
On Semantical Methods for 
Higher-Order Complexity Analysis

Deivid Rodrigues do Vale



On Semantical Methods for
Higher-Order Complexity

Analysis

Deivid Vale



The research reported in this thesis has been carried out under the auspices of the

Radboud University and the research school IPA (Institute for Programming research

and Algorithmics). This work has been financially supported by the NWO TOP project

“Implicit Complexity through Higher-Order Rewriting”, NWO 612.001.803/7571.

IPA Dissertation series, number 2024-01

Cover design by Yijun Guo

Printed by Gilderprint, The Netherlands

Copyright © Deivid Rodrigues do Vale, 2024

cba This work is licensed under Attribution-ShareAlike 4.0 International. To view

a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

https://deividrvale.github.io
http://creativecommons.org/licenses/by-sa/4.0/


On Semantical Methods for
Higher-Order Complexity Analysis

Proefschrift

ter verkrijging van de graad van doctor

aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,

volgens besluit van het college college voor promoties

in het openbaar te verdedigen op

vrijdag 19 april 2024

om 10.30 uur precies

door

Deivid Rodrigues do Vale

geboren op 4 oktober 1992

te Unaí (Brazilië)



Promotor:
prof. dr. J.H. Geuvers

Copromotor:
dr. C.L.M. Kop

Manuscriptcommissie:
prof. dr. S.B. Scholz (voorzitter)

prof. dr. J.G. Simonsen (Københavns Universitet, Denemarken)

prof. dr. J. van de Pol (Aarhus Universitet, Denemarken)

dr. V. van Oostrom (University of Sussex, Verenigd Koninkrijk)

dr. C. Fuhs (Birkbeck, University of London, Verenigd Koninkrijk)





In the loving memory of Constance Kaak van Hoorn.

I shall forever miss your wisdom, always followed with stories of a life well lived.





Palavra puxa palavra,

uma ideia traz outra,

e assim se faz um livro,

um governo,

uma revolução,

ou até mesmo uma tese de doutorado,

um velho conhecido meu atribuiu a outrem

a ideia que seria assim que

a natureza compôs suas espécies.





Acknowledgment

It is believed amongst the common folk that the acknowledgment section is the most

read segment of a Ph.D. thesis. Some may dare to say that it is the only section friends

and family will ever read. Eagerly trying to find what is said about them. That may or

may not be true, and I certainly would like to be able to list every single one of you here.

If perchance you are not listed below, my dear reader. I apologize for that. Let me then

start with a nameless thank you function: 𝜆𝑛.Thank you, n, for everything.

Thank you, Cynthia, for taking me as your student and for guiding me throughout

the whole Ph.D. process. It was for sure an arduous journey and now looking back at it,

I feel grateful that you were always there for me. Thank you, for giving me the freedom

to make mistakes but also for helping me get out of those rabbit holes I constantly dig

myself into. On another note, thank you for introducing me to fencing. It is a shame

my days as a medieval soldier didn’t last longer. Also, thank you for bringing me food

when I was slowly dying of COVID. Thank you, Herman, for the support, especially by

the end of my Ph.D.

I would like to thank my collaborators from whom I learned a lot over the years.

Thank you, Mauricio Ayala, Patrick Baillot, Ugo Dal Lago, Maribel Fernandez, Liye Guo,

Daniele Nantes, and Niels van der Weide. It has been a pleasure to work with all of you.

Thank you, Celius Magalhães, for your mentorship over the years. You energetically

encouraged me to do a Ph.D. abroad and even provided me with the financial means

to do so. This changed my life. Thank you for supporting me through the dark times

of my academic career. Thank you for believing it, even when I did not. Thank you,

Daniele Nantes, for your long-term support and friendship. For teaching me how to

appreciate mathematics and the little details on those “exemplos espírito de porcos”.

Thank you for continually sharing with me the excitement of learning something new.

Moving to a new country can be a painful endeavor. I was lucky to meet Constance

Kaak. Thank you, dear Constance. You became my Dutch grandmother, and I was filled

with joy to be your Brazilian grandson. Thank you for taking me in and for being part

of my life. Thank you, Casper Kaak, for all your help and words of encouragement.

To all my friends and colleagues from Software Science, thank you all for providing

such a pleasant work environment. Bharat Garhewal, Dennis Gross, and Hans-Nikolai

Viessmann, thank you for all those coffee breaks, jokes, and discussions we had over the



xii

years. Having useless discussions during coffee breaks certainly kept me from being

crazy. Even though Dennis — if asked — might disagree. Dennis, thank you for taking

me on those bike trips to Germany. You always choose the best itinerary for such trips.

Bharat, thank you for your friendship and companionship. For teaching how India

works, for our discussions on history and politics, and for buying an Xbox so we could

play video games together. However, I do not thank you for that spoiler on Final Fantasy

XV. And, for god’s sake, stop complaining about Gears of War’s lore.

Here’s a second paragraph on your honor, as promised.

Liye, thank you for taking me to such amazing Chinese restaurants, and for beta

testing those crazy recipes when I decided to mixture Brazilian and Chinese cuisine.

Bilibili is indeed amazing, and I became a fan of “the uncle” thanks to you. Let us not

forget the cat videos. Thank you for your help on those messy conference travels, and

for walking 10km with me on that Tbilisi trip, and for everything else: “thank you,

Sir”. I could also not forget to say thank you to Kasper Hagens. You taught me how to

perfectly fold a piece of paper into a very useful envelope which, indeed, can be used

for all sorts of things. You showed me how Dutch people are concerned about their

health, and that beers and cigarettes are okay, but god forgive me for adding a pinch of

salt to our food. Thank you, Niels, for those discussions on formal methods and proof

assistants. You certainly changed my perception of them. Also, thank you for answering

my questions about Coq, academic life, and even the Dutch political system. Thank you,

Mairielli Wessel, for being such a kind friend to me, and for all those Brazilian dinners

we shared. Thank you, Dario Stein, for organizing the small details of our social events.

Thank you, Marc Hermes, for those delicious dinners you cooked for me. You are the

only one who could make a meat lover like myself satisfied without meat. Thank you,

Marcos and Ilka, for caring for me and trying to make me work less.

I would like to register my appreciation for all the work put in by the reading

committee on carefully reading this thesis and providing useful feedback on it.

Eu gostaria de agradecer o apoio da minha família e amigos no Brasil. Obrigado

mamãe, por sempre acreditar em mim e por ser a única pessoa nesse mundo capaz de

sacrificar tudo para que eu pudesse estudar nessa vida. Tudo que é de bom em mim,

começou em ti. Agradeço aos meus irmãos, Thiago, Johne, e Danúbia por tornarem

minha vida mais feliz e por serem os melhores irmãos desse mundo. Agradeço à Edna

Gomes por fazer parte da minha vida. Eu não poderia pedir por uma companheira

melhor que ti. Obrigado Davi, pela amizade duradoura e pelo companheirismo ao

longo dos anos. Bruna Nunes, obrigado pela amizade e carinho, apesar de eu nunca ter

tempo de visitá-la. Aos amigos Tiago Araújo, Henrique Balbino, Bruno Caxito e Caio

Sady. Obrigado por fazerem minha vida fora da academia interessante e por manterem

constante contato, apesar de termos um oceano inteiro entre nós. Obrigado, Arthur

Resende, pelas recentes jogatinas em Bauldur’s Gate e pela amizade ao longo dos anos.



Table of contents

1 Introduction 1
1.1 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Content Overview and Contributions . . . . . . . . . . . . . . . . . . . . 8

2 Higher-Order Rewriting 15
2.1 Curried Higher-Order Rewrite Systems . . . . . . . . . . . . . . . . . . . 15

2.1.1 The Syntax of Types and Terms . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Higher-Order Rewrite Rules . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Ordered Sets and Monotonic Functions . . . . . . . . . . . . . . . . . . . 20

3 First-Order Tuple Interpretations 23
3.1 Derivation Height and Complexity . . . . . . . . . . . . . . . . . . . . . . 23

3.2 From Termination Proofs to Complexity Bounds . . . . . . . . . . . . . . 24

3.3 Tuple Interpretations for Full Rewriting . . . . . . . . . . . . . . . . . . . 28

3.3.1 Strongly Monotonic Tuple Algebras . . . . . . . . . . . . . . . . . 28

3.3.2 Runtime Complexity Analysis . . . . . . . . . . . . . . . . . . . . 32

3.4 Cost–Size Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Tuple Interpretations for Innermost Rewriting . . . . . . . . . . . . . . . 37

3.5.1 Cost–Size Tuple Algebras . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.2 Innermost Compatibility Theorem . . . . . . . . . . . . . . . . . . 39

3.6 Upper Bounds for Innermost Runtime Complexity . . . . . . . . . . . . . 41

3.7 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7.1 Parametric Tuple Interpretations . . . . . . . . . . . . . . . . . . . 43

3.7.2 Strategy-based Search for Tuple Interpretations. . . . . . . . . . . 46

3.7.3 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . 48

4 Higher-Order Tuple Interpretations 53
4.1 Strongly monotonic algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Higher-Order Compatibility . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Interpreting abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



xiv Table of contents

4.2.1 Strongly Monotonic Combinators . . . . . . . . . . . . . . . . . . 62

4.2.2 Making a MakeSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Orienting Beta and Eta . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Creating strongly monotonic interpretation functions . . . . . . . . . . . 69

4.4 Finding Higher-Order Complexity Bounds . . . . . . . . . . . . . . . . . 74

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Higher-Order Tuple Interpretations for Call-by-Value 79
5.1 Call-by-Value Higher-order Rewriting . . . . . . . . . . . . . . . . . . . . 79

5.2 Cost–Size Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Cost–Size Semantics for Simple Types . . . . . . . . . . . . . . . . . . . . 83

5.4 Cost–Size Semantics for Terms . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Complexity Analysis of Call-by-Value Rewriting . . . . . . . . . . . . . . 92

5.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 A Rewriting Characterization of Higher-Order Feasibility 99
6.1 Higher-Order Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Basic Feasible Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Oracle Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Computing with Oracle Turing Machines . . . . . . . . . . . . . . 107

6.3.2 Complexity of Oracle Turing Machines . . . . . . . . . . . . . . . 109

6.4 Kapron and Cook’s Characterization of BFF . . . . . . . . . . . . . . . . . 111

6.5 From Higher-Order Rewriting to BFF and Back Again . . . . . . . . . . . 111

6.5.1 Type-2 Computability via Higher-Order Rewriting . . . . . . . . . 111

6.6 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.6.1 Interpreting the extended TRS . . . . . . . . . . . . . . . . . . . . 115

6.6.2 Term Graph Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.7.1 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.7.2 Executing the machine . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.7.3 A bound on the number of steps . . . . . . . . . . . . . . . . . . . 136

6.7.4 Finalizing execution . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 Certification of Higher-Order Polynomial Interpretations 145
7.1 Certifying Termination Tools . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 The Basics of Higher-Order Rewriting in Coq . . . . . . . . . . . . . . . . 148

7.2.1 Terms and Rewrite Rules . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2.2 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.3 Higher-Order Interpretation Method in Coq . . . . . . . . . . . . . . . . 153



Table of contents xv

7.3.1 Interpreting types and terms . . . . . . . . . . . . . . . . . . . . . 153

7.3.2 Termination Models . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.4 The Higher-Order Polynomial Method in Coq . . . . . . . . . . . . . . . . 159

7.4.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4.2 Polynomial Interpretation . . . . . . . . . . . . . . . . . . . . . . . 161

7.4.3 Constraint Solving Tactic . . . . . . . . . . . . . . . . . . . . . . . 162

7.5 Generating Proof Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.5.1 Proof traces for polynomial interpretation . . . . . . . . . . . . . . 164

7.5.2 Verifying Wanda’s Polynomial Interpretations . . . . . . . . . . . 165

7.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 166

8 Conclusions 167

References 171

Samenvatting 181

Summary 183

Research Data Management 185

Titles in the IPA Dissertation Series since 2021 186

Curriculum Vitae 189





Chapter 1

Introduction

Complexity Theory is a rich field of study that consists of several quite different

techniques. This myriad of apparently distinct approaches, however, have two main

characteristics in common: first, they are interested in algorithms and the problems

solved by them; second, they focus on the computational resources required by those

algorithms to solve problems.

The word algorithm here is taken in a broad sense. Different approaches to complexity

theory establish distinct — sometimes even incompatible — notions of algorithm. The

seemingly common denominator is that algorithms are usually understood as objects

that can be computed via some notion of computation. For instance, in program analysis,

an algorithm is a program written in some high-level programming language and is

computed by the evaluation machine of said language. Meanwhile, in other approaches,

algorithms are seen as boolean circuits, Turing machines, words written in some formal

grammar, and so on. Each one of them has an associated notion of computation attached.

A somewhat easier notion to describe is that of resources. In general, by resources,

we mean the amount of measurable entities that allow for computation to go on. In

a concrete complexity analysis, for instance, the resources are the number of CPU

instructions (or their execution time) and bits in memory needed to execute tasks. If one

goes a level higher in abstraction, one forgoes CPU time and counts the number of loop

iterations used by a program written in a high-level programming language.

The subject of this thesis is perhaps most broadly classified in the field of structural
complexity theory. That is, our analysis is structural because we look for mathematical

structures inside the problems and aim to consider a more abstract notion of computation

in which algorithms are objects describing computations without reference to any

concrete machine model. We are then interested in the classification of such algorithms

according to their resource usage (or complexity). In this thesis, we mainly work with

term rewriting systems as computational models.

Term Rewriting Systems are a simple but powerful model of computation that

encompasses most declarative styles of computation. In such systems, we have rewriting



2 Introduction

rules that describe how expressions (i.e., terms) can be rewritten to (i.e., replaced by)

“simpler” ones. Let us consider a rewriting system that computes the append function;

which given lists 𝑞 and 𝑙 produces the list append 𝑞 𝑙 containing the elements of the first

and second list in that order. We define append using the rules below.

(𝑅0) append [] 𝑞 → 𝑞 (𝑅1) append (𝑥 :: 𝑞) 𝑙 → 𝑥 :: (append 𝑞 𝑙)

Another important feature of this style of expression is that it is very close to functional

programming syntax — at least syntactically; the operational semantics of rewriting can

be quite different from that of languages like OCaml or Haskell — where functions are

defined by pattern matching on the data structures.

The rules above suggest a “motion” in place. In essence, we compute in rewriting

by replacing instances of a left-hand side of a rule by its right-hand side. If one views

the rules 𝑅0 and 𝑅1 above as directed equations, then computing with rewriting is

comparable to a “search and replace operation” on expressions, in the same fashion as

in the “replacing equals by equals” principle we learn in primary school.

So if we start with the expression append [1; 2] [2; 3] — noting that [1; 2] denotes the

list 1 :: 2 :: [] — we then express computation using this system as follows:

append [1; 2] [2; 3] → 1 :: (append [2] [2; 3])

→ 1 :: 2 :: (append [] [2; 3])
→ 1 :: 2 :: [2; 3]
= [1; 2; 2; 3]

Hence, computations using term rewriting are done by step-wise transforming the

sub-expressions that match one of the rules. The final expression is the list [1; 2; 2; 3]
and we say it is a normal form because it is not possible to compute with it anymore. This

chain of reductions we call a derivation to suggest the process of deriving the normal

form [1; 2; 2; 3] from the initial expression append [1; 2] [2; 3].
With a computation model at hand, the second important component in complexity

theory is the notions of time and space complexities. In the step-by-step computational

model induced by rewriting, time complexity is naturally understood as the number

of rewriting steps needed to reach normal forms. The derivation of append [1; 2] [2; 3]
above takes three units of time since we used three rewriting steps. This naturality

comes from the tacit assumption that the cost of performing a computational step is

either constant or negligible. Let us analyze the derivation of append [1; 2] [2; 3] once

more. We use 𝑅1 to reduce this expression to 1 :: (append [2] [2; 3]), and this matching of

𝑅1 with the redex (reducible expression) append[1; 2] [2; 3] is not atomic: we need to

first compute the substitution that sends 𝑥 ↦→ 1, 𝑞 ↦→ 2 :: [] and 𝑙 ↦→ [2; 3].



3

Hence, in the unitary time cost model, the intricacies of a low-level rewriting realiza-

tion (e.g., a concrete rewriting engine implementation) are ignored. This assumption

does not pose a problem as long as the low-level concrete time complexity needed

to apply a rule is kept reasonably low. While showing that this is indeed the case is

non-trivial, it has been done if some additional mild conditions are imposed; see for

instance [77] and Chapter 6.

In the rewriting setting, a time complexity function is a function 𝜙 from N \ {0} to N
such that, given 𝑛, 𝜙(𝑛) bounds the length of all rewrite sequences starting with terms

of size ≤ 𝑛. Two distinct complexity notions are commonly considered in rewriting

complexity analysis. The first is derivational complexity. It measures the absolute worst-

case complexity when deriving a normal form, so a derivational complexity function

bounds the length of the longest derivation chain from all possible chains. The second

complexity notion is that of runtime complexity. It comes from the intuition that if we

want to majorize the actual “running time” of computing with a term rewriting system,

we should restrict our analysis only to those systems where function symbols are applied

only to basic data values, e.g., numbers or lists.

Therefore, by complexity analysis of term rewriting, we mean the set of formal tools

used to provide bounds to those complexity functions. A common way to determine

these bounds is by adapting the proof techniques used to show termination to deduce

the complexity induced by the method. There is a myriad of works following this idea.

To mention a few, see [13, 21, 26, 52, 53, 83] for interpretation methods, [22, 51, 107] for

lexicographic and path orders, and [50, 88] for dependency pairs.

Up to now, we have discussed first-order term rewriting. A key feature of this thesis is

that we consider higher-order systems. Those are the rewriting systems where functions

themselves (so the higher-order aspect) can be abstracted away and captured by variables.

A running example used throughout the thesis is that of the map function which is a

higher-order function that takes a function 𝐹 and a list 𝑙 and applies 𝐹 to each element

of 𝑙. It can be defined in higher-order rewriting as follows:

(𝑅0) map 𝐹 [] → [] (𝑅1) map 𝐹 (ℎ :: 𝑡𝑙) → (𝐹 ℎ) :: map 𝐹 𝑡𝑙

This allows us to define new functions in terms of those rules in a “functional program-

ming style”. For instance, a function that increments a set of counters from a list can be

written simply as incrCounter 𝑙 → map (𝜆𝑥. 𝑥 + 1) 𝑙. Computation in such higher-order

systems is done similarly to its first-order counterpart. The key difference is that the

matching mechanism to apply rules needs to take higher-order variables into account.



4 Introduction

As an example, let us consider the following derivation chain:

incrCounter [3; 5] → map (𝜆𝑥. 𝑥 + 1) [3; 5]
+−→ [(𝜆𝑥. 𝑥 + 1) 3; (𝜆𝑥. 𝑥 + 1) 5]

In the formalism we consider rewriting is union 𝛽; so we have infinitely many 𝛽-rules of

the form (𝜆𝑥. 𝑒) 𝑒′ → 𝑒[𝑥 ≔ 𝑒′], one such rule for each pair of expressions 𝑒 , 𝑒′. Here,

𝑒[𝑥 ≔ 𝑒′] denotes the substitution of all free occurrences of 𝑥 in 𝑒 for 𝑒′. A formal

treatment of these notions will be addressed in Chapter 2. By applying 𝛽-steps we

continue the computation above as follows.

[(𝜆𝑥. 𝑥 + 1) 3; (𝜆𝑥. 𝑥 + 1) 5] +−→ [3 + 1; 5 + 1]
+−→ [4; 6]

The techniques for structural complexity analysis for such higher-order systems do

not always come from a direct generalization of first-order techniques. Indeed, the

simple first-order notion of runtime complexity for instance cannot be directly extended

as it is not obvious what “basic data” means in the higher-order setting. Additionally,

to define a complexity function for higher-order terms we must also set notions of

“size” for functional arguments: “what should the size of a function 𝐹 given to map
be?” Functional arguments are inherently infinite objects in the sense that we cannot

possibly find a single number majorizing such objects. Furthermore, the behavior of

such functional arguments arguably matters in some way. Another source of difficulty

is that we have abstraction terms in our higher-order systems, so the cost of a 𝛽-step

might be significantly higher than a redex step since the abstracted variable might occur

deep inside the substituted term.

We set to answer those questions in this thesis by providing mathematical tooling

for the complexity analysis of such higher-order systems. The termination method

on which we base our complexity analysis framework is tuple interpretations, which

is first introduced by the author in [69]. Tuple interpretations are an instance of the

interpretation method where expressions are mapped to tuples, for example by mapping

every base-type term to a cost–size pair of the following form:〈
cost of reducing terms to normal form, size of normal form

〉
.

Thus, we seek to interpret terms in such a way that the rewrite relation can be embedded

in a well-founded ordered set. So a rewriting step on terms implies a strict decrease

in their interpretation. For instance, considering the computation of incrCounter above,

we would like to give an interpretation ⟦incrCounter [3; 5]⟧ of incrCounter [3; 5] such that



1.1 Technical Overview 5

⟦incrCounter [3; 5]⟧ > ⟦map (𝜆𝑥. 𝑥 + 1) [3; 5]⟧, since the following reduction happens:

incrCounter [3; 5] → map (𝜆𝑥. 𝑥 + 1) [3; 5].
Tuple interpretations do not provide a complete termination proof method: there

are terminating systems for which interpretations cannot be found. Consequently, it

does not induce a complete complexity analysis framework either. Notwithstanding,

it has the potential to be very powerful if we choose the interpretation sets wisely.

A second limitation is that the search for interpretations is undecidable in general,

which is expected already in the polynomial case [81]. Undecidability never hindered

computer scientists’ efforts on mechanizing difficult problems, however. Indeed, several

proof search methods have been developed over the years to find interpretations

automatically [24, 28, 30, 52, 109].

1.1 Technical Overview

This thesis orbits the notion of semantic interpretations in term rewriting and their

applicability to termination and complexity analysis of a variety of term rewriting

systems. We consider both first- and higher-order rules in different rewriting strategies.

More precisely, when dealing with first-order rewriting in Chapter 3, we consider full

rewriting in Section 3.3 and innermost rewriting in Section 3.5. Then we move on to

higher-order rules for the rest of the thesis. In the higher-order setting, full rewriting is

considered in Chapters 4 and 7 while in Chapters 5 and 6 we use weak call-by-value.

The key idea of the interpretation method is that in order to prove termination of a

system we find a function ⟦·⟧ from the set of expressions to a well-founded set (𝐴, >).
For instance (N, >). This interpretation function should embed the rewriting relation →
into the well-founded relation > on 𝐴, that is, the following should hold

𝑒0 → 𝑒1 · · · implies ⟦𝑒0⟧ > ⟦𝑒1⟧ > · · ·

For complexity analysis, by choosing the interpretation domain as N, we have that the

number ⟦𝑒0⟧ bounds the number of steps needed to reduce 𝑒0 to its normal form. The

main technical difficulties of this approach are proving compatibility theorems: assuming

some compatibility conditions on the interpretation function we prove that ⟦𝑒⟧ > ⟦𝑒′⟧

whenever 𝑒 → 𝑒′ follows from ⟦ℓ⟧ > ⟦𝑟⟧ being valid for all rules ℓ → 𝑟 in the system.

In this thesis, we follow the same approach and develop tuple interpretations. The key

idea of tuple interpretations is that instead of mapping base-type expressions to a single

set — for example N — we map them to tuples — for example N𝑘
, 𝑘 ≥ 1. For instance:

⟦append [1; 2] [2; 3]⟧ = (3, 4, 3) > (2, 4, 3) = ⟦1 :: append [2] [2; 3]⟧



6 Introduction

Here, the first component, 3 bounds the cost (maximal length of the reduction); the

second, 4 bounds the length of the resulting list; and, the third, 3 bounds the maximum
element size. Higher-order expressions, however, are mapped to either functions (when

we consider full rewriting) or to pairs of functions (when considering call-by-value

rewriting). In this thesis, we are mainly concerned with applying tuple interpretations

to study the complexity behavior of rewriting systems. Hence, we are interested in

providing upper bounds to their complexity functions (i.e., derivational and runtime

complexities), and finally, we apply this technique to provide a higher-order rewriting

characterization of higher-order feasibility.

1.2 Related Work

First-Order Rewriting. There are several first-order complexity techniques based on

interpretations. For example, in [21], the consequences of using additive, linear, and

polynomial interpretations to natural numbers are investigated; and in [52], context-

dependent interpretations are introduced, which map terms to real numbers to obtain

tight bounds. Most closely related to our approach are matrix interpretations [37, 84], and

a technique by Cynthia Kop, Aart Middeldorp, and Thomas Sternagel for complexity

analysis of conditional term rewriting [67]. In both cases, terms are mapped to tuples as

they are in our approach, although neither considers typing information, and matrix

interpretations use linear interpretation functions and matrix-based polynomials [32].

The class of tuple interpretations we develop in this thesis is a generalization of both.

Tuple interpretations were originally developed for complexity analysis of higher-

order rewriting in [69]. They were also independently developed by Yamada [108]

for purposes of proving termination of first-order systems where the usage is focused

on using weakly monotonic interpretations as processors for the dependency pair

framework. Yamada [109] also shows that tuple interpretations subsume polynomial

interpretations (with negative constants), (improved) matrix interpretations, and arctic

interpretations, as well as the syntactic method argument filtering. Yamada’s work is

focused on applying these interpretations to termination analysis of first-order systems

while our main focus is complexity analysis of higher-order systems.

Higher-order Rewriting. In higher-order term rewriting (but a formalism without

𝜆-abstraction), Baillot and Dal Lago [13] develop a version of higher-order polynomial

interpretations which, like the present work, is based on van de Pol’s higher-order

interpretations [92]. In similar ways to what we do here in Chapter 4, the authors enforce

polynomial bounds on derivational complexity by imposing restrictions on the shape

of interpretations. Their method differs from ours in various ways, most importantly

by mapping terms to N rather than tuples. In addition, the interpretations are limited



1.2 Related Work 7

to higher-order polynomials. This yields an ordering with the subterm property, that

is, the inequality f . . . 𝑠 . . . > 𝑠 holds for all terms 𝑠. Consequently, TRSs like the ones

in Example 3.3.7 cannot be handled. Moreover, it is not possible to find a general

interpretation for functions like foldl or rec; the method can only handle instances of

foldl if the argument function is linear. In this work, we also take inspiration from [38]

(which is also based on van de Pol’s techniques) and the authors extend polynomial

interpretations to the higher-order setting. Beyond this, it unfortunately seems that

relatively little work has thus far been done on complexity analysis of higher-order

term rewriting. However, complexity analysis of functional programs is an active field of

research with a close relation to higher-order term rewriting.

Functional Programming. There are various techniques to statically analyze resource

usage of functional programs. These may be fully automated [6, 17, 96], semi-automated

designed to reason about programmer specified-bounds [25, 48, 105], or even manual

techniques, integrated with type system or program logic semantics [23, 76]. We discuss

the most pertinent ones. An approach using rewriting for full-program analysis is to

translate functional programs to rewriting systems [7], which can be analyzed using

first-order complexity techniques. This takes advantage of the large body of work on

first-order complexity but loses information; the transformation often yields a system

that is harder to analyze than the original. In this thesis, we work only on the rewriting

side of the analysis. A translation from programs to rewriting is outside our scope.

The research methodology in most studies in functional programming differs

significantly from rewriting techniques. Nevertheless, there are some studies with

clear connections to our approach; in particular our separation of cost and size (and

other structural properties). Most relevant, in [34] the authors use a similar approach

by giving semantics to a complexity-aware intermediate language allowing arbitrary

user-defined notions for size—such as list length or maximum element size; recurrence

relations are then extracted to represent the complexity.

Additionally, most modern complexity analysis is done via enhancements at the type

system level [4, 6, 36, 48, 54, 93]. For example, types may be annotated with a counter,

the heap size or a data type’s size measure. Notably, a line of work on Resource-Aware

ML [54, 59, 87] studies resource use of OCaml programs with methods based on Tarjan’s

amortized analysis [100]. Types are annotated with potentials (a cost measure), and type

inference generates a set of linear constraints which is sent over to an external solver.

For Haskell, Liquid Haskell [94, 103] provides a language to annotate types, which

can be used to prove properties of the program; this was recently extended to include

complexity [48]. Unlike RAML, this approach is not fully automatic: type annotations

are checked, not derived.



8 Introduction

These works in functional programming have a slightly different purpose from ours:

they study the resource use in a specific language, typically with a fixed evaluation

strategy. Our method, in contrast, considers computation abstractly. First without

any restriction on evaluation strategy in Chapter 4 and further considering a call-by-

value evaluation strategy in Chapter 5. Our approach has the advantage of being

abstract, so it potentially applies to more cases. But also the disadvantage that such an

abstract treatment inherently abstracts away from some specific details of programming

languages that affect how the computation is performed. Moreover, most of these works

limit interest to full-program analysis. We do this for runtime complexity, but our

method offers more, by providing interpretations for individual functions like map or

foldl. On the other hand, many do consider (shallow) polymorphism, which we do not.

