
Higher-Order Constrained Dependency Pairs for1

(Universal) Computability2

Liye Guo @ ORCID3

Radboud University, Nijmegen, The Netherlands4

Kasper Hagens @ ORCID5

Radboud University, Nijmegen, The Netherlands6

Cynthia Kop @ ORCID7

Radboud University, Nijmegen, The Netherlands8

Deivid Vale @ ORCID9

Radboud University, Nijmegen, The Netherlands10

Abstract11

Dependency pairs constitute a series of very effective techniques for the termination analysis of12

term rewriting systems. In this paper, we adapt the static dependency pair framework to logically13

constrained simply-typed term rewriting systems (LCSTRSs), a higher-order formalism with logical14

constraints built in. We also propose the concept of universal computability, which enables a form15

of hierarchical or open-world termination analysis through the use of static dependency pairs.16

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting17

Keywords and phrases Higher-order term rewriting, constrained rewriting, dependency pairs18

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2319

Funding The authors are supported by NWO VI.Vidi.193.075, project “CHORPE”.20

1 Introduction21

Logically constrained simply-typed term rewriting systems (LCSTRSs) [11] are a formalism22

of higher-order term rewriting with logical constraints (built on its first-order counterpart23

[18]). Proposed for program analysis, LCSTRSs offer a flexible representation of programs24

since—unlike traditional rewriting—they can natively represent primitive data types such as25

(arbitrary-precision or fixed-width) integers and floating-point numbers. Without compro-26

mising ability to directly reason with these widely used data types, LCSTRSs bridge the gap27

between the abundant techniques based on term rewriting and automatic program analysis.28

We consider termination analysis in this paper. The termination of LCSTRSs was first29

discussed in [11] through a variant of the higher-order recursive path ordering (HORPO) [14].30

This paper furthers that discussion by introducing dependency pairs [1] to LCSTRSs. As31

a broad framework for termination, this method was initially proposed for unconstrained32

first-order term rewriting, and was later generalized in a variety of higher-order settings (see,33

e.g., [29, 20, 28, 2]). Modern termination analyzers rely heavily on dependency pairs.34

In higher-order termination analysis, dependency pairs take two forms: the dynamic35

[29, 20] and the static [28, 2, 21, 6]. This paper concentrates on the static variation, building36

on the definitions in [6, 21]. Dependency pairs for first-order rewriting with logical constraints37

have been informally defined by the third author [15], which we also build upon.38

For program analysis, the traditional notion of termination can be inefficient, and arguably39

insufficient. It assumes the full program is known, and analyzed at once: a closed-world40

analysis. This means that even small programs that happen to use large standard libraries41

require a sophisticated analysis; and local changes in a large, previously verified program,42

require the entire analysis to be redone. As O’Hearn argues in [23] (though in a different43

© Liye Guo, Kasper Hagens, Cynthia Kop and Deivid Vale;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:l.guo@cs.ru.nl
https://orcid.org/0000-0002-3064-2691
mailto:k.hagens@cs.ru.nl
https://orcid.org/0009-0005-2382-0559
mailto:c.kop@cs.ru.nl
https://orcid.org/0000-0002-6337-2544
mailto:d.vale@cs.ru.nl
https://orcid.org/0000-0003-1350-3478
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Higher-Order Constrained Dependency Pairs for (Universal) Computability

context), studying open-world analysis instead opens up many applications. In particular, it44

seems practically highly desirable to analyze termination of standard libraries, or modules in45

a larger program, without prior knowledge of how the functions they define may be used.46

It is tricky to characterize such a property, especially in the presence of higher-order47

arguments. For example, map and fold are usually considered “terminating”, even though48

passing a non-terminating function to them can surely result in non-termination. Hence,49

we need to narrow our focus to certain “reasonable” calls. On the other hand, a program50

app (lam f) → f where app : o → o → o and lam : (o → o) → o would generally be considered51

“non-terminating”, because if we define w x → app x x, an infinite rewrite sequence starts52

from app (lam w) (lam w). (This program encodes the untyped lambda-calculus.) The53

property we are looking for must distinguish map and fold from app.54

To capture this property, we propose a new concept, called universal computability. In55

light of information hiding, this concept can be further generalized to public computability.56

We will see that static dependency pairs are a natural vehicle to analyze these properties.57

Various modular aspects of term rewriting have been studied by the community. Our58

scenario roughly corresponds to hierarchical combinations [25, 26, 27, 5], where parts of59

programs are analyzed separately, potentially using different analysis techniques. We follow60

this terminology so that it will be easier to compare our work with the literature. However, our61

setup—higher-order constrained rewriting—is separate from the first-order and unconstrained62

setting in which hierarchical combinations were initially proposed. Furthermore, our approach63

has a different focus—namely, the use of static dependency pairs.64

Contributions. We recall the formalism of LCSTRSs and the predicate of computability in65

Section 2. Then the contributions of this paper follow:66

We present a first definition of dependency pairs for higher-order constrained TRSs67

(Section 3). Since the prior work for first-order rewriting we build on [15] was never68

formally published, this is also a first DP approach for logically constrained TRSs.69

We define a dependency pair framework for termination analysis, and provide five depen-70

dency pair processors to simplify termination problems in this framework (Section 4).71

We extend the notion of hierarchical combinations [25, 26, 27, 5] to LCSTRSs and define72

both universal and public computability. We fine-tune the DP framework to support these73

properties, and provide two new processors for public computability (Section 5). This74

allows the DP framework to be used for open-world and compositional analysis.75

We have implemented the DP framework for both termination and public computability76

in our open-source tool Cora. We describe the experimental evaluation in Section 6.77

2 Preliminaries78

In this section, we collect the preliminary definitions and results we need from the literature.79

First, we recall the definition of an LCSTRS [11]. In this paper, we put a restriction on80

rewrite rules: ℓ is always a pattern in ℓ → r [φ]. Next, we recall the definition of computability81

(with accessibility) from [6]. This version is particularly tailored for static dependency pairs.82

2.1 Logically Constrained STRSs83

Terms Modulo Theories. Given a non-empty set S of sorts (or base types), the set T of84

simple types over S is generated by the grammar T ::= S | (T → T). Right-associativity85

is assigned to → so we can omit some parentheses. Given disjoint sets F and V, whose86

elements we call function symbols and variables, respectively, the set T of pre-terms over F87

L. Guo, K. Hagens, C. Kop and D. Vale 23:3

and V is generated by the grammar T ::= F | V | (T T). Left-associativity is assigned to the88

juxtaposition operation, called application, so for instance t0 t1 t2 stands for ((t0 t1) t2).89

We assume that every function symbol and variable is assigned a unique type. Typing90

works as expected: if pre-terms t0 and t1 have types A → B and A, respectively, t0 t1 has91

type B. The set T (F ,V) of terms over F and V consists of pre-terms that have a type. We92

write t : A if term t has type A. We assume there are infinitely many variables of each type.93

The set Var(t) of variables in a term t is defined by: Var(f) = ∅ for f ∈ F , Var(x) = {x }94

for x ∈ V and Var(t0 t1) = Var(t0) ∪ Var(t1). A term t is called ground if Var(t) = ∅.95

For constrained rewriting, we make further assumptions. First, we assume that there is a96

distinguished subset Sϑ of S, called the set of theory sorts. The grammar Tϑ ::= Sϑ | (Sϑ → Tϑ)97

generates the set Tϑ of theory types over Sϑ. Note that a theory type is essentially a non-empty98

list of theory sorts. Next, we assume that there is a distinguished subset Fϑ of F , called the99

set of theory symbols, and that the type of every theory symbol is in Tϑ, which means that100

the type of any argument passed to a theory symbol is a theory sort. Theory symbols whose101

type is a theory sort are called values. Elements of T (Fϑ,V) are called theory terms.102

Theory symbols are interpreted in an underlying theory: given an Sϑ-indexed family of103

sets (XA)A∈Sϑ
, we extend it to a Tϑ-indexed family by letting XA→B be the set of mappings104

from XA to XB; an interpretation of theory symbols is a Tϑ-indexed family of mappings105

([[·]]A)A∈Tϑ
where [[·]]A assigns to each theory symbol of type A an element of XA and is106

bijective if A ∈ Sϑ. Given an interpretation of theory symbols ([[·]]A)A∈Tϑ
, we extend each107

indexed mapping [[·]]B to one that assigns to each ground theory term of type B an element of108

XB by letting [[t0 t1]]B be [[t0]]A→B([[t1]]A). We write just [[·]] when the type can be deduced.109

▶ Example 1. Let Sϑ be { int }. Then int → int → int is a theory type over Sϑ while110

(int → int) → int is not. Let Fϑ be { − } ∪ Z where − : int → int → int and n : int for all111

n ∈ Z. The values are the elements of Z. Let Xint be Z, [[·]]int be the identity mapping and112

[[−]] be the mapping λm. λn.m− n. The interpretation of (−) 1 is the mapping λn. 1 − n.113

Substitutions, Contexts and Subterms. Type-preserving mappings from V to T (F ,V) are114

called substitutions. Every substitution σ extends to a type-preserving mapping σ̄ from115

T (F ,V) to T (F ,V). We write tσ for σ̄(t) and define it as follows: fσ = f for f ∈ F ,116

xσ = σ(x) for x ∈ V and (t0 t1)σ = (t0σ) (t1σ). Let [x1 := t1, . . . , xn := tn] denote the117

substitution σ such that σ(xi) = ti for all i, and σ(y) = y for all y ∈ V \ {x1, . . . , xn }.118

A context is a term containing a hole. Formally, if □ is a special terminal symbol and119

