rewrite relation →R ⊆ T (F ,V) ×
T (F ,V): t →R t′ if and only if there exist a rewrite rule ℓ → r ∈ R, a substitution
σ and a context C[] such that t = C[ℓσ] and t′ = C[rσ]. When there is no
ambiguity about the system in question, we may simply write → for →R.

Given a relation ≻ ⊆ X ×X, an element x of X is called terminating with
respect to ≻ if there is no infinite sequence x = x0 ≻ x1 ≻ · · ·, and ≻ is called
well-founded if all the elements of X are terminating with respect to ≻. An STRS
R is called terminating if →R is well-founded.

Example 1. The following rewrite rules constitute a terminating system:

take zero l → nil take n nil → nil take (suc n) (cons x l) → cons x (take n l)

where zero : nat, suc : nat → nat, nil : natlist, cons : nat → natlist → natlist and
take : nat → natlist → natlist are function symbols, and l : natlist, n : nat and
x : nat are variables.

Example 2. The following rewrite rule constitutes a non-terminating system:

iterate f x → cons x (iterate f (f x))

where cons : nat → natlist → natlist and iterate : (nat → nat) → nat → natlist are
function symbols, and f : nat → nat and x : nat are variables.
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Limitations. The above formalism does not offer product types, polymorphism
or λ-abstractions. What it does offer is its already expressive syntax enabling us,
in a higher-order setting, to generalize LCTRSs and to discover what challenges
one may face when extending existing unconstrained techniques. We expect that,
once preliminary higher-order results are developed, we will adopt more features
from other higher-order formalisms in future extensions.

The exclusion of λ-abstractions does not rid us of first-class functions, thanks
to curried notation. For example, the occurrence of suc in iterate suc zero is
partially (in this case, not at all) applied and still forms a term, which can be
passed as an argument. Also, a term such as iterate (λx. suc (suc x)) zero can be
simulated at the cost of an extra rewrite rule (in this case, add2 x → suc (suc x)).
There are also straightforward ways of encoding product types.

Notions of Termination. If we combine the two systems from Examples 1
and 2, the outcome is surely non-terminating: take zero (iterate suc zero) is not
terminating, for example. From a Haskell programmer’s perspective, however,
this term is “terminating” due to the non-strictness of Haskell. In general, every
functional language uses a certain evaluation strategy to choose a specific redex,
if any, to rewrite within a term, whereas the rewrite relation we define in this
section corresponds to full rewriting: the redex is chosen non-deterministically.

Furthermore, programmers usually care only about the termination of terms
that are reachable from the entry point of a program and seldom consider full
termination: the termination of all terms, i.e., the well-foundedness of the rewrite
relation. We study full termination with respect to full rewriting in this paper,
as it implies any other termination properties and full termination is often a
prerequisite for determining properties such as confluence and equivalence.

3 Logically Constrained STRSs

Term rewriting systems do not have primitive data types built in; with some
function symbols constructing (introducing) values of a certain type and pattern
matching rules deconstructing (eliminating) those values, a term rewriting system
relies on (co)inductively defined data types. While (co)inductive reasoning is
straightforward this way, data types such as integers and arrays require encoding,
which can be convoluted; think of the space-consuming unary representation of a
number or a binary representation which takes less space but shifts the burden
to rewrite rules defining arithmetic, and negative numbers bring up even more
complications. Besides, such encoding neglects advances in modern SMT solvers.

In this section, we extend unconstrained STRSs with logical constraints so
that data types that are not (co)inductively defined can be represented directly,
and analysis tools can take advantage of existing SMT solvers. We follow the
ideas of first-order LCTRSs [27,12]. Specifically, we will consider systems over
arbitrary first-order theories, i.e., we are not bound to, say, systems over integers,
while avoiding higher-order logical constraints. In the unconstrained part of such
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a system (outside theories), however, higher-order arguments and results are still
completely usable.

3.1 Terms Modulo Theories

Following Section 2, we postulate a set S of sorts, a set F of function symbols
and a set V of variables where every element of F ∪ V is assigned a simple type
over S. First, we assume that there is a distinguished subset Sϑ of S, called the
set of theory sorts. The grammar Tϑ ::= Sϑ | (Sϑ → Tϑ) generates the set Tϑ of
theory types over Sϑ. Note that the order of a theory type is never greater than
one. Next, we assume that there is a distinguished subset Fϑ of F , called the
set of theory symbols, and that the type of every theory symbol is in Tϑ, which
means that the type of any argument passed to a theory symbol is a theory sort.
Elements of T (Fϑ,V) are called theory terms. Last, for technical reasons, we
assume that there are infinitely many variables of each type.

Theory symbols are interpreted in an underlying theory: given an Sϑ-indexed
family of sets (XA)A∈Sϑ

, we extend it to a Tϑ-indexed family by letting XA→B

be the set of mappings from XA to XB; an interpretation of theory symbols is
a Tϑ-indexed family of mappings ([[·]]A)A∈Tϑ

where [[·]]A assigns to each theory
symbol of type A an element of XA and is bijective1 if A ∈ Sϑ. Theory symbols
whose type is a theory sort are called values. Given an interpretation of theory
symbols ([[·]]A)A∈Tϑ

, we extend each indexed mapping [[·]]B to one that assigns
to each ground theory term of type B an element of XB by letting [[t0 t1]]B be
[[t0]]A→B([[t1]]A). We usually write just [[·]] when the type can be deduced.

Example 3. Let Sϑ be { int }. Then int → int → int is a theory type over Sϑ while
(int → int) → int is not. Let Fϑ be { sub }∪{ n̄ |n ∈ Z } where sub : int → int → int
and n̄ : int. The values are the elements of { n̄ |n ∈ Z }. Let Xint be Z, [[·]]int be
the mapping n̄ 7→ n and [[sub]] be the mapping λm. λn.m−n. The interpretation
of sub 1̄ is the mapping λn. 1− n.

We are not limited to the theory of integers:

Example 4. To reason about integer arrays, we could either represent them
as lists and simulate random access through more costly list traversal (which
affects the complexity), or consider a theory of bounded arrays as follows: Let
Sϑ be { int, intarray } and Fϑ be the union of { size, select, store }, { n̄ |n ∈ Z }
and { ⟨n̄0, . . . , n̄k−1⟩ | k ∈ N and ∀i. ni ∈ Z } where size : intarray → int, select :
intarray → int → int, store : intarray → int → int → intarray, n̄ : int and
⟨n̄0, . . . , n̄k−1⟩ : intarray. Let Xint and Xintarray be Z and Z∗, respectively. Let [[·]]int
be the mapping n̄ 7→ n and [[·]]intarray be the mapping ⟨n̄0, . . . , n̄k−1⟩ 7→ n0 . . . nk−1.
Let [[size]](n0 . . . nk−1) be k. Let [[select]](n0 . . . nk−1, i) be ni if 0 ≤ i < k, and
0 otherwise. Let [[store]](n0 . . . nk−1, i,m) be n0 . . . ni−1mni+1 . . . nk−1 if 0 ≤
i < k, and n0 . . . nk−1 otherwise. Note that the values include theory symbols
⟨n̄0, . . . , n̄k−1⟩ : intarray as well as n̄ : int.
1 The bijectivity is assumed so that values (see below) are isomorphic to (and therefore

a representation of) elements of (XA)A∈Sϑ .
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In this paper, we largely consider the theory of integers in Example 3 when
giving examples because it is easy to understand. This particular theory does not
play a special role for the formalism we will shortly present; in fact, the theory of
bit vectors may be more appropriate to real-world programs using integers, and
our formalism is not biased toward any choice of theories. In particular, we do
not have to choose predefined theories from SMT-LIB [3]. The theory of bounded
arrays in Example 4 is an instance of such a “non-standard” theory (which can
nevertheless be encoded within the theory of functional arrays). On the other
hand, theories supported by SMT solvers are preferable in light of automation.