While in functional programming one considers resource usage [54, 93], rewriting

is concerned with the number of steps, which can be translated to a form of resource

measure if the true cost of each step is kept low, as we previously discussed. This can

be achieved by imposing restrictions on the reduction strategy and the representation

of terms [2, 77]. Our approach carries the blessing of being general and machine-

independent and the curse of not necessarily being a reasonable cost model. Not all

is lost, however, as in Chapter 6 we provide the necessary conditions needed for an

efficient realization of our higher-order rewriting formalism by giving a characterization

of higher-order feasibility via the rewriting formalism.

1.3 Content Overview and Contributions

This thesis contains a chapter with preliminaries (Chapter 2) and five more chapters

(Chapters 3–7) that present its main research contributions. The research content is

roughly divided into the following themes: first-order complexity analysis (Chapter 3),

higher-order complexity analysis (Chapters 4 and 5), a characterization of higher-order

feasibility (Chapter 6), and higher-order termination (Chapter 7). These are thematically

connected by the fact that we use “semantic methods’ to tackle those problems.

The main contributions of this thesis are twofold. The first is the development

of tuple interpretations. As we have seen in Section 1.1, this is part of an algebraic

interpretation method, and it can be used to reason about both the termination and

complexity of rewriting systems. Secondly, we provide sufficient conditions for which

tuple interpretations can be used to capture feasibility in the higher-order setting. I list

below the main contributions of each chapter.

Chapter 2: Higher-Order Rewriting. This is a chapter on preliminaries. It contains

the basic formal definitions of rewriting theory in both first- and higher-order setting. It



1.3 Content Overview and Contributions 9

is here where most notations and naming conventions used throughout the thesis are

set. The content of this chapter does not contain any new results.

Chapter 3: First-Order Tuple Interpretations. In this chapter we develop the notion

of tuple interpretations in the context of first-order rewriting. We study two main

complexity notions, introduced formally in the chapter, of derivational and runtime
complexity. The main contribution present in this chapter is that we show how the newly

introduced tuple interpretation is used to provide upper bounds to those complexity

measures. This chapter is mainly based on two publications:

1. Cynthia Kop and Deivid Vale. “Tuple Interpretations for Higher-Order Com-

plexity”. In: 6th International Conference on Formal Structures for Computation and
Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference).
Ed. by Naoki Kobayashi. Vol. 195. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2021, 31:1–31:22. doi: 10.4230/LIPIcs.FSCD.2021.31

• Here, we take the first-order content in this publication which corresponds

mostly to its Section 3.

2. Liye Guo and Deivid Vale. “Analyzing Innermost Runtime Complexity Through

Tuple Interpretations”. In: Proceedings 17th International Workshop on Logical and
Semantic Frameworks with Applications, LSFA 2022, Belo Horizonte, Brazil (hybrid), 23-
24 September 2022. Ed. by Daniele Nantes-Sobrinho and Pascal Fontaine. Vol. 376.

EPTCS. 2022, pp. 34–48. doi: 10.4204/EPTCS.376.5

An extended (invited) journal version of the second publication is currently under

review (submitted to Mathematical Structures in Computer Science). This chapter is mostly

based on the extended journal version and includes the first-order contributions of the

first paper. The main contributions of this project are:

• We introduce the notion of algebraic interpretations, which was introduced in the

first paper, tailored to deal with first-order rewriting.

• We provide sufficient conditions for which tuple interpretations guarantee polyno-

mial bounds to the derivational/runtime complexity of compatible systems.

• We show that tuple interpretations are amenable to automation by providing a tool,

which we call Hermes, to automatically find tuple interpretations for first-order

systems using the innermost evaluation strategies.

Chapter 4: Higher-Order Tuple Interpretations. In this chapter, we move to higher-

order rewriting. We start by introducing strongly monotonic functionals as our interpre-

tation domain and consider the full (unrestricted) evaluation strategy. In this formalism,

https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/10.4204/EPTCS.376.5


10 Introduction

the interpretation mechanism needs to take abstractions into account. We show how to

interpret abstractions as strongly monotonic functions, which allows us to fully interpret

the 𝛽 and 𝜂 rules. This chapter is an extended version of

• Cynthia Kop and Deivid Vale. “Tuple Interpretations for Higher-Order Com-

plexity”. In: 6th International Conference on Formal Structures for Computation and
Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference).
Ed. by Naoki Kobayashi. Vol. 195. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2021, 31:1–31:22. doi: 10.4230/LIPIcs.FSCD.2021.31

– Here, we take the higher-order content of this publication. Which mainly

corresponds to Sections 4–5.

In this thesis, I expand on this paper by providing extended proofs of its results,

which were omitted or shortened in the conference version due to space limitations.

Additionally, some textual corrections and improvements are only present in this chapter.

The main contributions of this chapter are:

• We develop tuple interpretations for higher-order full rewriting, so no restrictions

on the contraction of redexes.

• We show how the 𝛽 and 𝜂 rules are interpreted in this setting.

• We provide a conservative notion of runtime complexity for this higher-order setting,

and we regain basic results from first-order complexity analysis in the higher-order

world.

Chapter 5: Higher-Order Tuple Interpretations for Call-by-Value. In this chapter we

consider higher-order rewriting following the call-by-value evaluation strategy. The

goal here is to get closer to “real functional programs” as this strategy is commonly

used for instance in the ML family of languages. We get closer but are not fully there

yet, since a full treatment of real-world programs would require for instance a richer

type system. Notwithstanding, this chapter provides the theoretical foundation and

mathematical correctness for future iterations of tuple interpretations that can deal with

actual programs. Hence, we focus on the theory. This chapter is fully based on the

following publication

• Cynthia Kop and Deivid Vale. “Cost-Size Semantics for Call-By-Value Higher-

Order Rewriting”. In: 8th International Conference on Formal Structures for Computa-
tion and Deduction, FSCD 2023, July 3-6, 2023, Rome, Italy. Ed. by Marco Gaboardi

and Femke van Raamsdonk. Vol. 260. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2023, 15:1–15:19. doi: 10.4230/LIPIcs.FSCD.2023.15

https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/10.4230/LIPIcs.FSCD.2023.15


1.3 Content Overview and Contributions 11

The main contributions of this chapter are:

• We provide a rewriting-based weak call-by-value strategy for higher-order term

rewriting.

• We develop the tuple interpretation mechanism for this weak call-by-value rewrit-

ing strategy that is general enough to deal with rules of non-base types and partial

applications.

• In the context of higher-order term rewriting, we show that the cost and size

functions can be completely split.

• We show that we can use those cost–size tuples to define both a termination

method under this strategy and a new definition of weak call-by-value runtime

complexity along with a methodology to derive bounds for it.

This paper builds on the ideas of [69], which introduces tuple interpretations

and a notion of runtime complexity for full higher-order rewriting (without evaluation

strategy). The key difference here is our focus on a weak call-by-value evaluation strategy.

This allows for tighter bounds but also requires significant technical changes since the

“cost” for a term of higher type can no longer be captured by just a function. An additional

change compared to [69] is that we have separated the cost and size components into

distinct functions. In [69], it is in theory allowed for the size component to depend on

the cost component, even though in practice this never happened. By fully separating

the components, it is easier to prove the correctness of a given tuple interpretation.

Chapter 6: A Rewriting Characterization of Higher-Order Feasibility. The class

of Basic Feasible Functionals (BFF) of second-order functionals that are computable in

polynomial time was introduced by Kapron and Cook [60]. This class is a low-level

machine characterization of the feasible functionals introduced by Mehlhorn [79]. In this

chapter we provide a higher-order rewriting characterization of BFF via call-by-value

tuple interpretations, so this presents an application for the theory we developed

in Chapter 5. In this characterization, we build upon the notion of BFF given by

Kapron and Cook [60]. This project is joint work with Patrick Baillot, Cynthia Kop,

and Ugo dal Lago. This work has been accepted at the 27th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCs 2024). The main

contributions of this work are the following:

• We provide a rewriting-based sound and complete characterization of BFF.

• We introduce graph rewriting for an applicative format of our higher-order formal-

ism (we consider the subset of terms that do not contain abstractions) to deal with

sharing and duplication of variables.



12 Introduction

• We prove that applicative higher-order rewriting with the call-by-value rewriting

strategy can simulate (and be simulated) by Oracle Turing Machines with polyno-

mial overhead on time and space whenever the underlying evaluation of terms

uses graphs with sharing of duplicated variables. Here there is one additional

condition: we only consider orthogonal systems. This restriction is in line with the

conditions imposed to get reasonable cost models for first-order rewriting in [77].

Chapter 7: Certification of Higher-Order Polynomial Interpretations. In this chapter,

we move away from tuple interpretations and concentrate on higher-order polynomial

interpretations from a certification point of view. Our goal here is to provide mechanized

verification of the output of termination tools for instance the termination tool Wanda [65].

To achieve this, we introduce the pair Nijn/ONijn consisting of a formalization library,

which provides a formalization of basic results in higher-order rewriting theory, and

a tool to compile the informal output of termination proofs in a formal format. This

chapter is based on the following publication:

• Niels van der Weide, Deivid Vale, and Cynthia Kop. “Certifying Higher-Order

Polynomial Interpretations”. In: 14th International Conference on Interactive Theorem
Proving, ITP 2023, July 31 to August 4, 2023, Białystok, Poland. Ed. by Adam

Naumowicz and René Thiemann. Vol. 268. LIPIcs. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2023, 30:1–30:20. doi: 10.4230/LIPIcs.ITP.2023.30

The contributions of this work are as follows:

• We provide a formalization of higher-order algebraic functional systems.

• We provide a mechanized proof of the interpretation method using weakly

monotonic algebras.

• We formalize the higher-order polynomial interpretation method.

• We develop a tactic that automatically solves the constraints that arise when using

the higher-order polynomial interpretation method.

• We develop an OCaml program that transforms the output of a termination prover

into a Coq script that represents the termination proof, i.e., a certification of the

validity of the termination proof, the certification is then validated by the Coq’s

compiler.

Dependency of Chapters. The chapters in this thesis are mostly independent and self-

contained. The exception is the preliminary chapter (Chapter 2) which is a dependency

for most chapters. The only completely “isolated” chapter is Chapter 7. Some chapters

https://doi.org/10.4230/LIPIcs.ITP.2023.30


1.3 Content Overview and Contributions 13

contain repetitions and explain the same previously introduced concept but in a slightly

different format or context. The notions of cost and size tuples, for example, are

introduced in all chapters where we introduce a new variant of the tuple interpretation

method. This is intentional as those concepts play an important role in each chapter.

The figure below depicts the relationship between each chapter.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 7

Chapter 6

Fig. 1.1 Dependency of Chapters

The dependency of Chapter 4 with Chapter 3 comes from Sections 3.1–3.3.

Statement of Contributions. The publications leading to the production of this thesis

had been carried out with collaborators. Therefore, in the paragraphs below I clarify my

main involvement in each one of them.

The two publications leading to Chapter 3 are split as follows. In the first paper [69],

I carried out the main research, under the supervision of Cynthia Kop. This is the first

paper of the Ph.D. project, so major revisions and feedback on writing and proofreading

were provided by Cynthia Kop. In the second paper [42], I took the lead on the

research and writing the paper. Liye Guo collaborated with parts of the code in Hermes,

which mainly comprises our internal implementation of tuple interpretations and the

implementation of a wrapper API around the Z3 SMT solver. I was responsible for

implementing the front end of Hermes and the algorithm for finding tuple interpretations.

The organization for the publication [69] leading to Chapter 4 follows the same

one as previously mentioned. In the publication [70] leading to Chapter 5, which

was written together with Cynthia Kop, I carried out the main research and Cynthia

Kop took the advisory role. In Chapter 6, the co-authors took the advisory role as

well. I owe Ugo dal Lago and Patrick Baillot important discussions for the proof of

soundness and completeness of the characterization presented in this chapter. Ugo dal

Lago provided us with the main “recipe” to prove the soundness and completeness of

the characterization. The proof of soundness of the characterization was developed

with advisory work of Ugo dal Lago. Furthermore, Cynthia Kop provided most of the

low-level details of the rewriting encoding of Oracle Turing Machines, which drastically



14 Introduction

improved my high-level version of the encoding. These contributions are mostly used

for the proof of completeness in Chapter 6.

Finally, the paper [106] pertaining to Chapter 7, was a collaboration with my colleague

Niels van der Weide who was responsible for the implementation of the formalization

library, Nijn. My main contribution to Nijn was that of revisiting the proofs in [38] and

help with the development of the correct proof idea that would be formalized, so the

formalization can correctly reflect the aspects of rewriting theory. I am the designer

and implementor of ONijn. Cynthia Kop provided most of the code changes necessary

in Wanda. Niels van der Weide and I shared writing duties equally, with Cynthia Kop

providing feedback and textual revisions.

External Publication. I co-authored the following publication during my Ph.D.

• Mauricio Ayala-Rincón, Maribel Fernández, Daniele Nantes-Sobrinho, and Deivid

Vale. “Nominal Equational Problems”. In: Foundations of Software Science and
Computation Structures - 24th International Conference, FOSSACS 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021,
Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings. Ed. by Stefan

Kiefer and Christine Tasson. Vol. 12650. Lecture Notes in Computer Science.

Springer, 2021, pp. 22–41. doi: 10.1007/978-3-030-71995-1_2

However, I decided not to include it as a chapter in the thesis since it does not fit into

the “complexity/termination” narrative umbrella.

https://doi.org/10.1007/978-3-030-71995-1_2


Chapter 2

Higher-Order Rewriting

In this chapter, we introduce the higher-order rewriting formalism of Curried Functional
Systems (CFS). The nomenclature “formalism” has a specific meaning in this thesis.

A rewriting formalism defines the conditions for the formation of terms and rules.

Furthermore, it also defines equality over terms, the action of substitutions, and

establishes the matching mechanism for applying rewriting rules.

2.1 Curried Higher-Order Rewrite Systems

Unlike first-order rewriting which has a uniform formal presentation, the nomenclature

‘higher-order rewriting’ might have a different signification varying according to the

intended application domain. In this thesis, we work with curried functional systems.
This formalism is a variation of algebraic functional systems [58] using curried notation

and typed function symbols (but no arity) and a monomorphic simple type system. The

matching mechanism we consider is a plain modulo alpha matching on syntax and

𝛽-reduction is added separately as reduction steps.

2.1.1 The Syntax of Types and Terms

Definition 2.1.1. Let B be a nonempty set whose elements are called base types and

range over 𝜄, 𝜅, 𝜈. The set T(B) of simple types over B is generated by the grammar:

T(B)F B | T(B) ⇒ T(B)

The letters 𝜎, 𝜏, 𝜌 range over the set of types T(B). As usual, we will the arrow type

constructor ⇒ to be right-associative, so we write 𝜎 ⇒ 𝜏 ⇒ 𝜌 for (𝜎 ⇒ (𝜏 ⇒ 𝜌)). Notice

that every simple type 𝜎 — which is not a base type — can be uniquely written as

𝜏1 ⇒ · · · ⇒ 𝜏𝑛 ⇒ 𝜄 with 𝑚 ≥ 1. We informally say that the 𝜏𝑖’s are the input types and

the base type 𝜄 is the output type. We abbreviate such types by τ ⇒ 𝜄.



16 Higher-Order Rewriting

Definition 2.1.2. The type order (sometimes called type level) of a type is inductively

defined as the natural number:

(i) ord(𝜄) = 0

(ii) ord(𝜎 ⇒ 𝜏) = max(1 + ord(𝜎), ord(𝜏)).

Definition 2.1.3. A signatureF is a triple (B,Σ, typeOf)whereB is a set of base types,Σ is

a nonempty finite set of function symbols, and typeOf is a function typeOf : Σ −→ T(B).

For each type 𝜎, we postulate the existence of a nonempty set X𝜎 of countably many

variables. Furthermore, we impose that X𝜎 ∩X𝜏 = ∅ whenever 𝜎 ≠ 𝜏. Let X denote the

family of sets (X𝜎)𝜎∈T(B) indexed by T(B) and assume that Σ ∩X = ∅. Mathematically,

this means that for each 𝜎 ∈ T(B), the intersection Σ ∩X𝜎 is empty.

Now we have the ingredients to define the set of (uncurried) terms, namely, a

signature F = (B,Σ, typeOf) and a family of variables X. Intuitively, our notion of

terms corresponds to a Simply Typed Lambda Calculus extended with a set of function

symbols from Σ.

Definition 2.1.4. The set T(F,X) — of terms built from F and X — collects those

expressions 𝑠 for which the judgment 𝑠 : 𝜎 can be deduced using the following rules:

𝑥 ∈ X𝜎
(var)𝑥 : 𝜎

f ∈ Σ typeOf(f) = 𝜎
(symb)

f : 𝜎

𝑠 : 𝜎 ⇒ 𝜏 𝑡 : 𝜎
(app)(𝑠 𝑡) : 𝜏

𝑥 ∈ X𝜎 𝑠 : 𝜏
(lam)(𝜆𝑥. 𝑠) : 𝜎 ⇒ 𝜏

We follow standard conventions in writing terms down. Application of terms is

left-associative, so we write 𝑠 𝑡 𝑢 for ((𝑠 𝑡) 𝑢). Abstraction is right-associative, so we

write 𝜆𝑥𝑦𝑧. 𝑠 for 𝜆𝑥. (𝜆𝑦. (𝜆𝑧. 𝑠)). Application takes precedence over abstraction, which

allows us to write 𝜆𝑥. 𝑠 𝑡 for 𝜆𝑥. (𝑠 𝑡). Unnecessary parentheses are removed, and we

write terms following these rules. A symbol f ∈ Σ is called the head symbol of 𝑠 if

𝑠 = f 𝑠1 . . . 𝑠𝑘 . We identify terms modulo 𝛼-equality, so 𝑠 = 𝑡 denotes 𝑠 =𝛼 𝑡. We also

write ≡ for the syntactical identity of terms.

Definition 2.1.5. A subterm of 𝑠 is a term 𝑡 (we write 𝑠⊵ 𝑡) such that one of the following

holds:

1. 𝑠 ≡ 𝑡;

2. 𝑡 is a subterm of 𝑠′ or 𝑠′′, if 𝑠 ≡ 𝑠′ 𝑠′′;

3. 𝑡 is a subterm of 𝑠′, if 𝑠 ≡ 𝜆𝑥. 𝑠′.

Let f : 𝜎1 ⇒ · · · ⇒ 𝜎𝑚 ⇒ 𝜄 be a function symbol. Consider a term 𝑠 of the form

𝑠 = f 𝑠1 . . . 𝑠𝑚 . Then, we call 𝑠1, . . . , 𝑠𝑚 the immediate subterms of 𝑠.



2.1 Curried Higher-Order Rewrite Systems 17

Definition 2.1.6. The set fv(𝑠) collects the free variables in 𝑠, i.e., those variables not

bound by a lambda abstractor. Formally, we define it as follows:

fv(f) = ∅

fv(𝑥) = {𝑥}

fv(𝑠 𝑡) = fv(𝑠) ∪ fv(𝑡)

fv(𝜆𝑥. 𝑠) = fv(𝑠) \ {𝑥}

A term 𝑠 is closed if fv(𝑠) = ∅. It is ground if no variable occurs in it.

Definition 2.1.7. A substitution 𝛾 is a type-preserving map from variables to terms

such that the set supp(𝛾) = {𝑥 ∈ X | 𝛾(𝑥) ≠ 𝑥} is finite. We may explicitly represent 𝛾

as a list of mappings [𝑥1 ≔ 𝑠1, . . . , 𝑥𝑘 ≔ 𝑠𝑘].

Every substitution 𝛾 extends uniquely up to 𝛼-equivalence to a type-preserving

endomorphism on the set of terms, whose image on 𝑠 we denote by 𝑠𝛾. This is expressed

in the definition below.

Definition 2.1.8. We define the capture avoiding application of 𝛾 to 𝑠 by induction on the

structure of 𝑠 as follows:

𝑥𝛾 = 𝛾(𝑥) (𝑠 𝑡)𝛾 = (𝑠𝛾) (𝑡𝛾)
f𝛾 = f (𝜆𝑥. 𝑠)𝛾 = 𝜆𝑦. (𝑠{𝑥 ↦→𝑦}𝛾), for 𝑦 fresh

Here, 𝑠{𝑥 ↦→𝑦}
denotes the term obtained by replacing all free occurrences of 𝑥 by 𝑦 in 𝑠.

By saying 𝑦 is fresh we mean it is a completely new variable name that does not occur

anywhere on 𝑠 or in the range of 𝛾.

It is worth to notice that the result of 𝑠𝛾 is unique modulo 𝛼-renaming.

2.1.2 Higher-Order Rewrite Rules

Notice that in order to express rules we need to fix an arbitrary but fixed signature F and

a set of variables X. In this way, we keep this choice implicit whenever we talk about

term rewriting systems generically. The reader should keep in mind that all definitions

below depend on this choice. Let us start by defining rewrite rules.

Definition 2.1.9. A rewrite rule (of type 𝜎) is a pair of terms (ℓ , 𝑟) of the same type 𝜎,

which we denote by ℓ → 𝑟 : 𝜎, such that:

(i) ℓ = f ℓ1 . . . ℓ𝑘 , and

(ii) fv(𝑟) ⊆ fv(ℓ ).

The order of a rule ℓ → 𝑟 : 𝜎 is the number defined by max{ord(𝜎) | 𝑠 : 𝜎 and ℓ ⊵
𝑠 or 𝑟 ⊵ 𝑠}. For simplicity of notation, we write ℓ → 𝑟 instead of ℓ → 𝑟 : 𝜎 whenever the

type of the rule can be deduced from context or is irrelevant.



18 Higher-Order Rewriting

Definition 2.1.10. A term rewriting system (TRS) R over F is a set of rules. The order of

a TRS R is the least 𝑛 such that the order of all rules in R is less than (or equal) to 𝑛. If

no such 𝑛 exists, we say R is of infinite order.

Example 2.1.11. We will follow ubiquitous examples in higher-order rewriting and

consider the rules implementing map and foldl with the usual constructor for lists: [] : list
and cons : nat ⇒ list ⇒ list. The map function is of type (nat ⇒ nat) ⇒ list ⇒ list. It

applies the functional argument of type nat ⇒ nat to each element of the argument list.

Another common example is foldl of type (nat ⇒ nat ⇒ nat) ⇒ nat ⇒ list ⇒ list.

map 𝐹 [] → [] foldl 𝐹 𝑧 [] → 𝑧

map 𝐹 (𝑥 :: 𝑞) → (𝐹 𝑥) :: map 𝐹 𝑞 foldl 𝐹 𝑧 (𝑥 :: 𝑞) → foldl 𝐹 (𝐹 𝑧 𝑥) 𝑞

The symbol cons in the rules above is written in infix notation. We use “::” for it.

Definition 2.1.12. Every rewrite rule ℓ → 𝑟 defines a symbol f, namely, the head symbol

of ℓ . For each f ∈ Σ, let Rf denote the set of rewrite rules that define f in R. A symbol

f ∈ Σ is a defined symbol if Rf ≠ ∅. A constructor symbol c ∈ Σ is such that Rf = ∅.

Hence, whenever we want to refer to such rules we write Rfoldl, for the rules defining

foldl, and Rmap, for the rules defining map. We let Σdef be the set of defined symbols and

Σcon the set of constructor symbols. Hence, Σ = Σdef ⊎ Σcon. For the rest of the thesis,

we will assume that the subset Σcon ⊂ Σ is finite. This means that we only have a finite

number of data constructors.

Definition 2.1.13. Let R be a TRS. A data term is a term of the form c 𝑑1 . . . 𝑑𝑘 where c
is a constructor symbol and each 𝑑𝑖 is a data term. A basic term is a term of base type

and of form f 𝑑1 . . . 𝑑𝑚 where f is a defined symbol and all 𝑑1, . . . , 𝑑𝑚 are data terms.

In most of the examples in this thesis data types appear quite often: nat to represent

natural numbers (in unary representation) and list to represent lists of numbers.

The constructors for natural numbers are 0 : nat and s : nat ⇒ nat. All ground terms

built using those are of the form s (s (s . . . (s 0) . . .)), that is, such terms are composed

of several successive applications of s to 0. There is a bijective correspondence of such

terms to natural numbers in N. Indeed, this representation of numbers is called unary
representation of the natural numbers. We define the following notational scheme, so we

can write these terms in a more compact form.

Notation Scheme 2.1.14. We let ⌜n⌝ denote the ground term s (s (s . . . (s 0) . . .)), of type

nat that is composed of 𝑛 successive applications of s to 0.

The constructors for lists are [] : list (which represents the empty list) and cons : nat ⇒
list ⇒ list. We often write cons in infix notation, as in Example 2.1.11. We also may write



2.1 Curried Higher-Order Rewrite Systems 19

lists in the common format [𝑠1; . . . , 𝑠𝑘]. Sometimes it is more convenient to write lists in

postfix notation, so we use the most convenient format at will.

LetR be a TRS over T(F,X). We define the notion of reducibility by defining whenever

a term 𝑠 reduces to a term 𝑡. Additionally to the rules in R, we want to rewrite terms

of the form (𝜆𝑥. 𝑠) 𝑡, which we call 𝛽-redex. In our setting, we implement 𝛽 reduction

steps by considering a 𝛽 rule-scheme.

Definition 2.1.15. The higher-order rewrite relation (union 𝛽) →R, induced by a set of

rules R, is defined as follows:

1. ℓ𝛾 →R 𝑟𝛾, for any substitution 𝛾 and rule ℓ → 𝑟 in R;

2. (𝜆𝑥. 𝑠) 𝑡 →R 𝑠[𝑥 ≔ 𝑡];

3. 𝑠 𝑡 →R 𝑠
′ 𝑡, whenever 𝑠 →R 𝑠

′
, and 𝑠 𝑡 →R 𝑠 𝑡

′
, whenever 𝑡 →R 𝑡

′
;

4. 𝜆𝑥. 𝑠 →R 𝜆𝑥. 𝑠′, whenever 𝑠 →R 𝑠
′
.

The cases (1)-(2) say that (i) every instance of a rule in R induces a rewriting step,

and (ii) a beta redex also induces a step for any pair of terms 𝑠, 𝑡. The cases (3)-(4) are

the structural congruence closure of (1)-(2). This allows us to apply a rule (or 𝛽) step at

any subterm of a term 𝑠. We say an R-reducible expression (redex) in a term 𝑠 is a subterm

of 𝑠 of the form ℓ𝛾, for some rule ℓ → 𝑟 and substitution 𝛾. A 𝛽-redex is a subterm of 𝑠

that is of form (𝜆𝑥. 𝑠′) 𝑡. We write

+−→R for the transitive closure of →R.

Remark 2.1.16. Note that we do not, by default, include the common 𝜂-reduction

rule-scheme defined as: 𝜆𝑥. 𝑠 𝑥 → 𝑠, if 𝑥 does not occur free in 𝑠.

We avoid this because not all sources consider it, and we want to maintain compati-

bility with the standard literature. Nonetheless, it is easy to add support for 𝜂-reduction

in our formalism by including, for all types 𝜎, 𝜏, the rule schemata

𝜆𝑥. 𝐹 𝑥 → 𝐹

with 𝐹 ∈ X𝜎⇒𝜏 in Definition 2.1.15 above. Notice that the variable side condition is

guaranteed to hold by the substitution mechanism. Indeed, any instance of 𝐹 in 𝜆𝑥. 𝐹 𝑥

cannot have free occurrences of the abstracted variable 𝑥 as if that would be the case

then 𝑥 would get renamed to a new fresh variable 𝑦.

First-Order Rules. Intuitively, first-order functions only take primitive values as objects,

e.g., numbers, lists, and so on. Contrary to the previously introduced terms where

function symbols are allowed to take arguments of functional type. In the definition

below, we specify the class of first-order terms that we will work with, mainly on

Chapter 3.



20 Higher-Order Rewriting

Definition 2.1.17. In this thesis, by first-order terms, we mean the restriction of the

possible expressions from T(F,X) such that (i) the only way to form terms is by using

the (var), (symb), and (app) rules, and (ii) the order of such terms cannot be greater than

1. We collect terms satisfying (i) and (ii) in the set T 𝑓 𝑜(F,X).

A first-order term rewriting system is a term rewriting system such that its order is

at most 1.

Example 2.1.18. We can then write first-order rules. Let us illustrate this by defining

a first-order system computing the Fibonacci sequence. We start by giving the types

involved. So the base type set is B = {nat}. For Σ we set Σ = {0, s, add, fib} with types as

follows: 0 : nat, s : nat ⇒ nat, add : nat ⇒ nat ⇒ nat, and finally fib : nat ⇒ nat.

add 𝑥 0 → 𝑥 add 𝑥 (s 𝑦) → s (add 𝑥 𝑦)
fib 0 → 0 fib (s 0) → s 0

fib (s (s 𝑥)) → add (fib (s 𝑥)) (fib 𝑥)

Example 2.1.19. In the example below we provide two more examples of first-order

systems. Here, dbl : nat ⇒ nat and mult : nat ⇒ nat ⇒ nat.

dbl 0 → 0 mult 𝑥 0 → 0

dbl (s 𝑥) → s(s (dbl 𝑥)) mult 𝑥 (s 𝑦) → add 𝑥 (mult 𝑥 𝑦)

These rules will be used throughout the thesis as toy examples.