A a type, a context is an element C[] of T (F ,V ∪ {□ : A}) in which □ occurs exactly once.120

Given a term s : A, we denote C[s] for the term obtained by replacing □ in C[] by s.121

A term t is called a (maximally applied) subterm of a term s, written as s ⊵ t, if either122

s = t, s = s0 s1 where s1 ⊵ t, or s = s0 s1 where s0 ⊵ t and s0 ̸= t; that is, s = C[t] for C[]123

which does not take the form C ′[□ t1]. We write s ▷ t if s ⊵ t and s ̸= t.124

Constrained Rewriting. Constrained rewriting requires the theory sort bool: we henceforth125

assume that bool ∈ Sϑ, { f, t } ⊆ Fϑ, Xbool = { 0, 1 }, [[f]]bool = 0 and [[t]]bool = 1. A logical126

constraint is a theory term φ such that φ has type bool and the type of each variable in Var(φ)127

is a theory sort. A (constrained) rewrite rule is a triple ℓ → r [φ] where ℓ and r are terms128

which have the same type, φ is a logical constraint, the type of each variable in Var(r)\Var(ℓ)129

is a theory sort and ℓ is a pattern that takes the form f t1 · · · tn for some function symbol f130

and contains at least one function symbol in F \Fϑ. Here a pattern is a term whose subterms131

are either f t1 · · · tn for some function symbol f or a variable. A substitution σ is said to132

respect ℓ → r [φ] if σ(x) is a value for all x ∈ Var(φ) ∪ (Var(r) \ Var(ℓ)) and [[φσ]] = 1.133

CVIT 2016

23:4 Higher-Order Constrained Dependency Pairs for (Universal) Computability

A logically constrained simply-typed term rewriting system (LCSTRS) collects the above134

data—S, Sϑ, F , Fϑ, V , (XA) and [[·]]—along with a set R of rewrite rules. We usually let R135

alone stand for the system. The set R induces the rewrite relation →R ⊆ T (F ,V) × T (F ,V)136

such that t →R t′ if and only if there exist a context C[] and terms s, s′ such that t = C[s],137

t′ = C[s′] and one of the following conditions is true:138

1. s = ℓσ and s′ = rσ for some ℓ → r [φ] ∈ R and substitution σ which respects ℓ → r [φ].139

2. s = f v1 · · · vn and s′ = v′ for values v1 : A1, . . . , vn : An, v
′ : B and theory symbol140

f : A1 → · · · → An → B with n > 0 such that [[f v1 · · · vn]] = [[v′]].141

If t →R t′ due to the second condition, we also write t →κ t
′ and call it a calculation step.142

When no ambiguity arises, we may simply write → for →R. Let s↓κ denote the result of143

maximally reducing a term s using calculation steps (e.g., f (1 + (2 + 3))↓κ= f 6).144

A rewrite rule ℓ → r [φ] defines a function symbol f if ℓ = f t1 · · · tn. Given an LCSTRS145

R, f is called a defined symbol if there exists a rewrite rule in R which defines f . Let D be the146

set of defined symbols. Values and function symbols in F \ (D ∪ Fϑ) are called constructors.147

▶ Example 2. The following LCSTRS implements the factorial function using continuations:148

fact n k → k 1 [n ≤ 0] comp g f x → g (f x)
fact n k → fact (n− 1) (comp k ((∗) n)) [n > 0] id n → n

149

We use infix notation for some binary operators to improve readability, and omit the constraint150

of a rule when it is t. An example rewrite sequence is fact 1 id → fact (1−1) (comp id ((∗) 1))151

→κ fact 0 (comp id ((∗) 1)) → comp id ((∗) 1) 1 → id ((∗) 1 1) →κ id 1 → 1.152

2.2 Accessibility and Computability153

Accessibility. We assume given a sort ordering ≿: a quasi-ordering over S whose strict part154

≻ = ≿ \ ≾ is well-founded. We inductively define two relations ≿+ and ≻− over S and T :155

for a sort A and a type B = B1 → · · · → Bn → C with C a sort and n ≥ 0, we let A ≿+ B156

if A ≿ C and A ≻− Bi for all i; and we let A ≻− B if A ≻ C and A ≿+ Bi for all i.157

Given a function symbol f : A1 → · · · → An → B where B is a sort, the set of accessible158

argument positions of f is defined as Acc(f) = { 1 ≤ i ≤ n |B ≿+ Ai }. A term t is called an159

accessible subterm of a term s, written as s ⊵acc t, if either s = t, or s = f s1 · · · sm for some160

f ∈ F and there exists k ∈ Acc(f) such that sk ⊵acc t. An LCSTRS R is called accessible161

function passing (AFP) if there exists a sort ordering such that for all f s1 · · · sm → r [φ] ∈ R162

and x ∈ Var(f s1 · · · sm) ∩ Var(r) \ Var(φ), there exists k such that sk ⊵acc x.163

▶ Example 3. An LCSTRS R is AFP (by equating all sorts in ≿) if for all f s1 · · · sm →164

r [φ] ∈ R, for all i ∈ {1, . . . ,m}: all strict subterms of si (i.e., t with si ▷ t) have base type.165

Rewrite rules for common higher-order functions, e.g., map and fold, usually fit this criterion.166

Consider { complst fnil x → x, complst (fcons f l) x → complst l (f x) }, where complst :167

funlist → int → int composes a list of functions. This system is AFP with funlist ≻ int.168

The system { app (lam f) → f } in Section 1 is not AFP since o ≻ o cannot be true.169

Computability. A term is called neutral if it takes the form x t1 · · · tn for some variable x.170

A set of reducibility candidates, or an RC-set, for the rewrite relation →R of an LCSTRS R is171

an S-indexed family of sets (IA)A∈S (let I denote
⋃

A IA) satisfying the following conditions:172

1. Each element of IA is a terminating (with respect to →R) term of type A.173

2. Given terms s and t such that s →R t, if s is in IA, so is t.174

3. Given a neutral term s, if t is in IA for all t such that s →R t, so is s.175

L. Guo, K. Hagens, C. Kop and D. Vale 23:5

Given an RC-set I for →R, a term t0 is I-computable if either the type of t0 is a sort A and176

t0 ∈ IA, or the type of t0 is A → B and t0 t1 is I-computable for all I-computable t1 : A.177

We are interested in a specific RC-set C, whose existence is guaranteed by Theorem 4.178

▶ Theorem 4 (see [6]). Given a sort ordering and an RC-set I for →R, let ⇛I be the relation179

over terms such that s ⇛I t if and only if s and t both have base type, s = f s1 · · · sm for180

some function symbol f , t = sk t1 · · · tn for some k ∈ Acc(f) and ti is I-computable for all i.181

Given an LCSTRS R with a sort ordering, there exists an RC-set C for →R such that182

∀A ∈ S: t ∈ CA iff t : A is terminating with respect to →R ∪⇛C, and for all t′ with t →∗
R t′,183

if t′ = f t1 · · · tn for some function symbol f , then ti is C-computable for all i ∈ Acc(f).184

Using this definition, a term f t1 · · · tn is computable iff all its →R-reducts and accessible185

arguments {ti | i ∈ Acc(f)} are. We will consider C-computability throughout this paper.186

3 Static Dependency Pairs for LCSTRSs187

Originally proposed for first-order unconstrained term rewriting, the dependency pair ap-188

proach [1]—a methodology that analyzes the recursive structure of function calls—is at the189

heart of most modern automatic termination analyzers for various styles of term rewrit-190

ing. There are multiple higher-order generalizations, among which we follow the static191

branch [21, 6]. As we will see in Section 5, this approach adapts well to open-world analysis.192

In this section, we adapt static dependency pairs to LCSTRSs. We start with a notation:193

▶ Definition 5. Given an LCSTRS R, let F ♯ be F∪
{
f ♯

∣∣ f ∈ D
}

where D is the set of defined194

symbols in R and f ♯ is a fresh function symbol for all f . Let dp be a fresh short. For each195

defined symbol f : A1 → · · · → An → B with B a sort, we assign f ♯ : A1 → · · · → An → dp.196

Given a term t = f t1 · · · tn ∈ T (F ,V) where f ∈ D, let t♯ denote f ♯ t1 · · · tn ∈ T (F ♯,V).197

In the presence of logical constraints, a dependency pair should be more than a pair.198

Two extra components—a logical constraint and a set of variables—keep track of what199

substitutions are expected by the dependency pair.200

▶ Definition 6. A static dependency pair (SDP) is a quadruple s♯ ⇒ t♯ [φ | L] where s♯
201

and t♯ are terms of type dp, φ is a logical constraint and L is a set of variables such that202

Var(φ) ⊆ L. For a rule ℓ → r [φ], let SDP(ℓ → r [φ]) denote the set of SDPs taking the203

form ℓ♯ x1 · · ·xm ⇒ g♯ t1 · · · tq yq+1 · · · yn [φ | Var(φ) ∪ (Var(r) \ Var(ℓ))] such that204