3.2 Constrained Rewriting

Constrained rewriting requires the theory sort bool: we henceforth assume that
bool ∈ Sϑ, { f, t } ⊆ Fϑ, Xbool = { 0, 1 }, [[f]]bool = 0 and [[t]]bool = 1. A logical
constraint is a theory term φ such that φ has type bool and the type of each
variable in Var(φ) is a theory sort. A (constrained) rewrite rule is a triple ℓ → r [φ]
where ℓ and r are terms which have the same type, φ is a logical constraint,
the type of each variable in Var(r) \Var(ℓ) is a theory sort and ℓ is a term that
assumes the form f t1 · · · tn for some function symbol f and contains at least
one function symbol in F \ Fϑ.2

This definition can be obscure at first glance, especially when compared with
its unconstrained counterpart in Section 2: variables which do not occur in ℓ are
allowed to occur in r, not to mention the logical constraint φ as a brand-new
component. Given a rewrite rule ℓ → r [φ], the idea is that variables occurring in
φ are to be instantiated to values which make φ true and other variables which
occur in r but not in ℓ are to be instantiated to arbitrary values—note that the
type of each of these variables is a theory sort. Formally, given an interpretation
of theory symbols [[·]], a substitution σ is said to respect a rewrite rule ℓ → r [φ]
if σ(x) is a value for all x ∈ Var(φ) ∪ (Var(r) \Var(ℓ)) and [[φσ]] = 1.

We summarize all the above ingredients in the following definition:

Definition 1. A logically constrained STRS (LCSTRS) consists of S, Sϑ, F ,
Fϑ, V, (XA), [[·]] and R where

1. S is a set of sorts,
2. Sϑ ⊆ S is a set of theory sorts which contains bool,
3. F is a set of function symbols in which every function symbol is assigned a

simple type over S,
4. Fϑ ⊆ F is a set of theory symbols in which the type of every theory symbol is

a theory type over Sϑ, with f : bool and t : bool elements of Fϑ,
5. V is a set of variables disjoint from F in which every variable is assigned

a simple type over S and there are infinitely many variables to which every
type is assigned,

2 We do not require f to be in F \ Fϑ (that is, f can be a theory symbol) because a
theory symbol may occur at the head position of a rewrite rule’s left-hand side in
rewriting induction, and this general definition is in line with first-order LCTRSs.
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6. (XA) is an Sϑ-indexed family of sets such that Xbool = { 0, 1 },
7. [[·]] is an interpretation of theory symbols such that [[f]] = 0 and [[t]] = 1, and
8. R ⊆ T (F ,V)× T (F ,V)× T (Fϑ,V) is a set of rewrite rules.

We usually let R alone stand for the system.

And the following definition concludes the elaboration of constrained rewriting:

Definition 2. Given an LCSTRS R, the set of rewrite rules induces the rewrite
relation →R ⊆ T (F ,V) × T (F ,V) such that t →R t′ if and only if one of the
following conditions is true:

1. There exist a rewrite rule ℓ → r [φ] ∈ R, a substitution σ which respects
ℓ → r [φ] and a context C[] such that t = C[ℓσ] and t′ = C[rσ].

2. There exist theory symbols v1 : A1, . . . , vn : An, v
′ : B and f : A1 → · · · →

An → B for n > 0 and A1, . . . , An, B ∈ Sϑ such that [[f v1 · · · vn]] = [[v′]],
and a context C[] such that t = C[f v1 · · · vn] and t′ = C[v′].

Note that the above conditions are mutually exclusive for any given context C[]:
f v1 · · · vn is a theory term, whereas ℓ in any rewrite rule ℓ → r [φ] is not. If
t →R t′ due to the second condition, we also write t →κ t′ and call it a step of
calculation. When no ambiguity arises, we may simply write → for →R.

Example 5. We can rework Example 1 into an LCSTRS:

take n l → nil [n ≤ 0] take n nil → nil

take n (cons x l) → cons x (take (n− 1) l) [n > 0]

where S = Sϑ ∪ { intlist }, Sϑ = { bool, int }, F = Fϑ ∪ { nil, cons, take }, Fϑ =
{≤, >,−, f, t } ∪ Z, V ⊇ { l, n, x }, ≤ : int → int → bool, > : int → int → bool,
− : int → int → int, f : bool, t : bool, v : int for all v ∈ Z, nil : intlist, cons : int →
intlist → intlist, take : int → intlist → intlist, l : intlist, n : int and x : int.

Here and henceforth we let integer literals and operators, e.g., 0, 1, ≤, > and
−, denote both the corresponding theory symbols and their respective images
under the interpretation—in contrast to Examples 3 and 4, where we pedantically
make a distinction between, say, 1̄ and 1. We also use infix notation for some
binary operators to improve readability, and omit the logical constraint of a
rewrite rule when it is t. Below is a rewrite sequence:

take 1 (cons x (cons y l)) → cons x (take (1− 1) (cons y l))

→κ cons x (take 0 (cons y l)) → cons x nil

Example 6. In Section 1, the rewrite rules implementing the factorial function
by fold constitute an LCSTRS. Below is a rewrite sequence:

fact 1 → fold (∗) 1 (genlist 1) → fold (∗) 1 (cons 1 (genlist (1− 1)))

→κ fold (∗) 1 (cons 1 (genlist 0)) → fold (∗) 1 (cons 1 nil)

→ (∗) 1 (fold (∗) 1 nil) → (∗) 1 1 →κ 1
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Example 7. Consider the rewrite rule readint → n, in which the variable n : int
occurs on the right-hand side of → but not on the left. Unconstrained STRSs do
not permit such a rewrite rule, but LCSTRSs do. It looks as if we might rewrite
readint to a variable but it is not the case: all the substitutions which respect
this rewrite rule must map n to a value. Indeed, readint is always rewritten to a
value of type int. We may have, say, readint → 42. Such variables can be used to
model user input.

Example 8. Getting input by means of the rewrite rule from Example 7 has
one flaw: in case of multiple integers to be read, the order of reading each is
non-deterministic. Even in the presence of an evaluation strategy, the order may
not be the desired one. We can use continuation-passing style to choose an order:

readint k → k n comp g f x → g (f x) sub → readint (comp readint (−))

where comp : ((int → int) → int) → (int → int → int) → int → int. If the first and
the second integers to be read were 1 and 2, respectively, the following rewrite
sequence would be the only one starting from sub:

sub → readint (comp readint (−)) → comp readint (−) 1

→ readint ((−) 1) → (−) 1 2 →κ −1

Since there is no way to specify the actual input within an LCSTRS, rewrite
sequences such as the one above cannot be derived deterministically. Nevertheless,
this example demonstrates that the newly proposed formalism can represent
relatively sophisticated control mechanisms utilized by functional programs.

Remarks. We reflect on some of the concepts presented in this section:

– We use the phrase “terms modulo theories” in line with “satisfiability modulo
theories”: some function symbols are interpreted within a theory. While such
an interpretation gives rise to a way of identifying certain terms, namely those
that are convertible to each other with respect to →κ, we do not consider
them identified (in other words, modulo κ) in this paper.