2.2 Ordered Sets and Monotonic Functions

In this section, we set basic definitions and notations on ordered sets and monotonic

functions that we shall use throughout the thesis.

Definition 2.2.1. A quasi-ordered set (𝐴,⊒) consists of a set 𝐴 and a quasi-order

(reflexive and transitive) binary relation ⊒ on 𝐴. An extended well-founded set
(𝐴, >,≳) is a nonempty set 𝐴 together with a well-founded order > (i.e., an irreflexive

and transitive well-founded relation) and a quasi-order ≳ 𝐴 such that ≳ is compatible

with > that is:

1. 𝑥 > 𝑦 implies 𝑥 ≳ 𝑦, and

2. 𝑥 > 𝑦 ≳ 𝑧 implies 𝑥 > 𝑧.

Notice that it is permitted, but not required, that ≳ is the reflexive closure of >. In

this thesis, we refer to an extended well-founded set simply as well-founded set.



2.2 Ordered Sets and Monotonic Functions 21

Definition 2.2.2. The unit set is the quasi-ordered set ({u},⊒), with u ⊒ u.

Given quasi-ordered sets (𝐴,⊒) and (𝐵,≳), a function 𝑓 : 𝐴 −→ 𝐵 is weakly monotonic
if 𝑥 ⊒ 𝑦 implies 𝑓 (𝑥) ≳ 𝑓 (𝑦). Let 𝐴 =⇒ 𝐵 denote the set of weakly monotonic functions

from 𝐴 to 𝐵. The comparison operator ≳ on 𝐵 induces a point-wise comparison on

𝐴 =⇒ 𝐵 as follows: 𝑓 ≳ 𝑔 if 𝑓 (𝑥) ≳ 𝑔(𝑥) for all 𝑥 ∈ 𝐴. This way (𝐴 =⇒ 𝐵,≳) is also

quasi-ordered.

Given well-founded sets (𝐴, >,≳) and (𝐵, >,≳), a function 𝑓 : 𝐴 −→ 𝐵 is said to be

strongly monotonic if 𝑥 > 𝑦 implies 𝑓 (𝑥) > 𝑓 (𝑦) and 𝑥 ≳ 𝑦 implies 𝑓 (𝑥) ≳ 𝑓 (𝑦). We say

that a weakly monotonic function 𝑓 ∈ 𝐴1 =⇒ · · · =⇒ 𝐴𝑘 =⇒ 𝐵 is strict in argument 𝑖 if

𝐴𝑖 is a well-founded set and for all 𝑥1 ∈ 𝐴1, . . . , 𝑥𝑖 ∈ 𝐴𝑖 , . . . 𝑥𝑘 ∈ 𝐴𝑘 and 𝑥′
1
∈ 𝐴1, . . . , 𝑥

′
𝑖 ∈

𝐴𝑖 , . . . 𝑥
′
𝑘 ∈ 𝐴𝑘 such that 𝑥𝑖 > 𝑥′𝑖 , we have 𝑓 (𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑘) > 𝑓 (𝑥′

1
, . . . , 𝑥′𝑖 , . . . , 𝑥

′
𝑘).

Note that if 𝑓 is strict in argument 𝑖, then 𝑓 (𝑥1, . . . , 𝑥𝑖−1) is a strongly monotonic function

from 𝐴𝑖 to 𝐴𝑖+1 =⇒ · · · =⇒ 𝐴𝑘 =⇒ 𝐵. Hence, a weakly monotonic function that is strict

in argument 𝑖 is also strongly monotonic in the same argument.

In this thesis, we admit the functional extensionality axiom. Both in pen-and-paper
reasoning up to Chapter 6 and in the formalization described in Chapter 7. So two

function 𝑓 , 𝑔 are equal iff for all 𝑥, 𝑓 (𝑥) = 𝑔(𝑥).





Chapter 3

First-Order Tuple Interpretations

In this chapter, we consider a style of first-order many-sorted rewriting. This means that

we restrict ourselves to base-type terms in T 𝑓 𝑜(F,X) as in Definition 2.1.17. Here we set

out to develop the notions of tuple interpretation in this first-order setting for both full

and innermost evaluation strategies.

3.1 Derivation Height and Complexity

Given a well-founded and finitely branching relation{ on terms, we write 𝑠
𝑛
{ 𝑡 there is

a sequence of steps 𝑠 = 𝑠0 { · · · { 𝑠𝑛 = 𝑡 is of length 𝑛. The derivation height dhR(𝑠,{)
of a term 𝑠 with respect to{ is the length of the longest{-sequence starting with 𝑠,

i.e., dhR(𝑠,{) = max{𝑛 | ∃𝑡 ∈ T(F,X) : 𝑠
𝑛
{ 𝑡}. The absolute size of a term 𝑠, denoted by

|𝑠|, is 1 if 𝑠 is a symbol in Σ or a variable, and |𝑠1| + |𝑠2| if 𝑠 = 𝑠1 𝑠2. Let Tm ⊆ T(F,X).
In order to express various complexity notions in the rewriting setting, we define the

complexity function as follows: comp(𝑛,{, Tm) = max{dhR(𝑠,{) | 𝑠 ∈ Tm and |𝑠| ≤ 𝑛}.
Intuitively, comp(𝑛,{, Tm) is the length of the longest{-sequence starting with a term

(that belongs to Tm) whose absolute size is at most 𝑛. We summarize four particular

instances of complexity functions below:

derivational runtime

full dcR(𝑛) = comp(𝑛,→R, T(F,X)) rcR(𝑛) = comp(𝑛,→R, T𝑏(F))
innermost idcR(𝑛) = comp(𝑛,→𝑖

R, T(F,X)) ircR(𝑛) = comp(𝑛,→𝑖
R, T𝑏(F))

Here, T𝑏(F) denotes the set of basic terms built over F. The notions of derivational and

runtime complexity differ by the set of terms we allow reductions to start from. In the

former, there is no restriction on the starting term of reductions, so dcR(𝑛) needs to

bound the derivation height of all reductions starting with terms of absolute size ≤ 𝑛.



24 First-Order Tuple Interpretations

Meanwhile, in the latter, we consider reductions only starting from basic terms, so we

consider terms such that a single function symbol is applied to data terms.

The example below collects some first-order functions we will use throughout the

chapter.

Example 3.1.1. We fix nat and list for the sorts of natural numbers and lists of natural

numbers, respectively. In the TRS below, 0 :nat, s :nat ⇒ nat, [] : list and cons :nat ⇒ list ⇒
list are constructors while add :nat ⇒ nat ⇒ nat, append : list ⇒ list ⇒ list, sum : list ⇒ nat,
and rev : list ⇒ list are defined symbols.

add 𝑥 0 → 𝑥 sum [] → 0

add 𝑥 (s 𝑦) → s (add 𝑥 𝑦) sum (cons 𝑥 𝑞) → add (sum 𝑞) 𝑥
append [] 𝑞′ → 𝑞′ rev [] → []

append (cons 𝑥 𝑞) 𝑞′ → cons 𝑥 (append 𝑞 𝑞′)
rev (cons 𝑥 𝑞) → append (rev 𝑞) (cons 𝑥 [])

Remark 3.1.2. We could have used a simpler version of rev in the example above by

using an accumulator. For instance, consider the rule rev 𝑞 → aux 𝑞 [] and the two

auxiliary rules aux [] 𝑞′ → 𝑞′ and aux (cons 𝑥 𝑞) 𝑞′ → aux 𝑞 (cons 𝑥 𝑞′). The version that

uses append is useful for showing how to combine different functions and how to

interpret the result.

3.2 From Termination Proofs to Complexity Bounds

It is common in the rewriting literature to use termination proofs to assess the difficulty
of rewriting a term to normal form [8, 53]. The intuition comes from the realization

that termination proofs not only prove the absence of infinite reduction chains but

also can be used to provide upper bounds on the derivational (or runtime) complexity

function. Then one assesses the “power” of termination-proof techniques by looking at

their induced bounds on the derivational (runtime) complexity functions. This program

has been suggested in [53]. This principle applies not only to syntactic termination

proofs [50, 51, 82]; but also to semantical methods [52, 53, 83].

This observation is natural for interpretation-based termination proofs. Indeed, let us

consider interpretations into N as an example, for instance, polynomial interpretations.

In this setting, each term 𝑠 is mapped to a natural number ⟦𝑠⟧. The interpretation

function ⟦·⟧ is such that whenever a reduction is fired on terms there is a strict decrease

on N, i.e., if 𝑠 reduces to a term 𝑡, then their respective interpretation decreases so

⟦𝑠⟧ > ⟦𝑡⟧ in N. As such, the number ⟦𝑠⟧ gives an upper bound on the length of



3.2 From Termination Proofs to Complexity Bounds 25

reductions starting with 𝑠 since this inequality holds for any reduction sequence starting

with 𝑠. We shall make this discourse more formal below.

Since the term formalism we consider in this thesis is simply typed and uncurried, we

update the classical treatment of monotonic algebras from [11] to it. Let F = (B,Σ, typeOf)
be a signature, we call it first-order whenever for all f ∈ Σ, typeOf(f) is of order at most 1.

Definition 3.2.1. Let F = (B,Σ, typeOf) be a first-order signature. A strongly mono-
tonic F-algebra ℱ = (𝐴,𝒥) consists of a family of extended well-founded sets 𝐴 =

{(𝐴𝜄 , >𝜄 ,≥𝜄)}𝜄∈B together with an interpretation 𝒥 that maps each f : 𝜄1 ⇒ · · · ⇒ 𝜄𝑚 ⇒ 𝜅

in Σ to a strongly monotonic function (in all arguments) 𝒥f : 𝐴𝜄1 =⇒ . . . =⇒ 𝐴𝜄𝑚 =⇒ 𝐴𝜅.

In order to interpret terms from T(F,X) we extend F-algebras to the set of terms using

a valuation function 𝛼 mapping variables to elements in 𝐴, as usual. The difference is

that now valuations have to reflect the typing information given by F. Hence, we say a

valuation is a function 𝛼 that maps variables of base type 𝜄 to elements of 𝐴𝜄.

Definition 3.2.2. We then extend 𝒥 to a function ⟦·⟧𝒥𝛼 over the set of terms by letting:

1. ⟦𝑥⟧𝒥𝛼 = 𝛼(𝑥) if 𝑥 is a variable of type 𝜄,

2. ⟦f⟧𝒥𝛼 = 𝒥f, and

3. ⟦𝑠 𝑡⟧𝒥𝛼 = ⟦𝑠⟧𝒥𝛼 (⟦𝑡⟧𝒥𝛼 ).

We will generally omit the annotations 𝒥 and 𝛼 from ⟦·⟧𝒥𝛼 when those are clear from

the context. So we may write ⟦𝑠⟧ instead of ⟦𝑠⟧𝒥𝛼 . Additionally, for the interpretations

we consider in this section, we fix the extended well-founded set (N, >,≥) for all base

types 𝜄 ∈ B and the interpretation functions 𝒥f are polynomial functions over N. This is

essentially the classical polynomial interpretations instantiated to our typed uncurried

setting. We may write something like ⟦𝑠⟧ = 𝑥 + 𝑦 to mean ⟦𝑠⟧𝒥𝛼 = 𝛼(𝑥) + 𝛼(𝑦).

Definition 3.2.3. We say that a TRS R is compatible with an F-algebra 𝒜 whenever

⟦ℓ⟧𝒥𝛼 > ⟦𝑟⟧𝒥𝛼 for all rules ℓ → 𝑟 ∈ R and valuations 𝛼.

A classical result from strongly monotonic algebras is the following compatibility
theorem, which formalizes the ideas we just mentioned.

Theorem 3.2.4 (Compatibility). If a TRS R is compatible with an F-algebra ℱ , then for

all valuations 𝛼, we have ⟦𝑠⟧𝒥𝛼 > ⟦𝑡⟧𝒥𝛼 , whenever 𝑠 → 𝑡.

Corollary 3.2.5. If a TRS R is compatible with an F-algebra ℱ then it is terminating.

Recall that, intuitively, the dhR(𝑠) function describes the worst-case number of steps

for all possible reductions starting with 𝑠. Then, as a consequence of the Compatibility

Theorem, we see that dhR(𝑠) ≤ ⟦𝑠⟧, for any term 𝑠 : 𝜄. Hence, the interpretation function

⟦·⟧ can be used to bound the derivation height function.



26 First-Order Tuple Interpretations

Example 3.2.6. Let us consider the TRS Radd, which contains the two rules defining the

symbol add from Example 2.1.18 add 𝑥 0 → 𝑥 and add 𝑥 (s 𝑦) → s (add 𝑥 𝑦). These rules

are simple enough to suggest the following interpretation
1

:

𝒥0 = 0 𝒥s = λ𝑥.𝑥 + 1 𝒥add = λ𝑥𝑦.𝑥 + 2𝑦 + 1

This interpretation is compatible with the rules in Radd. Indeed, ⟦add 𝑥 0⟧ = 𝑥 + 1 >

𝑥 = ⟦𝑥⟧ and ⟦add 𝑥 (s 𝑦)⟧ = 𝑥 + 2𝑦 + 3 > 𝑥 + 2𝑦 + 2 = ⟦s(add 𝑥 𝑦)⟧. Notice that every

ground term 𝑠 over this system normalizes to a term of the form s (s . . . (s 0)) which

is the application of 𝑛 successive s’s to 0. Recall that we use the notation ⌜n⌝ for such

terms.

If we start with a term of the shape 𝑠 = add ⌜n⌝ ⌜m⌝, we get reductions like

add ⌜n⌝ ⌜m⌝ → s (add ⌜n⌝ ⌜m − 1⌝) +−→ s𝑚 (add ⌜n⌝ 0) → ⌜n + m⌝

The length of this reduction chain is exactly 𝑚 + 1 and one can easily deduce that

dhR(𝑠) = 𝑚 + 1. The interpretation ⟦add ⌜n⌝ ⌜m⌝⟧ = 𝑛 + 2𝑚 + 1.

However, since in a reduction chain 𝑠
+−→ ⌜n⌝ the interpretation of 𝑠 bounds the

length of any possible reduction starting with 𝑠, it may give a severe overestima-

tion to the derivation height of 𝑠. This can be illustrated by a term 𝑠 of the shape

add ⌜n⌝ (add ⌜n⌝ (add ⌜n⌝ ⌜m⌝)). Its interpretation is 𝑛 + 2𝑛 + 2
2𝑛 + 2

3𝑚 + 3 ≤ 2
𝑐|𝑠|

, for

some sufficiently large constant 𝑐. Meanwhile, dhR(𝑠) admits the linear upper bound

3(𝑚 + 𝑛 + 1).
The reason for such a huge overestimation, already observed in [53], is that polynomial

interpretations with nested function calls like ones in 𝑠 above provide exponential bounds

to the derivation height of terms. The further we move deeper in the term tree, the

higher our overestimation. This motivates the definition of the runtime complexity

notion: we remove those nested functional calls and consider reductions that only start

with basic terms. In the lines of Example 3.2.6, we consider only terms of the shape

add ⌜n⌝ ⌜m⌝.

Runtime complexity is good enough when one is concerned with single functions

applied to data. However, we are still not satisfied. A natural but subtle observation

is that the interpretation 𝒥add = λ𝑥𝑦.𝑥 + 2𝑦 + 1 of add is not tight enough to provide

good upper bounds. Indeed, successive nested applications of add in a term would

1

A note on notation: we use the notation 𝒥s = λ𝑥.𝑥 + 1 to mean that the image of 𝒥(·) under the

symbol s is the function that maps 𝑥 to 𝑥 + 1, mathematically this is the nameless function 𝑥 ↦→ 𝑥 + 1. This

λ style is particularly useful when dealing with successive maps, like with 𝒥add. We are not interpreting

first-order terms as 𝜆-terms in the object level but rather using this suggestive notation in the meta-level

to refer to functions.



3.2 From Termination Proofs to Complexity Bounds 27

naturally give rise to exponential overheads in the interpretation. A follow-up question

is naturally raised.

“Can we find a natural, tight, polynomial interpretation over N that is compatible with

Radd and correctly captures its worst-case derivational complexity?”

It turns out the answer is negative. To see this let us consider a parametric (on the

polynomial coefficients) interpretation of Radd satisfying compatibility:

𝒥0 = 𝑎 𝒥s = λ𝑥.𝑃(𝑥) 𝒥add = λ𝑥.𝑥 + 𝑦 + 𝑏

The compatibility assumption imposes the following constraints

⟦add 𝑥 0⟧ = 𝑥 + 𝑎 + 𝑏 > 𝑥 = ⟦𝑥⟧ ⟦add 𝑥 (s 𝑦)⟧ = 𝑥 + 𝑃(𝑦) + 𝑏 > 𝑃(𝑥 + 𝑦 + 𝑏)

The first constraint requires that either 𝑎 ≥ 1 or 𝑏 ≥ 1, while the second requires that

𝑥 + 𝑃(𝑦) + 𝑏 > 𝑃(𝑥 + 𝑦 + 𝑏), which is impossible for we assume 𝑃 is strongly monotonic

over N. Let us analyze a much simpler example, but with similar behavior.

Example 3.2.7. Let Ra be the TRS with only a rule a (b 𝑥) → b(a 𝑥) and signature

a, b : bnat ⇒ bnat and 𝜀 : bnat. We can prove termination by the following interpretation:

⟦𝜀⟧ = 0 𝒥b = λ𝑥.𝑥 + 1 𝒥a = λ𝑥.2𝑥

Indeed, we have ⟦ℓ⟧ > ⟦𝑟⟧ for the only rule as ⟦a (b 𝑥)⟧ = 2𝑥 + 2 > 2𝑥 + 1 = ⟦b (a 𝑥)⟧.
Now consider a term 𝑠 = a𝑛(b𝑚 𝜀). Then dhR(𝑠) = 𝑛𝑚 whereas ⟦𝑡⟧ = 2

𝑛𝑚.

We can find a tight upper bound for Ra by a reasoning like the following: for every

term 𝑠, let #bs(𝑠) be the number of b occurrences in 𝑠. For a term 𝑡, let cost(𝑡) denote∑
{#bs(𝑠) | a(𝑠) is a subterm of 𝑡}. Then, the cost of a term decreases exactly by 1 in

each step. As the normal form has cost 0, we find the tight bound cost(a𝑛(b𝑚 𝜀)) = 𝑛𝑚.

This reasoning relies on tracking more than one value simultaneously, and it cannot be

expressed directly as polynomials over N.

Examples 3.2.6 and 3.2.7 albeit computing very different functions share a common

pattern regarding the interplay between their complexity and termination proofs: it is

easy to compute with those systems even in the presence of nested function calls, but

their polynomial termination proofs encode all cost information at once. This is not a

problem if we are only interested in proving termination, but such overestimation is

problematic if we want to use interpretations to establish upper bounds to the complexity

of such systems.

It turns out we still can formalize this reasoning using an algebraic interpretation:

we consider algebras that split interpretations into two components; one for cost and

another for size.



28 First-Order Tuple Interpretations

3.3 Tuple Interpretations for Full Rewriting

Let us develop a class of strongly monotonic F-algebras that are capable of dealing with

the problems we studied above. We start with a definition.

3.3.1 Strongly Monotonic Tuple Algebras

Definition 3.3.1. A strongly monotonic tuple algebra is an F-algebra ℱ = (𝐴,𝒥)
with domain 𝐴 = {(𝐴𝜄 , >𝜄 ,≥𝜄)}𝜄∈B such that each 𝐴𝜄 has the form N𝐾(𝜄)

(for an integer

𝐾(𝜄) ≥ 1). We then define the relations ≥𝜄 , >𝜄 as follows:

1.

〈
𝑥1, . . . , 𝑥𝐾(𝜄)

〉
≥𝜄

〈
𝑦1, . . . , 𝑦𝐾(𝜄)

〉
, if each 𝑥𝑖 ≥ 𝑦𝑖 ,

2.

〈
𝑥1, . . . , 𝑥𝐾(𝜄)

〉
>𝜄

〈
𝑦1, . . . , 𝑦𝐾(𝜄)

〉
, if the above holds and additionally 𝑥1 > 𝑦1.

Notice that such tuple algebras are parametrized by the interpretation we give to each

base type, which defines the domain 𝐴. So the interpretation domain is parametrized

by a function 𝐾 that maps each base type 𝜄 to the well-founded set 𝐴𝜄. In the definition

above, the 𝐾 : B −→ N function maps each base type 𝜄 to a number 𝐾(𝜄).
Intuitively, the first component always indicates “cost”: the number of steps needed

to reduce a term to normal form. This is the component that needs to decrease in each

rewrite step to have ⟦𝑠⟧ > ⟦𝑡⟧ whenever 𝑠 → 𝑡. The remaining components represent

some value of interest for the base type. This could for example be the size of the term

(or its normal form), the length of a list, or following Example 3.2.7, the number of

occurrences of a specific symbol. For these components, we only require that they do

not increase in a reduction step. So ⟦𝑠⟧ ≥ ⟦𝑡⟧ whenever 𝑠 → 𝑡.

By the definition of >𝜄, and using Theorem 3.2.4, we can conclude:

Corollary 3.3.2. If a TRS R is compatible with a tuple algebra then it is terminating and

dhR(𝑡) ≤ ⟦𝑡⟧1
, for all terms 𝑡. (Here, ⟦𝑡⟧

1
indicates the first component of the tuple ⟦𝑡⟧).

Using this, we obtain a tight bound on the derivation height of a𝑛(b𝑚(𝜀)) in Ex-

ample 3.2.7. Here, again, subscripts indicate tuple projections, i.e.,

〈
𝑥, 𝑦

〉
1

= 𝑥 and〈
𝑥, 𝑦

〉
2

= 𝑦.

Example 3.3.3. The TRS Ra is compatible with the tuple algebra with 𝐴bnat = N2

and

𝒥a = λ𝑥. ⟨𝑥1 + 𝑥2, 𝑥2⟩ 𝒥b = λ𝑥. ⟨𝑥1, 𝑥2 + 1⟩ 𝒥𝜀 = ⟨0, 0⟩

The functions 𝒥a and 𝒥b are strongly monotonic. For example, considering 𝒥a: if

𝑥 ≥bnat 𝑦 then 𝑥1 + 𝑥2 ≥ 𝑦1 + 𝑦2 and 𝑥2 ≥ 𝑦2; if 𝑥 >bnat 𝑦 then 𝑥1 + 𝑥2 > 𝑦1 + 𝑦2 (since

𝑥1 > 𝑦1 and 𝑥2 ≥ 𝑦2).



3.3 Tuple Interpretations for Full Rewriting 29

Note that the first component exactly sums #bs(𝑠) for every subterm 𝑠 which

has the form a 𝑡, and for every ground term 𝑠 we have ⟦𝑠⟧
2
= #bs(𝑠). The com-

ponents in this interpretation are exactly those two measures we keep track of in

Example 3.2.7. This interpretation is compatible with the rules of Ra. Indeed, we have

⟦a(b 𝑥)⟧ = ⟨𝑥1 + 𝑥2 + 1, 𝑥2 + 1⟩ >bnat ⟨𝑥1 + 𝑥2, 𝑥2 + 1⟩ = ⟦b(a(𝑥))⟧. Finally, we can see

that ⟦a𝑛(b𝑚 𝜀)⟧ = ⟨𝑛𝑚, 𝑚⟩.

To build strongly monotonic functions we can use the following observation:

Lemma 3.3.4. A function in 𝑓 : N𝐾(𝜄1) =⇒ · · · =⇒ N𝐾(𝜄𝑘) =⇒ N𝐾(𝜅)
is strongly monotonic

if we can write 𝑓 as follows

λ𝑥1 . . . 𝑥𝑘 =
〈
𝑥1

1
+ · · · + 𝑥𝑘

1
+ 𝑆1(𝑥1, . . . , 𝑥𝑘), 𝑆2(𝑥1, . . . , 𝑥𝑘), . . . , 𝑆𝐾(𝜅)(𝑥1, . . . , 𝑥𝑘)

〉
,

where each 𝑆𝑖 is a weakly monotonic function in N𝐾(𝜄1) × · · · ×N𝐾(𝜄𝑘) −→ N. Moreover, a

function 𝑆 : N𝐾(𝜄1) × · · · ×N𝐾(𝜄𝑘) −→ N is weakly monotonic if it is built from constants

in N, variable components 𝑥𝑛𝑗 , and weakly monotonic functions in N𝑛 −→ N.

For the “weakly monotonic functions in N𝑛 −→ N” we could for instance use +,

∗ or max. We take a semantic approach (cf. [69]) to determine the number 𝐾(𝜄) for

each base type 𝜄. For instance nat is the base type of natural numbers in unary format,

so a number 𝑛 ∈ N is represented as the data term ⌜n⌝ = s𝑛 0. With that in mind

the number of occurrences of s in such terms is a reasonable measure for their size,

so we let 𝐾(nat) = 2. Hence, a tuple in 𝐴nat has the meaning ⟨cost, size⟩. A second

example is that of list. To characterize the size of a list we may need information about

its elements in addition to the length of the list. So we keep track of the length as

well as the maximum size of their elements. This way 𝐾(list) = 3. A tuple in 𝐴list

has the meaning ⟨cost, length of normal form,max. elem. size⟩. In the example below we

interpret the constructors for nat and list following this semantics. In the remainder of

this thesis, we will use 𝑥c as syntactic sugar for 𝑥1 (the cost component of 𝑥), 𝑥s and 𝑥l

as 𝑥2 and 𝑥m as 𝑥3.

Example 3.3.5. Consider the TRS defined in Example 3.1.1. Let us start by giving an

interpretation for the constructor symbols 0, [], s, and cons. We interpret these symbols

below to be consistent with the semantics we just described above, we let:

𝒥0 = ⟨0, 0⟩ 𝒥s = λ𝑥. ⟨𝑥c , 𝑥s + 1⟩
𝒥[] = ⟨0, 0, 0⟩ 𝒥cons = λ𝑥𝑞.

〈
𝑥c + 𝑞c , 𝑞l + 1,max(𝑥s, 𝑞m)

〉
This expresses that 0 has no evaluation cost and size 0. It is the same for [], as no

reduction is fired from constructors; additionally the empty list has zero length and no

elements. The cost of evaluating a term s 𝑡 depends entirely on the cost of its argument



30 First-Order Tuple Interpretations

𝑡; the size component counts the number of s’s. The cost component for cons similarly

sums the costs of its arguments, while the length is increased by 1, and the maximum

element is the maximum between its head and tail.

Note that when interpreting data terms with these interpretations, the cost component

is always zero. For instance, for nat terms of the form ⌜n⌝ : nat: we get ⟦⌜n⌝⟧ = ⟨0, 𝑛⟩.
This also holds for lists: ⟦⌜2⌝ :: ⌜3⌝ :: ⌜5⌝ :: []⟧ = ⟨0, 3, 5⟩. Different initial interpretations

for 0, [] can produce different tuples.

We can answer the question posed earlier positively by using tuple interpretations

with the following interpretation for add:

𝒥add = λ𝑥𝑦.
〈
𝑥c + 𝑦c + 𝑦s + 1, 𝑥s + 𝑦s

〉
This interpretation captures the observation that the number of steps needed to reduce

a term add 𝑠 𝑡 is the cost of reducing both arguments 𝑠 and 𝑡 and depends directly on

the size of the normal form of 𝑡. This is the case since the “recursive argument” of add
is the second argument.

As an example let us interpret the term 𝑠 = add ⌜n⌝ (add ⌜n⌝ (add ⌜n⌝ ⌜m⌝)), which

we considered earlier. We get the following result with tuple interpretations:

⟦add ⌜n⌝ (add ⌜n⌝ (add ⌜n⌝ ⌜m⌝))⟧ = ⟨3(𝑚 + 𝑛 + 1), 3𝑛 + 𝑚⟩ ,

which provides us with a tight interpretation.

It is worth mentioning however that we can still have larger overheads when

providing upper bounds using tuple interpretations. The interesting observation here is

that by separating the notions of cost and size we can simplify the cost component. This

is not possible using only polynomials, as we have seen earlier.

Example 3.3.6. Let us interpret the rest of the symbols from Example 3.1.1. For the

remaining symbols we choose the following interpretations:

𝒥sum = λ𝑞.
〈
𝑞c + 2𝑞l + 𝑞l𝑞m + 1, 𝑞l𝑞m

〉
𝒥rev = λ𝑞.

〈
𝑞c + 𝑞l + 𝑞l ∗ (𝑞l + 1)/2 + 1, 𝑞l, 𝑞m

〉
𝒥append = λ𝑞𝑞′.

〈
𝑞c + 𝑞′c + 𝑞l + 1, 𝑞l + 𝑞′l ,max(𝑞m, 𝑞

′
m)

〉
The strong monotonicity of this interpretation follows by Lemma 3.3.4 by observing that

the function 𝑛 ↦→ 𝑛 ∗ (𝑛 + 1)/2 in N −→ N is weakly monotonic. Checking compatibility

is easily done by computing the interpretations for each rule.