1. ℓ♯ : A1 → · · · → Am → dp while xi : Ai is a fresh variable for all i,205

2. r x1 · · ·xm ⊵ g t1 · · · tq for g ∈ D, and206

3. g♯ : B1 → · · · → Bn → dp while yi : Bi is a fresh variable for all i > q.207

Let SDP(R) be
⋃

ℓ→r [φ]∈R SDP(ℓ → r [φ]). A substitution σ is said to respect an SDP208

s♯ ⇒ t♯ [φ | L] if σ(x) is a ground theory term for all x ∈ L and [[φσ]] = 1.209

The component L is new compared to [15]. We will see its usefulness in Section 4.4, as it210

gives us more freedom to manipulate DPs. We introduce two shorthand notations for SDPs:211

s♯ ⇒ t♯ [φ] for s♯ ⇒ t♯ [φ | Var(φ)], and s♯ ⇒ t♯ for s♯ ⇒ t♯ [t | ∅].212

▶ Example 7. Consider the system R consisting of the following rewrite rules, in which213

gcdlist : intlist → int, fold : (int → int → int) → int → intlist → int and gcd : int → int → int.214

gcdlist → fold gcd 0 fold f y nil → y fold f y (cons x l) → f x (fold f y l)215

gcd m n → gcd (−m) n [m < 0] gcd m n → gcd m (−n) [n < 0]
gcd m 0 → m [m ≥ 0] gcd m n → gcd n (m mod n) [m ≥ 0 ∧ n > 0]

216

CVIT 2016

23:6 Higher-Order Constrained Dependency Pairs for (Universal) Computability

The set SDP(R) consists of (1) gcdlist♯ l′ ⇒ gcd♯ m′ n′, (2) gcdlist♯ l′ ⇒ fold♯ gcd 0 l′,217

(3) fold♯ f y (cons x l) ⇒ fold♯ f y l, (4) gcd♯ m n ⇒ gcd♯ (−m) n [m < 0], (5) gcd♯ m n ⇒218

gcd♯ m (−n) [n < 0], and (6) gcd♯ m n ⇒ gcd♯ n (m mod n) [m ≥ 0 ∧ n > 0]. Note that in219

(1), m′ and n′ occur on the right-hand side of ⇒ but not on the left while they are not220

required to be instantiated to ground theory terms (L = ∅). This is normal for SDPs [6, 21].221

Termination analysis via SDPs is based on the notion of a chain:222

▶ Definition 8. Given a set P of SDPs and a set R of rewrite rules, a (P,R)-chain223

is a (finite or infinite) sequence (s♯
0 ⇒ t♯0 [φ0 | L0], σ0), (s♯

1 ⇒ t♯1 [φ1 | L1], σ1), . . . such224

that for all i, s♯
i ⇒ t♯i [φi | Li] ∈ P, σi is a substitution which respects s♯

i ⇒ t♯i [φi | Li],225

and t♯i−1σi−1 →∗
R s♯

iσi if i > 0. The above (P,R)-chain is called computable if uσi is226

C-computable for all i and u such that ti ▷ u.227

▶ Example 9. Following Example 7, (1, [l := nil,m := 42, n := 24]), (6, [m := 42, n :=228

24]), (6, [m := 24, n := 18]), (6, [m := 18, n := 6]) is a computable (SDP(R),R)-chain.229

The key to establishing termination is the following result (see Appendix A):230

▶ Theorem 10. An AFP system R is terminating if there exists no infinite computable231

(SDP(R),R)-chain.232

4 The Constrained DP Framework233

In this section, we present several techniques based on SDPs, each as a DP processor ; formally,234

we call this collection of DP processors the constrained (static) DP framework. In general, a235

DP framework [9, 6] constitutes a broad method for termination and non-termination. The236

presentation here is not complete—for example, we do not consider non-termination—and a237

complete one is beyond the scope of this paper. We rather focus on the most essential DP238

processors and those newly designed to handle logical constraints.239

For presentation, we fix an LCSTRS R.240

▶ Definition 11. A DP problem is a set P of SDPs. A DP problem P is called finite if241

there exists no infinite computable (P,R)-chain. A DP processor is a partial mapping which242

possibly assigns to a DP problem a set of DP problems. A DP processor ρ is called sound if243

a DP problem P is finite whenever ρ(P) consists only of finite DP problems.244

Following Theorem 10, in order to establish the termination of an AFP system R, it245

suffices to show that SDP(R) is a finite DP problem. Given a collection of sound DP246

processors, we have the following procedure: (1) Q := { SDP(R) }; (2) while Q contains a247

DP problem P to which some sound DP processor ρ is applicable, Q := (Q \ { P }) ∪ ρ(P).248

If this procedure ends with Q = ∅, we can conclude that R is terminating.249

4.1 The DP Graph and Its Approximations250

The interconnection of SDPs via chains gives rise to a graph, namely, the DP graph [1],251

which models reachability between dependency pairs. While this graph is not computable in252

general, we follow the usual convention and use an (over-)approximation:253

▶ Definition 12. Given a set P of SDPs, a graph approximation Gθ for P is a finite directed254

graph such that θ maps the elements of P to the vertices of Gθ, and there is an edge from p0255

to p1 if (p0, σ0), (p1, σ1) is a (P,R)-chain for some substitutions σ0 and σ1.256

L. Guo, K. Hagens, C. Kop and D. Vale 23:7

Note that it is allowed for the graph approximation to have additional edges. Note257

also that, while we have allowed a DP problem P to be infinite in principle, in practice we258

typically only deal with a finite set of SDPs. Then, we can safely let θ be a bijection.259

This graph structure is useful because we can leverage it to decompose the DP problem.260

▶ Definition 13. Given a DP problem P, a graph processor computes an approximation261

(Gθ, θ) of the DP graph of P and the strongly connected components (SCCs) of Gθ, then262

returns { { p ∈ P | θ(p) belongs to S } |S is a non-trivial SCC of Gθ }.263

▶ Example 14. Following Example 7, a (tight)
graph approximation for SDP(R) is given to
the right. If a graph processor produces this
graph as the approximation, it will return the
set of DP problems { { 3 } , { 4, 5 } , { 6 } }.

1 2 3

54 6

264

Implementation. To compute a graph approximation, we adapt the common Cap approach265

[8, 32] by taking theories into account. The use of theories allows us to for instance not have266

an edge from (6) to (4) in the graph for Example 7.267

We assume given a finite set of dependency pairs, and let θ(p) = p (i.e., the nodes of268

the approximation are just the DPs of P). To test if there is an edge from t ⇒ s [φ | L] to269

t′ ⇒ s′ [φ′ | L′], where the latter SDP is renamed to have distinct variables from the former,270

we use an SMT solver to compute satisfiability of φ ∧ φ′ ∧ ζ(s, t), where ζ(u, v) is given by:271

f if u = f u1 · · ·un and v = g v1 · · · vm with f ̸= g, if f ∈ Fϑ then v is not a value, and:272

there is no rule in R of the form f ℓ1 · · · ℓk → r [ψ] with n ≥ k, and273

ζ(u1, v1) ∧ · · · ∧ ζ(un, vn) if u = f u1 · · ·un, v = f v1 · · · vn and274

there is no rule in R of the form f ℓ1 · · · ℓk → r [ψ] with n ≥ k275

u = v if u ∈ T (Fϑ, L) and v ∈ T (Fϑ,V) (and we are not in the cases above)276

t in all other cases.277

Note that “there is no rule in R of the form . . . ” can happen if f is a constructor (or symbol278

f ♯), theory symbol, or partially applied defined symbol. For example, since m ≥ 0 ∧ n >279

0 ∧m′ < 0 ∧ n = m′ ∧ (m mod n) = n′ is unsatisfiable, there is no edge from (6) to (4).280

Strongly connected components may be computed using Tarjan’s SCC algorithm [31]).281

4.2 The Subterm Criterion282

The subterm criterion [13, 21] handles structural recursion and allows us to remove decreasing283

SDPs without considering rewrite rules in R. We start with defining projections:284

▶ Definition 15. Let heads(P) denote the set of function symbols heading either side of an285

SDP in P. A projection ν for a set P of SDPs is a mapping from heads(P) to integers such286

that 1 ≤ ν(f ♯) ≤ n if f ♯ : A1 → · · · → An → dp. Let ν̄(f ♯ t1 · · · tn) denote tν(f♯).287

A projection chooses an argument position for each relevant function symbol so that288

arguments at those positions do not increase in a chain.289

▶ Definition 16. Given a set P of SDPs, a projection ν is said to ▷-orient a subset P ′ of P290

if ν̄(s♯) ▷ ν̄(t♯) for all s♯ ⇒ t♯ [φ | L] ∈ P ′ and ν̄(s♯) = ν̄(t♯) for all s♯ ⇒ t♯ [φ | L] ∈ P \ P ′.291

A subterm criterion processor assigns to a DP problem P the singleton { P \ P ′ } for some292

non-empty subset P ′ of P such that there exists a projection for P which ▷-orients P ′.293

▶ Example 17. Following Example 14, a subterm criterion processor is applicable to { 3 }.294

Let ν(fold♯) = 3; then ν̄(fold♯ f y (cons x l)) = cons x l ▷ l = ν̄(fold♯ f y l). The processor295

returns { ∅ }, and the empty DP problem can (trivially) be removed by a graph processor.296

CVIT 2016

23:8 Higher-Order Constrained Dependency Pairs for (Universal) Computability

Implementation. The search for a suitable projection function can be done through SMT,297

and is standard: we use integer variables Nf♯ for all f ♯ ∈ heads(P) to represent ν(f ♯), and a298