– First-order LCTRSs can be seen as instances of the newly proposed formalism,
i.e., ones in which the type order of each function symbol is no greater than
one, variables with a non-zero type order (i.e., higher-order variables) are
excluded, and the type of both sides of a rewrite rule is always a sort.

– Logical constraints are essentially first-order: the type order of a theory
symbol cannot be greater than one while higher-order variables are excluded.
This restriction rules out, for example, the following implementation:

filter f (cons x l) → cons x (filter f l) [f x] filter f nil → nil

filter f (cons x l) → filter f l [¬ (f x)]

The filter function can actually be implemented in an LCSTRS as follows:

filter f (cons x l) → if (f x) (cons x (filter f l)) (filter f l)

filter f nil → nil if t l l′ → l if f l l′ → l′
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In the former implementation, the problem is not the higher-order variable
f itself but its occurrence in logical constraints. In this case, because the
filter function is usually meant to be used in combination with “user-defined”
predicates—which are function symbols defined by rewrite rules and therefore
do not belong to the theories—it makes sense to disallow f from occurring in
logical constraints. In general, we may encounter use cases for higher-order
constraints; until then, we focus on first-order constraints, which are very
common in functional programs.

4 Constrained Higher-Order Recursive Path Ordering

Recall that an important part of our goal is to allow the abundant term rewriting
techniques to be applied toward program analysis. We have defined a formalism
for constrained higher-order term rewriting; now it remains to be seen that—or
how—existing techniques can be extended to it.

In the rest of this paper, we consider termination, an important aspect
of program analysis and a topic that has been studied by the term rewriting
community for decades. Not only is termination itself critical to the correctness of
certain programs, but it also facilitates other analyses by admitting well-founded
induction on terms.

In this section, we adapt HORPO [21] to our formalism. This is one of the
oldest, yet still effective techniques for higher-order termination. HORPO can be
used either as a stand-alone method or in a higher-order version of the dependency
pair framework [1,39,11,25]. Hence, this adaptation offers a solid basis for use in
an analysis tool’s termination module. We will discuss the use of HORPO within
the dependency pair framework in Section 5, and its automation in Section 6.

Constrained RPO for first-order LCTRSs was proposed in [27]. We take
inspiration from it for its approach to theory terms, formalize the ideas, and add
support for (higher) types as well as partial application.

4.1 HORPO, Unconstrained and Uncurried

We first recall HORPO in its original form. Note that the original definition is
based on an unconstrained and uncurried format, and a thorough discussion on it
is beyond the scope of this paper. The following presentation is mostly informal
and only serves the purposes of comparison and inspiration.

We begin with two standard definitions:

Definition 3. Given relations ≿ and ≻ over X, the generalized lexicographic
ordering ≻l ⊆ X∗ ×X∗ is induced as follows: x1 . . . xm ≻l y1 . . . yn if and only
if there exists k ≤ min(m,n) such that xi ≿ yi for all i < k and xk ≻ yk.

Definition 4. Given relations ≿ and ≻ over X, the generalized multiset ordering
≻m ⊆ X∗ ×X∗ is induced as follows: x1 . . . xm ≻m y1 . . . yn if and only if there
exist a non-empty subset I of { 1, . . . ,m } and a mapping π from { 1, . . . , n } to
{ 1, . . . ,m } such that
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1. ∀i ∈ I. ∀j ∈ π−1(i). xi ≻ yj,
2. ∀i ∈ { 1, . . . ,m } \ I. ∀j ∈ π−1(i). xi ≿ yj, and
3. ∀i ∈ { 1, . . . ,m } \ I.

∣∣π−1(i)
∣∣ = 1.

Here the generalized multiset ordering is formulated in terms of lists because
we will compare argument lists by this ordering and this formulation facilitates
implementation. In the following definition of HORPO, when we refer to the
above definitions, ≿ is the equality over terms and ≻ is HORPO itself.

Roughly, HORPO extends a given ordering over function symbols, and when
considering terms headed by the same function symbol, compares the arguments
by either of the above orderings. Given a well-founded ordering ▶ ⊆ F × F ,
called the precedence, and a mapping s : F → { l,m }, called the status, HORPO
is a type-preserving relation ≻ such that s ≻ t if and only if one of the following
conditions is true:

1. s = f(s1, . . . , sm), f ∈ F and ∃k. sk ⪰ t.
2. s = f(s1, . . . , sm), f ∈ F , t = @(. . .@(@(t0, t1), t2) . . . , tn) and ∀i. s ≻

ti ∨ ∃k. sk ⪰ ti.
3. s = f(s1, . . . , sm), t = g(t1, . . . , tn), f ∈ F , g ∈ F , f ▶ g and ∀i. s ≻

ti ∨ ∃k. sk ⪰ ti.
4. s = f(s1, . . . , sm), t = f(t1, . . . , tm), f ∈ F , s(f) = l, s1 . . . sm ≻l t1 . . . tm

and ∀i. s ≻ ti ∨ ∃k. sk ⪰ ti.
5. s = f(s1, . . . , sm), t = f(t1, . . . , tm), f ∈ F , s(f) = m and s1 . . . sm ≻m

t1 . . . tm.
6. s = @(s0, s1), t = @(t0, t1) and s0s1 ≻m t0t1.
7. s = λx. s0, t = λx. t0 and s0 ≻ t0.

Here ⪰ denotes the reflexive closure of ≻.
We call this format uncurried because every function symbol has an arity, i.e.,

the number of arguments guaranteed for each occurrence of the function symbol
in a term. This is indicated by the functional notation f(s1, . . . , sm) as opposed to
f s1 · · · sm. If f has arity m, its occurrence in a term must take m arguments so
f(s1, . . . , sm−1) is not a well-formed term, for example. A function symbol’s type
(or more technically, its type declaration) can permit more arguments than its
arity guarantees. Such an extra argument is supplied through the syntactic form
@(·, ·). For example, if the same function symbol f is given an extra argument
sm+1, we write @(f(s1, . . . , sm), sm+1). This syntactic form is also used to pass
arguments to variables and λ-abstractions.

The difference between an uncurried and a curried format is more than a
notational issue, and poses technical challenges to our extension of HORPO.
Another source of challenges is, as one would expect, constrained rewriting.

4.2 Rule Removal

HORPO is defined as a reduction ordering ≻, which is a type-preserving, stable
(i.e., t ≻ t′ implies tσ ≻ t′σ), monotonic (i.e., t ≻ t′ implies C[t] ≻ C[t′]) and
well-founded relation. Note that despite its name, HORPO is not necessarily
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transitive. If such a relation orients all the rewrite rules in R (i.e., ℓ ≻ r for all
ℓ → r ∈ R), we can conclude that the rewrite relation →R is well-founded.

A similar strategy for LCSTRSs requires a few tweaks. First, stability should
be tightly coupled with rule orientation because every rewrite rule now is equipped
with a logical constraint, which decides what substitutions are expected when the
rewrite rule is applied. Second, the monotonicity requirement can be weakened
because ℓ is never a theory term in a rewrite rule ℓ → r [φ]. We define as follows:

Definition 5. A type-preserving relation ⇒ ⊆ T (F ,V)× T (F ,V) is said

1. to stably orient a rewrite rule ℓ → r [φ] if ℓσ ⇒ rσ for each substitution σ
which respects the rewrite rule, and

2. to be rule-monotonic if t ⇒ t′ implies C[t] ⇒ C[t′] when t /∈ T (Fϑ,V).