We see that the cost of evaluating sum and rev is quadratic on length and size

combined while evaluating append is linear in the first list length and independent of

the size of the list elements.



3.3 Tuple Interpretations for Full Rewriting 31

Tuple interpretations have some similarities with matrix interpretations [37], where

each term is also associated with an 𝑛-tuple. However, the shape of the interpretation

functions 𝒥f in matrix interpretations is limited to functions following Lemma 3.3.4

where each 𝑆 is a linear multivariate polynomial. In fact, the authors in [32] generalize

matrix interpretations to a form of linear polynomials with coefficients as quadratic

matrices of some fixed dimension 𝑑. In this work, the authors allow for a selection set 𝐸

over the columns of the matrices that can be used for strict orientation. In this work [32]

conjecture that such a polynomial approach to matrix interpretations may open the way

for non-linear matrix interpretations. We believe our tuple interpretation approach is a

simple solution to the problem proposed in [32]. Indeed, tuple interpretations allow for

different “dimensions” (one 𝐾(𝜄) for each sort) and there is no need for such an intricate

ordering (≥N𝑑×𝑑 , >𝐸N𝑑×𝑑). See [32, Section 3.1] for a formal definition of this ordering.

Hence, our interpretations are a strict generalization of the matrix interpretations

presented in [32, 37].

Example 3.3.7. A TRS that implements division, given by Arts and Giesl in [5], shows a

limitation of polynomial interpretations. Let us consider the rules below.

minus 𝑥 0 → 𝑥 quot 0 (s 𝑦) → 0

minus 0 𝑦 → 0 quot (s 𝑥) (s 𝑦) → s (quot (minus 𝑥 𝑦) (s 𝑦))
minus (s 𝑥) (s 𝑦) → minus 𝑥 𝑦

The rule quot(s(𝑥), s(𝑦)) → s(quot(minus(𝑥, 𝑦), s(𝑦))) cannot satisfy compatibility by any

polynomial interpretation because ⟦minus(𝑥, s(𝑥))⟧ > ⟦s(𝑥)⟧ for any strongly monotonic

polynomial 𝒥minus. Due to the duplication of 𝑦, this rule also cannot be handled by a

matrix interpretation. However, we do have a compatible tuple interpretation:

𝒥minus = λ𝑥𝑦.
〈
𝑥c + 𝑦c + 𝑦s + 1, 𝑥s

〉
𝒥quot = λ𝑥𝑦.

〈
𝑥c + 𝑥s + 𝑦c + 𝑥s𝑦c + 𝑥s𝑦s + 1, 𝑥s

〉
In practice, for termination analysis, one would not exclusively use interpretations but

rather a combination of different techniques. In that context, tuple interpretations may be

used as one part of a larger toolbox. Indeed, this is demonstrated by Yamada [109] where

the author uses a style of tuple interpretations combined with the dependency pairs

termination method. However, developing a new technique for first-order termination

is not our goal. As such, we concentrate our efforts on developing tuple interpretations

for providing a more fine-grained complexity analysis. For instance, interpretations

that may consider information such as the length of a list. Further combination of tuple

interpretations with other techniques designed for complexity analysis, however, is a

clear path for future investigation.



32 First-Order Tuple Interpretations

3.3.2 Runtime Complexity Analysis

Recall from Section 3.1 that the runtime complexity of a TRSR is the function rcR that maps

each non-zero natural number 𝑛 to a number rcR(𝑛). This number satisfies the property

that for every basic term f 𝑑1 . . . 𝑑𝑘 of absolute size at most 𝑛, dhR(𝑠) ≤ rcR(𝑛). We

expressed this function in terms of the complexity function rcR(𝑛) = comp(𝑛,→R, T𝑏(F)).
The comparable notion of derivational complexity considers the derivation height for

arbitrary ground terms of size 𝑛, but we will not use that here, since it can often give

very high bounds that are not necessarily representative for realistic use of the system.

In practice, a computation with a TRS would typically start with a main function, which

takes data (e.g., natural numbers, lists) as input. This is exactly a basic term. Hence, the

notion of runtime complexity roughly captures the worst-case number of steps for a

realistic computation.

To derive runtime complexity for a TRS R, our approach is to consider bounds for

the interpretation functions 𝒥f.

Definition 3.3.8. Consider a type 𝜄1 ⇒ · · · ⇒ 𝜄𝑚 ⇒ 𝜅 and a strongly monotonic function

(in its first argument) 𝑓 in 𝐴𝜄1 =⇒ · · · =⇒ 𝐴𝜄𝑚 =⇒ 𝐴𝜅. Suppose that 𝑓 can be written as

λ𝑥1 . . . 𝑥𝑚 =
〈
𝑓1(𝑥1, . . . , 𝑥𝑚), . . . , 𝑓𝐾(𝜅)(𝑥1, . . . , 𝑥𝑚)

〉
. Then 𝑓 is

1. linearly bounded if each component function 𝑓𝑙 of 𝑓 is upper-bounded by a

positive linear polynomial; that is, there is a constant 𝑎 ∈ N such that

𝑓𝑙(𝑥1, . . . , 𝑥𝑚) ≤ 𝑎
©­«1 +

𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

𝑥 𝑖𝑗
ª®¬

2. additively bounded if there exists a constant 𝑎 ∈ N such that

𝐾(𝜅)∑
𝑙=1

𝑓𝑙(𝑥1, . . . , 𝑥𝑚) ≤ 𝑎 +
𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

𝑥 𝑖𝑗

3. polynomially bounded if there exists a positive polynomial 𝑃 that bounds each

component 𝑓𝑙 of 𝑓 , i.e., 𝑓𝑙(𝑥1, . . . , 𝑥𝑚) ≤ 𝑃(𝑥1, . . . , 𝑥𝑚).

By this definition, 𝑓𝑙 is not required to be a linear function, only to be bounded by

one. This means for instance that taking the minimum of two values, e.g., min(𝑥 𝑖𝑗 , 2𝑥𝑎𝑏 ),
is allowed while multiplying two values, e.g., 𝑥 𝑖𝑗𝑥

𝑎
𝑏
, is not. It is easily checked that all

the data constructors in this chapter have an additively bounded interpretation. For

example, the interpretation function for cons satisfies: (𝑥c + 𝑞c)+ (𝑥l +1)+max(𝑥s, 𝑞m) ≤
1 + 𝑥c + 𝑥s + 𝑞c + 𝑞l + 𝑞m.



3.3 Tuple Interpretations for Full Rewriting 33

Next, we prove that bounding the interpretation functions of constructor symbols

additively results in interpretations that are proportional to the absolute size of data

terms. But going up just by a linear factor induces an exponential overhead related to

their absolute size.

We use the following inequality to prove the lemma below. Let 2 ≤ 𝑥1, . . . , 𝑥𝑚 , then

𝑚∑
𝑖=1

𝑥 𝑖 ≤
𝑚∏
𝑖=1

𝑥 𝑖 (3.1)

Lemma 3.3.9. Let R be a TRS that is compatible with a strongly monotonic algebra with

interpretation function 𝒥. Then

1. if 𝒥c is additively bounded for all data constructors c, then there exists a constant

𝑏 > 0 in N so that for all data terms 𝑠: if |𝑠| ≤ 𝑛 then ⟦𝑠⟧𝑙 ≤ 𝑏𝑛, for each component

⟦𝑠⟧𝑙 of ⟦𝑠⟧;

2. if 𝒥c is linearly bounded for all data constructors c, then there exists a constant

𝑏 > 0 inN so that for all data terms 𝑠: if |𝑠| ≤ 𝑛 then ⟦𝑠⟧𝑙 ≤ 2
𝑏𝑛

, for each component

⟦𝑠⟧𝑙 of ⟦𝑠⟧.

Proof. 1. Since the interpretation 𝒥c =
〈
𝑓1, . . . , 𝑓𝐾(𝜅)

〉
for each constructor c is addi-

tively bounded, by Definition 3.3.8, for each c ∈ Σ, there exists a constant 𝑎c such

that for all (𝑥1, . . . , 𝑥𝑚),
𝐾(𝜅)∑
𝑙=1

𝑓𝑙(𝑥1, . . . , 𝑥𝑚) ≤ 𝑎c +
𝑚∑
𝑖=1

𝐾(𝜅)∑
𝑗=1

𝑥 𝑖𝑗 . Let us set 𝑎 to be the

maximum of such 𝑎c, so for the sum of components 𝑓𝑙 of 𝒥c we have:

𝐾(𝜅)∑
𝑙=1

𝑓𝑙(𝑥1, . . . , 𝑥𝑚) ≤ 𝑎 +
𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

𝑥 𝑖𝑗 . (3.2)

Now, we reason by induction on the size of 𝑠 :𝜅 that

𝐾(𝜅)∑
𝑙=1

⟦𝑠⟧𝑙 ≤ 𝑎|𝑠|. Then certainly

⟦𝑠⟧𝑙 ≤ 𝑎|𝑠| holds for any component ⟦𝑠⟧𝑙 , and the first part of the lemma holds.

For the base case we have |𝑠| = 1 so 𝑠 is a constant symbol c and

𝐾(𝜄)∑
𝑙=1

⟦c⟧𝑙 ≤ 𝑎c ≤ 𝑎,

by (Equation (3.2)).



34 First-Order Tuple Interpretations

For the inductive case, let |𝑠| > 1. Then 𝑠 = c 𝑑1 . . . 𝑑𝑚 and using Equation (3.2)

above, we can expand the summation as follows:

𝐾(𝜅)∑
𝑙=1

⟦c 𝑑1 . . . 𝑑𝑚⟧𝑙 =

𝐾(𝜅)∑
𝑙=1

𝑓𝑙(⟦𝑑1⟧, . . . , ⟦𝑑𝑚⟧)

(3.2)
≤ 𝑎 +

𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

⟦𝑑𝑖⟧ 𝑗

(𝐼𝐻)
≤ 𝑎 +

𝑚∑
𝑖=1

𝑎|𝑑𝑖|

= 𝑎

(
1 +

𝑚∑
𝑖=1

|𝑑𝑖|
)

= 𝑎|𝑠|.

Hence, we are done choosing 𝑏 := 𝑎.

2. The proof follows the same structure as before: by Definition 3.3.8, each 𝒥c =〈
𝑃1, . . . , 𝑃𝐾(𝜅)

〉
is now linearly bounded; that is, for each c ∈ Σ, there exists a con-

stant 𝑎c such that for all (𝑥1, . . . , 𝑥𝑚)we have 𝑃𝑙(𝑥1, . . . , 𝑥𝑚) ≤ 𝑎c(1+
𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

𝑥 𝑖𝑗). Let

us set, as before, 𝑎 to be the maximum of such 𝑎c and define 𝑘 = max(2,max

𝑖
𝐾(𝜄𝑖)).

Notice that 𝑘 is determined when we define the interpretation’s domain, so it does

not depend on the size of 𝑠.

We prove by induction on the size of 𝑠 that ⟦𝑠⟧𝑙 ≤ 2
(𝑎𝑘)|𝑠|

, for each component 𝑃𝑙

of ⟦𝑠⟧. In the base case, where 𝑠 is a constant constructor, we have trivially that



3.3 Tuple Interpretations for Full Rewriting 35

⟦c⟧𝑙 ≤ 𝑎c ≤ 𝑎𝑘 < 2
𝑎𝑘

follows. For the inductive step we have 𝑠 = c 𝑑1 . . . 𝑑𝑚 . Then:

𝑓𝑙(⟦𝑑1⟧, . . . , ⟦𝑑𝑚⟧) ≤ 𝑎c
©­«1 +

𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

⟦𝑑𝑖⟧ 𝑗
ª®¬

≤ 𝑎
©­«2 max

©­«
𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

⟦𝑑𝑖⟧ 𝑗 , 1
ª®¬ª®¬

(𝐼𝐻)
≤ 2𝑎

𝑚∑
𝑖=1

©­«
𝐾(𝜄𝑖)∑
𝑗=1

2
𝑎𝑘|𝑑𝑖 |ª®¬

≤ 2𝑎𝑘

𝑚∑
𝑖=1

2
𝑎𝑘|𝑑𝑖 |

≤ (2𝑎𝑘)
𝑚∏
𝑖=1

2
𝑎𝑘|𝑑𝑖 |

by claim (3.1)

≤ 2
𝑎𝑘

𝑚∏
𝑖=1

(
2
𝑎𝑘|𝑑𝑖 |

)
= 2

(𝑎𝑘)
2

(𝑎𝑘)
𝑚∑
𝑖=1

|𝑑𝑖 |

= 2

𝑎𝑘

(
1+

𝑚∑
𝑖=1

|𝑑𝑖 |
)

= 2
(𝑎𝑘)|𝑠|.

Hence, we are done choosing 𝑏 := 𝑎𝑘.

□

By using Lemma 3.3.9, we quickly obtain some ways to bound runtime complexity:

Lemma 3.3.10. Let R be a TRS that is compatible with a strongly monotonic tuple algebra

ℱ . Then:

1. if 𝒥f is additively bounded for all f ∈ Σ, then R has linear runtime complexity;

2. if 𝒥c is additively bounded for all constructors c and for all defined symbols f we

have that 𝒥f(®𝑥) = ( 𝑓1(®𝑥), . . . , 𝑓𝑘(®𝑥)) where 𝑓1 is bounded by a polynomial, then R
has polynomial runtime complexity;

3. if 𝒥f is linearly bounded for all f ∈ Σ, then R has exponential runtime complexity.



36 First-Order Tuple Interpretations

Proof. Let us consider f : 𝜄1 ⇒ · · · ⇒ 𝜄𝑚 ⇒ 𝜅 and a basic term 𝑠 = f 𝑑1 . . . 𝑑𝑚 of type 𝜅. In

the first case, since 𝒥f is additively bounded we get the following by Definition 3.3.8

⟦𝑠⟧
1
≤

𝐾(𝜅)∑
𝑙=1

𝑓𝑙(⟦𝑑1⟧, . . . , ⟦𝑑𝑚⟧) ≤ 𝑎 +
𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

⟦𝑑𝑖⟧ 𝑗 ≤ 𝑎|𝑠|,

where the last inequality follows directly from Lemma 3.3.9. The other cases follow

similar reasoning. □

Notice that we can give a stronger statement for (1) above. Indeed, it remains valid

even for derivational complexity analysis. Such a strong requirement like additivity for

all function symbols in Σ is hard to obtain, however.

3.4 Cost–Size Products

Thus far, we have used interpretations of the form N𝐾(𝜄)
. But we can view this in a more

general light: a single number identifying cost, and an element of N𝐾(𝜄)−1

identifying the

various notions of size for the term. Hence, we alternatively define:

Definition 3.4.1. Given a well-founded set (𝒞, >,≳), called the cost set, and a quasi-

ordered set (𝒮,⊒), called the size set, we call 𝒞 × 𝒮 the cost–size product of (𝒞, >,≳)
and (𝒮,⊒) and its elements cost–size tuples.

By this definition, the very minimum we need to capture the notion of cost in our

rewriting setting is a well-founded set. Similarly, for size sets in which we impose a

quasi-ordering structure. Given a cost–size product 𝒞 × 𝒮, the well-foundedness of 𝒞
and quasi-ordering on 𝒮 naturally induce an ordering structure on the cartesian product

𝒞 × 𝒮 as follows.

Definition 3.4.2. Let (𝒞, >,≳) × (𝒮,⊒) be a cost–size product. Then we define the

relations ≻,≽ over 𝒞 × 𝒮 as follows: for all

〈
𝑥, 𝑦

〉
and

〈
𝑥′, 𝑦′

〉
in 𝒞 × 𝒮,

(i)

〈
𝑥, 𝑦

〉
≻

〈
𝑥′, 𝑦′

〉
if 𝑥 > 𝑥′ and 𝑦 ⊒ 𝑦′, and

(ii)

〈
𝑥, 𝑦

〉
≽

〈
𝑥′, 𝑦′

〉
if 𝑥 ≳ 𝑥′ and 𝑦 ⊒ 𝑦′.

Next, we show that cost–size products ordered as above form a well-founded set.

Lemma 3.4.3. The triple (𝒞 × 𝒮,≻,≽) is a well-founded set.

Proof. It follows immediately from Definition 3.4.1 that ≻,≽ are transitive and ≽ is

reflexive. To prove that ≻ is well-founded, note that the existence of

〈
𝑥1, 𝑦1

〉
≻

〈
𝑥2, 𝑦2

〉
≻

· · · would imply 𝑥1 > 𝑥2 > · · · which cannot be the case since > is well-founded. We still

need to check that ≽ is compatible with ≻.



3.5 Tuple Interpretations for Innermost Rewriting 37

• Suppose

〈
𝑥, 𝑦

〉
≻

〈
𝑥′, 𝑦′

〉
. Since 𝑥 > 𝑥′ implies 𝑥 ≳ 𝑥′, we have

〈
𝑥, 𝑦

〉
≽

〈
𝑥′, 𝑦′

〉
.

• Suppose

〈
𝑥, 𝑦

〉
≻

〈
𝑥′, 𝑦′

〉
≽

〈
𝑥′′, 𝑦′′

〉
. Since 𝑥 > 𝑥′ ≳ 𝑥′′ implies 𝑥 > 𝑥′′ and ⊒ is

transitive, we have

〈
𝑥, 𝑦

〉
≻

〈
𝑥′′, 𝑦′′

〉
.

□

In this chapter, we always use 𝒞 as N. When dealing with higher-order rewriting

in Chapter 5, we take different cost sets. Notice that Definition 3.3.1 can be seen as a

cost–size product for strongly monotonic algebras. Indeed, the interpretation function

𝒥f can be seen as a pair

〈
𝒥 c

f ,𝒥 s
f
〉

so that

⟦f 𝑠1 . . . 𝑠𝑚⟧ =
〈
𝒥 c

f (⟦𝑠1⟧, . . . , ⟦𝑠𝑚⟧),𝒥 s
f (⟦𝑠1⟧, . . . , ⟦𝑠𝑚⟧)

〉
In the next section, we define a variation of tuple interpretations for innermost rewriting

where both 𝒥 c
f and 𝒥 s

f only depend on the size component of their arguments.

3.5 Tuple Interpretations for Innermost Rewriting

Our first task is to formally interpret base types as a particular kind of cost–size products.

Definition 3.5.1. Let B be a set of base types. An interpretation key 𝒥B for B maps

each type 𝜄 to a quasi-ordered set (𝒥B(𝜄),⊒𝜄). We let L𝜄M be the cost–size product

(N, >,≳) × (𝒥B(𝜄),⊒).

The intention is that a term of base type 𝜄 will be mapped to a pair ⟨𝑐, 𝑠⟩ with

𝑠 ∈ 𝒥B(𝜄). To do this, we need to assign an interpretation to all function symbols in the

same fashion of Definition 3.3.1.

3.5.1 Cost–Size Tuple Algebras

An interpretation of a signature (B,Σ, typeOf) interprets the types in T(B) and each

f : 𝜎 ∈ Σ to an element of L𝜎M. This is formally stated in the definition below.

Definition 3.5.2. A cost–size tuple algebra ℱ for a signature F = (B,Σ, typeOf) consists

of a pair of functions (𝒥B,𝒥Σ) where

1. 𝒥B is a type interpretation key,

2. 𝒥Σ is an interpretation of symbols in Σ which maps each f ∈ Σ with typeOf(f) = 𝜄1 ⇒
· · · ⇒ 𝜄𝑚 ⇒ 𝜅 to a pair of weakly monotonic functions

𝒥Σ(f)c : 𝒥B(𝜄1) =⇒ · · · =⇒ 𝒥B(𝜄𝑚) =⇒ N

𝒥Σ(f)s : 𝒥B(𝜄1) =⇒ · · · =⇒ 𝒥B(𝜄𝑚) =⇒ 𝒥B(𝜅)



38 First-Order Tuple Interpretations

A cost–size tuple algebra is nothing more than a weakly monotonic F-algebra for F
such that the interpretation key 𝒥B completely defines its carrier. In what follows we

slightly abuse notation by writing 𝒥f for 𝒥Σ(f) and just 𝒥 for 𝒥Σ.

Example 3.5.3. Let 𝒥B(nat) = N and 𝒥B(list) = N2

be respectively. Recall from Exam-

ple 3.3.5 that the size of a natural number is the number of occurrences of s, and the size

of a list is a pair 𝑞 = (𝑞l, 𝑞m) where 𝑞l is the length and 𝑞m is the maximum size of the

elements. We interpret the constructors as follows:

𝒥0 =

〈
0 , 0

〉
𝒥s =

〈
λ𝑥.0 ,λ𝑥.𝑥 + 1

〉
𝒥[] =

〈
0 , (0, 0)

〉
𝒥cons =

〈
λ𝑥𝑞.0 ,λ𝑥𝑞.(𝑞l + 1,max(𝑥, 𝑞m))

〉
In Example 3.3.5 we interpreted for instance 𝒥s = λ𝑥. ⟨𝑥c , 𝑥s + 1⟩. There are two major

differences between them. The first is that here the cost and size functions for 𝒥s are

completely split. The second is that since innermost rewriting only allows contraction

of redexes in normal form, the cost component here is λ𝑥.0.

Albeit different in shape and form the interpretation of data terms in both full

and innermost strategies encode the same information. Indeed, as in Example 3.3.5 by

interpreting ⌜n⌝:nat we get ⟦⌜n⌝⟧ =
〈

0 , 𝑛
〉
, which we can write as ⟨0, 𝑛⟩. Analogously,

⟦⌜2⌝ :: ⌜3⌝ :: ⌜5⌝ :: []⟧ =
〈

0 , (3, 5)
〉
, which we can write as ⟨0, 3, 5⟩.

We extend the notion of interpretation to terms, where we use a valuation to map

variables of type 𝜄 to elements of L𝜄M. With innermost rewriting we assume that variables

have no cost.

Definition 3.5.4. Fix a cost–size tuple algebra ℱ . A zero-cost valuation 𝛼 : X −→ 𝒯
is a function which maps each variable 𝑥 : 𝜄 to a zero-cost tuple ⟨0, 𝑥s⟩ ∈ L𝜄M. The

interpretation of a term 𝑠 under the valuation 𝛼, denoted by ⟦𝑠⟧𝒥𝛼 , is defined as follows:

⟦𝑥⟧𝒥𝛼 = 𝛼(𝑥)
⟦f 𝑠1 · · · 𝑠𝑚⟧𝒥𝛼 =

〈
𝒥 c

f (𝑘1, . . . , 𝑘𝑚) + 𝑐1 + · · · + 𝑐𝑚 ,𝒥 s
f (𝑘1, . . . , 𝑘𝑚)

〉
where ⟦𝑠𝑖⟧

𝒥
𝛼 = (𝑐𝑖 , 𝑘𝑖) for all 1 ≤ 𝑖 ≤ 𝑚.

We write ⟦𝑠⟧ instead of ⟦𝑠⟧𝒥𝛼 whenever 𝛼 and 𝒥 are universally quantified or clear

from the context. In both cases we may write ⟦𝑥⟧ = 𝑥 instead of ⟦𝑥⟧𝒥𝛼 = 𝛼(𝑥).
We collect in the lemma below the simple observation that our interpretation notion

conforms with typing.

Lemma 3.5.5. If 𝑠 : 𝜎 then ⟦𝑠⟧ ∈ L𝜎M.



3.5 Tuple Interpretations for Innermost Rewriting 39

Remark 3.5.6. In Definition 3.5.4 we require that valuations interpret variables as zero-cost

tuples. This is an important but subtle requirement that only works when reductions

are innermost. Indeed, if reduction is unrestricted we can instantiate variables on

the left-hand side of rules to terms containing redexes for which the cost should be

accounted. Hence, not accounting for the cost of variables in full rewriting would lead

to unsound analysis. Additionally, zero-cost tuples allow us to prove the innermost

termination of the TRS R in Example 3.5.14, which is non-terminating in full rewriting.

3.5.2 Innermost Compatibility Theorem

Roughly, the compatibility theorem (Theorem 3.5.12) states that if R is compatible

with a tuple algebra ℱ , then the innermost rewrite relation →𝑖
R is embedded in the

well-founded order on cost–size products. We need two additional technical results in

order to prove it for the innermost case. Lemma 3.5.8 states that interpretations are

closed under substitution and Lemma 3.5.10 allows us to safely assume that normal

forms have cost 0.

Definition 3.5.7. Fix a cost–size tuple algebra ℱ . A substitution 𝛾 is zero-cost under

valuation 𝛼 if ⟦𝛾(𝑥)⟧𝒥𝛼 is a zero-cost tuple for each variable 𝑥.

Given a valuation 𝛼 and a zero-cost substitution 𝛾, the function 𝛼𝛾 = ⟦·⟧𝒥𝛼 ◦ 𝛾 =

⟦𝛾(·)⟧𝒥𝛼 is thus a valuation.

Lemma 3.5.8 (Substitution Lemma). If 𝛾 is a zero-cost substitution under valuation 𝛼,

⟦𝑠𝛾⟧𝒥𝛼 = ⟦𝑠⟧𝒥𝛼𝛾 for any term 𝑠.

Unfortunately, a substitution that maps each variable to a normal form is not

guaranteed to be a zero-cost substitution: this is the case when 𝛾(𝑥) is mapped to a data

term, but not necessarily true if it is mapped to an irreducible term f 𝑠1 · · · 𝑠𝑚 with f a

defined symbol. Hence, we consider a modification of terms where symbols in normal

forms are marked:

Definition 3.5.9. For every function symbol f ∈ Σ we introduce a fresh function symbol

ffn with the same type. Then we define:

mark(f 𝑠1 · · · 𝑠𝑚) =
{

ffnmark(𝑠1) · · · mark(𝑠𝑚) if f 𝑠1 · · · 𝑠𝑚 is irreducible

f mark(𝑠1) · · · mark(𝑠𝑚) otherwise

We extend the interpretation function to marked symbols so that 𝒥ffn =
〈
λ®𝑥.0,𝒥 s

f
〉
.

Then we have:

Lemma 3.5.10. For all terms 𝑠:



40 First-Order Tuple Interpretations

1. if ⟦𝑠⟧ = (𝑐, 𝑠) then ⟦mark(𝑠)⟧ = (𝑐′, 𝑠) with 𝑐 ≥ 𝑐′; if 𝑠 is irreducible then 𝑐′ = 0.

2. if 𝑠𝛾 is in normal form, then mark(𝑠𝛾) = mark(𝑠)𝛾mark, where 𝛾mark is the substitu-

tion that maps 𝑥 to mark(𝑠𝛾).

3. ⟦𝑠𝛾mark⟧ ≽ ⟦mark(𝑠𝛾)⟧, for all substitutions 𝛾.

With this in hand, we do not have exactly compatibility like in Theorem 3.2.4.

Definition 3.5.11. A TRS R is said to be innermost compatible with a cost–size tuple

algebra ℱ if ⟦mark(ℓ )⟧𝒥𝛼 ≻ ⟦𝑟⟧𝒥𝛼 for all rules ℓ → 𝑟 ∈ R and zero-cost valuations 𝛼.

Notice that, for a rule ℓ = f ℓ1 · · · ℓ𝑘 → 𝑟 typically each ℓ𝑖 would be in normal form

(as otherwise this rule can never be fired), and of course ℓ itself is not in normal form.

Hence, ⟦mark(ℓ )⟧ = 𝒥 c
f (𝜋2(⟦ℓ1⟧), . . . ,𝜋2(⟦ℓ𝑘⟧)).

Theorem 3.5.12 (Compatibility). Let R be a TRS be innermost compatible with a cost–

size tuple algebra ℱ . Then, for any pair of terms 𝑠 and 𝑡, whenever 𝑠 →𝑖
R 𝑡 we have

⟦mark(𝑠)⟧𝒥𝛼 ≻ ⟦mark(𝑡)⟧𝒥𝛼 .

Proof. We proceed by induction on →𝑖
R. For the base case, 𝑠 →𝑖

R 𝑡 by ℓ𝛾 → 𝑟𝛾 and all

subterms of ℓ𝛾 are in →R normal form. Then ⟦mark(𝑠)⟧ = ⟦mark(ℓ𝛾)⟧ = ⟦mark(ℓ )𝛾mark⟧
by Lemma 3.5.10, Item 2, using that the immediate subterms of ℓ𝛾 are in normal form,

and the root of ℓ and ℓ𝛾 are themselves not. Since 𝑥𝛾 is in normal form for all 𝑥 ∈ vars(𝑠),
by Lemma 3.5.10 Item 1 we get that 𝛾mark is a zero-cost substitution. Therefore, by

Lemma 3.5.8, ⟦mark(ℓ )𝛾mark⟧ = ⟦mark(ℓ )⟧𝛼𝛾mark ≻ ⟦𝑟⟧𝛼mark = ⟦𝑟𝛾mark⟧ ≽ ⟦mark(𝑟𝛾)⟧ =
⟦𝑡⟧, where the last inequality follows from Lemma 3.5.10, Item 3.