Boolean variable strictp for each p ∈ P, and encode the requirements per DP.299

4.3 Integer Mappings300

The subterm criterion deals with recursion over the structure of terms, but not recursion301

over, say, integers, which requires us to utilize the information in logical constraints. For this302

processor, we assume that int ∈ Sϑ and that Fϑ contains symbols ≥, >: int → int → bool303

and ∧ : bool → bool → bool that are interpreted in the natural way.304

▶ Definition 18. Given a set P of SDPs, for all f ♯ ∈ heads(P) (see Definition 15) where305

f ♯ : A1 → · · · → An → dp, let ι(f ♯) be the subset of { 1, . . . , n } such that i ∈ ι(f ♯) if and306

only if Ai ∈ Sϑ and the i-th argument of any occurrence of f ♯ in an SDP s♯ ⇒ t♯ [φ | L] ∈ P307

is in T (Fϑ, L). Let X (f ♯) be a set of fresh variables
{
xf♯,i

∣∣ i ∈ ι(f ♯)
}

where xf♯,i : Ai for all308

i. An integer mapping J for P is a mapping from heads(P) to theory terms such that for all309

f ♯, J (f ♯) : int and Var(J (f ♯)) ⊆ X (f ♯). Let J̄ (f ♯ t1 · · · tn) denote J (f ♯)[xf♯,i := ti]i∈ι(f♯).310

With integer mappings, we can handle decreasing integer values.311

▶ Definition 19. Given a set P of SDPs, an integer mapping J is said to >-orient a subset312

P ′ of P if φ |= J̄ (s♯) ≥ 0∧J̄ (s♯) > J̄ (t♯) for all s♯ ⇒ t♯ [φ | L] ∈ P ′, and φ |= J̄ (s♯) ≥ J̄ (t♯)313

for all s♯ ⇒ t♯ [φ | L] ∈ P \ P ′, where φ |= φ′ denotes that for all substitutions σ that map314

variables in Var(φ) ∪ Var(φ′) to values: if [[φσ]] = 1 then [[φ′σ]] = 1. An integer mapping315

processor assigns to a DP problem P the singleton { P \ P ′ } for some non-empty subset P ′
316

of P such that there exists an integer mapping for P which >-orients P ′.317

▶ Example 20. Following Example 14, an integer mapping processor is applicable to { 6 }.318

Let J (gcd♯) be xgcd♯,2 so that J̄ (gcd♯ m n) = n, J̄ (gcd♯ n (m mod n)) = m mod n and319

m ≥ 0 ∧ n > 0 |= n ≥ 0 ∧ n > m mod n. Then the integer mapping processor returns { ∅ },320

and the empty DP problem can (trivially) be removed by a graph processor.321

Implementation. There are several ways to implement this processor. In our tool, we322

generate a number of candidate interpretations from the constraints, and use an encoding323

to SMT to select one candidate for each f ♯ ∈ heads(P) that satisfies the requirements324

of Definition 19. Candidates are for instance all functions J (f ♯) = xf♯,i, and candidates325

obtained from the constraint (e.g., for an SDP f ♯ x y ⇒ g♯ x (y + 1) [y < x], we generate326

J (f ♯) = xf♯,1 − xf♯,2 − 1 because y < x implies x− y − 1 ≥ 0).327

4.4 Theory Arguments328

The integer mapping processor has a clear limitation: what if some variables do not occur329

in the set L? This arises in the last remaining DP problem from Example 7: { 4, 5 }. This330

problem is clearly finite, but we cannot apply the integer mapping processor since ι(gcd♯) = ∅.331

This restriction exists for a reason. Variables that are not guaranteed to be instantiated by332

theory terms may well be instantiated by non-deterministic terms. For example, a DP problem333

{ f ♯ x y z ⇒ f ♯ x (x+ 1) (x− 1) [y < z]}, is not finite if R ⊇ {c x y → x, c x y → y}.334

In our running example, the problem arises because each SDP focuses on only one335

argument: for example, the logical constraint (with the component L) of (5) only concerns336

n so in principle we cannot assume anything about m. Yet, if (5) follows (4) in a chain,337

then we can derive that m must be instantiated by a ground theory term (we call such an338

argument a theory argument). We explore a way of propagating this information.339

L. Guo, K. Hagens, C. Kop and D. Vale 23:9

▶ Definition 21. A theory argument (position) mapping τ for a set P of SDPs is a mapping340

from heads(P) (see Definition 15) to subsets of Z such that τ(f ♯) ⊆ { 1 ≤ i ≤ m |Ai ∈ Sϑ }341

if f ♯ : A1 → · · · → Am → dp, si is a theory term and the type of each variable in Var(si) is342

a theory sort for all f ♯ s1 · · · sm ⇒ t♯ [φ | L] ∈ P and i ∈ τ(f ♯), and tj is a theory term and343

Var(tj) ⊆ L ∪
⋃

i∈τ(f♯) Var(si) for all f ♯ s1 · · · sm ⇒ g♯ t1 · · · tn [φ | L] ∈ P and j ∈ τ(g♯).344

Let τ̄(f ♯ s1 · · · sm ⇒ t♯ [φ | L]) denote f ♯ s1 · · · sm ⇒ t♯ [φ | L ∪
⋃

i∈τ(f♯) Var(si)].345

By a theory argument mapping, we choose a subset of the given set of SDPs from which346

the theory argument information is propagated.347

▶ Definition 22. Given a set P of SDPs, a theory argument mapping τ is said to fix a subset348

P ′ of P if
⋃

i∈τ(f♯) Var(ti) ⊆ L for all s♯ ⇒ f ♯ t1 · · · tn [φ | L] ∈ P ′. A theory argument349

processor assigns to a DP problem P the pair { { τ̄(p) | p ∈ P } ,P \ P ′ } for some non-empty350

subset P ′ of P such that there exists a theory argument mapping for P which fixes P ′.351

▶ Example 23. Following Example 14, a theory argument processor is applicable to { 4, 5 }.352

Let τ(gcd♯) = { 1 }, so τ fixes { 4 }. Then the processor returns {{4, (7) gcd♯ m n ⇒353

gcd♯ m (−n) [n < 0 | {m,n }]}, {5}}. The integer mapping processor with J (gcd♯) =354

−xgcd♯,1 removes (4) from { 4, 7 }; then { 7 } and { 5 } are easily removed by a graph processor.355

Implementation. To find a valid theory argument mapping, we can simply start by setting356

τ(f ♯) = {1, . . . ,m} for all f ♯, choose one DP to fix, and then iteratively remove arguments357

that violate the restrictions, until nothing further needs to be done.358

4.5 Reduction Pairs359

Although we did not need it for our running example, we also present a variant of the360

Reduction Pair processor, which is at the heart of most unconstrained termination provers.361

▶ Definition 24. A constrained relation is a set R of tuples (s, t, φ, L), denoted s RL
φ t,362

where s and t are terms of the same type, φ is a constraint, and L is a set of variables. We363

say a binary relation R′ on terms covers R if s RL
φ t implies that (sσ) ↓κ R′ (tφ) ↓κ for any364

substitution σ that respects φ and maps all x ∈ L to ground theory terms.365

A constrained reduction pair is a pair (⪰,≻) of constrained relations such that there exist366

a reflexive relation ⊒ that covers ⪰ and a well-founded relation ⊐ that covers ≻ such that367

→κ⊆⊒ and ⊒ · ⊐⊆⊐+ and s ⊒ t implies C[s] ⊒ C[t] (for every appropriately-typed context).368

▶ Definition 25. A reduction pair processor assigns to a DP problem P the singleton369

{ P \ P ′ } for some non-empty subset P ′ of P such that a constrained reduction pair (⪰,≻)370

exists with (a) s♯ ≻L
φ t♯ for s♯ ⇒ t♯ [φ | L] ∈ P ′, (b) s♯ ⪰L

φ t♯ for s♯ ⇒ t♯ [φ | L] ∈ P, and (c)371

ℓ ⪰(Var(r)\Var(ℓ))∪Var(φ)
φ r for ℓ → r [φ] ∈ R.372

While in unconstrained rewriting a variety of reduction pairs exist, this is not yet the case373

in constrained higher-order rewriting: the only definition so far is a limited version of the374

higher-order recursive path ordering [11]. To illustrate the practicality of the definition, we375

adapted the Horpo variant of [11] to a weakly monotonic reduction pair [12] (and implemented376

it in our tool using the technique described in [11]), but this is still a prototype definition.377

We have included this processor because its existence allows us to start designing reduction378

pairs for use in the DP framework. In particular, as unconstrained reduction pairs can be379

used as the covering pair (⊒,⊐), it is likely that many unconstrained reduction pairs (such380

as stronger Horpo variants and weakly monotonic algebras) can be adapted.381

▶ Theorem 26 (see Appendix B). All the DP processors defined in Section 4 are sound.382

CVIT 2016

23:10 Higher-Order Constrained Dependency Pairs for (Universal) Computability

5 Universal Computability383

Termination is not a modular property: given terminating systems R0 and R1, we cannot384

generally conclude that R0∪R1 is also terminating. As computability is based on termination,385

it is not modular either. For example, both { a → b } and { f b → f a } are terminating, and386

f : o → o is computable in the second system; yet, combining the two yields f a → f b →387

f a → · · ·, which refutes the termination of the combination and the computability of f.388

On the other hand, functions like map and fold are prevalently used; the lack of a modular389

principle to analyze termination of higher-order systems involving such functions is painful.390

Moreover, if such a system is non-terminating, this is seldom attributed to those functions,391

which are generally considered “terminating” regardless of how they may be called.392

In this section, we propose universal computability, a concept which corresponds to393

the termination of a function in all “reasonable” uses. First, we rephrase the notion of a394

hierarchical combination [25, 26, 27, 5] in terms of LCSTRSs:395

▶ Definition 27. An LCSTRS R1 is called an extension of a base system R0 if the two396

systems’ interpretations of theory symbols coincide over all the theory symbols in common,397

and function symbols in R0 are not defined by any rewrite rule in R1. Given a base system398

R0 and an extension R1 of R0, the system R0 ∪ R1 is called a hierarchical combination.399