Besides having rewrite rules stably oriented, we need to deal with calculation.
It turns out to be unnecessary to search for a well-founded relation which includes
→κ, given the following observation:

Lemma 1. →κ is well-founded.

Proof. The term size strictly decreases through every step of calculation. ⊓⊔

We rather look for a type-preserving and well-founded relation ≻ which stably
orients every rewrite rule, is rule-monotonic, and is compatible with →κ, i.e.,
→κ ; ≻ ⊆ ≻+ or ≻ ; →κ ⊆ ≻+. This strategy is an instance of rule removal :

Theorem 1. Given an LCSTRS R, the rewrite relation →R is well-founded
if and only if there exist sets R1 and R2 such that →R1 is well-founded and
R1 ∪R2 = R, and type-preserving, rule-monotonic relations ⇒ and ≻ such that

1. ⇒ includes →κ and stably orients every rewrite rule in R1,
2. ≻ is well-founded and stably orients every rewrite rule in R2, and
3. ⇒ ; ≻ ⊆ ≻+ or ≻ ; ⇒ ⊆ ≻+.

Here →R1 assumes the same term formation and interpretation as →R does.

Proof. If →R is well-founded, take R1 = ∅, R2 = R, ⇒ = →κ and ≻ = →R.
Note that →∅ = →κ by definition.

Now assume given R1, R2, ⇒ and ≻. Since ⇒ is rule-monotonic, includes
→κ and stably orients every rewrite rule in R1, →R1 ⊆ ⇒. So the compatibility
of ≻ with ⇒ implies its compatibility with →R1 , which in turn implies the
well-foundedness of →R1

∪ ≻, given that both →R1
and ≻ are well-founded.

Since R1 ∪R2 = R and ≻ is a rule-monotonic relation which stably orients every
rewrite rule in R2, →R ⊆ →R1

∪ ≻. Hence, →R is well-founded. ⊓⊔

In a termination proof of R, Theorem 1 allows us to remove rewrite rules that
are in R2 from R. If none of the rewrite rules are left after iterations of rule
removal, the termination of the original system can be concluded with Lemma 1.
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4.3 Constrained HORPO for LCSTRSs

Before adapting HORPO for LCSTRSs, we discuss how the theories may be
handled. Let us consider the following system:

rec n x f → x [n ≤ 0] rec n x f → f (n− 1) (rec (n− 1) x f) [n > 0]

where rec : int → int → (int → int → int) → int. In the second rewrite rule,
the left-hand side of → is rec n x f while the right-hand side has a subterm
rec (n− 1) x f . It is natural to expect n ≻ n− 1 in the construction of HORPO.
Note that this is impossible with respect to any recursive path ordering for
unconstrained rewriting because n is a variable occurring in n− 1; in an uncon-
strained setting, we actually have n− 1 ≻ n. Hence, we must somehow take the
logical constraint n > 0 into account. To this end, we largely follow the ideas of
constrained RPO for first-order LCTRSs [27].

The occurrence of n in the logical constraint ensures that n is instantiated
to a value, say 42, when the rewrite rule is applied, and it is sensible to have
42 ≻ 42− 1. Also, n > 0 guarantees that all the sequences of such descents are
finite, i.e., the ordering λm. λn.m > 0 ∧m > n, denoted by ⊐, is well-founded.
Let φ |= φ′ denote, on the assumption that φ and φ′ are logical constraints such
that Var(φ) ⊇ Var(φ′), that [[φσ]] = 1 implies [[φ′σ]] = 1 for each substitution σ
which maps variables in Var(φ) to values. Then we have n > 0 |= n ⊐ n− 1. We
thus would like to have s ≻ t if φ |= s ⊐ t.

However, with the same ordering ⊐, we have both m > 0 ∧m > n |= m ⊐ n
and n > 0 ∧ n > m |= n ⊐ m, whereas we cannot have both m ≻ n and n ≻ m
without breaking the well-foundedness of ≻. To resolve this issue, we split ≻ into
a family of relations (≻φ) indexed by logical constraints, and let s ≻φ t be true if
φ |= s ⊐ t. We also introduce a separate family of relations (≿φ) such that s ≿φ t
if φ |= s ⊒ t where ⊒ is the reflexive closure of ⊐. Hence, ≿φ is not necessarily
the reflexive closure of ≻φ; if it was, even n ≿n≥1 1 would not be obtainable.

Now we have a family of pairs (≿φ,≻φ), which does not seem to suit rule
removal; after all, the essential requirement is a fixed relation which is type-
preserving, rule-monotonic, well-founded and at least compatible with →κ. When
the definition of constrained HORPO is fully presented, we will show that ≻t—the
irreflexive relation indexed by the boolean t—is such a relation and stably orients
a rewrite rule ℓ → r [φ] if ℓ ≻φ r.

The annotation φ of HORPO does not capture variables in Var(r) \Var(ℓ),
which also have a part to play in the decision of what substitutions are expected
when ℓ → r [φ] is applied. We may use a new annotation to accommodate
these variables but there is a hack (also present in [38]): given a variable in
Var(r) \Var(ℓ), it can be harmlessly appended to φ, syntactically and without
tampering with any interpretation. We henceforth assume that Var(r) \Var(ℓ) ⊆
Var(φ) for each rewrite rule ℓ → r [φ]. We also say that a substitution σ respects
a logical constraint φ if σ(x) is a value for all x ∈ Var(φ) and [[φσ]] = 1.

Before presenting constrained HORPO, we recall that in [21] all sorts collapse
into one, and for example, int → int → int and int → intlist → intlist are
considered equal. The idea is that the original rewrite relation can be embedded
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in the single-sorted one, and if the latter is well-founded, so is the former. We
follow this convention and henceforth compare types by their →-structure only.

Below ≻l
φ and ≻m

φ are induced by ≿φ and ≻φ:

Definition 6. Constrained HORPO depends on the following parameters:

1. The interpretation of theory symbols ⊐A: A → A → bool for all A ∈ Sϑ such
that [[⊐A]] is a well-founded ordering over XA. The interpretation [[⊒A]] is
assumed to be the reflexive closure of [[⊐A]]. We usually write just ⊐ and ⊒
because sorts collapse. Consider [[⊐]] the union

⋃
A∈Sϑ

[[⊐A]], and [[⊒]] likewise.
2. The precedence ▶, a well-founded ordering over F such that f ▶ g for all

f ∈ F \ Fϑ and g ∈ Fϑ.
3. The status s, a mapping from F to { l,m2,m3, . . . }.

The higher-order recursive path ordering (HORPO) is a family of pairs of type-
preserving relations (≿φ,≻φ) indexed by logical constraints and defined by the
following conditions:

1. s ≿φ t if and only if one of the following conditions is true:

(a) s and t are theory terms whose type is a sort, Var(s) ∪Var(t) ⊆ Var(φ)
and φ |= s ⊒ t.

(b) s ≻φ t.
(c) s ↓κ t.
(d) s is not a theory term, s = s0 s1, t = t0 t1, s0 ≿φ t0 and s1 ≿φ t1.

2. s ≻φ t if and only if one of the following conditions is true:

(a) s and t are theory terms whose type is a sort, Var(s) ∪Var(t) ⊆ Var(φ)
and φ |= s ⊐ t.