In the inductive step, we use the monotonicity of𝒥Σ combined with the (IH) as follows.

Suppose 𝑠 → 𝑡 by 𝑠 = f 𝑠1 · · · 𝑠 𝑗 · · · 𝑠𝑚 and 𝑡 = f 𝑠1 · · · 𝑠′𝑗 · · · 𝑠𝑚 with 𝑠 𝑗 → 𝑠′𝑗 . As 𝑠 is not in

normal form, mark(𝑠) = f mark(𝑠1) · · · mark(𝑠𝑚). Let ⟦𝑠1⟧ = (𝑐1, 𝑘1), . . . , ⟦𝑠𝑚⟧ = (𝑐𝑚 , 𝑘𝑚).
By the (IH), we get 𝑐 𝑗 > 𝑐′𝑗 and 𝑘 𝑗 ≳ 𝑘′𝑗 . By weak monotonicity of 𝒥 c

f and 𝒥 s
f , we

have both 𝒥 c
f (𝑘1, . . . , 𝑘 𝑗 , . . . , 𝑘𝑚) ≳ 𝒥 c

f (𝑘1, . . . , 𝑘
′
𝑗 , . . . , 𝑘𝑚) and 𝒥 s

f (𝑘1, . . . , 𝑘 𝑗 , . . . , 𝑘𝑚) ⊒
𝒥 s

f (𝑘1, . . . , 𝑘
′
𝑗 , . . . , 𝑘𝑚). Thus,

⟦mark(𝑠)⟧ =
〈
𝒥 c

f (𝑘1, . . . , 𝑘 𝑗 , . . . , 𝑘𝑚) + 𝑐1 · · · + 𝑐 𝑗 + · · · + 𝑐𝑚 ,𝒥 s
f (𝑘1, . . . , 𝑘 𝑗 , . . . , 𝑘𝑚)

〉
≻

〈
𝒥 c

f (𝑘1, . . . , 𝑘
′
𝑗 , . . . , 𝑘𝑚) + 𝑐1 · · · + 𝑐′𝑗 + · · · + 𝑐𝑚 ,𝒥 s

f (𝑘1, . . . , 𝑘
′
𝑗 , . . . , 𝑘𝑚)

〉
If 𝑡 is not in normal form this is exactly ⟦mark(𝑡)⟧. In the case 𝑡 is not in normal form,

note that 𝒥 s
f = 𝒥 s

ffn , so the inequality above continues as follows:

⟦mark(𝑠)⟧ =
〈
𝒥 c

f (𝑘1, . . . , 𝑘 𝑗 , . . . , 𝑘𝑚) + 𝑐1 · · · + 𝑐 𝑗 + · · · + 𝑐𝑚 ,𝒥 s
f (𝑘1, . . . , 𝑘 𝑗 , . . . , 𝑘𝑚)

〉
≻

〈
𝒥 c

f (𝑘1, . . . , 𝑘
′
𝑗 , . . . , 𝑘𝑚) + 𝑐1 · · · + 𝑐′𝑗 + · · · + 𝑐𝑚 ,𝒥 s

f (𝑘1, . . . , 𝑘
′
𝑗 , . . . , 𝑘𝑚)

〉
≽

〈
0 + 𝑐1 · · · + 𝑐′𝑗 + · · · + 𝑐𝑚 ,𝒥 s

f (𝑘1, . . . , 𝑘
′
𝑗 , . . . , 𝑘𝑚)

〉



3.6 Upper Bounds for Innermost Runtime Complexity 41

□

Corollary 3.5.13. dhR(𝑠,→𝑖
R) ≤ 𝜋1(⟦𝑠⟧).

Example 3.5.14. Let a, b : 𝜄, g : 𝜄 ⇒ 𝜄 ⇒ 𝜄, and f : 𝜄 ⇒ 𝜄 ⇒ 𝜄 ⇒ 𝜄. The rewrite system

introduced in [102] and defined by R = {g 𝑥 𝑦 → 𝑥, g 𝑥 𝑦 → 𝑦, f a b 𝑧 → f 𝑧 𝑧 𝑧} was

given to show that termination is not modular for disjoint unions of TRSs. Indeed, it

admits the infinite rewriting sequence f a b (g a b) →R f (g a b) (g a b) (g a b) →+
R f a b (g a b).

However, the innermost relation →𝑖
R is terminating. In order to prove it, we introduce a

non-numeric notion of size. Let 𝒥B(𝜄) = 𝒫(T(F,X)), i.e., the set of all subsets of T(F,X).
This set is partially ordered by set inclusion, so 𝑥 ⊒ 𝑦 iff 𝑥 ⊇ 𝑦, which is a quasi-order.

Consider the following interpretation:

𝒥a = ⟨0, {a}⟩ 𝒥b = ⟨0, {b}⟩
𝒥g =

〈
λ𝑥𝑦.1,λ𝑥𝑦.(𝑥 ∪ 𝑦)

〉
𝒥f =

〈
λ𝑥𝑦𝑧.𝐻(𝑥, 𝑦),λ𝑥𝑦𝑧.∅

〉
where 𝐻 is a helper function defined by 𝐻(𝑥, 𝑦) = if 𝑥 ⊒ {a} ∧ 𝑦 ⊒ {b} then 1 else 0.

Notice that𝐻 is weakly monotonic and all terms in normal form are interpreted as sets of

size ≤ 1. Checking compatibility is straightforward: ⟦g 𝑥 𝑦⟧ =
〈
1, 𝑥 ∪ 𝑦

〉
≻ ⟨0, 𝑥⟩ = ⟦𝑥⟧

and ⟦g 𝑥 𝑦⟧ =
〈
1, 𝑥 ∪ 𝑦

〉
≻

〈
0, 𝑦

〉
= ⟦𝑦⟧; and ⟦f a b 𝑧⟧ = ⟨1, ∅⟩ ≻ ⟨0, ∅⟩ = ⟦f 𝑧 𝑧 𝑧⟧,

because any instantiation of 𝑧 is necessarily in normal form, so its interpretation cannot

include both a and b.

This example, albeit artificial, is interesting from a termination point of view. It shows

that tuple interpretations are weak enough to be used to deal with rewrite systems that

terminate via the innermost strategy but not via the full strategy. We cannot interpret

this system using the strongly monotonic tuple interpretations from the last section as

this system is non-terminating for full rewriting.

3.6 Upper Bounds for Innermost Runtime Complexity

In this section, we study the applications of tuple interpretations to innermost complexity

analysis of compatible TRSs, i.e., rewriting systems that admit an interpretation in an

innermost tuple algebra (L·M,𝒥) where the interpretation key is chosen over N𝑘
, for some

𝑘 ≥ 1.

Definition 3.6.1. We say an interpretation 𝒥 is additive if for each c ∈ Σcon, its size

interpretation 𝒥 s
c is additively bounded.

Definition 3.6.2. Let 𝒥f =
〈
𝒥 c

f ,𝒥 s
f
〉

be the cost–size interpretation of f. We say the cost

interpretation of f is linearly (additively) bounded whenever 𝒥 c
f is linearly (additively)

bounded. Also, 𝒥f is bounded by a functional 𝑓 if both 𝒥 c
f and 𝒥 s

f are bounded by 𝑓 .



42 First-Order Tuple Interpretations

In the next lemma, we collect the appropriate induced upper-bounds on innermost

runtime complexity given that we can provide bounds to the cost–size components of

interpretations. This is the innermost analogue of Lemma 3.3.10.

Lemma 3.6.3. Suppose R is a TRS compatible with a cost–size tuple algebra ℱ , then:

(i) if, for all f ∈ Σ, 𝒥 s
f is logarithmically and 𝒥 c

f is additively bounded, then ircR(𝑛) =
𝒪

(
log 𝑛

)
;

(ii) if, for all f ∈ Σ, 𝒥f is additively bounded, then ircR(𝑛) = 𝒪 (𝑛); and

(iii) if, for all defined symbols f and constructors c, 𝒥c is additively and 𝒥f is polynomi-

ally bounded, then ircR(𝑛) = 𝒪
(
𝑛𝑘

)
, for some 𝑘 ∈ N.

Example 3.6.4. Let us illustrate this behavior by interpreting functions from Example 3.1.1.

The interpretation for the constructors was given in Example 3.5.3.

𝒥add =
〈
λ𝑥𝑦.𝑦 + 1,λ𝑥𝑦.𝑥 + 𝑦

〉
𝒥sum =

〈
λ𝑞.2𝑞l + 𝑞l𝑞m,λ𝑞.𝑞l𝑞m

〉
𝒥minus =

〈
λ𝑥𝑦.𝑦 + 1,λ𝑥𝑦.𝑥

〉
𝒥rev =

〈
λ𝑞.𝑞l + 𝑞l(𝑞l + 1)/2 + 1,λ𝑞.𝑞

〉
𝒥quot =

〈
λ𝑥𝑦.𝑥 + 𝑥𝑦 + 1,λ𝑥𝑦.𝑥

〉
𝒥append =

〈
λ 𝑞 𝑞′.𝑞l + 1,λ𝑞𝑞′.

〈
𝑞l + 𝑞′l ,max(𝑞m, 𝑞m)

〉〉
Checking the compatibility of this interpretation is straightforward. Notice that

in the interpretation of data constructors for Example 3.1.1 the size components are

additively bounded. Hence, by case (ii) of Lemma 3.6.3, we have that ircRadd , ircRappend ,

and ircRminus are linear. Quadratic bounds can be derived to ircRquot , ircRsum , and ircRrev .

Notice that the cost component of interpretations does not only bound the innermost

runtime complexity of Rf but also provides additional information on the role each size

component plays in the rewriting cost. For instance: the cost of adding two numbers

depends solely on the size of add’s second argument; the cost of summing every element

of a list has a linear dependency on its length and non-linear dependency on its length

and maximum element. This is particularly useful in program analysis since one can

detect a possible costly operation by analyzing the shape of interpretations themselves.

3.7 Automation

In this section, we propose a procedure that implements strategies for finding cost–size

tuple interpretations. Then, we discuss the concrete implementation of such procedure,

Hermes. Our goal with the procedure is to find interpretations that guarantee polynomial

upper bounds to the innermost runtime complexity of the rewriting system at hand.



3.7 Automation 43

We exploit the theoretical results just proved, especially Lemma 3.6.3. Consequently, we

posit the following conditions:

1. the interpretation key chosen is over N𝑘
with 𝑘 ≥ 1,

2. the size interpretation of constructor symbols is additively bounded, and

3. the interpretation of defined symbols is polynomially bounded.

3.7.1 Parametric Tuple Interpretations

Notice that the class of functions from which we can choose interpretations (weakly

monotonic functions) is exorbitantly large. Hence, any practical search procedure

operating in this class needs to be restricted. So we narrow down our search space to

a limited class of polynomially bounded functions: max-polynomials, i.e., functions

that combine polynomial terms and the max function. Examples of that are the

interpretations of cons in Example 3.5.3 and append in Example 3.6.4.

Even though the class of max-polynomials is considerably smaller than the class of all

weakly monotonic functions, searching for polynomials is hardly a trivial endeavor. To

tackle this problem we follow the approach proposed in [30] which considers parametric
polynomial shapes. Those are polynomial expressions for which their coefficients are

parameters to be determined. We then choose generic max-polynomials for the cost and

size components which are parametrized by their coefficients. Recall that we wish to

find interpretations that satisfy the compatibility condition given by Theorem 3.5.12: for

all rules ℓ → 𝑟 in R, ⟦ℓ⟧𝛼 ≻ ⟦𝑟⟧𝛼 for any 𝛼.

Example 3.7.1. Let us illustrate the ideas above with a simple system defining the

function dbl over natural numbers. So we consider the TRS with rules dbl 0 → 0 and

dbl (s 𝑥) → s (s (dbl 𝑥)). Let us choose the following parametric interpretation

𝒥0 = ⟨0, 𝑎0⟩ 𝒥s = ⟨λ𝑥.0,λ𝑥.𝑥 + 𝑏0⟩ 𝒥dbl = ⟨λ𝑥.𝑐1𝑥 + 𝑐0,λ𝑥.𝑑1𝑥 + 𝑑0⟩ ,

which satisfy conditions (i)-(iii) above. This interpretation is parametric in the sense that

the coefficients 𝑎0, 𝑏0, 𝑐0, 𝑐1, 𝑑0, 𝑑1 are arbitrary non-negative integers that are yet to be

determined.

The compatibility condition for the first rule requires that ⟦dbl 0⟧ ≻ ⟦0⟧, so we

interpret such rules utilizing the parametric interpretation chosen above. This gives us

⟦dbl 0⟧ = ⟨𝑐1𝑎0 + 𝑐0, 𝑑1𝑎0 + 𝑑0⟩ ≻ ⟨0, 𝑎0⟩ = ⟦0⟧,

which in consequence requires the validity of 𝐶0 = (𝑐1𝑎0 + 𝑐0 > 0) ∧ (𝑑1𝑎0 + 𝑑0 ≥ 𝑎0).
Analogously, the compatibility condition for the second rule gives us ⟦dbl (s 𝑥)⟧ ≻



44 First-Order Tuple Interpretations

⟦s (s (dbl 𝑥))⟧. Then we get that

⟨𝑐1𝑥 + 𝑐1𝑏0 + 𝑐0, 𝑑1𝑥 + 𝑑1𝑏0 + 𝑑0⟩ ≻ ⟨𝑐1𝑥 + 𝑐0, 𝑑1𝑥 + 𝑑0 + 2𝑏0⟩ ,

must hold as well.

Therefore, to validate this parametric interpretation shape is to find values for the

undeterminate coefficients 𝑎0, 𝑏0, 𝑐0, 𝑐1, 𝑑0, 𝑑1 which witness the validity of the formula

𝐶1 = (𝑐1𝑥 + 𝑐1𝑏0 + 𝑐0 > 𝑐1𝑥 + 𝑐0) ∧ (𝑑1𝑥 + 𝑑1𝑏0 + 𝑑0 ≥ 𝑑1𝑥 + 𝑑0 + 2𝑏0).

When solving this formula, we also require that each one of the coefficients is non-

negative. Whenever those values are found, the interpretation shape is validated. This

is true since we use the absolute positiveness of polynomials over N.

The example above is simple in nature but uses the main ideas of our procedure.

Essentially, we choose parametric interpretations for function symbols in Σ and solve

the constraints over the undeterminate coefficients that arise from the compatibility

condition. As we have seen in Example 3.6.4, cost–size interpretations may become

complicated, so more interpretation shapes are needed for a practical search procedure.

The procedure we give below implements an automation procedure for finding

interpretations. It receives two functional parameters. The first is a selector algorithm
which is responsible for selecting interpretation shapes for function symbols. The

second is a constraint solver that is capable of solving non-linear arithmetic formulas. In

practice, the first is implemented as a set of heuristics selecting the best possible shape

for certain symbols and the second is an external SMT solver.



3.7 Automation 45

Parametric Search Procedure
Parameter: A selector algorithm 𝒮 and a constraint solver over non-linear integer

arithmetic.

Data Input: A signature F = (B,Σ, typeOf), a rewrite system (F,R), and a natural

number 𝐾 ≥ 1.

Output: YES, if a cost–size tuple interpretation satisfying compatibility can be found

and MAYBE, if all steps below were executed and no interpretation could be found
2

.

1. Split Σ into two disjoint sets of constructors and defined symbols, i.e., Σ =

Σcon ⊎ Σdef.

2. Split Σdef into sets Σdef
1
, . . . ,Σdef𝑛 such that for each f ∈ Σdef𝑖 , with 1 ≤ 𝑖 ≤ 𝑛, all

function symbols occurring in the rules defining f are either constructors or in

Σdef
1

∪ · · · ∪ Σdef𝑖 .

3. We start with 𝐾(𝜄) = 1, for all base types 𝜄, and whenever 𝐾(𝜄) > 𝐾 we stop and

return MAYBE.

4. Set 𝒥B(𝜄) = N𝐾(𝜄)
.

5. For each constructor c : 𝜄1 ⇒ . . . ⇒ 𝜄𝑚 ⇒ 𝜅, choose its cost interpretation as the

zero-valued cost function; size interpretations are additively bounded, as usual. So

we choose 𝒥 s
c according to the additive shape interpretation, as in Definition 3.7.4.

6. For each 1 ≤ 𝑖 ≤ 𝑛, choose an interpretation shape for the symbols in Σdef𝑖 based on

the selector strategy 𝒮.

• If no choice can be made by 𝒮, stop and return MAYBE.

(a) If f ℓ1 . . . ℓ𝑘 → 𝑟 is a rule of type 𝜄 with f ∈ 𝒟1 ∪ · · · ∪ 𝒟𝑖 . Simplify
⟦mark(f ℓ1 . . . ℓ𝑘)⟧ ≻ ⟦𝑟⟧ so that the result is a set of inequality constraints 𝐶

that does not depend on any interpreted variable.

(b) Check if the set of constraints 𝐶 is satisfiable.

i. If 𝐶 is satisfiable, we go back to step 6 with 𝑖 ≔ 𝑖 + 1.

ii. If 𝐶 is unsatisfiable, we go back to step 3, by setting 𝐾(𝜄) ≔ 𝐾(𝜄) + 1.

7. If each of the constraint sets 𝐶𝑖 , with 1 ≤ 𝑖 ≤ 𝑛, are satisfiable and the current

𝐾(𝜄) ≤ 𝐾. Then we successfully found an interpretation of all defined and

constructor symbols that satisfies compatibility. The result is an interpretation

function 𝒥.

2

Notice that in our setting we cannot possibly return NO.



46 First-Order Tuple Interpretations

Lemma 3.7.2. The Parametric Search Procedure above is correct as long as the constraint-

solving algorithm is correct.

Indeed, it only chooses interpretations, simplifies the interpretations, and collects

a set of constraints over the undeterminate coefficients of the interpretation shapes.

The procedure is terminating if we assume that the selector algorithm provides a finite

number of interpretation shapes (which is always true in practice). Notice that the

parameter 𝐾 determines an exit condition for the dimension of the tuples. Two key

parameters of the procedure above remain to be defined. The strategy 𝒮 for selecting

interpretation shapes and the constraint solver used in Step 6.

3.7.2 Strategy-based Search for Tuple Interpretations.

The first parameter of the procedure is the selector strategy. Intuitively, a selector

strategy 𝒮 is an algorithm for choosing parametric interpretations for defined symbols

in Σdef𝑖 . For instance, we could randomly pick an interpretation shape from a list (the

blind strategy); we could incrementally select interpretations from a list of possible

attempts (the progressive strategy); or we could select interpretations based on their

syntax patterns (the pattern strategy). Therefore, in a concrete implementation multiple

strategies with different heuristics for selecting interpretation shapes can be considered.

The definition below lists some interpretation shapes we consider. They are based on

the classes studied in [30, 98].

In Definition 3.7.4 below, we consider interpretation shapes that are used by Hermes
in the search procedure. We first consider max-polynomial shapes which are essentially

polynomial expressions that possibly contain the max constructor.

Definition 3.7.3. Let 𝑋 = {𝑥1, . . . , 𝑥𝑚} be a set of unknowns. The set of max-polynomial
expressions over N with unknowns in 𝑋 — written PolN[𝑥1, . . . , 𝑥𝑚] — is defined by

the grammar:

𝑃, 𝑄 ≔ 𝑥 | 𝑎 | 𝑃 +𝑄 | 𝑃 ∗𝑄 | max(𝑃, 𝑄)

Here, 𝑥 ranges over {𝑥1, . . . , 𝑥𝑚} and 𝑎 ranges over N.

Examples of polynomial expressions we consider in the implementation are for

instance as in Example 3.7.1. In line with this example, it is worth noticing that in our

search procedure the expressions’ coefficients — varying over N — are undetermined

and need to be found by the procedure.

Definition 3.7.4. Let 𝜎 = 𝜄1 ⇒ · · · ⇒ 𝜄𝑚 ⇒ 𝜅 and fix an interpretation key 𝒥B over N.

We define shapes below as max-polynomial expressions.



3.7 Automation 47

• The additive class contains linear polynomial expressions 𝑃1, . . . , 𝑃𝐾(𝜅) written as〈
𝑃1(𝑥1, . . . , 𝑥𝑚), . . . , 𝑃𝐾(𝜅)(𝑥1, . . . , 𝑥𝑚)

〉
and, in order to satisfy Definition 3.3.8, the

following constraint is imposed:

𝐾(𝜅)∑
𝑙=1

𝑃𝑙(𝑥1, . . . , 𝑥𝑚) ≤ 𝑎 +
𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

𝑥 𝑖𝑗

The rest of the shapes below follow the same tuple format written as〈
𝑃1(𝑥1, . . . , 𝑥𝑚), . . . , 𝑃𝐾(𝜅)(𝑥1, . . . , 𝑥𝑚)

〉
.

But since we do not require additional constraints like in the additive class, we

describe a generic shape for one of the 𝑃𝑖(𝑥1, . . . , 𝑥𝑚).

• The linear shape are expressions written as:

𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

𝑎𝑖 𝑗𝑥𝑖 𝑗

• The affine (or simple) shape are expressions written as:

𝑎 +
𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

𝑎𝑖 𝑗𝑥𝑖 𝑗

• The quadratic shape are expressions where we allow unknowns with degree 2:

𝑎 +
𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

𝑎𝑖 𝑗𝑥
𝑘𝑖 𝑗

𝑖 𝑗
, with 𝑘𝑖 𝑗 ∈ {1, 2}

• The simple quadratic shape are expressions written as follows:

𝑎 +
𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

𝑎𝑖 𝑗𝑥𝑖 𝑗 +
𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

𝑎𝑖 𝑗𝑥
𝑘𝑖 𝑗

𝑖 𝑗
, with 𝑘𝑖 𝑗 ∈ {1, 2}.

Remark 3.7.5. The usage of the max expression is determined by the implementation.

So some shapes concretely might use max on certain positions. For instance, a strategy

may decide to use 𝑃(𝑥, 𝑦) = 𝑎1𝑥 + 𝑎2𝑦 +max(𝑥, 𝑦), which consists of a linear component

plus a max component. Whenever the strategy decides to add a max component it must

respect the shape format. For instance, a component 𝑥 ∗ max(𝑥, 𝑦) would not lead to



48 First-Order Tuple Interpretations

a linear functional, so that is not allowed to be added to the linear shape. Thus we

consider these shapes above as the basic building blocks to build more complicated

shapes. The usage of additional components is left to implementation details.

With those shapes in hand, the blind strategy randomly selects one of the shapes

above. The incremental strategy chooses shapes in order, from additive ones to quadratic

ones. The pattern strategy is slightly more difficult to realize since we need heuristic

analysis on the shape of rules. For instance, every rule of the form f 𝑥1 . . . 𝑥𝑚 → 𝑥𝑖 has

constant cost functions λ𝑥1 . . . 𝑥𝑚 .1 and additively bounded size components. Rules that

duplicate variables, as in the pattern 𝐶[𝑥] → 𝐷[𝑥, 𝑥], may induce a quadratic bound

on cost. Notice that this is the case for all quadratic complexities in this chpater. The

concrete implementation of a selector algorithm determines the efficiency of the main

procedure for finding interpretations.

The second important parameter is the constraint solver. In order to simplify

constraints ⟦ℓ⟧ ≻ ⟦𝑟⟧ we have to simplify inequalities between polynomials (max-

polynomials). To simplify polynomial (max-polynomial) shapes, we need to compare

polynomials 𝑃c
ℓ > 𝑅c

𝑟 and 𝑃s
ℓ1

⊒ 𝑃s
𝑟1
∧ · · · ∧ 𝑃s

ℓ𝐾(𝜏)
⊒ 𝑃s

𝑟𝐾(𝜅) . These conditions are then

reduced to formulas in QFNIA (Quantifier-Free Non-Linear Integer Arithmetic) and

sent to an SMT solver, see [40]. Max-polynomials are simplified using the rules

max(𝑥, 𝑦) + 𝑧 { max(𝑥 + 𝑧, 𝑦 + 𝑧) and max(𝑥, 𝑦)𝑧 { max(𝑥𝑧, 𝑦𝑧). The result has

the form max

𝑙
𝑃𝑙 where each 𝑃𝑙 is a polynomial without max occurrences [28]. The

usage of the max function depends on the concrete realization of the procedure and

the SMT solver the implementer decides to use. Nonetheless, recall that constraints

involving the max operator can always be converted to pure inequality constraints over

N. Indeed, max(𝑥, 𝑦) ≤ 𝑥 + 𝑦 holds in N for any 𝑥, 𝑦. Notice that the unknowns in

constraints are eliminated using absolute positiveness, e.g., 𝑎0𝑥 + 𝑏0 > 𝑎1𝑥 + 𝑏1 becomes

𝑎0 > 𝑎1 ∧ 𝑏0 > 𝑏1.

3.7.3 Prototype Implementation

We provide a concrete implementation of the Parametric Search Procedure as the

innermost complexity tool Hermes. It contains implementations for our rewriting

formalism, an algorithm to generate interpretation shapes, and the progressive/pattern

strategy for selecting interpretation shapes. Hermes can be found at

https://github.com/deividrvale/hermes

Installation and building instructions are provided in the repository.

Hermes receives as input a description of a TRS and outputs a tuple interpretation if

found. For instance, the system Radd is represented as follows.

https://github.com/deividrvale/hermes
https://github.com/deividrvale/hermes


3.7 Automation 49

Signature: [

zero : nat;

suc : nat -> nat;

add : nat -> nat -> nat

]

Vars: [

x : nat;

y : nat

]

Rules: [

add x zero => x;

add x (suc y) => suc (add x y)

]

It can find interpretations for all examples we presented in this chapter except for the

system in Example 3.5.14. Indeed, this system requires a non-numeric notion of size,

which is currently not implemented in Hermes. The files containing such examples can

be found in the folder “benchmarks” of the repository linked above.

Experimental Setting. The Termination Problem Database (TPDB) collects termination

and complexity problems that are used in the annual termination competition, see [41].

For our experimental evaluation, we are interested in the subset of problems dedicated

to innermost runtime complexity, AG01. This benchmark set contains 36 innermost

complexity problems. Additionally, we run Hermes in an external benchmark set, DV23,

provided in the folder “experiments” in the Hermes repository. This benchmark set

contains a total of 51 and adds more examples to test AG01 including the TRSs we used

as examples in this article. The experiment was run on a machine with M1 Pro 2021

processor (10 individual cores at 600 – 3220 MHz) with 16GB of RAM. Memory usage of

Hermes during execution ranges from 62MB to 2.75GB, which depends largely on how

many rules the input TRS has. Each run of Hermes is set to a time limit of 60 seconds.

The table below summarizes the results of running Hermes on our benchmark sets.

Benchmark Size # Poly bounds Timeout MAYBE

AG01 36 16 20 0

DV23 51 23 25 3

Table 3.1 Results of running Hermes on two benchmark sets

These results can be reproduced by invoking the command

./run_experiments.sh

https://termination-portal.org/wiki/TPDB
https://github.com/TermCOMP/TPDB/tree/master/Runtime_Complexity_Innermost_Rewriting/AG01
https://github.com/deividrvale/hermes/tree/master/benchmarks


50 First-Order Tuple Interpretations

from the root of Hermes’ repository, assuming one followed the provided installation

instructions provided at https://github.com/deividrvale/hermes.

To invoke Hermes on a specific file, one runs:

hermes path/to/file.onijn

Hermes is invoked with the following default options. The number 𝐾 is set to 2. The

default initial search strategy is progressive. The maximum degree for the polynomial

shapes is 2. These runtime parameters guarantee the termination of the procedure and

reasonable resource usage.

Experimental Evaluation. In its current version, v1.0.0, Hermes explores the full power

of SMT solvers, which contain state-of-the-art algorithms to solve problems in QFNIA,

even though SMT solvers still perform poorly (in comparison to other logics) in this

logic. We still obtain satisfactory results on our experimental evaluation as we can

solve about 45% of the problems proposed. Notice that our experimental evaluation

shows the power of the tuple interpretation technique alone. For a technique solely

based on interpretations, our results show an increase in power compared to other

interpretation-based techniques like matrix/polynomial interpretations. Indeed, tuple

interpretations subsume both matrix and polynomial interpretations and can prove

termination of systems for which there is no polynomial nor matrix interpretations, like

in Example 3.3.7.

Notice, however that it is rather difficult to directly compare Hermes, implementing

only tuple interpretations, with other complexity tools which usually implement a

variety of techniques combined. As such, our a priori expectation was that Hermes would

solve many of the problems proposed (we got 45%), but would not outperform other

complexity analysis tools. Indeed, this hypothesis is confirmed by our experiments. The

termination competition in 2022 had two tools competing in the category of Innermost

Runtime Complexity. TcT, implemented in [50], and AProVE, implemented in [40]. Let

us collect those results in the table below, which can be viewed at

https://termcomp.github.io/Y2022/Runtime_Complexity__TRS_Innermost

We then compare those results to Hermes on AG01.