In a hierarchical combination, function symbols in the base system can occur in the extension,400

but cannot be (re)defined. This forms the basis of the modular programming scenario we are401

interested in: think of the base system as a library containing the definitions of, say, map402

and fold. We further define a class of extensions to take information hiding into account:403

▶ Definition 28. Given an LCSTRS R0 and a set of function symbols—called hidden404

symbols—in R0, an extension R1 of R0 is called a public extension if hidden symbols do405

not occur in any rewrite rule in R1.406

Now we present the central definitions of this section:407

▶ Definition 29. Given an LCSTRS R0 with a sort ordering ≿, a term t is called universally408

computable if for each extension R1 of R0 and each extension ≿′ of ≿ to the sorts of R0 ∪R1409

(i.e., ≿′ coincides with ≿ on the sorts occurring in R0): t is C-computable in R0 ∪ R1 with410

≿′; if a set of hidden symbols in R0 is also given and the above universal quantification of411

R1 is restricted to public extensions, such a term t is called publicly computable.412

The base system R0 is called universally computable if all its terms are; it is called413

publicly computable if all its public terms—terms that contain no hidden symbol—are.414

With an empty set of hidden symbols, the two notions—universal computability and public415

computability—coincide. Below we state common properties in terms of public computability.416

In summary, we consider passing C-computable arguments to a defined symbol in R0417

the “reasonable” way of calling the function. To establish the universal computability of418

higher-order functions such as map and fold—i.e., to prove that they are C-computable in all419

relevant hierarchical combinations—we will use SDPs, which are based on the same notion.420

▶ Example 30. The system { app (lam f) → f } in Section 1 is not universally computable421

due to the extension { w x → app x x }.422

5.1 The DP Framework Revisited423

To use SDPs for universal—or public—computability, we need a more general version of424

Theorem 10. We start with defining public chains:425

L. Guo, K. Hagens, C. Kop and D. Vale 23:11

▶ Definition 31. An SDP f ♯ s1 · · · sm ⇒ t♯ [φ | L] is called public if f is not a hidden symbol.426

A (P,R)-chain is called public if its first SDP is public.427

Now we state the main result of this section:428

▶ Theorem 32. An AFP system R0 with sort ordering ≿ is publicly computable with respect429

to a set of hidden symbols in R0 if there exists no infinite computable (SDP(R0),R0 ∪ R1)-430

chain that is public for each public extension R1 of R0 and each sort ordering ≿′ which431

extends ≿ over sorts in R0 ∪ R1.432

While this result itself is not surprising and its proof (see Appendix C) is standard, it433

is not so obvious how it can be used. The key observation which enables us to use the DP434

framework for public computability is that of the DP processors in Section 4, only reduction435

pair processors rely on the rewrite rules of the underlying system R (depending on how it436

computes an approximation, a graph processor does not have to know the rules). Henceforth,437

we fix a base system R0, a set of hidden symbols in R0 and an arbitrary, unknown public438

extension R1 of R0. Now the system R in Section 4 is the hierarchical combination R0 ∪ R1.439

First, we generalize the definition of a DP problem:440

▶ Definition 33. A (universal) DP problem (P, p) consists of a set P of SDPs and a flag441

p ∈ { an, pu } (for any or public). A DP problem (P, p) is called finite if either (1) p = an442

and there exists no infinite computable (P,R0 ∪ R1)-chain, or (2) p = pu and there exists no443

infinite computable (P,R0 ∪ R1)-chain which is public.444

DP processors are defined in the same way as before, now for universal DP problems. The445

goal is to show that (SDP(R0), pu) is finite, and the procedure for termination in Section 4446

also works here if we change the initialization of Q accordingly.447

Next, we review the DP processors presented in Section 4. For each of the original graph,448

subterm criterion, integer mapping and theory argument processors proc, the updated pro-449

cessor that maps (P, p) to {(P ′, an) | P ′ ∈ proc(P)} is sound for universal DP problems. For450

theory argument processors, also the processor that maps (P, pu) to { ({ τ̄(p) | p ∈ P } , pu) }451

if the theory argument mapping τ fixes all public SDPs in P is sound. Reduction pair452

processors require knowledge of the extension R1 so we do not adapt them.453

New processors. Last, we propose two classes of DP processors that are useful for public454

computability. Processors of the first class do not actually simplify DP problems; they rather455

alter their input to allow other DP processors to be applied subsequently.456

▶ Definition 34. Given sets P1 and P2 of SDPs, P2 is said to cover P1 if for each SDP457

s♯ ⇒ t♯ [φ1 | L1] ∈ P1 and each substitution σ1 which respects s♯ ⇒ t♯ [φ1 | L1], there exist458

an SDP s♯ ⇒ t♯ [φ2 | L2] ∈ P2 and a substitution σ2 such that σ2 respects s♯ ⇒ t♯ [φ2 | L2],459

sσ1 = sσ2 and tσ1 = tσ2. A constraint modification processor assigns to a DP problem460

(P, p) the singleton { (P ′, p) } for some P ′ which covers P.461

Now combined with the information of hidden symbols, the DP graph allows us to remove462

SDPs that are unreachable from any public SDP.463

▶ Definition 35. A reachability processor assigns to a DP problem (P, pu) the singleton464

{ ({ p ∈ P | θ(p) is reachable from θ(p0) for some public SDP p0 } , pu) } for some approxima-465

tion (Gθ, θ) of the DP graph of P.466

These two processors are naturally used in combination: the constraint modification467

processor can split an SDP into multiple smaller ones, some of which can then be removed by468

a reachability argument. In our tool, we particularly use this to replace a DP with constraint469

u ̸= v by two SDPs with constraints u > v and u < v (see Example 36), and similar for u∨ v.470

CVIT 2016

23:12 Higher-Order Constrained Dependency Pairs for (Universal) Computability

▶ Example 36. Consider an alternative implementation of the factorial function of Example 2,471

which has SDPs (1) fact♯ n k ⇒ fact♯ (n− 1) (comp k ((∗) n)) [n ̸= 0] and (2) fact♯ n k ⇒472

comp k ((∗) n) [n ̸= 0] and (3) init♯ k ⇒ fact♯ 42 k, with fact a hidden symbol. Note that,473

without regarding the hidden symbols, this DP problem is not finite, as there is an infinite474

chain starting in (1, [n := −1, k := id]). A constraint modification processor can be used to475

replace (1) by two new SDPs: (1a) fact♯ n k ⇒ fact♯ (n− 1) (comp k ((∗) n)) [n < 0] and476

(1b) fact♯ n k ⇒ fact♯ (n− 1) (comp k ((∗) n)) [n > 0]. Using a reachability processor, we477

can remove (1a). This leaves only (1b), (2) and (3), which are easily handled using the graph478

processor and integer mapping processor.479

▶ Theorem 37 (see Appendix C). All the DP processors defined in Section 5 are sound.480

6 Experiments and Future Work481

All results in this paper have been
implemented in our open-source tool
Cora, available at https://github.com/
hezzel/cora/ We have evaluated Cora on
three groups of experiments, the results
of which are given to the right.

Custom STRS ITRS
Termination 20/28 72/140 69/117

Computability 20/28 66/140 68/117
Wanda – 105/140 –

AProVE – – 102/117

482

The first test considers the examples from this paper and several other LC(S)TRS483

benchmarks we have collected. The second test considers all λ-free problems from the484

higher-order category of the TPDB [4]. The third test considers problems from the first-order485

“integer TRS innermost” category. The computability test analyses public computability;486

since there are no hidden symbols in the TPDB, the main difference with the termination487

check is that the reduction pair processor is disabled. A full evaluation page is available at:488

https://www.cs.ru.nl/~cynthiakop/experiments/mfcs2024/489

Unsurprisingly, Cora is substantially weaker than Wanda [16] on unconstrained higher-490

order benchmarks, or AProVE [7] on first-order integer TRSs: this work aims to be a starting491

point for combining higher-order term analysis and theory reasoning, and cannot yet compete492

with tools that have had years of development. However, for having only a handful of simple493

techniques, we believe that these results show a solid foundation.494

Future Work. Moreover, much of the existing techniques used in the analysis of integer TRSs495

and higher-order TRS are likely to be adaptable to our setting, leaving many encouraging496

avenues for further development. We highlight the most important ones.497

Usable rules with respect to an argument filtering [8, 17]: to effectively use reduction pairs,498

being able to discard some rules is essential (especially for universal computability, if we499

can discard the unknown rules). Closely related, there is a clear benefit to extending more500

reduction pairs such as weakly monotonic algebras [34, 24], tuple interpretations [19, 33]501

and more sophisticated path orderings [3], all of which have higher-order defiitions.502

Transformation techniques, such as narrowing, or chaining DPs together (as used for503

instance for integer transition systems, [7, Sec. 3.1]). This could also be a step towards504

using the constrained DP framework for non-termination.505

Handling innermost or call-by-value reduction strategies. Several functional programming506

languages use call-by-value evaluation, and using this restriction may allow for a more507

powerful analysis. In the first-order DP framework there is ample work on the innermost508

strategy to build on (see, e.g., [9, 8]).509

Theory-specific processors for popular theories other than integers; e.g., bitvectors [22].510

https://github.com/hezzel/cora/
https://github.com/hezzel/cora/
https://www.cs.ru.nl/~cynthiakop/experiments/mfcs2024/