(b) s and t have equal types and s ▷φ t.
(c) s is not a theory term, s = f s1 · · · sn for some f ∈ F , t = f t1 · · · tn,

∀i. si ≿φ ti and ∃k. sk ≻φ tk.
(d) s is not a theory term, s = x s1 · · · sn for some x ∈ V, t = x t1 · · · tn,

∀i. si ≿φ ti and ∃k. sk ≻φ tk.

3. s ▷φ t if and only if s is not a theory term, s = f s1 · · · sm for some f ∈ F
and one of the following conditions is true:

(a) ∃k. sk ≿φ t.
(b) t = t0 t1 · · · tn, ∀i. s ▷φ ti.
(c) t = g t1 · · · tn, f ▶ g, ∀i. s ▷φ ti.
(d) t = f t1 · · · tn, s(f) = l, s1 . . . sm ≻l

φ t1 . . . tn, ∀i. s ▷φ ti.
(e) t = f t1 · · · tn, s(f) = mk, k ≤ n, s1 . . . smin(m,k) ≻m

φ t1 . . . tk, ∀i. s ▷φ ti.
(f) t is a value or a variable in Var(φ).

Here s ↓κ t if and only if there exists a term r such that s →∗
κ r and t →∗

κ r.
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Comparison to the Original HORPO. Conditions 1d, 2c and 2d are included
in the definition so that ≿φ and ≻φ are rule-monotonic. We stress that it
is mandatory to use the weakened, rule-monotonicity requirement instead of
the traditional monotonicity requirement: if ≻t is monotonic, 1 ≻t 0 implies
1− 1 ≻t 1− 0, but t |= (1− 0) ⊐ (1− 1), i.e., ≻t cannot possibly be well-founded.

From curried notation, another issue related to rule-monotonicity arises,
which leads to the above definition of ▷φ. If we had the original HORPO naively
mirrored, the definition of ≻φ would include a condition which corresponds to
condition 3b and reads: “s ≻φ t if s is not a theory term, s = f s1 · · · sm for
some f ∈ F , t = t0 t1 · · · tn and ∀i. s ≻φ ti ∨ ∃k. sk ≿φ ti”. Assume given such
terms s and t, and that, say, s ≻φ t1. Now if there is a term r to which s can
be applied, we have a problem with proving s r ≻φ t r = t0 t1 · · · tn r because
s r ≻φ t1 is not obtainable due to the type restriction. Note that ≿φ and ≻φ are
by definition type-preserving, whereas ▷φ is not.

This limitation is overcome by means of ▷φ, which actually makes the overall
definition more powerful, and is reminiscent of the distinction between ≻ and
≻TS

in later versions of HORPO (e.g., [5]). Other extensions from these works,
however, are not yet included in the above definition, and except for the type
restriction and uncurried notation, the conditions of ▷φ largely match those of
the original HORPO.

Another subtle difference is the use of generalized lexicographic and multiset
orderings: in the original HORPO, ≿ is the reflexive closure of ≻, and therefore
it suffices to use the more traditional definitions of lexicographic and multiset
orderings. Here, as observed above, this would be unnecessarily restrictive.

The split of a single multiset status label in m2,m3, . . . is due to curried
notation—in particular, the possibility of partial application. If we had only a
single multiset status label, which would admit, for example, both f 2 2 ▷t f 1
and f 1 3 ≻t f 2 2, it would be possible that ≻t is not well-founded: note that
g (f 1) ≻t f 1 3 due to, among others, conditions 2b and 3b, and if f ▶ g, we
would then have f 2 2 ≻t g (f 1) due to, among others, conditions 2b and 3c. This
change adds some power to constrained HORPO: we can prove, for example, the
termination of the single-rule system f x a y → f b x (g y) by choosing s(f) = m2,
which is not possible if all arguments must be considered, as the original HORPO
requires. We do not need m1 because this case is already covered by choosing l.

Given an LCSTRS R, if we can divide the set of rules into two subsets R1

and R2, and find a combination of [[⊐]], ▶ and s that guarantees ℓ ≿φ r for all
ℓ → r [φ] ∈ R1 and ℓ ≻φ r for all ℓ → r [φ] ∈ R2, the termination of R is reduced
to that of R1. Before proving the soundness, we check out some examples:

Example 9. We continue the analysis of the motivating example rec. Let [[⊐int]]
be λm. λn.m > 0∧m > n as above. There is only one function symbol in F \Fϑ,
and it turns out that ▶ can be any precedence. Let s be a mapping such that
s(rec) = l. The first rewrite rule can be removed due to conditions 2b and 3a.
The second rewrite rule can be removed as follows:

1. rec n x f ≻n>0 f (n− 1) (rec (n− 1) x f) by 2b, 2.
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2. rec n x f ▷n>0 f (n− 1) (rec (n− 1) x f) by 3b, 3, 4, 5.
3. rec n x f ▷n>0 f by 3a, 6.
4. rec n x f ▷n>0 n− 1 by 3a, 7.
5. rec n x f ▷n>0 rec (n− 1) x f by 3d, 8, 4, 9, 3.
6. f ≿n>0 f by 1c.
7. n ≿n>0 n− 1 by 1a.
8. n ≻n>0 n− 1 by 2a.
9. rec n x f ▷n>0 x by 3a, 10.

10. x ≿n>0 x by 1c.

Example 10. Consider Example 5. Let [[⊐int]] be λm. λn.m > 0 ∧ m > n. Let
▶ be a precedence such that take ▶ nil and take ▶ cons. Let s be a mapping
such that s(take) = l. Then we can remove all of the rewrite rules. Note that to
establish take n (cons x l) ≻n>0 cons x (take (n− 1) l), we need cons x l ≿n>0 x,
which is obtainable because intlist is not distinguished from int.

4.4 Properties of Constrained HORPO

The soundness of constrained HORPO as a technique for rule removal relies on
the following properties, which we now prove.

Rule Orientation. The goal consists of two parts: ≿t stably orients a rewrite
rule ℓ → r [φ] if ℓ ≿φ r, and ≻t stably orients a rewrite rule ℓ → r [φ] if ℓ ≻φ r.
The core of the argument is to prove the following lemma:

Lemma 2. Given logical constraints φ and φ′ such that Var(φ) ⊇ Var(φ′) and
φ |= φ′, t |= φ′σ holds for each substitution σ which respects φ.

Proof. It follows from φ |= φ′ that [[φ′σ]] = 1. Note that Var(φ′σ) = ∅, and
therefore φ′σσ′ = φ′σ for all σ′. Hence, t |= φ′σ. ⊓⊔

And the rest is routine:

Theorem 2. Given a logical constraint φ, terms s and t, the following statements
are true for each substitution σ which respects φ:

1. s ≿φ t implies sσ ≿t tσ.
2. s ≻φ t implies sσ ≻t tσ.
3. s ▷φ t implies sσ ▷t tσ.

Proof. By mutual induction on the derivation. Note that →κ is stable. ⊓⊔

Rule-Monotonicity. Both ≿φ and ≻φ are rule-monotonic for all φ. The former
is trivial to prove, and the key to proving the latter is the following lemma:

Lemma 3. f s1 · · · sm r ▷φ t if f s1 · · · sm ▷φ t.

Proof. By induction on the derivation. ⊓⊔
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Now we can prove the rule-monotonicity:

Theorem 3. ≻φ is rule-monotonic.