Benchmark TcT AProVE Hermes

AG01 26 31 16

Table 3.2 Comparison of complexity tools on the AG01 benchmark set on the number of

TRSs for which a polynomial upper-bound can be given

This discrepancy is to be expected as both TcT and AProVE implements transformation

techniques like dependency pairs together with various dependency pairs processors

https://github.com/deividrvale/hermes
https://termcomp.github.io/Y2022/Runtime_Complexity__TRS_Innermost.html
https://termcomp.github.io/Y2022/Runtime_Complexity__TRS_Innermost


3.7 Automation 51

that use both interpretations (matrix and polynomial) and syntactic methods (path

orders). These results directly guide us to combine the dependency pair framework and

tuple interpretations. This is out of the scope of the current work and we leave it for

future work.





Chapter 4

Higher-Order Tuple Interpretations

In this chapter, we extend the ideas from Section 3.3 to the higher-order setting. To do

this, we will build on the notion of higher-order strongly monotonic algebras originating

in [92]. The rewriting relation here is that of Definition 2.1.15, so we do not yet impose

any restrictions on the applicability of rules. The somewhat higher-order version of

Section 3.5 is the subject of Chapter 5.

4.1 Strongly monotonic algebras

In first-order term rewriting, the complexity of a TRS is often measured as runtime or

derivational complexity. Both measures consider initial terms 𝑠 of a certain shape, and

supply a bound on dhR(𝑠) given the size of 𝑠. However, this is not a good approach for

higher-order terms: the behavior of a term of higher type generally cannot be captured

in an integer.

Example 4.1.1. Consider the TRS obtained by combining Examples 2.1.11 and 3.1.1. The

evaluation cost of a term foldl 𝐹 𝑛 𝑞 depends almost completely on the “internal” behavior

of the functional subterm 𝐹, and not only on its evaluation cost. To see this, let us

consider two examples: 𝐹1 ≔ 𝜆𝑥.𝜆𝑦. 𝑦 + 𝑥 and 𝐹2 ≔ 𝜆𝑥.𝜆𝑦. 𝑥 + 𝑥. For natural numbers

𝑛 and 𝑚, the evaluation cost of both 𝐹1 𝑛 𝑚 and 𝐹2 𝑛 𝑚 is equal to 𝑛 + 1. However, the

absolute size of their normal forms is different. Hence, the number of steps needed to

compute foldl 𝐹1 𝑛 𝑞 for a number 𝑛 and list 𝑞 is quadratic in the size of 𝑛 and 𝑞, while

the number of steps needed for foldl 𝐹2 𝑛 𝑞 is exponential.

Remark 4.1.2. This phenomenon happens here due to the evaluation machine, i.e., the

definition of reduction in Definition 2.1.15, for the computation of terms. It is well-known

in the literature that duplication of variables may cause an exponential explosion in the

absolute size of normal forms. Interestingly enough, examples of this kind bootstrap

our intuition for the naturality of the separation between notions of cost and size.



54 Higher-Order Tuple Interpretations

As Example 4.1.1 shows, higher-order rewriting is a natural place to separate cost

and size. But more than that, we need to know what a function does with its arguments:

whether it is size-increasing, how long it takes to evaluate them, and more. This is

naturally captured by the notion of (weakly or strongly) monotonic algebras for higher-

order rewriting introduced by van de Pol [92] where terms of arrow type are interpreted

as functions, which allows the interpretation to retain all relevant information.

Higher-order Monotonic Interpretations were originally defined for a different higher-

order rewriting formalism, which does make some difference in the way abstraction and

application are handled. Weakly monotonic algebras were transposed to the formalism

of Algebraic Functional Systems in [38]; however, here we extend the more natural

notion of hereditarily monotonic algebras which van de Pol only briefly considered [92].

Remark 4.1.3. In [92], van de Pol rejects hereditarily (or: strongly) monotonic algebras

because they are not so well-suited for analyzing the HRS format [86] where reasoning

is modulo →𝛽: it is impossible to both interpret all terms of functional type as strongly

monotonic functions and interpret terms modulo beta, that is, ⟦(𝜆𝑥. 𝑠) 𝑡⟧ = ⟦𝑠[𝑥 ≔ 𝑡]⟧.
In our higher-order format (also in AFS [38]), we do not have the latter requirement.

The AFS format considered in [38] interprets terms to N rather than to tuples. Weakly

monotonic algebras were used because they are a more natural choice in the context of

dependency pairs.

Definition 4.1.4. Let B be a set of sorts and F a higher-order signature. We assume

given for every sort 𝜄 an extended well-founded set (𝐴𝜄 , >𝜄 ,≥𝜄). From this, we define

the set of strongly monotonic functionals, as follows:

For all sorts 𝜄,

– L𝜄M ≔ 𝐴𝜄 and ⊐𝜄 ≔ >𝜄 and ⊒𝜄 ≔ ≥𝜄.

For any arrow type 𝜎 ⇒ 𝜏,

– L𝜎 ⇒ 𝜏M ≔ { 𝑓 ∈ L𝜎M −→ L𝜏M | 𝑓 is strongly monotonic}.

This set is ordered by pointwise comparison, so 𝑓 ⊐𝜎⇒𝜏 𝑔 iff L𝜎M is non-empty

and for all 𝑥 ∈ L𝜎M we have 𝑓 (𝑥) ⊐𝜏 𝑔(𝑥), and 𝑓 ⊒𝜎⇒𝜏 𝑔 iff for all 𝑥 ∈ L𝜎M we

have 𝑓 (𝑥) ⊒𝜏 𝑔(𝑥).

By a straightforward induction on types we have:

Lemma 4.1.5. For any type 𝜎, the triple (L𝜎M,⊐𝜎 ,⊒𝜎) is an extended well-founded set;

that is:

1. ⊐𝜎 is well-founded and ⊒𝜎 is reflexive;

2. both ⊐𝜎 and ⊒𝜎 are transitive;



4.1 Strongly monotonic algebras 55

3. for all 𝑥, 𝑦, 𝑧 ∈ L𝜎M, 𝑥 ⊐𝜎 𝑦 implies 𝑥 ⊒𝜎 𝑦 and 𝑥 ⊐𝜎 𝑦 ⊒𝜎 𝑧 implies 𝑥 ⊐𝜎 𝑧.

Proof. We prove the result by induction on the structure of the type 𝜎. If 𝜎 is a base

type we have 𝜎 = 𝜄, so all items are satisfied by the conditions we impose on extended

well-founded sets (𝐴𝜄 , >𝜄 ,≥𝜄). For 𝜎 = 𝜏 ⇒ 𝜌 we reason as follows.

1. ⊐𝜏⇒𝜌 is well-founded and ⊒𝜏⇒𝜌 is reflexive.

Suppose, by contradiction, that there is an infinite chain 𝐹1 ⊐𝜏⇒𝜌 𝐹2 ⊐𝜏⇒𝜌 . . .

in L𝜏 ⇒ 𝜌M. Then by definition of ⊐𝜏⇒𝜌: L𝜏M is non-empty, and for all 𝑥 ∈ L𝜏M,
𝐹1(𝑥) ⊐𝜌 𝐹2(𝑥) ⊐𝜌 . . .. This induces an infinite ⊐𝜌-chain in L𝜌M, contradicting the

IH. For reflexivity, notice that 𝐹 ⊒𝜏⇒𝜌 𝐹 iff for all 𝑥 ∈ L𝜏M, 𝐹(𝑥) ⊒𝜌 𝐹(𝑥), which

follows directly by reflexivity of ⊒𝜌 (IH).

2. Both relations are transitive.

For ⊐𝜏⇒𝜌. Suppose 𝐹 ⊐𝜏⇒𝜌 𝐺 ⊐𝜏⇒𝜌 𝐻, then for all 𝑥 ∈ L𝜏M, 𝐹(𝑥) ⊐𝜌 𝐺(𝑥) ⊐𝜌 𝐻(𝑥)
holds by definition of ⊐𝜏⇒𝜌. The IH give us 𝐹(𝑥) ⊐𝜌 𝐻(𝑥), for all 𝑥 ∈ L𝜏M, which is

exactly 𝐹 ⊐𝜏⇒𝜌 𝐻. Non-emptiness of L𝜏M holds by assumption. The case for ⊒𝜏⇒𝜌

is analogous.

3. For all 𝐹, 𝐺, 𝐻 in L𝜏 ⇒ 𝜌M, 𝐹 ⊐𝜏⇒𝜌 𝐺 implies 𝐹 ⊒𝜏⇒𝜌 𝐺, and 𝐹 ⊐𝜏⇒𝜌 𝐺 ⊒𝜏⇒𝜌 𝐻

implies 𝐹 ⊐𝜏⇒𝜌 𝐻.

Suppose 𝐹 ⊐𝜏⇒𝜌 𝐺. By definition, 𝐹(𝑥) ⊐𝜌 𝐺(𝑥) for all 𝑥 ∈ L𝜏M. By IH 𝐹(𝑥) ⊒𝜌 𝐺(𝑥),
for all 𝑥 ∈ L𝜌M, which means 𝐹 ⊒𝜌 𝐺. If, moreover, 𝐺 ⊒𝜏⇒𝜌 𝐻, the reasoning is

similar: expand the definitions and apply the induction hypothesis.

□

We define in this chapter the notion of higher-order strongly monotonic algebras as

an extension of Definition 3.2.1 that now considers the full set of types, not only its

first-order fragment like in Chapter 3. So, functional types are interpreted as functional

spaces. With that, a term of type 𝜎 should be mapped to an element of L𝜎M. This strategy

poses a theoretical problem: we now also have to deal with application and abstraction.

Application is straightforward: since terms of higher type are mapped to functions,

we can interpret the application of terms as functional application, so ⟦𝑠 𝑡⟧ ≔ ⟦𝑠⟧(⟦𝑡⟧).
Abstraction, however, is more difficult. The natural choice would be to view abstraction

terms as defining functions which is indeed their standard intensional view as nameless

functions. As such, we would be tempted to interpret ⟦𝜆𝑥. 𝑠⟧𝒥𝛼 as the function 𝑑 ↦→
⟦𝑠⟧𝛼[𝑥≔𝑑]. This is the function that maps the parameter 𝑑 ∈ L𝜎M (since 𝑥 : 𝜎 for some

type 𝜎) to the interpretation of the body 𝑠 of the abstraction 𝜆𝑥. 𝑠 where we send free

occurrences of 𝑥 to 𝑑 via the valuation 𝛼[𝑥 ≔ 𝑑].
Unfortunately, the standard way of viewing abstractions does not necessarily give

rise to strongly monotonic functions. Indeed, the function 𝑑 ↦→ ⟦𝑠⟧𝛼[𝑥≔𝑑] is strongly



56 Higher-Order Tuple Interpretations

monotonic only if 𝑥 occurs freely in 𝑠, since if that is not the case there is no 𝑑 to be

captured in the function body and we get a constant function, which is clearly not strongly

monotonic. Let us consider a simple example. Take the term 𝜆𝑥. 0. In the standard view,

it would be interpreted as

⟦𝜆𝑥. 0⟧ = 𝑑 ↦→ ⟦0⟧𝛼[𝑥≔𝑑] = 𝑑 ↦→ 𝒥0

which is a constant function since 𝒥0 does not depend on 𝑑, so it is not in Lnat ⇒ natM.
Interpretation functions should not send terms to different types of sets, in the sense

that strongly monotonic interpretations should interpret all terms of functional type as

strongly monotonic functions and symbols of base type as elements of non-functional

sets. Furthermore, this definition would give ⟦(𝜆𝑥. 𝑠) 𝑡⟧ = ⟦𝑠[𝑥 ≔ 𝑡]⟧, so 𝛽-steps would

not be counted toward the evaluation cost, which is a problem for complexity analysis.

We emphasize that this is an important but somewhat subtle difference from the work

of van de Pol [92]. In our setting, such property would mean that we “forget” the

number of 𝛽-steps needed to 𝛽-normalize terms. So interpretations modulo 𝛽 are not

even desirable in our complexity point of view.

These considerations on the interpretation of abstractions pose the question if it

would even be possible to give strongly monotonic interpretations to all abstraction

terms. It turns out that it is indeed possible and surprisingly simpler than we initially

thought.

We handle this problem by first postulating the existence of a functional, let us call

it by the suggestive name MakeSM, that given a function 𝑓 it always returns a strongly

monotonic function or it turns constant functions into strongly monotonic ones. Such a

functional would certainly solve our problems with interpreting abstractions. Indeed,

whenever we want to interpret 𝜆𝑥. 𝑠 we can always decide whether 𝑥 ∈ fv(𝑠), so we can

always decide if the standard interpretation of application terms would not be strongly

monotonic. We start by defining the following set.

Definition 4.1.6. For any pair of types 𝜎 and 𝜏, we let the set 𝐶𝜎,𝜏 be defined as the

union L𝜎 ⇒ 𝜏M ∪ { 𝑓 ∈ L𝜎M −→ L𝜏M | 𝑓 (𝑥) = 𝑓 (𝑦) for all 𝑥, 𝑦 ∈ L𝜎M}.

Here, 𝐶𝜎,𝜏 is ordered by pointwise comparison. So this set collects all strongly

monotonic and constant functions from L𝜎M to L𝜏M.

Definition 4.1.7. A (𝜎, 𝜏)-monotonicity function MakeSM𝜎,𝜏 is a strongly monotonic

function in 𝐶𝜎,𝜏 −→ L𝜎 ⇒ 𝜏M.

The reader may wonder if such a functional even exists. We show that Definition 4.1.7

is not vacuous by constructing a concrete MakeSM in Section 4.2. For now, we take it for

granted and move on to define our notion of higher-order strongly monotonic algebras.



4.1 Strongly monotonic algebras 57

Definition 4.1.8. Let F = (B,Σ, typeOf) be a signature and MakeSM be a family of (𝜎, 𝜏)-
monotonicity functions MakeSM𝜎,𝜏 parametrized by all pairs of types 𝜎, 𝜏 in T(B). A

strongly monotonic F-algebra ℱ = (𝐴,𝒥) is a structure with a domain 𝐴 given by

the family of strongly monotonic functionals (L𝜎M,⊐𝜎 ,⊒𝜎)𝜎∈T(B), and an interpretation

function 𝒥 which maps each f : 𝜎 ∈ Σ to an element of L𝜎M.
Let 𝛼 be a valuation function that maps variables of type 𝜎 to elements of L𝜎M. We

extend 𝒥 to a function ⟦·⟧𝒥𝛼 to the set of all terms as follows:

⟦𝑥⟧𝒥𝛼 = 𝛼(𝑥) ⟦f⟧𝒥𝛼 = 𝒥f ⟦𝑠 𝑡⟧𝒥𝛼 = ⟦𝑠⟧𝒥𝛼 (⟦𝑡⟧𝒥𝛼 )
⟦𝜆𝑥. 𝑠⟧𝒥𝛼 = MakeSM𝜎,𝜏

(
𝑑 ↦→ ⟦𝑠⟧𝒥

𝛼[𝑥≔𝑑]

)
, if 𝑥 : 𝜎 and 𝑠 : 𝜏

Notation. As we did in Chapter 3, here we typically omit the subscript 𝛼 and superscript

𝒥 and use notations like ⟦𝑠⟧ = 𝐹(𝑥 + 3) to denote ⟦𝑠⟧𝒥𝛼 = 𝛼(𝐹)(𝛼(𝑥) + 3). This will be

used whenever the valuation 𝛼 or interpretation 𝒥 are universally quantified. When

types are not relevant, we will denote ⊐ instead of specifying ⊐𝜎.

The next lemma is a technical result that establishes the correctness of Definition 4.1.8,

that is, whenever 𝑠 : 𝜎 we have ⟦𝑠⟧ ∈ L𝜎M.

Lemma 4.1.9. For any term 𝑠 : 𝜎 we have ⟦𝑠⟧ ∈ L𝜎M.

Proof. By induction on the structure of 𝑠. Notice that we are done if we prove the

following statement: ⟦𝑠⟧𝛼 ∈ L𝜎M and for all variables 𝑥 occurring in the domain of 𝛼:

either 𝑑 ↦→ ⟦𝑠⟧𝛼[𝑥≔𝑑] is a strongly monotonic function, or it is a constant function.

• If 𝑠 = 𝑥 then ⟦𝑥⟧𝛼 = 𝛼(𝑥) ∈ L𝜎M by assumption. Moreover, 𝑑 ↦→ ⟦𝑠⟧𝛼[𝑥≔𝑑] is

the identity function 𝑑 ↦→ 𝑑, which is trivially strongly monotonic. For all other

variables 𝑦 ≠ 𝑥, the function 𝑑 ↦→ ⟦𝑦⟧𝛼[𝑦≔𝑑] is the constant function 𝑑 ↦→ 𝛼(𝑥).

• If 𝑠 = f with f : 𝜎, then ⟦f⟧𝛼 ∈ L𝜎M by Definition 4.1.8. Also, we have that

𝑑 ↦→ ⟦f⟧𝛼[𝑥≔𝑑] is exactly the function 𝑑 ↦→ 𝒥f, which is constant.

• If 𝑠 = 𝑡 𝑢 then 𝑡 : 𝜏 ⇒ 𝜎 and 𝑢 : 𝜏. By the induction hypothesis, ⟦𝑡⟧𝛼 ∈ L𝜏 ⇒ 𝜎M
which is a subset of L𝜏M −→ L𝜎M, and ⟦𝑢⟧𝒥𝛼 ∈ L𝜏M. Consequently, ⟦𝑡⟧𝒥𝛼 (⟦𝑢⟧𝒥𝛼 ) is in

L𝜎M.

We also get by (IH) that 𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑] is either strongly monotonic or constant.

The same holds for 𝑑 ↦→ ⟦𝑢⟧𝛼[𝑥≔𝑑]. This gives us four cases.

1. If both functions are constant, then 𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑](⟦𝑢⟧𝛼[𝑥≔𝑑]) is constant.

2. If 𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑] is constant and 𝑑 ↦→ ⟦𝑢⟧𝛼[𝑥≔𝑑] is strongly monotonic,

then for 𝑎 ⊐ 𝑏 we have ⟦𝑡⟧𝛼[𝑥≔𝑎] = ⟦𝑡⟧𝛼[𝑥≔𝑏] = ⟦𝑡⟧𝛼, and additionally



58 Higher-Order Tuple Interpretations

⟦𝑢⟧𝛼[𝑥≔𝑎] ⊐𝜏 ⟦𝑢⟧𝛼[𝑥≔𝑏]. Hence, by monotonicity of ⟦𝑡⟧𝛼 we get:

⟦𝑠⟧𝛼[𝑥≔𝑎] = ⟦𝑡⟧(⟦𝑢⟧𝛼[𝑥≔𝑎])
⊐𝜎 ⟦𝑡⟧

𝒥
𝛼 (⟦𝑢⟧𝛼[𝑥≔𝑏])

= ⟦𝑠⟧[𝑥≔𝑏]

3. If 𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑] is strongly monotonic and 𝑑 ↦→ ⟦𝑢⟧𝛼[𝑥≔𝑑] is constant,

then for 𝑎 ⊐ 𝑏 we have: ⟦𝑡⟧𝛼[𝑥≔𝑎] ⊐𝜏⇒𝜎 ⟦𝑡⟧𝛼[𝑥≔𝑏], and additionally we get

⟦𝑢⟧𝛼[𝑥≔𝑎] = ⟦𝑢⟧𝛼[𝑥≔𝑏] = ⟦𝑢⟧. By definition of ⊐𝜏⇒𝜎, we thus have

⟦𝑠⟧[𝑥≔𝑎] = ⟦𝑡⟧𝛼[𝑥≔𝑎](⟦𝑢⟧𝒥𝛼 )
⊐𝜎 ⟦𝑡⟧𝛼[𝑥≔𝑏](⟦𝑢⟧𝒥𝛼 )
= ⟦𝑠⟧[𝑥≔𝑏].

4. If both are strongly monotonic, then by monotonicity of ⟦𝑡⟧𝛼[𝑥≔𝑎] we have

⟦𝑠⟧𝛼[𝑥≔𝑎] = ⟦𝑡⟧𝛼[𝑥≔𝑎](⟦𝑢⟧𝛼[𝑥≔𝑎])
⊐𝜎 ⟦𝑡⟧𝛼[𝑥≔𝑎](⟦𝑢⟧𝛼[𝑥≔𝑏])
⊐𝜎 ⟦𝑡⟧𝛼[𝑥≔𝑏](⟦𝑢⟧𝛼[𝑥≔𝑏])
= ⟦𝑠⟧𝛼[𝑥≔𝑏]

since ⟦𝑡⟧𝛼[𝑥≔𝑎] ⊐𝜏⇒𝜎 ⟦𝑡⟧𝛼[𝑥≔𝑏].

• Finally, the abstraction case. If 𝑠 = 𝜆𝑥. 𝑡 with 𝜎 = 𝜏 ⇒ 𝜌, then its interpretation is

⟦𝑠⟧𝛼 = MakeSM𝜏,𝜌(𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑]). Since by the induction hypothesis the function

𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑] is either a constant or a strongly monotonic function from L𝜏M
to L𝜌M, it is an element of 𝐶𝜏,𝜌. Therefore, ⟦𝑠⟧𝛼 = MakeSM𝜏,𝜌(𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑]) is

well-defined and MakeSM𝜏,𝜌(𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑]) yields an element of L𝜏 ⇒ 𝜌M. Now,

consider a variable 𝑦.

– If 𝑦 = 𝑥, then 𝑒 ↦→ ⟦𝑠⟧𝛼[𝑦≔𝑒] is clearly a constant function, so we have

⟦𝑠⟧𝛼[𝑦≔𝑒] = MakeSM𝜏,𝜌(𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑒][𝑥≔𝑑])
= MakeSM𝜏,𝜌(𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑])

– If 𝑦 ≠ 𝑥 note that by the induction hypothesis either 𝑒 ↦→ ⟦𝑡⟧𝛼[𝑦≔𝑒][𝑥≔𝑑] is

constant or strongly monotonic.

‗ If it is constant, then for all 𝑎 and 𝑏 we have that

𝑑 ↦→ ⟦𝑡⟧𝛼[𝑦≔𝑎][𝑥≔𝑑] = 𝑑 ↦→ ⟦𝑡⟧𝛼[𝑦≔𝑏][𝑥≔𝑑]



4.1 Strongly monotonic algebras 59

and therefore the equality below holds

MakeSM𝜏,𝜌(𝑑 ↦→ ⟦𝑡⟧𝛼[𝑦≔𝑎][𝑥≔𝑑]) = MakeSM𝜏,𝜌(𝑑 ↦→ ⟦𝑡⟧𝛼[𝑦≔𝑏][𝑥≔𝑑])

So, the function 𝑒 ↦→ ⟦𝑠⟧𝛼[𝑦≔𝑒] is constant too.

‗ Otherwise, if this function is strongly monotonic, then the function

𝑑 ↦→ ⟦𝑡⟧𝛼[𝑦≔𝑎][𝑥≔𝑑] is pointwise greater than 𝑑 ↦→ ⟦𝑡⟧𝛼[𝑦≔𝑏][𝑥≔𝑑]. Hence,

⟦𝑠⟧𝛼[𝑦≔𝑎] ⊐𝜎 ⟦𝑠⟧𝛼[𝑦≔𝑏] as well.

□

4.1.1 Higher-Order Compatibility

As it is expected, we need yet another version of the compatibility result to show that

our notion of higher-order strongly monotonic algebras is able to prove termination of

compatible systems. Compatibility is slightly different in our higher-order formalism

since now we have 𝛽 rule-schemes to orient.

Definition 4.1.10. We say a TRS (F,R) is compatible with a higher-order strongly

monotonic algebra ℱ whenever the following two conditions hold:

1. (𝛽-compatibility) for any pair of terms 𝑠 and 𝑡, ⟦(𝜆𝑥. 𝑠) 𝑡⟧ ⊐ ⟦𝑠[𝑥 ≔ 𝑡]⟧; and

2. (R-compatibility) for all rules ℓ → 𝑟 in R, ⟦ℓ⟧ ⊐ ⟦𝑟⟧.

To prove Theorem 4.1.13, we need a higher-order version of the so-called Substitution
Lemma. We begin by giving a systematic way of extending a substitution (seen as a

morphism between terms) to a valuation, seen as morphism from terms to elements of

the domain of an algebra ℱ .

Definition 4.1.11. Given a substitution 𝛾 = [𝑥1 ≔ 𝑠1, . . . , 𝑥𝑛 ≔ 𝑠𝑛] and a valuation 𝛼,

we define 𝛼𝛾
as the valuation such that 𝛼𝛾(𝑥) = 𝛼(𝑥), if 𝑥 ∉ supp(𝛾); and 𝛼𝛾(𝑥) = ⟦𝑥𝛾⟧𝛼

otherwise.

Lemma 4.1.12. For any substitution 𝛾 and valuation 𝛼, ⟦𝑠𝛾⟧𝛼 = ⟦𝑠⟧𝛼𝛾 . Additionally, if

⟦𝑠⟧ ⊐𝜎 ⟦𝑡⟧ (⟦𝑠⟧ ⊒𝜎 ⟦𝑡⟧), then ⟦𝑠𝛾⟧ ⊐𝜎 ⟦𝑡𝛾⟧ (⟦𝑠𝛾⟧ ⊒𝜎 ⟦𝑡𝛾⟧).

Proof. By inspection of Definition 4.1.11 it can be easily shown by induction on 𝑠 that

the following diagram commutes:

T(F,X)

T(F,X) ℱ
⟦·⟧𝛼𝛾

𝛾
⟦·⟧𝛼



60 Higher-Order Tuple Interpretations

As a consequence, if ⟦𝑠⟧𝛼 ⊐𝜎 ⟦𝑡⟧𝛼 for any valuation 𝛼, then ⟦𝑠⟧𝛼𝛾 ⊐𝜎 ⟦𝑡⟧𝛼𝛾 in particular.

So ⟦𝑠𝛾⟧𝛼 ⊐𝜎 ⟦𝑡𝛾⟧𝛼. The case for ⊒𝜎 is analogous. □

We can now show the compatibility theorem by induction on the rewrite relation.

Theorem 4.1.13. If a TRS R is compatible with a higher-order tuple algebra ℱ , then for

all valuations 𝛼, ⟦𝑠⟧𝛼 ⊐ ⟦𝑡⟧𝛼 whenever 𝑠 → 𝑡.

Proof. We reason by induction on 𝑠 → 𝑡. According to Definition 2.1.15, we have the

following cases to consider.

• Suppose 𝑠 → 𝑡 by ℓ𝛾 → 𝑟𝛾. Compatibility gives ⟦ℓ⟧ ⊐ ⟦𝑟⟧, and by Lemma 4.1.12

we have ⟦ℓ𝛾⟧ ⊐ ⟦𝑟𝛾⟧.

• The case (𝜆𝑥. 𝑠) 𝑡 → 𝑠[𝑥 ≔ 𝑡] follows directly by compatibility.

• We consider the case 𝑠 𝑡 → 𝑠 𝑡′, with 𝑡 → 𝑡′. The other application case is analogous.

We have ⟦𝑠 𝑡⟧ = ⟦𝑠⟧(⟦𝑡⟧) by Definition 4.1.8 and by Lemma 4.1.9 ⟦𝑠⟧ is strongly

monotonic. The induction hypothesis gives us ⟦𝑡⟧ ⊐ ⟦𝑡′⟧. Finally, combining

these results we get ⟦𝑠⟧(⟦𝑡⟧) ⊐ ⟦𝑠⟧(⟦𝑡′⟧).

• Suppose 𝜆𝑥. 𝑠 → 𝜆𝑥. 𝑡, with 𝑠 → 𝑡.

– If 𝑥 ∉ fv(𝑠), then by (IH) we get ⟦𝑠⟧𝛼[𝑥≔𝑑] ⊐ ⟦𝑡⟧𝛼[𝑥≔𝑑]. As a consequence,

𝑑 ↦→ ⟦𝑠⟧𝛼[𝑥≔𝑑] ⊐ 𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑] are constant functions not in the domain of

ℱ . By Definition 4.1.7, MakeSM𝜎,𝜏 is strongly monotonic, so

MakeSM𝜎,𝜏(𝑑 ↦→ ⟦𝑠⟧𝛼[𝑥≔𝑑]) ⊐ MakeSM𝜎,𝜏(𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑])

– On the other hand, if 𝑥 ∈ fv(𝑠), then 𝑑 ↦→ ⟦𝑠⟧𝛼[𝑥≔𝑑] ⊐𝜎⇒𝜏 𝑑 ↦→ ⟦𝑡⟧𝛼[𝑥≔𝑑] are

strongly monotonic functions and the result follows by Definition 4.1.7.

□

For Definition 4.1.4 and Theorem 4.1.13, we can choose well-founded sets (𝐴𝜄 , >𝜄 ,≥𝜄)
for each sort, and the functions MakeSM𝜎,𝜏 for each pair of types as we desire. Let us take

a first example of interpretation by interpreting the map function in this setting.