L. Guo, K. Hagens, C. Kop and D. Vale 23:13

7 Conclusion511

References512

1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS, 236(1–513

2):133–178, 2000. doi:10.1016/S0304-3975(99)00207-8.514

2 F. Blanqui. Higher-order dependency pairs. In A. Geser and H. Søndergaard, editors, Proc.515

WST, pages 22–26, 2006. doi:10.48550/arXiv.1804.08855.516

3 F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path ordering: the end517

of a quest. In M. Kaminski and S. Martini, editors, Proc. CSL, pages 1–14, 2008. doi:518

10.1007/978-3-540-87531-4_1.519

4 Community. Termination Problem DataBase. 2023. URL: https://github.com/TermCOMP/520

TPDB.521

5 N. Dershowitz. Hierarchical termination. In N. Dershowitz and N. Lindenstrauss, editors,522

Proc. CTRS, pages 89–105, 1995. doi:10.1007/3-540-60381-6_6.523

6 C. Fuhs and C. Kop. A static higher-order dependency pair framework. In L. Caires, editor,524

Proc. ESOP, pages 752–782, 2019. doi:10.1007/978-3-030-17184-1_27.525

7 J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. frohn, C. Fuhs, J. Hensel, C. Otto,526

M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Analyzing527

program termination and complexity automatically with AProVE. Journal of Automated528

Reasoning, 58(1):3–31, 2017.529

8 J. Giesl, R. Thieman, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency530

pairs. J. Autom. Reasoning, 37:155–203, 2006. doi:10.1007/s10817-006-9057-7.531

9 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: combining532

techniques for automated termination proofs. In F. Baader and A. Voronkov, editors, Proc.533

LPAR, pages 301–331, 2005. doi:10.1007/978-3-540-32275-7_21.534

10 J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University Press, 1989.535

11 L. Guo and C. Kop. Higher-order LCTRSs and their termination. In S. Weirich, editor, Proc.536

ESOP, pages 331–357, 2024. doi:10.1007/978-3-031-57267-8_13.537

12 L. Guo and C. Kop. A weakly monotonic, logically constrained, horpo-variant. Technical538

report, Radboud University, 2024. URL: https://github.com/hezzel/cora/tree/master/539

documentation/cora/techniques.540

13 N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In V. van Oostrom, editor, Proc.541

RTA, pages 249–268, 2004. doi:10.1007/978-3-540-25979-4_18.542

14 J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In G. Longo, editor,543

Proc. LICS, pages 402–411, 1999. doi:10.1109/LICS.1999.782635.544

15 C. Kop. Termination of LCTRSs. In J. Waldmann, editor, Proc. WST, pages 59–63, 2013.545

doi:10.48550/arXiv.1601.03206.546

16 C. Kop. WANDA – a higher-order termination tool. In Proc. FSCD, pages 36:1–36:19, 2020.547

doi:10.4230/LIPIcs.FSCD.2020.36.548

17 C. Kop. Cutting a proof into bite-sized chunks: Incrementally proving termination in higher-549

order term rewriting. In A. Felty, editor, Proc. FSCD, pages 1:1–1:17, 2022. doi:10.4230/550

LIPIcs.FSCD.2022.1.551

18 C. Kop and N. Nishida. Term rewriting with logical constraints. In P. Fontaine, C. Ringeis-552

sen, and R. A. Schmidt, editors, Proc. FroCoS, pages 343–358, 2013. doi:10.1007/553

978-3-642-40885-4_24.554

19 C. Kop and D. Vale. Tuple interpretations for higher-order complexity. In Proc. FSCD, pages555

31:1–31:22, 2021. doi:10.4230/LIPIcs.FSCD.2021.31.556

20 C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic functional systems.557

LMCS, 8(2):10:1–10:51, 2012. doi:10.2168/lmcs-8(2:10)2012.558

21 K. Kusakari and M. Sakai. Enhancing dependency pair method using strong com-559

putability in simply-typed term rewriting. AAECC, 18(5):407–431, 2007. doi:10.1007/560

s00200-007-0046-9.561

CVIT 2016

https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.48550/arXiv.1804.08855
https://doi.org/10.1007/978-3-540-87531-4_1
https://doi.org/10.1007/978-3-540-87531-4_1
https://doi.org/10.1007/978-3-540-87531-4_1
https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB
https://doi.org/10.1007/3-540-60381-6_6
https://doi.org/10.1007/978-3-030-17184-1_27
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/978-3-031-57267-8_13
https://github.com/hezzel/cora/tree/master/documentation/cora/techniques
https://github.com/hezzel/cora/tree/master/documentation/cora/techniques
https://github.com/hezzel/cora/tree/master/documentation/cora/techniques
https://doi.org/10.1007/978-3-540-25979-4_18
https://doi.org/10.1109/LICS.1999.782635
https://doi.org/10.48550/arXiv.1601.03206
https://doi.org/10.4230/LIPIcs.FSCD.2020.36
https://doi.org/10.4230/LIPIcs.FSCD.2022.1
https://doi.org/10.4230/LIPIcs.FSCD.2022.1
https://doi.org/10.4230/LIPIcs.FSCD.2022.1
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/10.2168/lmcs-8(2:10)2012
https://doi.org/10.1007/s00200-007-0046-9
https://doi.org/10.1007/s00200-007-0046-9
https://doi.org/10.1007/s00200-007-0046-9

23:14 Higher-Order Constrained Dependency Pairs for (Universal) Computability

22 A. Matsumi, N. Nishida, and D. Shin. On singleton self-loop removal for termination of lctrss562

with bit-vector arithmetic. In A. Yamada, editor, Proc. WST, 2023. doi:10.48550/arXiv.563

2307.14094.564

23 P. O’Hearn. Continuous reasoning: Scaling the impact of formal methods. In Proc. LICS,565

pages 13–25, 2018. doi:10.1145/3209108.3209109.566

24 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of567

Utrecht, 1996. URL: https://www.cs.au.dk/~jaco/papers/thesis.pdf.568

25 M. R. K. K. Rao. Completeness of hierarchical combinations of term rewriting systems. In R. K.569

Shyamasundar, editor, Proc. FSTTCS, pages 125–138, 1993. doi:10.1007/3-540-57529-4_48.570

26 M. R. K. K. Rao. Simple termination of hierarchical combinations of term rewriting systems.571

In M. Hagiya and J. C. Mitchell, editors, Proc. TACS, pages 203–223, 1994. doi:10.1007/572

3-540-57887-0_97.573

27 M. R. K. K. Rao. Semi-completeness of hierarchical and super-hierarchical combinations of574

term rewriting systems. In P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, editors, Proc.575

CAAP, pages 379–393, 1995. doi:10.1007/3-540-59293-8_208.576

28 M. Sakai and K. Kusakari. On dependency pair method for proving termination of higher-order577

rewrite systems. IEICE Trans. Inf. Syst., E88-D(3):583–593, 2005. doi:10.1093/ietisy/578

e88-d.3.583.579

29 M. Sakai, Y. Watanabe, and T. Sakabe. An extension of the dependency pair method for580

proving termination of higher-order rewrite systems. IEICE Trans. Inf. Syst., E84-D(8):1025–581

1032, 2001. URL: https://search.ieice.org/bin/summary.php?id=e84-d_8_1025.582

30 W. W. Tait. Intensional interpretations of functionals of finite type I. JSL, 32(2):198–212,583

1967. doi:10.2307/2271658.584

31 R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2),585

1972. doi:10.1137/0201010.586

32 R. Thiemann. The DP Framework for Proving Termination of Term Rewriting. PhD thesis,587

RWTH Aachen, 2007. URL: http://cl-informatik.uibk.ac.at/users/thiemann/paper/588

dissThiemann.pdf.589

33 A. Yamada. Tuple interpretations for termination of term rewriting. J. Automated Reasoning,590

66(4):667–688, 2022. doi:10.1007/s10817-022-09640-4.591

34 H. Zantema. Termination of term rewriting: interpretation and type elimination. J. Symbolic592

Computation, 17:23–50, 1994. doi:10.1006/jsco.1994.1003.593

A A Proof Sketch for Theorem 10594

While Theorem 10 can be proved directly in the standard way, we instead point out its close595

connection to Theorem 32, which is a more general version of Theorem 10 and will be proved596

in full detail (see Appendix C). Below we show how to adapt the proof of Theorem 32.597

▶ Theorem 10. An AFP system R is terminating if there exists no infinite computable598

(SDP(R),R)-chain.599

Proof Sketch. Assume that R is non-terminating. By definition, there exists a non-terminating600

term u. Since all C-computable terms are terminating, u is not C-computable. We refer to601

the proof of Theorem 32, take R0 = R and R1 = ∅, and assume an empty set of hidden602

symbols in R0. Following the construction in the proof, we thus get an infinite computable603

(SDP(R),R)-chain. So the non-existence of such a chain implies the termination of R. ◁604

B Proofs for Section 4605

We split up the proof of Theorem 26 into proofs for the individual processors.606

https://doi.org/10.48550/arXiv.2307.14094
https://doi.org/10.48550/arXiv.2307.14094
https://doi.org/10.48550/arXiv.2307.14094
https://doi.org/10.1145/3209108.3209109
https://www.cs.au.dk/~jaco/papers/thesis.pdf
https://doi.org/10.1007/3-540-57529-4_48
https://doi.org/10.1007/3-540-57887-0_97
https://doi.org/10.1007/3-540-57887-0_97
https://doi.org/10.1007/3-540-57887-0_97
https://doi.org/10.1007/3-540-59293-8_208
https://doi.org/10.1093/ietisy/e88-d.3.583
https://doi.org/10.1093/ietisy/e88-d.3.583
https://doi.org/10.1093/ietisy/e88-d.3.583
https://search.ieice.org/bin/summary.php?id=e84-d_8_1025
https://doi.org/10.2307/2271658
https://doi.org/10.1137/0201010
http://cl-informatik.uibk.ac.at/users/thiemann/paper/dissThiemann.pdf
http://cl-informatik.uibk.ac.at/users/thiemann/paper/dissThiemann.pdf
http://cl-informatik.uibk.ac.at/users/thiemann/paper/dissThiemann.pdf
https://doi.org/10.1007/s10817-022-09640-4
https://doi.org/10.1006/jsco.1994.1003