Proof. By induction on the context C[]. Essentially, we ought to prove that given
terms s and t which have equal types, if s is not a theory term and s ≻φ t,
s r ≻φ t r for all r, and r s ≻φ r t for all r. We prove the former by case
analysis on the derivation of s ≻φ t, and prove the latter by case analysis on r:
r = f r1 · · · rn for some f ∈ F or r = x r1 · · · rn for some x ∈ V. ⊓⊔

Compatibility. The strict relation ≻t is compatible with its non-strict counter-
part ≿t; we prove that ≿t ; ≻t ⊆ ≻t ∪ (≻t ; ≻t), given the following observation:

Theorem 4. ≿t = ≻t ∪ ↓κ.

Proof. By definition, ≿t ⊇ ≻t ∪ ↓κ. We prove ≿t ⊆ ≻t ∪ ↓κ by induction on
the derivation of s ≿t t. Only two cases are non-trivial. If s and t are ground
theory terms whose type is a sort and [[s ⊒ t]] = 1, we have either [[s ⊐ t]] = 1 or
[[s]] = [[t]], and the former implies s ≻t t while the latter implies s ↓κ t. On the
other hand, if s is not a theory term, s = s0 s1, t = t0 t1, s0 ≿t t0 and s1 ≿t t1,
by induction, if s0 ≻t t0 or s1 ≻t t1, we can prove s ≻t t in the same manner as
we prove the rule-monotonicity of ≻t, or s0 ↓κ t0 and s1 ↓κ t1, then s ↓κ t. ⊓⊔

Theorem 4 plays an important role in the well-foundedness proof of ≻t as well.
For the compatibility of ≻t with ≿t, it remains to prove that ↓κ ; ≻t ⊆ ≻t,

which is implied by the following lemma:

Lemma 4. Given terms s and s′ such that s →κ s′, the following statements are
true for all t:

1. s ≿t t if and only if s′ ≿t t.
2. s ≻t t if and only if s′ ≻t t.
3. s ▷t t if and only if s′ ▷t t.

Proof. By mutual induction on the derivation for “if” and “only if” separately.
Note that →κ is confluent. ⊓⊔

The compatibility follows as a corollary:

Corollary 1. ≿t ; ≻t ⊆ ≻t ∪ (≻t ; ≻t).

Well-Foundedness. Following [21], we base the well-foundedness proof of ≻t on
the predicate of computability [40,17]. There are, however, two major differences,
which pose new technical challenges: ≿t is no more the reflexive closure of ≻t

and curried notation instead of uncurried notation is in use.
In Definition 6, ≻l

φ and ≻m
φ are induced by ≿φ and ≻φ. We need certain

properties of ≻l
t and ≻m

t to prove that ≻t is well-founded. Because ≿t is neither
the equality over terms nor the reflexive closure of ≻t, those properties are less
standard and deserve inspection. The property of ≻l

t is relatively easy to prove:
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Theorem 5. Given relations ≿ and ≻ over X such that ≻ is well-founded and
≿ ; ≻ ⊆ ≻+, ≻l is well-founded over Xn for all n.

Proof. The standard method used when ≿ is the equality still applies. ⊓⊔

We refer to [41] for the proof of the following property of ≻m
t :

Theorem 6. Given relations ≿ and ≻ over X such that ≿ is a quasi-ordering,
≻ is well-founded and ≿ ; ≻ ⊆ ≻, ≻m is well-founded over X∗.

Proof. See Theorem 3.7 in [41]. ⊓⊔

In comparison to [41], we waive the transitivity requirement for ≻ above, but we
cannot get around the requirement that ≿ is a quasi-ordering without significantly
changing the proof. This seems problematic because ≿t is not necessarily transitive
due to its inclusion of ≻t. Fortunately, one observation resolves this issue: ≻m

t

can equivalently be seen as induced by ↓κ and ≻t due to Theorem 4. In the same
spirit, we can prove the following property:

Theorem 7. ↓mκ ; ≻m
t ⊆ ≻m

t where s1 . . . sn ↓mκ t1 . . . tn if and only if there exists
a permutation π over { 1, . . . , n } such that sπ(i) ↓κ ti for all i.

Proof. See Lemma 3.2 in [41]. ⊓⊔

Our definition of computability (or reducibility [17]) is standard:

Definition 7. A term t0 is called computable if either

1. the type of t0 is a sort and t0 is terminating with respect to ≻t, or
2. the type of t0 is A → B and t0 t1 is computable for all computable t1 : A.

In [21], a term is called neutral if it is not a λ-abstraction. Due to the exclusion
of λ-abstractions, one might consider all LCSTRS terms neutral. This naive
definition, however, does not capture the essence of neutrality: if a term t0 is
neutral, a one-step reduct (with respect to ≻t) of t0 t1 can only be t′0 t′1 where t′0
and t′1 are reducts of t0 and t1, respectively. Because of curried notation, neutral
LCSTRS terms should be defined as follows:

Definition 8. A term is called neutral if it assumes the form x t1 · · · tn for some
variable x.

And we recall the following results:

Theorem 8. Computable terms have the following properties:

1. Given terms s and t such that s ≻t t, if s is computable, so is t.
2. All computable terms are terminating with respect to ≻t.
3. Given a neutral term s, if t is computable for all t such that s ≻t t, so is s.

Proof. The standard proof still works despite the seemingly different definition
of neutrality. ⊓⊔
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In addition, we prove the following lemma:

Lemma 5. Given terms s and t such that s ↓κ t, if s is computable, so is t.

Proof. By induction on the type of s and t. ⊓⊔

And we have the following corollary due to Theorem 4:

Corollary 2. Given terms s and t such that s ≿t t, if s is computable, so is t.

The goal is to prove that all terms are computable. To do so, the key is
to prove that f s1 · · · sm is computable where f is a function symbol if si is
computable for all i. In [21], this is done on the basis that f s1 · · · sm is neutral,
which is not true in our case. We do it differently and start with a definition:

Definition 9. Given f : A1 → · · · → An → B where f ∈ F and B ∈ S, let ar(f)
be n. We introduce a special symbol ⊤ and extend our previous definitions so
that ⊤ ≻t t for all t ∈ T (F ,V) and ⊤ ↓κ ⊤. This way ⊤ ≿t t if t ∈ T (F ,V) or
t = ⊤. Given terms t̄ = t1 . . . tn, let (t̄)k be tk if k ≤ n, and ⊤ if k > n. Given
terms s = f s1 · · · sm and t = g t1 · · · tn where f ∈ F , g ∈ F , all si and ti are
computable, we define ≻c such that s ≻c t if and only if f ▶ g, or f = g and

– s(f) = l and (s̄)1 . . . (s̄)ar(f) ≻l
t (t̄)1 . . . (t̄)ar(f), or

– s(f) = mk and
• (s̄)1 . . . (s̄)k ≻m

t (t̄)1 . . . (t̄)k, or
• (s̄)1 . . . (s̄)k ↓mκ (t̄)1 . . . (t̄)k, ∀i > k. (s̄)i ≿t (t̄)i and ∃i > k. (s̄)i ≻t (t̄)i.

This gives us a well-founded relation:

Lemma 6. ≻c is well-founded.