Example 4.1.14. Let 𝐴nat = N2

and 𝐴list = N3

and each interpretation of the constructors

cons and [] be as in Example 3.3.5. Consider the rules for map in Example 2.1.11. We let:

𝒥map = λ𝐹𝑞.
〈
(𝑞l + 1) ∗ (𝐹(

〈
𝑞c , 𝑞m

〉
)c + 1), 𝑞l, 𝐹(𝑞c , 𝑞m)s

〉
This expresses that map does not increase the list’s length (as the length component is

just 𝑞l), the greatest element of the result is bounded by the value of 𝐹 on the greatest



4.2 Interpreting abstractions 61

element of 𝑞, and the evaluation cost is mostly expressed by a number of 𝐹 steps that

is linear in the length of 𝑞. We will see in Lemma 4.3.1 that 𝒥map is in fact strongly

monotonic.

To prove the R-compatibility of this system, we must first show that ⟦ℓ⟧ ⊐ ⟦𝑟⟧ for

all rules ℓ → 𝑟. For the first map rule this is easy:

⟦map(𝐹, [])⟧ = ⟨𝐹(⟨0, 0⟩)c + 1, 0, 𝐹(⟨0, 0⟩)s⟩ ⊐list ⟨0, 0, 0⟩ = ⟦[]⟧

For the second map rule, we must check that

⟨cost-ℓ , len-ℓ ,max-ℓ⟩ ⊐list ⟨cost-𝑟, len-𝑟,max-𝑟⟩ ,

that is, cost-ℓ > cost-𝑟 and len-ℓ ≥ len-𝑟 and max-ℓ ≥ max-𝑟, where:

cost-ℓ = ⟦map(𝐹, 𝑥 : 𝑞)⟧c = (𝑞l + 2) ∗ (𝐹(
〈
𝑥c + 𝑞c ,max(𝑥s, 𝑞m)

〉
)c + 1)

cost-𝑟 = ⟦𝐹(𝑥) : map(𝐹, 𝑞)⟧c = 𝐹(⟨𝑥c , 𝑥s⟩)c + (𝑞l + 1) ∗ (𝐹(
〈
𝑞c , 𝑞m

〉
)c + 1)

len-ℓ = ⟦map(𝐹, 𝑥 : 𝑞)⟧l = 𝑞l + 1 = ⟦𝐹(𝑥) : map(𝐹, 𝑞)⟧l = len-𝑟

max-ℓ = ⟦map(𝐹, 𝑥 : 𝑞)⟧m = 𝐹(
〈
𝑥c + 𝑞c ,max(𝑥s, 𝑞m)

〉
)s

max-𝑟 = ⟦𝐹(𝑥) : map(𝐹, 𝑞)⟧m = max(𝐹(⟨𝑥c , 𝑥s⟩)s, 𝐹(
〈
𝑞c , 𝑞m

〉
)s)

To see why cost-ℓ > cost-𝑟, for instance, we observe that for all 𝑥, 𝑞 the tuple given by〈
𝑥c + 𝑞c ,max(𝑥s + 𝑞m)

〉
is ⊒nat to both ⟨𝑥c , 𝑥s⟩ and

〈
𝑞c , 𝑞m

〉
. Since 𝐹 ∈ Lnat ⇒ natM, we

get that 𝐹(
〈
𝑥c + 𝑞c ,max(𝑥s + 𝑞m)

〉
) is ⊒nat to both 𝐹(⟨𝑥c , 𝑥s⟩) and 𝐹(

〈
𝑞c , 𝑞m

〉
). The other

cases are treated by similar reasoning.

4.2 Interpreting abstractions

The compatibility proof ofRmap is not complete. Indeed, we showed onlyR-compatibility

in Example 4.1.14. 𝛽-compatibility requires more work as we have not yet explicitly de-

fined the functions MakeSM𝜎,𝜏, which is needed in order to show ⟦(𝜆𝑥. 𝑠) 𝑡⟧ ⊐ ⟦𝑠[𝑥 ≔ 𝑡]⟧
always holds. To achieve this, we will define some standard functions to build elements

of L𝜎M. This allows us to easily construct strongly monotonic functionals, both to build

MakeSM𝜎,𝜏 and to create interpretation functions 𝒥f.



62 Higher-Order Tuple Interpretations

4.2.1 Strongly Monotonic Combinators

Definition 4.2.1. For every type 𝜎, we define the functions 0𝜎 ∈ L𝜎M, costof𝜎 ∈ L𝜎M −→ N,

and addc𝜎 ∈ N × L𝜎M −→ L𝜎M by mutual recursion on the structure of types as follows:

0𝜄 =
〈
01, . . . , 0𝐾(𝜄)

〉
0𝜎⇒𝜏 = 𝑑 ↦→ addc𝜏(costof𝜎(𝑑), 0𝜏)

costof𝜄(
〈
𝑛1, . . . , 𝑛𝐾(𝜄)

〉
) = 𝑛1 costof𝜎⇒𝜏(𝐹) = costof𝜏(𝐹(0𝜎))

addc𝜄
(
𝑐,

〈
𝑛1, . . . , 𝑛𝐾(𝜄)

〉)
=

〈
𝑐 + 𝑛1, 𝑛2 . . . , 𝑛𝐾(𝜄)

〉
addc𝜎⇒𝜏(𝑐, 𝐹) = 𝑑 ↦→ addc𝜏(𝑐, 𝐹(𝑑))

Here, 0𝜎 gives a minimal element for L𝜎M with respect to ⊒𝜎. The function costof𝜎

maps every 𝐹 to the cost component of 𝐹(0𝜎1
, . . . , 0𝜎𝑚 ); hence, if 𝐹 ⊐𝜎 𝐺 we have

costof𝜎(𝐹) > costof𝜎(𝐺). The function addc𝜎 point-wise adds a natural number to

the cost component of an element of L𝜎M. Therefore, if 𝐹(𝑥1, . . . , 𝑥𝑚) = ⟨𝑛1, . . . , 𝑛𝑘⟩,
then addc(𝑐, 𝐹)(𝑥1, . . . , 𝑥𝑚) = ⟨𝑐 + 𝑛1, 𝑛2, . . . , 𝑛𝑘⟩. In this next lemma we show the

correctness of this definition.

Lemma 4.2.2. For all types 𝜎:

1. 0𝜎 ∈ L𝜎M;

2. for all 𝑛 ∈ N and 𝑥 ∈ L𝜎M, addc𝜎(𝑛, 𝑥) ∈ L𝜎M;

3. costof𝜎 is weakly monotonic and strict in its first argument;

4. addc𝜎 is weakly monotonic and strict in both its arguments.

Proof. Each item of the lemma follows by a mutual induction on the structure of 𝜎.

(1) If 𝜎 = 𝜄 ∈ B, then 0𝜎 = ⟨0, . . . , 0⟩ is clearly in L𝜄M. If 𝜎 = 𝜏 ⇒ 𝜌 then 0𝜏⇒𝜌 =

𝑑 ↦→ addc𝜌(costof𝜏(𝑑), 0𝜌). Clearly costof𝜏(𝑑) ∈ N and by induction hypothesis

(1) 0𝜌 ∈ L𝜌M, so by induction hypothesis (2) addc𝜌(costof𝜏(𝑑), 0𝜌) ∈ L𝜌M. We still

need to prove this function is strongly monotonic. So let us assume 𝑥 ⊐𝜎 𝑦 and

prove 0𝑥 ⊐𝜏 0𝑦 . The proof for 𝑥 ⊒𝜄 𝑦 is similar and we omit it. With that in mind,

notice that we have costof𝜏(𝑥) > costof𝜏(𝑦) by induction hypothesis (3). Hence,

addc𝜌(costof𝜏(𝑥), 0𝜌) ⊐𝜌 addc𝜌(costof𝜏(𝑦), 0𝜌) by induction hypothesis (4); that

is 0𝜎(𝑥) ⊐𝜌 0𝜎(𝑦).

(2) If 𝜎 = 𝜄, then addc𝜎(𝑛, 𝑥) =
〈
𝑛 + 𝑥1, 𝑥2, . . . , 𝑥𝐾(𝜄)

〉
, which is trivially an element

of L𝜄M. Otherwise, we let 𝜎 = 𝜏 ⇒ 𝜌 and take 𝑛 ∈ N and 𝐹 ∈ L𝜏 ⇒ 𝜌M. Then

addc𝜏⇒𝜌(𝑛, 𝐹) = 𝑑 ↦→ addc𝜌(𝑛, 𝐹(𝑑)). By induction hypothesis (2), addc𝜌(𝑛, 𝐹(𝑑))
is in L𝜌M, so addc𝜏⇒𝜌(𝑛, 𝐹) ∈ L𝜏M −→ L𝜌M; we only need to see that it is strongly

monotonic. So let us assume 𝑢 ⊐𝜏 𝑤, we will see that addc𝜏⇒𝜌(𝑛, 𝐹, 𝑢) ⊐𝜌

addc𝜏⇒𝜌(𝑛, 𝐹, 𝑤). Indeed, we have addc𝜏⇒𝜌(𝑛, 𝐹, 𝑢) = addc𝜌(𝑛, 𝐹(𝑢)). Since



4.2 Interpreting abstractions 63

𝐹 is strongly monotonic, we get 𝐹(𝑢) ⊐𝜌 𝐹(𝑤). By induction hypothesis (4),

addc𝜌(𝑛, 𝐹(𝑢)) ⊐𝜌 addc𝜌(𝑛, 𝐹(𝑤)) which is equal to addc𝜏⇒𝜌(𝑛, 𝐹, 𝑤). The proof

of the case 𝑢 ⊒𝜏 𝑤 follows similar reasoning.

(3) Here, we also work out the case for 𝑥 ⊐𝜎 𝑦; the case for 𝑥 ⊒𝜎 𝑦 is similar. For the base

case, we assume 𝜎 is a base type 𝜄 ∈ B, then costof𝜎(𝑥) = 𝑥1 > 𝑦1 = costof𝜎(𝑦)
by definition of 𝑥 ⊐𝜄 𝑦. If 𝜎 = 𝜏 ⇒ 𝜌 then costof𝜎(𝑥) = costof𝜌(𝑥(0𝜏)) Since

𝑥 ⊐𝜏⇒𝜌 𝑦 we have 𝑥(0𝜏) ⊐𝜌 𝑦(0𝜏). By induction hypothesis (3), costof𝜌(𝑥(0𝜏)) >
costof𝜌(𝑦(0𝜏)) follows as required.

(4) Suppose 𝑛 ≥ 𝑚 and 𝑥 ⊒𝜎 𝑦. We show that

(a) addc𝜎(𝑛, 𝑥) ⊒𝜎 addc𝜎(𝑚, 𝑦), and

(b) if 𝑛 > 𝑚 or 𝑥 ⊐𝜎 𝑦 then addc𝜎(𝑛, 𝑥) ⊐𝜎 addc𝜎(𝑚, 𝑦).

For the induction base case, 𝜎 is a base type 𝜄 ∈ B, then for the case (a)

addc𝜎(𝑛, 𝑥) =
〈
𝑛 + 𝑥1, 𝑥2, . . . , 𝑥𝐾(𝜄)

〉
⊒𝜄

〈
𝑚 + 𝑦1, 𝑦2, . . . , 𝑦𝐾(𝜄)

〉
because each 𝑥𝑖 ≥ 𝑦𝑖 and 𝑛 ≥ 𝑚. In case (b), we have 𝑛 > 𝑚 or 𝑥1 > 𝑦1 so certainly

𝑛 + 𝑥1 > 𝑚 + 𝑦1.

For the inductive step we have 𝜎 = 𝜏 ⇒ 𝜌. Then we get addc𝜎(𝑛, 𝑥) = 𝑑 ↦→
addc𝜌(𝑛, 𝑥(𝑑)). Notice that since 𝑥 ⊒𝜎 𝑦, 𝑥(𝑑) ⊒𝜌 𝑦(𝑑). Additionally, if 𝑥 ⊐𝜎 𝑦 then

𝑥(𝑑) ⊐𝜌 𝑦(𝑑). Hence, by induction hypothesis (4), addc𝜌(𝑛, 𝑥(𝑑)) ⊒𝜌 addc𝜌(𝑚, 𝑦(𝑑))
and if 𝑛 > 𝑚 or 𝑥 ⊐𝜎 𝑦 even addc𝜌(𝑛, 𝑥(𝑑)) ⊐𝜌 addc𝜌(𝑚, 𝑦(𝑑)). This suffices, since

⊒𝜏⇒𝜌 and ⊐𝜏⇒𝜌 do point-wise comparisons.

□

Next, the following lemmas provide basic properties of these functions (and how

they interact with each other).

Lemma 4.2.3. For all types 𝜎, for all 𝑥 ∈ L𝜎M:

1. addc𝜎(0, 𝑥) = 𝑥;

2. for all 𝑛, 𝑚 ∈ N: addc𝜎(𝑛, addc𝜎(𝑚, 𝑥)) = addc𝜎(𝑛 + 𝑚, 𝑥);

3. if 𝑛 > 0 then addc𝜎(𝑛, 𝑥) ⊐𝜎 𝑥;

4. if 𝑦 ∈ L𝜎M is such that 𝑥 ⊐𝜎 𝑦 then 𝑥 ⊒𝜎 addc𝜎(1, 𝑦); and

5. for all 𝑛 ∈ N: costof𝜎(addc𝜎(𝑛, 𝑥)) = 𝑛 + costof𝜎(𝑥).

Proof. We prove each item of the lemma by induction on the structure of 𝜎.



64 Higher-Order Tuple Interpretations

(1) In the base case, we assume 𝜎 is a base type 𝜄 ∈ B, then

addc𝜎(0, 𝑥) =
〈
0 + 𝑥1, 𝑥2, . . . , 𝑥𝐾(𝜄)

〉
=

〈
𝑥1, . . . , 𝑥𝐾(𝜄)

〉
= 𝑥

and the result follows.

For the inductive case, we have 𝜎 = 𝜏 ⇒ 𝜌. Therefore, for 𝐹 ∈ L𝜏 ⇒ 𝜌M,
addc𝜎(0, 𝐹) = 𝑑 ↦→ addc𝜌(0, 𝐹(𝑑)) and by induction hypothesis addc𝜌(0, 𝐹(𝑑)) =
𝐹(𝑑). Hence, we get

addc𝜎(0, 𝐹) = 𝑑 ↦→ addc𝜌(0, 𝐹(𝑑))
= 𝑑 ↦→ 𝐹(𝑑)
= 𝐹

wich proves the result.

(2) If 𝜎 = 𝜄 ∈ B, then

addc𝜎(𝑛, addc𝜎(𝑚, 𝑥)) =
〈
𝑛 + 𝑚 + 𝑥1, 𝑥2, . . . , 𝑥𝐾(𝜄)

〉
= addc𝜎(𝑛 + 𝑚, 𝑥)

If 𝜎 = 𝜏 ⇒ 𝜌, then

addc𝜎(𝑛, addc𝜎(𝑚, 𝑥)) = 𝑑 ↦→ addc𝜎(𝑛, addc𝜎(𝑚, 𝑥(𝑑)))
(𝐼𝐻)
= 𝑑 ↦→ addc𝜎(𝑛 + 𝑚, 𝑥(𝑑))
= addc𝜎(𝑛 + 𝑚, 𝑥)

(3) For the base case, we assume 𝜎 is a base type 𝜄 ∈ B. So

addc𝜄
(
𝑛,

〈
𝑥1, 𝑥2, . . . , 𝑥𝐾(𝜄)

〉)
=

〈
𝑛 + 𝑥1, 𝑥2, . . . , 𝑥𝐾(𝜄)

〉
⊐𝜄

〈
𝑥1, 𝑥2, . . . , 𝑥𝐾(𝜄)

〉
In the inductive step, we assume 𝜎 = 𝜏 ⇒ 𝜌. So taking 𝐹 ∈ L𝜎M we get addc𝜎(𝑛, 𝐹) =
𝑑 ↦→ addc𝜌(𝑛, 𝐹(𝑑)) by the (IH) we get addc𝜌(𝑛, 𝐹(𝑑)) ⊐𝜌 𝐹(𝑑). Thus, for any 𝑑 ∈ L𝜏M

addc𝜎(𝑛, 𝐹) = 𝑑 ↦→ addc𝜌(𝑛, 𝐹(𝑑))
⊐𝜎 𝑑 ↦→ 𝐹(𝑑)
= 𝐹

(4) Let us take 𝑥 ⊐𝜎 𝑦. In the base case, 𝜎 is a base type 𝜄 ∈ B, then 𝑥 =
〈
𝑥1, . . . , 𝑥𝐾(𝜄)

〉
and 𝑦 =

〈
𝑦1, . . . , 𝑦𝐾(𝜄)

〉
, and 𝑥 ⊐𝜄 𝑦 implies that 𝑥1 > 𝑦1 and each 𝑥𝑖 ≥ 𝑦𝑖 . Then,



4.2 Interpreting abstractions 65

𝑥1 ≥ 1 + 𝑦1, so

𝑥 =
〈
𝑥1, . . . , 𝑥𝐾(𝜄)

〉
⊒𝜄

〈
1 + 𝑦1, 𝑦2, . . . , 𝑦𝐾(𝜄)

〉
= addc𝜄(1, 𝑦)

In the inductive case, we have 𝜎 = 𝜏 ⇒ 𝜌, then 𝑥 = 𝑑 ↦→ 𝑥(𝑑) and similarly

𝑦 = 𝑑 ↦→ 𝑦(𝑑). Notice that 𝑥 ⊐𝜎 𝑦 implies that 𝑥(𝑑) ⊐𝜌 𝑦(𝑑) for all 𝑑 ∈ L𝜏M. By the

induction hypothesis, 𝑥(𝑑) ⊒𝜌 addc𝜌(1, 𝑦(𝑑)) for all 𝑑, and therefore

𝑥 = 𝑑 ↦→ 𝑥(𝑑)
⊒𝜏⇒𝜌 𝑑 ↦→ addc𝜌(1, 𝑦(𝑑))
= addc𝜏⇒𝜌(1, 𝑦)

(5) If 𝜎 = 𝜄 ∈ B, then

costof𝜎(addc𝜎(𝑛, 𝑥)) = costof𝜎
(〈
𝑛 + 𝑥1, 𝑥2, . . . , 𝑥𝐾(𝜄)

〉)
= 𝑛 + 𝑥1

= 𝑛 + costof𝜎(𝑥)

In the inductive case, 𝜎 = 𝜏 ⇒ 𝜌, then

costof𝜎(addc𝜎(𝑛, 𝑥)) = costof𝜎(𝑑 ↦→ addc𝜌(𝑛, 𝑥(𝑑)))
= costof𝜌(addc𝜌(𝑛, 𝑥(0𝜏)))
(𝐼𝐻)
= 𝑛 + costof𝜌(𝑥(0𝜏))
= 𝑛 + costof𝜏⇒𝜌(𝑥)

□

Lemma 4.2.4. Let 𝜎 and 𝜏 be types, 𝐹 a function in L𝜎 ⇒ 𝜏M, 𝑥 an element of L𝜎M, and

𝑛 ∈ N, then 𝐹(addc𝜎(𝑛, 𝑥)) ⊒𝜎 addc𝜏(𝑛, 𝐹(𝑥)).

Proof. By induction on 𝑛. If 𝑛 = 0, then 𝐹(addc𝜎(0, 𝑥)) = 𝐹(𝑥) = addc𝜏(0, 𝐹(𝑥)) by

Lemma 4.2.3(1). If 𝑛 = 𝑖 + 1, then by Lemma 4.2.3(2), addc𝜎(𝑛, 𝑥) = addc𝜎(1, addc𝜎(𝑖 , 𝑥))
which in turn is ⊐𝜎 addc𝜎(𝑖 , 𝑥) by Lemma 4.2.3(3). Thus, by strong monotonicity of 𝐹,

we have

𝐹(addc𝜎(𝑛, 𝑥)) ⊐𝜏 𝐹(addc𝜎(𝑖 , 𝑥)) (4.1)

The induction hypothesis gives 𝐹(addc𝜎(𝑖 , 𝑥)) ⊒𝜏 addc𝜏(𝑖 , 𝐹(𝑥)), which combined with

Equation (4.1) gives us 𝐹(addc𝜎(𝑛, 𝑥)) ⊐𝜏 addc𝜏(𝑖 , 𝐹(𝑥)). Furthermore, Lemma 4.2.3(4)



66 Higher-Order Tuple Interpretations

implies 𝐹(addc𝜎(𝑛, 𝑥)) ⊒𝜏 addc𝜏(1, addc𝜏(𝑖 , 𝐹(𝑥)). By Lemma 4.2.3(2) we thus have

𝐹(addc𝜎(𝑛, 𝑥)) ⊒𝜏 addc𝜏(𝑖 + 1, 𝐹(𝑥)) = addc𝜎(𝑛, 𝐹(𝑥)). □

Lemma 4.2.5. For all types 𝜎 and all 𝑥 ∈ L𝜎M: 𝑥 ⊒𝜎 addc𝜎(costof𝜎(𝑥), 0𝜎).

Proof. By induction on the structure of 𝜎. For the base case, 𝜎 is a base type 𝜄 ∈ B. So

𝑥 =
〈
𝑥1, 𝑥2, . . . , 𝑥𝐾(𝜄)

〉
⊒𝜄 ⟨𝑥1, 0, . . . , 0⟩
= addc𝜄(𝑥1, ⟨0, . . . , 0⟩)
= addc𝜄(costof𝜄(𝑥), 0𝜄)

For the inductive step, we consider the case 𝜎 = 𝜏 ⇒ 𝜌. In this case, 𝑥 = 𝑑 ↦→ 𝑥(𝑑) (ex-

tensionally), which by the induction hypothesis is ⊒𝜏⇒𝜌 𝑑 ↦→ addc𝜌(costof𝜌(𝑥(𝑑)), 0𝜌).
On the other hand,

addc𝜎(costof𝜎(𝑥), 0𝜎) = 𝑑 ↦→ addc𝜌(costof𝜎(𝑥), 0𝜎(𝑑))
= 𝑑 ↦→ addc𝜌(costof𝜎(𝑥), addc𝜌(costof𝜏(𝑑), 0𝜌))
= 𝑑 ↦→ addc𝜌(costof𝜎(𝑥) + costof𝜏(𝑑), 0𝜌)

where the last equality follows from Lemma 4.2.3(2). Notice that by monotonicity of

addc𝜌, Lemma 4.2.2(4), it suffices to prove that, for all 𝑑,

costof𝜌(𝑥(𝑑)) ≥ costof𝜎(𝑥) + costof𝜏(𝑑)

To see this, note that by the induction hypothesis, 𝑑 ⊒𝜏 addc𝜏(costof𝜏(𝑑), 0𝜏). Therefore,

𝑥(𝑑) ⊒𝜌 𝑥(addc𝜏(costof𝜏(𝑑), 0𝜏)) by monotonicity of 𝑥. By Lemma 4.2.4 we have 𝑥(𝑑) ⊒𝜌

addc𝜌(costof𝜏(𝑑), 𝑥(0𝜏)). Hence, by monotonicity of costof𝜌 given by Lemma 4.2.2(3),

costof𝜌(𝑥(𝑑)) ≥ costof𝜌(addc𝜌(costof𝜏(𝑑), 𝑥(0𝜏))). Note that by Lemma 4.2.3(5),

costof𝜌(addc𝜌(costof𝜏(𝑑), 𝑥(0𝜏))) = costof𝜏(𝑑) + costof𝜌(𝑥(0𝜏))

which in turn is equal to costof𝜏(𝑑)+costof𝜎(𝑥). Finally we have obtained the required

inequality costof𝜌(𝑥(𝑑)) ≥ costof𝜎(𝑥) + costof𝜏(𝑑). □

Lemma 4.2.6. For 𝐹 ∈ L𝜎 ⇒ 𝜏M and 𝑥 ∈ L𝜎M we have: costof𝜏(𝐹(𝑥)) ≥ costof𝜎(𝑥).

Proof. Let 𝑛 ≔ costof𝜎(𝑥). By Lemma 4.2.5, we get 𝑥 ⊒𝜎 addc𝜎(costof𝜎(𝑥), 0𝜎) =

addc𝜎(𝑛, 0𝜎). Hence, by monotonicity of 𝐹, 𝐹(𝑥) ⊒𝜏 𝐹(addc𝜎(𝑛, 0𝜎)). By Lemma 4.2.4,

this implies that 𝐹(𝑥) ⊒𝜏 addc𝜏(𝑛, 𝐹(0𝜎)). Since costof𝜏 is strict in its first argument by

Lemma 4.2.2(3), we thus have costof𝜏(𝐹(𝑥)) ⊒ costof𝜎(addc𝜏(𝑛, 𝐹(0𝜎))), which is ⊒ 𝑛

by Lemma 4.2.3(5). □



4.2 Interpreting abstractions 67

4.2.2 Making a MakeSM

We can use these functions to for instance create candidates for MakeSM𝜎,𝜏. While many

suitable definitions are possible, we will particularly consider the following:

Definition 4.2.7. For types 𝜎, 𝜏, and 𝐹 a weakly monotonic function in L𝜎M −→ L𝜏M, let:

Φ𝜎,𝜏(𝐹) =
{
𝑑 ↦→ addc𝜎⇒𝜏(1, 𝐹(𝑑)) if 𝐹 is in L𝜎 ⇒ 𝜏M
𝑑 ↦→ addc𝜎⇒𝜏(costof𝜎(𝑑) + 1, 𝐹(𝑑)) otherwise

Then Φ𝜎,𝜏 is a (𝜎, 𝜏)-monotonicity function. To see this, the most challenging part is

proving that Φ𝜎,𝜏(𝐹) ⊐ Φ𝜎,𝜏(𝐺) if 𝐹 ⊐ 𝐺 and 𝐹 ∈ L𝜎 ⇒ 𝜏M while 𝐺 is a constant function.

We can prove this using the result that 𝑥 ⊐ 𝑦 implies addc(1, 𝑥) ⊒ 𝑦 for all 𝑥, 𝑦.

Lemma 4.2.8. Let 𝜎, 𝜏 be simple types. Then Φ𝜎,𝜏 is a (𝜎, 𝜏)-monotonicity function.

Proof. First, we must see that Φ𝜎,𝜏 maps each element of 𝐶𝜎,𝜏 to an element of L𝜎, 𝜏M.
Thus, let 𝐹 ∈ 𝐶𝜎,𝜏. There are two cases:

• 𝐹 is a constant function in L𝜎M −→ L𝜏M.

ThenΦ𝜎,𝜏(𝐹) is the function 𝑑 ↦→ addc𝜏(costof𝜎(𝑑)+1, 𝐹(𝑑)). Since 𝐹 ∈ L𝜎M −→ L𝜏M
we have 𝐹(𝑑) ∈ L𝜏M so addc𝜏(costof𝜎(𝑑) + 1, 𝐹(𝑑)) ∈ L𝜏M by Lemma 4.2.2(2); hence,

𝑑 ↦→ addc𝜏(costof𝜎(𝑑) + 1, 𝐹(𝑑)) ∈ L𝜎M −→ L𝜏M.

It remains to be seen that this function is (a) weakly monotonic, and (b) strict in its

only argument. We show only the latter; the former is very similar.

Let 𝑥, 𝑦 ∈ L𝜎M with 𝑥 ⊐𝜎 𝑦. Then by Lemma 4.2.2(3), costof𝜎(𝑥) > costof𝜎(𝑦),
which implies costof𝜎(𝑥) + 1 > costof𝜎(𝑦) + 1 as well. Moreover, since 𝐹 is

constant, we have 𝐹(𝑥) = 𝐹(𝑦), so certainly 𝐹(𝑥) ⊒𝜏 𝐹(𝑦). Thus, by Lemma 4.2.2(4),

we have addc𝜏(costof𝜎(𝑥) + 1, 𝐹(𝑥)) ⊐𝜏 addc𝜏(costof𝜎(𝑦) + 1, 𝐹(𝑦)).

• 𝐹 is a function in L𝜎 ⇒ 𝜏M; that is, a strongly monotonic function in L𝜎M −→ L𝜏M.
Then Φ𝜎,𝜏(𝐹) is the function 𝑑 ↦→ addc𝜏(1, 𝐹(𝑑)). By Lemma 4.2.2(2) this function

is indeed in L𝜎M −→ L𝜏M. To see that it is monotonic, suppose that 𝑥 ⊐𝜎 𝑦; the

case for 𝑥 ⊒𝜎 𝑦 is similar. Then 𝐹(𝑥) ⊐𝜏 𝐹(𝑦) by strong monotonicity of 𝐹. By

Lemma 4.2.2(4), addc𝜏(1, 𝐹(𝑥)) ⊐𝜏 addc𝜏(1, 𝐹(𝑦)) as required.