L. Guo, K. Hagens, C. Kop and D. Vale 23:15

▶ Theorem 38. Graph processors are sound.607

Proof. By definition of DP graph, any (P,R)-chain induces a path in the DP graph G608

of P. By definition of graph homomorphism, this is directly mapped to a path in the609

approximation Gθ. Since the approximation only has finitely many vertices, the path of an610

infinite (P,R)-chain must touch at least some vertices infinitely often.611

Let v1, . . . , vn be these dependency pairs. Since all other vertices are only touched finitely612

often, eventually the path only touches these vertices; that is, the chain has an infinite tail613

containing only DPs p with θ(p) ∈ {v1, . . . , vn}.614

Since each vi occurs infinitely often, there is a path from each vi to each vj in Gθ. Thus,615

all vi must be in the same strongly connected component. ◀616

We did not formally state the following result in the text, but it is implied:617

▶ Lemma 39. The Cap-based approach described in the implementation part of Section 4.1618

indeed yields an approximation of DP graph of P. This holds whether we consider the graph619

for R, or for any extension R ∪ R1.620

Proof. Let t ⇒ s [φ | L] and t ⇒ s [φ | L] be DPs with no shared variables. There should621

be an edge from t ⇒ s [φ | L] to t ⇒ s [φ | L] in a graph approximation if there exists a622

substitution σ such that (a) σ maps all variables in L and L′ to ground theory terms, (b)623

[[φσ]] = [[φ′σ]] = 1, and (c) sσ →∗
R t′σ. As we only need an approximation, false positives are624

allowed. Thus we must see, if such σ exists, then φ∧ φ′ ∧ ζ(s, t) is satisfiable. We claim that625

it is satisfiable by the valuation that maps x to [[σ(x)]] whenever σ(x) is a ground theory626

term. With this valuation, certainly φ and φ′ are satisfied. To complete the proof, we show627

by induction on u that if uσ →∗
R∪R1

vσ then this valuation satisfies ζ(u, v).628

If u = f u1 · · ·un and there is a rule in R that could potentially reduce uσ at the top,629

then the left-hand side of such a rule must apply f to at most n arguments. In this case,630

ζ(u, v) yields t, so there is nothing to prove (recall that false positives are allowed).631

If u = f u1 · · ·un with f not a theory symbol, and there is no rule in R that can reduce632

uσ at the top, then since f occurs in the original signature, there is no rule in R1 that can633

reduce u at the top either (by definition of an extension). Hence, vσ must have a shape634

f t1 · · · tn. So, the case v = g u1 · · ·um with f ̸= g cannot occur, and if v = f v1 · · · vn635

then by the induction hypothesis the valuation must satisfy ζ(ui, vi) for all i. In all other636

cases, ζ(u, v) yields t, so again, there is nothing to prove.637

If u = f u1 · · ·un with f a theory symbol, and there is a rule in R that could potentially638

reduce uσ at the top, then ζ(u, v) yields t as in the first case. If there is not, then the639

only way to reduce uσ at the top is using a calculation rule. Hence, vσ must have a shape640

f t1 · · · tn, or be a value.641

If v is not a value, but does have a form g u1 · · ·um (or f v1 · · · vn), then vσ is not a642

value, so we complete as we did in the second case.643

If v is a value or variable, and all variables in u occur in L, then note that uσ is a644

ground theory term, and as left-hand sides of rules cannot be theory terms, the only645

way to reduce a ground theory term uses the calculation rules, which preserves the646

value of the term. Hence, u = v must hold in the given valuation.647

In all other cases, ζ(u, v) yields t, so there is nothing to prove.648

If u is a variable in L, then uσ is a ground theory term. As above, we conclude that649

u = v must hold in the given valuation.650

If u is a variable not in L then ζ(u, v) yields t, so there is nothing to prove. The same651

holds if u = x u1 · · ·un with n > 0, since in this case x cannot occur in L by definition of652

a constraint. ◀653

CVIT 2016

23:16 Higher-Order Constrained Dependency Pairs for (Universal) Computability

▶ Remark 40. We do not have any clever logic for the case where v = x v1 · · · vm, because654

this case does not occur in practice (as left-hand sides of DPs are in practice always patterns).655

It would not be hard to add additional cases for this if new DP processors were to be defined656

that broke the pattern property, however.657

▶ Theorem 41. Subterm criterion processors are sound.658

Proof. We first observe: if u ⊵ · →∗
R v then u →∗

R C[v] for some context C. Hence, if659

ti ⊵ · →∗
R ti+1 for all i but t1 is terminating, then eventually this sequence stops using →R660

steps: there exists N such that for all i > N : ti ⊵ ti+1. But strict subterm steps are also661

terminating, since they decrease the size of the term. So, eventually all ⊵ steps are really662

equalities. Thus, there exists M such that for all i > M : ti = ti+1.663

Now, any infinite computable P-chain yields an infinite sequence of steps ν̄(s♯
iσi) ⊵664

ν̄(t♯iσi) →∗ ν̄(s♯
i+1σi+1). Since the immediate arguments of all t♯iσi are computable, and665

therefore terminating, such a sequence can only have finitely many steps where the ⊵ step is666

strict (as we observed above). Thus, there is an infinite tail of the chain using only SDPs667

that are not in P ′. ◀668

▶ Theorem 42. Integer mapping processors are sound.669

Proof. We first observe: if i ∈ ι(g♯) and σ respects an SDP f ♯ s1 · · · sm ⇒ g♯ t1 · · · tn [φ | L],670

then by definition of ι() and “respect”, tiσ is a ground theory term, and since the left-hand671

sides of rules in R cannot be theory terms, any →∗
R reduct of tiσ can only be obtained with672

→κ, which does not change the value.673

Hence, in an infinite chain [s♯
j ⇒ t♯j [φj | Lj] | j ∈ N], for all j we have that J̄ (s♯

j)σj and674

J̄ (t♯j)σj are necessarily ground theory terms, and [[J̄ (t♯j)σj]] = [[J̄ (t♯j+1)σj+1]]675

Let σ↓
j be the substitution that maps each x in the domain of σj to σj(x)↓κ. Then σj676

maps the variables in each constraint and in J̄ (s♯
j) and J̄ (t♯j) to values (all these variables677

occur in Lj , so have a theory sort).678

Since σj respects φj , we have that [[φjσj]] = [[φjσ
↓
j]] = 1, so by assumption [[J̄ (s♯

j)σj]] =679

[[J̄ (s♯
j)σ↓

j]] ≥ [[J̄ (t♯j)σ↓
j]] = [[J̄ (t♯j)σj]] for all s♯

j ⇒ t♯j [φj | Lj] ∈ P \ P ′, and for s♯
j ⇒680

t♯j [φj | Lj] ∈ P ′ we even have both [[J̄ (s♯
j)σj]] > [[J̄ (t♯j)σj]] and [[J̄ (s♯

j)σj]] > 0.681

Since only finitely many decreasing steps can be done before reaching 0, any infinite682

P-chain must have an infinite tail not using the elements of P ′. ◀683

▶ Theorem 43. Theory argument processors are sound.684

Proof. Let us say that a term f ♯ s1 · · · sm respects τ if si is a ground theory term for every685

i ∈ τ(f ♯). Note that:686

1. If t respects τ and t →R s then also s respects τ , because ground theory terms can only687

be rewritten using →κ (since left-hand sides of rules may not be theory terms).688

2. For any dependency pair f ♯ s1 · · · sn ⇒ g♯ t1 · · · tm [φ | L] and substitution σ that respects689

this DP: if f ♯ s1 · · · snσ respects τ then σ(x) is a ground theory term for any x ∈ L∪{y ∈690

Var(si) | i ∈ τ(f). Therefore, by definition of a theory arguments mapping, also tjσ is a691

ground theory term for any j ∈ τ(g), so g♯ t1 · · · tm respects τ as well.692

3. If τ fixes a dependency pair s ⇒ t [φ | L], then for any substitution σ that respects this693

DP, tσ respects τ .694

Hence, in an infinite (P,R)-chain [(si ⇒ ti [φi | Li], σi) | i ∈ N], if any DP si ⇒ ti [φi | Li]695

fixes τ , then by (3) tiσi respects τ , so by (1) si+1σi+1 respects τ , and by (2) also ti+1σi+1696

respects τ . Hence, the chain has an infinite tail such that each σj (j > i) respects the SDP697

τ̄(sj ⇒ tj [φj | Lj]).698

L. Guo, K. Hagens, C. Kop and D. Vale 23:17

Thus, if τ fixes P ′ there are two possibilities to create an infinite (P,R)-chain: either the699

chain does not use any DP in P ′—so it is a (P \ P ′,R)-chain—or it has an infinite tail that700

is a ({τ̄(p) | p ∈ P},R)-chain.701

Moreover, if it is given that the first DP in the chain is an element of P ′ (which is the702

case in the public computability setting if P ′ includes all public dependency pairs) then the703

chain is a ({τ̄(p) | p ∈ P},R)-chain. ◀704

▶ Theorem 44. Reduction pair processors are sound.705

Proof. Suppose a reduction pair with the given properties is given, and let (⊒,⊐) be the706

covering pair. We observe:707

If s →R t then s ↓κ⊒∗ t ↓κ.708

Proof: by induction on the form of s.709

If s is a ground theory term, then note that no rule from R applies, since rules may710

not be theory terms. Hence, the reduction is with a →κ step, and we have s ↓κ= t ↓κ.711