Proof. Since all computable terms are terminating with respect to ≻t, ≻t is
well-founded over computable terms. The introduction of ⊤ clearly does not
break this well-foundedness. The outermost layer of ≻c regards ▶, which is
well-founded by definition. We need only to fix the function symbol f and to go
deeper. If s(f) = l, we know that ≻l

t is well-founded over lists of length ar(f)
because of Theorem 5. If s(f) = mk, ≻c splits each list of arguments in two and
performs a lexicographic comparison. We can go past the first component because
of Theorems 6 and 7. And the rest, a pointwise comparison, is also well-founded.
So we can conclude that ≻c is well-founded. ⊓⊔

Now we prove the aforementioned statement:

Lemma 7. Given a term s = f s1 · · · sm where f is a function symbol, if si is
computable for all i, so is s.

Proof. By well-founded induction on ≻c. We consider the type of s:
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– If the type is a sort, we ought to prove that s is terminating with respect
to ≻t. We need only to consider the cases in which s is not a theory term
because all theory terms are terminating with respect to ≻t due to the
well-foundedness of [[⊐]]. Take an arbitrary term t such that s ≻t t. We prove
that t is terminating with respect to ≻t by case analysis on the derivation
of s ≻t t. If t = f t1 · · · tm, ∀i. si ≿t ti and ∃k. sk ≻t tk, we can prove that
s ≻c t. By induction, t is computable and therefore terminating with respect
to ≻t. If s ▷t t, we prove that t is computable for all t such that s ▷t t (t is
generalized) by inner induction on the derivation of s ▷t t:
1. If ∃k. sk ≿t t, t is computable due to Corollary 2.
2. If t = t0 t1 · · · tn and ∀i. s ▷t ti, ti is computable for all i by inner

induction. By definition, t is computable.
3. If t = g t1 · · · tn, f ▶ g and ∀i. s ▷t ti, ti is computable for all i by inner

induction. It follows from f ▶ g that s ≻c t, and t is computable by outer
induction.

4. If t = f t1 · · · tn, s(f) = l, s1 . . . sm ≻l
t t1 . . . tn and ∀i. s ▷t ti, ti is

computable for all i by inner induction. Likewise, s ≻c t.
5. If t = f t1 · · · tn, s(f) = mk, k ≤ n, s1 . . . smin(m,k) ≻m

t t1 . . . tk and
∀i. s ▷t ti, ti is computable for all i by inner induction. Likewise, s ≻c t.

6. If t is a value, t is terminating with respect to ≻t and its type is a sort.
– If the type is A → B, take an arbitrary computable sm+1 : A. We prove

that s ≻c s sm+1 = f s1 · · · sm+1. Note that (s1 . . . sm)i = (s1 . . . sm+1)i for
all i ≤ m and (s1 . . . sm)m+1 = ⊤ ≻t (s1 . . . sm+1)m+1. Consider s(f) = l,
s(f) = mk while k > m, and s(f) = mk while k ≤ m. We have s ≻c s sm+1

in each case. By induction, s sm+1 is computable. Hence, s is computable.

We conclude that s is computable. ⊓⊔

Now the well-foundedness of ≻t follows immediately:

Theorem 9. ≻t is well-founded.

Proof. We prove that every term t is computable by induction on t. Given
Lemma 7, we need only to prove that variables are computable, which is the case
because variables are neutral and in normal form with respect to ≻t. ⊓⊔

5 Discussion: HORPO and Dependency Pairs

In Section 4, we discussed rule removal, and presented a reduction ordering to
prove termination. However, in practice it is not so common to directly use
reduction orderings as a termination method. Rather, the norm in the literature
nowadays is to use dependency pairs.

The dependency pair framework [1,16] allows a single term rewriting system
to be split into multiple “DP problems”, each of which can then be analyzed
independently. The framework operates by iteratively simplifying DP problems
until none remain, in which case the original system is proved terminating. There
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are variants for many styles of term rewriting, including first-order LCTRSs [25]
and unconstrained higher-order TRSs [39,25,11].

Importantly, many existing techniques can be reformulated as “processors”
(DP problem simplifiers) in the dependency pair framework. Such techniques
include reduction orderings, which are at the heart of the dependency pair
framework. This combination is far more powerful than using reduction orderings
directly because the monotonicity requirement is replaced by weak monotonicity,
and we do not have to orient the entire system in one go.

Consider the following first-order LCTRS:

u x y → u (x+ 1) (y ∗ 2) [x < 100] v y → v (y − 1) [y > 0]

u 100 y → v y

This system cannot be handled by HORPO directly: the ordering [[⊐int]] needs to
be fixed globally, so we can either orient the rewrite rule at the top-left corner or
the one at the top-right corner, but not both at the same time. We could address
this dilemma by using a more elaborate definition of HORPO (for example,
by giving every function symbol an additional status that indicates the theory
ordering to be used for each of its arguments), but this seems redundant: in
practice, such a system would be handled by the dependency pair framework.
Following the definition in [25], the above system would be split in two separate
DP problems corresponding to the two loops:{

u♯ x y → u♯ (x+ 1) (y ∗ 2) [x < 100]
} {

v♯ y → v♯ (y − 1) [y > 0]
}

which could then be handled independently.
While dependency pairs for LCSTRSs are not yet defined (and beyond the

scope of this paper), we postulate that the definitions for curried higher-order
rewriting in [11] and first-order constrained rewriting in [25] can be combined
in a natural way. In this setting, HORPO would naturally be combined with
argument filterings [1,11]. That is, since we only require weak monotonicity, some
arguments can be removed. For example, the first DP problem above can be
handled by showing the following inequalities:

u♯ x ≻x<100 u♯ (x+ 1) u ≿x<100 u v ≿y>0 v u ≿t v

This is the case with u ▶ v.

6 Implementation

A preliminary implementation of LCSTRSs is available in Cora through the link:

https://github.com/hezzel/cora

Cora is an open-source analyzer for constrained rewriting, which can be used
both as a stand-alone tool and as a library. Note that Cora is still in active
development, and its functionalities, as well as its interface, are subject to change.
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Nevertheless, Cora is already used in several student projects. Cora supports only
the theories of integers and booleans so far, but is intended to eventually support
any theory, provided that an SMT solver is able to handle it. Example input files
are supplied in the above repository. The version of this paper is available in [28].

Automating Constrained HORPO. Cora includes an implementation of
constrained HORPO. Following existing termination tools such as AProVE [14],
NaTT [42] and Wanda [26], we use an SMT encoding such that a satisfying
assignment to variables in the SMT problem corresponds to a combination of the
precedence ▶, the status s and the ordering [[⊐int]] that proves the termination of
the encoded system by constrained HORPO. As for booleans, we simply choose
the ordering [[⊐bool]] such that [[t ⊐bool f]] = 1.

To encode the precedence and the status, we introduce integer variables
precf and statf for each function symbol f that is not a value. We require
that precf < 0 if f is a theory symbol, and that precf ≥ 0 otherwise—so that
precf > precg corresponds to f ▶ g. The value k of statf indicates s(f) = l if
k = 1, and s(f) = mk if k > 1. We let down be a boolean variable which indicates
the choice between two possibilities for [[⊐int]]: λm. λn.m > −M ∧m > n and
λm. λn.m < M ∧m < n (the choice of M is discussed below).