Otherwise, if s = ℓσ and t = rσ for some rule ℓ → r [φ] and substitution σ that712

respects this rule, then by (c) and the assumption that ⊒ covers ⪰ we have s ↓κ⊒ t ↓κ.713

Otherwise, s = s1 s2, and either t = s1 t2 with s2 →R t2 or t = t1 s2 with s1 →R t1.714

We consider only the second option; the first is similar. Since we excluded the case that715

s is a ground theory term, s does not →κ-reduce at the top, so s ↓κ= (s1 ↓κ) (s2 ↓κ).716

By the induction hypothesis, s1 ↓κ⊒∗ t1 ↓κ. Thus, by monotonicity of ⊒ we have717

s ↓κ⊒ (t1 ↓κ) (s2 ↓κ), which ⊒∗ ((t1 ↓κ) s2 ↓κ)) ↓κ= t ↓κ because ⊒ includes →κ (this718

covers the case where t is a ground theory term even though s is not).719

If s♯ ⇒ t♯ [φ | L] ∈ P ′, and σ is a substitution that respects s♯ ⇒ t♯ [φ | L], then720

(sσ) ↓κ⊐ (tσ) ↓κ, and similarly, if s♯ ⇒ t♯ [φ | L] ∈ P \ P ′, and σ is a substitution that721

respects s♯ ⇒ t♯ [φ | L], then (sσ) ↓κ⊒ (tσ) ↓κ.722

Proof: immediately by (a), (b) and the definition of “covers”.723

Hence, any infinite (P,R)-chain induces an infinite sequence of ⊒∗ and ⊐ steps, and if any724

step in P ′ occurs infinitely often, then ⊐ occurs infinitely often. Since ⊒ · ⊐ is included in725

⊐+, this yields an infinitely decreasing ⊐+ sequence, which contradicts well-foundedness726

of ⊐. Hence, we see that the steps in P ′ can occur at most finitely often, and there is an727

infinite tail of the dependency chain using only pairs in P \ P ′. ◀728

C Proofs for Section 5729

For the properties of C-computability, see Appendix A1 of [6]. In order to prove Theorem 32,730

we first present two lemmas.731

▶ Lemma 45. Undefined function symbols are C-computable.732

Proof. Given an LCSTRS R and an undefined function symbol f : A1 → · · · → An → B733

where B is a sort, if f was uncomputable, there would be computable terms t1, . . . , tn making734

f t1 · · · tn uncomputable. Since f is undefined, any reduct of f t1 · · · tn must be either735

f t′1 · · · t′n where ti →R t′i for all i or a value (when f is a theory symbol). By definition,736

f t1 · · · tn ∈ C, which contradicts its uncomputability. ◀737

1 https://doi.org/10.48550/arXiv.1902.06733

CVIT 2016

https://doi.org/10.48550/arXiv.1902.06733

23:18 Higher-Order Constrained Dependency Pairs for (Universal) Computability

▶ Lemma 46. Given an AFP system R0 with sort ordering ≿, an extension R1 of R0 and738

a sort ordering ≿′ which extends ≿ over sorts in R0 ∪ R1, for each defined symbol f : A1 →739

· · · → Am → B in R0 where B is a sort, if f s1 · · · sm is not C-computable in R0 ∪ R1740

with ≿′ but si is for all i, there exist an SDP f ♯ s′
1 · · · s′

m ⇒ g♯ t1 · · · tn [φ | L] ∈ SDP(R0)741

and a substitution σ such that (1) si →∗
R0∪R1

s′
iσ for all i, (2) σ respects f ♯ s′

1 · · · s′
m ⇒742

g♯ t1 · · · tn [φ | L], and (3) g (t1σ) · · · (tnσ) is not C-computable in R0 ∪ R1 with ≿′ but uσi743

is for all i and u such that ti ⊵ u.744

Proof. We consider C-computability in R0 ∪ R1 with ≿′. If all the reducts of f s1 · · · sm745

were either f s′
1 · · · s′

m where si →∗
R0∪R1

s′
i for all i or a value (when f is a theory symbol),746

f s1 · · · sm would be computable. Hence, there exist a rewrite rule f s′
1 · · · s′

p → r [φ] ∈ R0747

(f cannot be defined in R1) and a substitution σ′ such that si →∗
R0∪R1

s′
iσ

′ for all i ≤ p748

and σ′ respects the rewrite rule; (rσ′) sp+1 · · · sm is thus a reduct of f s1 · · · sm. There is at749

least one such reduct that is uncomputable—otherwise, f s1 · · · sm would be computable.750

Let (rσ′) sp+1 · · · sm be uncomputable, and therefore so is rσ′.751

Take a minimal subterm t of r such that tσ′ is uncomputable. If t = x t1 · · · tq for some752

variable x, σ′(x) is either a value or an accessible subterm of s′
kσ

′ for some k because R0 is753

AFP. Either way, σ′(x) is computable. Due to the minimality of t, tiσ′ is computable for all754

i, which implies that tσ′ = σ′(x) (t1σ′) · · · (tqσ′) is computable. This contradiction shows755

that t = g t1 · · · tq for some function symbol g in R0. And g must be a defined symbol.756

Now we have an SDP f ♯ s′
1 · · · s′

p xp+1 · · ·xm ⇒ g♯ t1 · · · tq yq+1 · · · yn [φ | Var(φ) ∪757

(Var(r) \ Var(f s′
1 · · · s′

p))] ∈ SDP(R0). Because tσ′ is uncomputable, there exist com-758

putable terms t′q+1, . . . , t
′
n such that (tσ′) t′q+1 · · · t′n = g (t1σ′) · · · (tqσ′) t′q+1 · · · t′n is759

uncomputable. Let σ be the substitution such that σ(xi) = si for all i > p, σ(yi) = t′i760

for all i > q, and σ(z) = σ′(z) for any other variable z. Let s′
i denote xi for all i > p,761

let ti denote yi for all i > q, and let L denote Var(φ) ∪ (Var(r) \ Var(f s′
1 · · · s′

p)), then762

f ♯ s′
1 · · · s′

m ⇒ g♯ t1 · · · tn [φ | L] and σ satisfy all the requirements. ◀763

▶ Theorem 32. An AFP system R0 with sort ordering ≿ is publicly computable with respect764

to a set of hidden symbols in R0 if there exists no infinite computable (SDP(R0),R0 ∪ R1)-765

chain that is public for each public extension R1 of R0 and each sort ordering ≿′ which766

extends ≿ over sorts in R0 ∪ R1.767

Proof. Assume that R0 is not publicly computable. By definition, there exist a public768

extension R1 of R0, a sort ordering ≿′ which extends ≿ over sorts in R0 ∪ R1 and a769

public term u of R0 such that u is not C-computable in R0 ∪ R1 with ≿′. We consider770

C-computability in R0 ∪ R1 with ≿′. Take a minimal uncomputable subterm s of u, then s771

must take the form f s1 · · · sk where f is a defined symbol in R0 and si is computable for772

all i. Let the type of f be denoted by A1 → · · · → Am → B where B is a sort. Because773

s = f s1 · · · sk is uncomputable, there exist computable terms sk+1, . . . , sm of R0 ∪ R1 such774

that s sk+1 · · · sm = f s1 · · · sm is uncomputable.775

Repeatedly applying Lemma 46—first on f s1 · · · sm, then on g (t1σ) · · · (tnσ) and so776

on—we thus get an infinite computable (SDP(R0),R0 ∪ R1)-chain. By construction, f is777

not a hidden symbol, and therefore this chain is public. So the non-existence of such a chain778

implies the public computability of R0. ◀779

We split up the proof of Theorem 37 into proofs for the individual processors.780

▶ Theorem 47. Constraint modification processors are sound.781

Proof. If P ′ covers P, every computable (P,R0 ∪ R1)-chain corresponds to a computable782

(P ′,R0 ∪ R1)-chain which has the same length and the same heading symbol. ◀783

L. Guo, K. Hagens, C. Kop and D. Vale 23:19

▶ Theorem 48. Reachability processors are sound.784

Proof. Approximations over-approximate the DP graph and SDPs that are unreachable from785

any public SDP cannot contribute to public chains. ◀786

▶ Theorem 49. The modified theory argument processors are sound.787

Proof. We refer to the proof of Theorem 43, and in particular the final observation: “if788

it is given that the first DP in the chain is an element of P ′ (which is the case in the789

public computability setting if P ′ includes all public dependency pairs) then the chain is a790

({τ̄(p) | p ∈ P},R)-chain.” As the root symbol of the first DP in the chain is unchanged, the791

chain is still public. ◀792

CVIT 2016

	1 Introduction
	2 Preliminaries
	2.1 Logically Constrained STRSs
	2.2 Accessibility and Computability

	3 Static Dependency Pairs for LCSTRSs
	4 The Constrained DP Framework
	4.1 The DP Graph and Its Approximations
	4.2 The Subterm Criterion
	4.3 Integer Mappings
	4.4 Theory Arguments
	4.5 Reduction Pairs

	5 Universal Computability
	5.1 The DP Framework Revisited

	6 Experiments and Future Work
	7 Conclusion
	A A Proof Sketch for thm:chainTermination
	B Proofs for sec:dpframework
	C Proofs for sec:computability