In the derivation of s ≻φ t, all assertions assume the form s′ Rφ t′ where
s′ and t′ are subterms of s and t, respectively (see Example 9). Hence, given
a finite set of rewrite rules, there are only finitely many possible assertions to
be analyzed. By inspecting the definition of constrained HORPO, we also note
that there are no cyclic dependencies. For all ℓ → r [φ], respective subterms s
and t of ℓ and r, and R ∈ {≿,≻, ▷, 1a, 1b, . . . , 3f }, we thus introduce a variable
⟨s Rφ t⟩ with its defining constraint. Without going into detail for all the cases,
we provide a few key examples:

– If s and t do not have equal types, we add ¬⟨s ≿φ t⟩; otherwise, we add
⟨s ≿φ t⟩ =⇒ ⟨s 1aφ t⟩ ∨ ⟨s 1bφ t⟩ ∨ ⟨s 1cφ t⟩ ∨ ⟨s 1dφ t⟩, which states that
if s ≿φ t holds, it must hold in one of the defining cases 1a, 1b, 1c and 1d.
Each of these cases in turn has its defining constraint.

– ⟨f s1 · · · sm 3cφ g t1 · · · tn⟩ =⇒ precf > precg ∧
∧

j⟨f s1 · · · sm ▷φ tj⟩.
– We come up with the defining constraint of ⟨s 2aφ t⟩ by case analysis:

• If either of s and t is not a theory term, or their respective types are not
the same theory sort, or Var(s) ∪Var(t) ⊈ Var(φ), we add ¬⟨s 2aφ t⟩.

• Otherwise, we consider the type of s and t:
∗ The type is int. We respectively check if φ =⇒ s > −M ∧ s > t

and φ =⇒ s < M ∧ s < t are valid. If the former is not valid,
we add ⟨s 2aφ t⟩ =⇒ ¬down; if the latter is not valid, we add
⟨s 2aφ t⟩ =⇒ down. That is, if both of the validity checks fail, both
of the constraints are added, which is equivalent to adding ¬⟨s 2aφ t⟩.

∗ The type is bool. We add ¬⟨s 2aφ t⟩ if φ =⇒ s ∧ ¬t is not valid; if
it is valid, nothing is added and the SMT solver is free to set true for
the variable ⟨s 2aφ t⟩.
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Here M is twice the largest absolute value of integers occurring in the
rewrite rules, or just 1000 if that is too large—this value is chosen arbitrarily.
Note that the validity checks are not included as part of the SMT problem:
if they were included, the satisfiability problem would contain universal
quantification, which is typically hard to solve. We rather pose a separate
question to the SMT solver every time we encounter theory comparison,
and for integers, consider whether the pair can be oriented downward with
λm. λn.m > −M ∧m > n, upward with λm. λn.m < M ∧m < n, or not at
all. Hence, we must fix the bound M beforehand.

– The hardest is 3e: we need not only to encode the multiset comparison, but
also to make sure that only k arguments are to be considered on both sides
(should there be more). Following Definition 4, we introduce boolean variables
strict1, . . . , strictm where stricti indicates i ∈ I, and integer variables
π(1), . . . , π(n). The defining constraint of ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ is the
conjunction of the following components:
• ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ =⇒ 2 ≤ statf ≤ n.
• ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ =⇒

∧
j⟨f s1 · · · sm ▷φ tj⟩.

• ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ =⇒
∨

i stricti.
• For all i ∈ { 1, . . . ,m }, ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ ∧ stricti =⇒ i ≤
statf . That is, I ⊆ { 1, . . . , k } if s(f) = mk.

• For all j ∈ { 1, . . . , n }, ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ ∧ j ≤ statf =⇒ 1 ≤
π(j) ∧ π(j) ≤ m ∧ π(j) ≤ statf . That is, 1 ≤ π(j) ≤ min(m, k) for all
j ∈ { 1, . . . , k } if s(f) = mk.

• For all i ∈ { 1, . . . ,m }, j ∈ { 1, . . . , n− 1 } and j′ ∈ { j + 1, . . . , n },
⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ =⇒ stricti ∨ π(j) ̸= i ∨ π(j′) ̸= i. That is,∣∣π−1(i)

∣∣ ≤ 1 for all i ∈ { 1, . . . ,m } \ I—which suffices because we can
add to I all i ∈ { 1, . . . ,min(m, k) } \ I such that

∣∣π−1(i)
∣∣ = 0 without

changing the generalized multiset ordering if s(f) = mk.
• For all i ∈ { 1, . . . ,m } and j ∈ { 1, . . . , n }, ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ ∧
π(j) = i ∧ stricti =⇒ ⟨si ≻φ tj⟩.

• For all i ∈ { 1, . . . ,m } and j ∈ { 1, . . . , n }, ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ ∧
π(j) = i ∧ ¬stricti =⇒ ⟨si ≿φ tj⟩.

Cora succeeds in proving that all the examples in this paper are terminating,
except Example 2, which is non-terminating.

7 Related Work

In this section, we assess the newly proposed formalism and the prospects for its
application by comparing and relating it to the literature.

Term Rewriting. The closest related work is LCTRSs [27,12], the first-order
formalism for constrained rewriting upon which the present work is built. Similarly,
there are numerous formalisms for higher-order term rewriting, but without
built-in logical constraints, e.g., [21,22,31]. It seems likely that the methods for
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analyzing those can be extended with support for SMT, as what is done for
HORPO in this paper.

Also worth mentioning is the K Framework [35], which, like our formalism,
can be used as an intermediate language for program analysis and is based on a
form of first-order rewriting. The K tool includes techniques through reachability
logic, rather than methods like HORPO.

There are several works that analyze functional programs using term rewriting,
e.g., [2,15]. However, they typically use translations to first-order systems. Hence,
some of the structure of the initial problem is lost, and their power is weakened.

HORPO. Our definition of constrained HORPO is based on the first-order
constrained RPO for LCTRSs [27] and the first definition of higher-order RPO
[21]. There have been other HORPO extensions since, e.g., [5,6], and we believe
that the ideas for these extensions can also be applied to constrained HORPO.
We have not done so because the purpose of this paper is to show that and how
techniques for analyzing higher-order systems extend, not to introduce the most
powerful (and consequently more elaborate) ones.

Also worth mentioning is [4], a higher-order RPO for λ-free systems. This
variant is defined for the purpose of superposition rather than termination analysis,
and is ground-total but generally not monotonic.

Functional Programming. There are many works performing direct analyses
of functional programs, including termination analysis, although they typically
concern specific programming languages such as Haskel (e.g., [19]) and OCaml
(e.g., [20]). A variety of techniques have been proposed, such as sized types [33]
and decreasing measures on data [18], but as far as we can find, there is no
real parallel of many rewriting techniques such as RPO. We hope that, through
LCSTRSs, we can help make the techniques of term rewriting available to the
functional programming community.

8 Conclusion and Future Work

In summary, we have defined a higher-order extension of logically constrained
term rewriting systems, which can represent realistic higher-order programs in a
natural way. To illustrate how such systems may be analyzed, we have adapted
HORPO, one of the oldest higher-order termination techniques, to handle logical
constraints. Despite being a very basic method, this is already powerful enough
to handle examples in this paper. Both LCSTRSs and constrained HORPO are
implemented in our new analysis tool Cora.

In the future, we intend to extend more techniques, both first-order and
higher-order, to this formalism, and to implement them in a fully automatic
tool. We hope that this will make the methods of the term rewriting community
available to other communities, both by providing a powerful backend tool, and
by showing how existing techniques can be adapted—so they may also be natively
adopted in program analysis.
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A natural starting point is to increase our power in termination analysis by
extending dependency pairs [1,39,11,25] and various supporting methods like the
subterm criterion and usable rules. In addition, methods for analyzing complexity,
reachability and equivalence (e.g., through rewriting induction [34,12]), which
have been defined for first-order LCTRSs, are natural directions for higher-order
extension as well.
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