Second, we prove that Φ𝜎,𝜏 is strongly monotonic. That is, for 𝐹, 𝐺 ∈ 𝐶𝜎,𝜏: (a) if

𝐹(𝑥) ⊒𝜏 𝐺(𝑥) for all 𝑥 ∈ L𝜎M then Φ𝜎,𝜏(𝐹) ⊒𝜎⇒𝜏 Φ𝜎,𝜏(𝐺); (b) if 𝐹(𝑥) ⊐𝜏 𝐺(𝑥) for all 𝑥 ∈ L𝜎M
then Φ𝜎,𝜏(𝐹) ⊐𝜎⇒𝜏 Φ𝜎,𝜏(𝐺). We will only show (b); the proof of (a) is parallel. There are

four cases to consider:

• 𝐹, 𝐺 are both constant functions. Then Φ𝜎,𝜏(𝐹) = 𝑑 ↦→ addc𝜏(costof𝜎(𝑑) +
1, 𝐹(𝑑)) ⊐𝜎⇒𝜏 𝑑 ↦→ addc𝜏(costof𝜎(𝑑) + 1, 𝐺(𝑑)) = Φ𝜎,𝜏(𝐺) by Lemma 4.2.2(4) and

because 𝐹(𝑑) ⊐𝜏 𝐺(𝑑).



68 Higher-Order Tuple Interpretations

• 𝐹, 𝐺 are both in L𝜎 ⇒ 𝜏M. Then we must see that 𝑑 ↦→ addc𝜏(1, 𝐹(𝑑)) ⊐𝜏 𝑑 ↦→
addc𝜏(1, 𝐺(𝑑)), so that addc𝜏(1, 𝐹(𝑑)) ⊐𝜏 addc𝜏(1, 𝐺(𝑑)) for all 𝑑. This holds by

Lemma 4.2.2(4) because 𝐹(𝑑) ⊐𝜏 𝐺(𝑑) (by definition of 𝐹 ⊐ 𝐺).

• 𝐹 is in L𝜎 ⇒ 𝜏M and 𝐺 is constant. Then we must see that for all 𝑑 ∈ L𝜎M
we have: addc𝜏(1, 𝐹(𝑑)) ⊐𝜏 addc𝜏(costof𝜎(𝑑) + 1, 𝐺(𝑑)). By monotonicity of

addc𝜏 (Lemma 4.2.2(4)) and by Lemma 4.2.3(2) it suffices to show that 𝐹(𝑑) ⊐𝜏

addc𝜏(costof𝜎(𝑑), 𝐺(𝑑)).
So consider a fixed 𝑑. By Lemma 4.2.5, 𝑑 ⊒𝜎 addc𝜎(costof𝜎(𝑑), 0𝜎). Hence, by

monotonicity of 𝐹 we have 𝐹(𝑑)) ⊒𝜏 𝐹(addc𝜎(costof𝜎(𝑑), 0𝜎))). By Lemma 4.2.4,

then 𝐹(addc𝜎(costof𝜎(𝑑), 0𝜎)) ⊒𝜏 addc𝜏(costof𝜎(𝑑), 𝐹(0𝜎)) by Lemma 4.2.2(4). By

assumption, 𝐹(0𝜎) ⊐𝜏 𝐺(0𝜎), and since 𝐺 is a constant function, 𝐺(0𝜎) = 𝐺(𝑑).
Hence, 𝐹(𝑑) ⊐𝜏 addc𝜏(costof𝜎(𝑑), 𝐺(𝑑)).

• 𝐹 is a constant function and 𝐺 is strongly monotonic. In fact, this cannot happen.

To see this, let 𝑚 ≔ costof𝜏(𝐹(0𝜎)). Note that 𝐹(0𝜎) = 𝐹(addc𝜎(𝑚, 0𝜎)) since

𝐹 is constant, ⊐𝜏 𝐺(addc𝜎(𝑚, 0𝜎)) since 𝐹 ⊐ 𝐺, which ⊒𝜏 addc𝜏(𝑚, 𝐺(0𝜎)) by

Lemma 4.2.4. Hence, 𝐹(0𝜎) ⊐𝜏 addc𝜏(𝑚, 𝐺(0𝜎)), so by Lemma 4.2.2(3) we have

𝑚 = costof𝜏(𝐹(0𝜎)) > costof𝜏(addc𝜏(𝑚, 𝐺(0𝜎))) = 𝑚 + costof𝜏(𝐺(0𝜎)) ≥ 𝑚 by

Lemma 4.2.3(5). This gives the required contradiction. □

4.2.3 Orienting Beta and Eta

Lemma 4.2.9. If MakeSM𝜎,𝜏 = Φ𝜎,𝜏 then ⟦(𝜆𝑥. 𝑠) 𝑡⟧ ⊐𝜏 ⟦𝑠[𝑥 ≔ 𝑡]⟧, for 𝑠 : 𝜏, 𝑡 : 𝜎, 𝑥 ∈ X𝜎.

Proof. We have either

1. ⟦ (𝜆𝑥. 𝑠)𝑡⟧𝒥𝛼 = addc𝜏(costof𝜎(⟦𝑡⟧𝛼) + 1, ⟦𝑠⟧𝛼[𝑥≔⟦𝑡⟧]); or

2. ⟦ (𝜆𝑥. 𝑠)𝑡⟧𝒥𝛼 = addc𝜏(1, ⟦𝑠⟧𝛼[𝑥≔⟦𝑡⟧])

By Lemma 4.2.3(3) we have ⟦ (𝜆𝑥. 𝑠)𝑡⟧𝒥𝛼 ⊐𝜏 ⟦𝑠⟧𝛼[𝑥≔⟦𝑡⟧] in both cases. By Lemma 4.1.12,

⟦𝑠⟧𝛼[𝑥≔⟦𝑡⟧] = ⟦𝑠[𝑥 ≔ 𝑏]⟧𝒥𝛼 . This completes the proof. □

In examples in the remainder of this paper, we will assume that MakeSM𝜎,𝜏 = Φ𝜎,𝜏.

With this choice, we do not only orient the 𝛽-rule (and thus satisfy Item 1 of the

compatibility conditions), but also the 𝜂-reduction rules mentioned in Remark 2.1.16.

Lemma 4.2.10. If MakeSM𝜎,𝜏 = Φ𝜎,𝜏 then for any 𝐹 ∈ X𝜎⇒𝜏 we have: ⟦𝜆𝑥. 𝐹 𝑥⟧ ⊐𝜎⇒𝜏 ⟦𝐹⟧.



4.3 Creating strongly monotonic interpretation functions 69

Proof. Since 𝐹 ≠ 𝑥, we have that 𝑑 ↦→ ⟦ 𝐹𝑥⟧𝛼[𝑥≔𝑑] = 𝑑 ↦→ 𝛼(𝐹)(𝑑), which by extensionality

is exactly 𝛼(𝐹). Since 𝛼(𝐹) is monotonic by assumption on 𝛼, we have

⟦𝜆𝑥. 𝐹 𝑥⟧𝛼 = Φ𝜎,𝜏(𝑑 ↦→ ⟦ 𝐹𝑥⟧𝛼[𝑥≔𝑑])
= Φ𝜎,𝜏(𝑑 ↦→ ⟦ 𝐹𝑑⟧𝛼)
= Φ𝜎,𝜏(𝛼(𝐹))
= addc𝜎,𝜏(1, 𝛼(𝐹))
⊐𝜎⇒𝜏 𝛼(𝐹)
= ⟦𝐹⟧𝛼 ,

where the inequality step follows from Lemma 4.2.3(3). □

4.3 Creating strongly monotonic interpretation functions

We can use Theorem 4.1.13 to obtain bounds on the derivation heights of given terms.

However, to achieve this, we must find an interpretation function 𝒥, and prove that each

𝒥f is in L𝜎M whenever f : 𝜎. We now explore ways to construct such strongly monotonic

functions. It turns out to be useful to also consider weakly monotonic functions. In

the following, we will write “ 𝑓 is wm(𝐴1, . . . , 𝐴𝑘 ; 𝐵)” as a shorthand for 𝑓 is a weakly

monotonic function in 𝐴1 =⇒ · · · =⇒ 𝐴𝑘 =⇒ 𝐵.

Lemma 4.3.1. Let 𝑥1, . . . , 𝑥𝑘 be variables ranging over L𝜎1M, . . . , L𝜎𝑘M respectively; we

shortly denote this sequence by ®𝑥. We let

−→
L𝜎M denote the sequence L𝜎1M, . . . , L𝜎𝑘M. Then:

1. if 𝐹(®𝑥) = 𝑥 𝑖 then 𝐹 is wm(−→L𝜎M; L𝜎𝑖M), and 𝐹 is strict in argument 𝑖;

2. if 𝐹(®𝑥) = 𝑥 𝑖(𝐹1(®𝑥), . . . , 𝐹𝑛(®𝑥)), 𝜎𝑖 = 𝜏1 ⇒ . . . ⇒ 𝜏𝑛 ⇒ 𝜌, and each 𝐹𝑗 is in the

set wm(−→L𝜎M; L𝜏𝑗M) then 𝐹 is wm(−→L𝜎M; L𝜌M) and for all 𝑝 ∈ {1, . . . , 𝑘}: 𝐹 is strict in

argument 𝑝 if 𝑝 = 𝑖 or some 𝐹𝑗 is strict in argument 𝑝;

3. if 𝐹(®𝑥) =
〈
𝐺1(®𝑥), . . . , 𝐺𝐾(𝜄)(®𝑥)

〉
and each 𝐺 𝑗 is wm(−→L𝜎M;N) then 𝐹 is wm(−→L𝜎M; L𝜄M),

and for all 𝑝 ∈ {1, . . . , 𝑘}: 𝐹 is strict in argument 𝑝 if 𝐺1 is.

The last result uses functions mapping to N; these can be constructed using the

observations:

4. if 𝐺(®𝑥) = 𝑛 for some 𝑛 ∈ N then 𝐺 is wm(−→L𝜎M;N);

5. if 𝐺(®𝑥) = 𝑥 𝑖𝑗 and 𝜎𝑖 = 𝜄 ∈ B and 1 ≤ 𝑗 ≤ 𝐾(𝜄), then 𝐺 is wm(−→L𝜎M;N), and 𝐺 is strict

in argument 𝑖 if 𝑗 = 1;



70 Higher-Order Tuple Interpretations

6. if 𝐺(®𝑥) = 𝑓 (𝐺1(®𝑥), . . . , 𝐺𝑛(®𝑥)) and all 𝐺 𝑗 are wm(−→L𝜎M;N) and 𝑓 is wm(N, . . . ,N;N),
then 𝐺 is wm(−→L𝜎M;N), and for all 𝑝 ∈ {1, . . . , 𝑘}: 𝐺 is strict in argument 𝑝 if, for

some 𝑗 ∈ {1, . . . , 𝑛}: 𝐺 𝑗 is strict in argument 𝑝 and 𝑓 is strict in argument 𝑗;

7. if 𝐺(®𝑥) = 𝐹(®𝑥)𝑗 and 𝐹 is wm(−→L𝜎M; L𝜄M) and 1 ≤ 𝑗 ≤ 𝐾(𝜄) then 𝐺 is wm(−→L𝜎M;N) and if

𝑗 = 1 then for all 𝑝 ∈ {1, . . . , 𝑘}: 𝐺 is strict in argument 𝑝 if 𝐹 is.

Proof Sketch. We easily see that in each case, 𝐹 or 𝐺 is in the given function space. To

show weak monotonicity, assume given both ®𝑥 and ®𝑦 such that each 𝑥 𝑖 ⊒ 𝑦 𝑖 ; we then

check for all cases that 𝐹(®𝑥) ⊒ 𝐹( ®𝑦), or 𝐺(®𝑥) ≥ 𝐺( ®𝑦). For the strictness conditions, we

assume that 𝑥𝑝 ⊐ 𝑦𝑝 and similarly check all cases. □

The reader may recognise items (4–6): these largely correspond to the sufficient

conditions for a weakly monotonic function 𝑆 in Lemma 3.3.4. For the function 𝑓 in item

(6), we could for instance choose +, ∗ or max, where + is strict in all arguments. However,

we can get beyond Lemma 3.3.4 by using the other items; for example, applying variables

to each other.

Now, if a function 𝑓 is wm(−→L𝜎M; L𝜏M) and 𝑓 is strict in all its arguments, then

we easily see that the function 𝑑1 ↦→ · · · ↦→ 𝑑𝑘 ↦→ 𝑓 (𝑑1, . . . , 𝑑𝑘) is an element of

L𝜎1 ⇒ . . . ⇒ 𝜎𝑘 ⇒ 𝜏M. To illustrate how this can be used in practice, we show mono-

tonicity of 𝒥map of Example 4.1.14:

Example 4.3.2. Suppose

𝒥map(𝐹, 𝑞) = (𝐹(
〈
𝑞c , 𝑞m

〉
)c + 𝑞l ∗ 𝐹(

〈
𝑞c , 𝑞m

〉
)c + 𝑞l + 1, 𝑞l, 𝐹(

〈
𝑞c , 𝑞m

〉
)l)

By (5), the functions (𝐹, 𝑞) ↦→ 𝑞𝑖 are wm(Lnat ⇒ natM, LlistM;N) for 𝑖 ∈ {c, l,m} and

moreover, (𝐹, 𝑞) ↦→ 𝑞c is strict in argument 2. Hence, by (3), (𝐹, 𝑞) ↦→
〈
𝑞c , 𝑞m

〉
is

wm(Lnat ⇒ natM, LlistM; LnatM) and strict in argument 2. Therefore, by (2), (𝐹, 𝑞) ↦→
𝐹(

〈
𝑞c , 𝑞m

〉
) is wm(Lnat ⇒ natM, LlistM; LnatM) and strict in both arguments. Hence, by (7),

(𝐹, 𝑞) ↦→ 𝐹(
〈
𝑞c , 𝑞m

〉
)c and (𝐹, 𝑞) ↦→ 𝐹(

〈
𝑞c , 𝑞m

〉
)l are wm(Lnat ⇒ natM, LlistM;N) and the

former is strict in both arguments. Continuing like this, it is not hard to see how we can

iteratively prove that

(𝐹, 𝑞) ↦→ (𝐹(
〈
𝑞c , 𝑞m

〉
)c + 𝑞l ∗ 𝐹(

〈
𝑞c , 𝑞m

〉
)c + 𝑞l + 1, 𝑞l, 𝐹(

〈
𝑞c , 𝑞m

〉
)l)

is wm(Lnat ⇒ natM, LlistM; LlistM) and strict in both arguments, which immediately gives

𝒥map ∈ L(nat ⇒ nat) ⇒ list ⇒ listM.

In practice, it is usually not needed to write such an elaborate proof: Lemma 4.3.1

essentially tells us that if a function is built exclusively using variables and variable

applications, projections 𝐹(®𝑥)𝑗 , constants, and weakly monotonic operators over the



4.3 Creating strongly monotonic interpretation functions 71

natural numbers, then that function is weakly monotonic; we only need to check that

the cost component indeed increases if one of the variables 𝑥 𝑖 is increased.

Unfortunately, while Lemma 4.3.1 is useful for rules like the ones for map, it is not

enough to handle functions like foldl, where the same function is repeatedly applied on

a term. As foldl-like functions occur more often in higher-order rewriting, we should

also address this.

To handle iteration, we define: for a function 𝑄 ∈ 𝐴 −→ 𝐴 and natural number 𝑛, let

𝑄𝑛(𝑎) indicate repeated function application; that is,𝑄0(𝑎) = 𝑎 and𝑄𝑛+1(𝑎) = 𝑄𝑛(𝑄(𝑎)).

Lemma 4.3.3. Suppose 𝐹 is wm(−→L𝜎M, L𝜏 ⇒ 𝜏M) and 𝐺 is wm(−→L𝜎M;N). Suppose that for

all 𝑢1 ∈ L𝜎1M, . . . , 𝑢𝑘 ∈ L𝜎𝑘M and 𝑣 ∈ L𝜏M we have 𝐹(𝑢1, . . . , 𝑢𝑘 , 𝑣) ⊒𝜏 𝑣. Under these

assumptions, the function: (𝑥1, . . . , 𝑥𝑘) ↦→ 𝐹(𝑥1, . . . , 𝑥𝑘)𝐺(𝑥1 ,...,𝑥𝑘)
is wm(−→L𝜎M, L𝜏 ⇒ 𝜏M).

Proof. Let 𝑄 indicate the function (𝑥1, . . . , 𝑥𝑘 , 𝑦) ↦→ 𝐹(𝑥1, . . . , 𝑥𝑘)𝐺(𝑥1 ,...,𝑥𝑘)(𝑦). We first

note that the image of 𝑄 is contained in L𝜏 ⇒ 𝜏M. So let 𝑢1 ∈ L𝜎1M, . . . , 𝑢𝑘 ∈ L𝜎𝑘M. Since

𝐹 ∈ L𝜏 ⇒ 𝜏M ⊆ L𝜏M −→ L𝜏M, by definition of repeated function application the function

𝐹(𝑢1, . . . , 𝑢𝑘)𝐺(𝑢1 ,...,𝑢𝑘)
is in L𝜏M −→ L𝜏M as well. We must show that for all 𝑣, 𝑣′ ∈ L𝜏M, if

𝑣 ⊐𝜏 𝑣
′
then

𝑄(𝑢1, . . . , 𝑢𝑘 , 𝑣) = 𝐹(𝑢1, . . . , 𝑢𝑘)𝐺(𝑢1 ,...,𝑢𝑘)(𝑣)
⊐𝜏 𝐹(𝑢1, . . . , 𝑢𝑘)𝐺(𝑢1 ,...,𝑢𝑘)(𝑣′)
= 𝑄(𝑢1, . . . , 𝑢𝑘 , 𝑣

′)

We will show this by induction on the natural number 𝐺(𝑢1, . . . , 𝑢𝑘).

• If 𝐺(𝑢1, . . . , 𝑢𝑘) = 0 then 𝐹(𝑢1, . . . , 𝑢𝑘)𝐺(𝑢1 ,...,𝑢𝑘)(𝑣) = 𝑣 ⊐𝜏 𝑣
′
by assumption, which

= 𝐹(𝑢1, . . . , 𝑢𝑘)𝐺(𝑢1 ,...,𝑢𝑘)(𝑣′).

• If 𝐺(𝑢1, . . . , 𝑢𝑘) = 𝑛 + 1 then note that, because 𝐹(𝑢1, . . . , 𝑢𝑘) ∈ L𝜏 ⇒ 𝜏M (so this de-

fines a strongly monotonic function), we have 𝐹(𝑢1, . . . , 𝑢𝑘 , 𝑣) ⊐𝜏 𝐹(𝑢1, . . . , 𝑢𝑘 , 𝑣
′).

Hence,

𝐹(𝑢1, . . . , 𝑢𝑘)𝐺(𝑢1 ,...,𝑢𝑘)(𝑣) = 𝐹(𝑢1, . . . , 𝑢𝑘)𝑛(𝐹(𝑢1, . . . , 𝑢𝑘 , 𝑣))

(by definition), ⊐𝜏 𝐹(𝑢1, . . . , 𝑢𝑘)𝑛(𝐹(𝑢1, . . . , 𝑢𝑘 , 𝑣
′)) by the induction hypothesis.

This suffices, as this equals 𝐹(𝑢1, . . . , 𝑢𝑘)𝐺(𝑢1 ,...,𝑢𝑘)(𝑣′).

It remains to be shown that𝑄 is weakly monotonic in its first 𝑘 arguments. So suppose

𝑢′
1
∈ L𝜎1M, . . . , 𝑢′𝑘 ∈ L𝜎𝑘M and each 𝑢𝑖 ⊐𝜎𝑖 𝑢

′
𝑖 . We must show that 𝑄(𝑢1, . . . , 𝑢𝑘) ⊐𝜏⇒𝜏

𝑄(𝑢′
1
, . . . , 𝑢′𝑘). We achieve this by proving that

for all 𝑛, 𝑚 with 𝑛 ≥ 𝑚, 𝐹(𝑢1, . . . , 𝑢𝑘)𝑛 ⊒𝜏⇒𝜏 𝐹(𝑢′
1
, . . . , 𝑢′𝑘)

𝑚
(4.2)



72 Higher-Order Tuple Interpretations

Then 𝑄(𝑢1, . . . , 𝑢𝑘) ⊒𝜏⇒𝜏 𝑄(𝑢′
1
, . . . , 𝑢′𝑘) follows because 𝐺(𝑢1, . . . , 𝑢𝑘) ≥ 𝐺(𝑢′

1
, . . . , 𝑢′𝑘) is

a consequence of the weak monotonicity of 𝐺.

We prove Statement 4.2 by induction on 𝑛. We have the following cases.

1. If 𝑛 = 0, then also 𝑚 = 0. For all 𝑣 ∈ L𝜏M we have 𝐹(𝑢1, . . . , 𝑢𝑘)𝑛(𝑣) = 𝑣 =

𝐹(𝑢′
1
, . . . , 𝑢′𝑘)

𝑚
.

2. For the inductive case, we let 𝑛 = 𝑖 + 1 = 𝑚 and consider 𝑣 ∈ L𝜏M. We must show

𝐹(𝑢1, . . . , 𝑢𝑘)𝑖(𝐹(𝑢1, . . . , 𝑢𝑘 , 𝑣)) ⊒𝜏 𝐹(𝑢′
1
, . . . , 𝑢′𝑘)

𝑖(𝐹(𝑢′
1
, . . . , 𝑢′𝑘 , 𝑣))

But we know that 𝐹(𝑢1, . . . , 𝑢𝑘 , 𝑣) ⊒𝜏 𝐹(𝑢′
1
, . . . , 𝑢′𝑘 , 𝑣); this inequality holds be-

cause 𝐹 is in wm(−→L𝜎M; L𝜏 ⇒ 𝜏M). Since we have already seen that, for all 𝑖,

𝐹(𝑢1, . . . , 𝑢𝑘)𝑖 ∈ L𝜏 ⇒ 𝜏M and is therefore also a weakly monotonic function,

therefore 𝐹(𝑢1, . . . , 𝑢𝑘)𝑖(𝐹(𝑢1, . . . , 𝑢𝑘 , 𝑣)) ⊒𝜏 𝐹(𝑢1, . . . , 𝑢𝑘)𝑖(𝐹(𝑢′
1
, . . . , 𝑢′𝑘 , 𝑣)). By the

induction hypothesis, we get 𝐹(𝑢1, . . . , 𝑢𝑘)𝑖 ⊒𝜏⇒𝜏 𝐹(𝑢′
1
, . . . , 𝑢′𝑘)

𝑖
. By definition, this

means that we have

𝐹(𝑢1, . . . , 𝑢𝑘)𝑖(𝐹(𝑢′
1
, . . . , 𝑢′𝑘 , 𝑣)) ⊒𝜏 𝐹(𝑢′

1
, . . . , 𝑢′𝑘)

𝑖(𝐹(𝑢′
1
, . . . , 𝑢′𝑘 , 𝑣))

= 𝐹(𝑢′
1
, . . . , 𝑢′𝑘)

𝑚(𝑣)

The proof is complete by transitivity of ⊒𝜏.

3. Now we consider the case where 𝑛 = 𝑖 + 1 and 𝑖 ≥ 𝑚. As before, we take 𝑣 ∈ L𝜏M.
We must show

𝐹(𝑢1, . . . , 𝑢𝑘)𝑖(𝐹(𝑢1, . . . , 𝑢𝑘 , 𝑣)) ⊒𝜏 𝐹(𝑢′
1
, . . . , 𝑢′𝑘)

𝑚(𝑣)

By assumption, 𝐹(𝑢1, . . . , 𝑢𝑘 , 𝑣) ⊒𝜏 𝑣. As we saw before, 𝐹(𝑢1, . . . , 𝑢𝑘)𝑖 also weakly

monotonic, hence the following inequality holds:

𝐹(𝑢1, . . . , 𝑢𝑘)𝑖(𝐹(𝑢1, . . . , 𝑢𝑘 , 𝑣)) ⊒𝜏 𝐹(𝑢1, . . . , 𝑢𝑘)𝑖(𝑣)

By the induction hypothesis, we finally get 𝐹(𝑢1, . . . , 𝑢𝑘)𝑖(𝑣) ⊒𝜏 𝐹(𝑢′
1
, . . . , 𝑢′𝑘)

𝑚(𝑣).

□

With this in hand, we can orient the foldl rules of Example 2.1.11.

Example 4.3.4. For 𝐹 ∈ Lnat ⇒ nat ⇒ natM and 𝑥, 𝑦 ∈ LnatM, let Helper be defined by:

Helper(𝐹, 𝑦, 𝑥) =
〈
𝐹(𝑥, 𝑦)c ,max(𝑥s, 𝐹(𝑥, 𝑦)s)

〉



4.3 Creating strongly monotonic interpretation functions 73

Then Helper is wm(Lnat ⇒ nat ⇒ natM, LnatM, LnatM; LnatM) and strict in its third argument

by Lemma 4.3.1( 1, 2, 3, 6, 7 ). Hence, Helper is a member of

wm(Lnat ⇒ nat ⇒ natM, LnatM; Lnat ⇒ natM).

Since, in general, costofnat(𝐹(𝑥, 𝑦)) ≥ costofnat(𝑥) by Lemma 4.2.6, we have that

Helper(𝐹, 𝑦, 𝑥) ⊒nat 𝑥. Therefore, by using Lemma 4.3.3, we see that the function

(𝐹, 𝑧, 𝑞) ↦→ Helper(𝐹,
〈
𝑞c , 𝑞m

〉
)𝑞l(𝑧)

is weakly monotonic, and strict in its second argument. This ensures that the following

function is strongly monotonic:

𝒥foldl = λ𝐹𝑧𝑞. Helper(𝐹,
〈
𝑞c , 𝑞m

〉
)𝑞l(

〈
1 + 𝑞c + 𝑞l + 𝐹(0nat, 0nat)c + 𝑧c , 𝑧s

〉
)

Now we can show that this interpretation function is compatible with the rules for

foldl in Example 2.1.11.

1. First, we have

⟦foldl 𝐹 𝑧 []⟧ = ⟨1 + 𝐹(0nat, 0nat)c + 𝑧c , 𝑧s⟩
⊐nat ⟨𝑧c , 𝑧s⟩
= 𝑧,

which orients the first rule.

2. For the second rule, we use the general property that

𝐹(addc(𝑛, 𝑥), 𝑦) ⊒ addc(𝑛, 𝐹(𝑥, 𝑦)) (4.3)

provided by Lemma 4.2.4. We define 𝐴 and 𝐵 as the following

𝐴 ≔
〈
𝑥c + 𝑞c ,max(𝑥s, 𝑞m)

〉
𝐵 ≔ 1 + 𝑞c + 𝑞l + 𝐹(0nat, 0nat)c + 𝑧c



74 Higher-Order Tuple Interpretations

Then we have ⟦foldl(𝐹, 𝑧, 𝑥 : 𝑞)⟧ = Helper(𝐹, 𝐴)𝑞l+1(⟨𝐵 + 𝑥c + 1, 𝑧s⟩), which:

⊐nat Helper(𝐹, 𝐴)𝑞l(Helper(𝐹, 𝐴, ⟨𝐵, 𝑧s⟩))
because ⟨𝐵 + 𝑥c + 1, 𝑧s⟩ ⊐nat ⟨𝐵, 𝑧s⟩

⊒nat Helper(𝐹, 𝐴)𝑞l(𝐹(⟨𝐵, 𝑧s⟩ , 𝐴))
because Helper(𝐹, 𝑛, 𝑚) ⊒nat 𝐹(𝑚, 𝑛)

⊐nat Helper(𝐹,
〈
𝑞c , 𝑞m

〉
)𝑞l(𝐹(⟨𝐵, 𝑧s⟩ , 𝑥))

because 𝐴 ⊒nat
〈
𝑞c , 𝑞m

〉
and 𝐴 ⊒nat 𝑥

⊒nat Helper(𝐹,
〈
𝑞c , 𝑞m

〉
)𝑞l(addcnat(1 + 𝑞c + 𝑞l + 𝐹(0nat, 0nat)c , 𝐹(𝑧, 𝑥)))

by Equation (4.3)

= ⟦foldl(𝐹, (𝐹 𝑧 𝑥), 𝑞)⟧.

The interpretation in Example 4.3.4 may seem too convoluted for practical use: it

does not obviously tell us something like “𝐹 is applied a linear number of times on

terms whose size is bounded by 𝑛”. However, its value becomes clear when we plug in

specific bounds for 𝐹.

Example 4.3.5. The function sum, defined in Example 3.1.1, could alternatively be

defined in terms of foldl: let sum(𝑞) → foldl(𝜆𝑥𝑦. (add 𝑥 𝑦), 0, 𝑞). To find an inter-

pretation for this function, we use the interpretation functions for 0, s, [], cons and

add from Example 3.3.5. Then ⟦𝜆𝑥𝑦. (add 𝑥 𝑦)⟧ = 𝑑, 𝑒 ↦→ (𝑑c + 𝑒c + 𝑒s + 3, 𝑑s + 𝑒s).
We easily see that Helper(⟦𝜆𝑥𝑦. (add 𝑥 𝑦)⟧,

〈
𝑞c , 𝑞m

〉
, 𝑧) =

〈
𝑧c + 𝑞c + 𝑞m + 3, 𝑧s + 𝑞m

〉
.

Importantly, the iteration variable 𝑧 is used in a very innocent way: although its

size is increased, this increase is by the same number (𝑞m) in every iteration step.

Moreover, the length of 𝑧 does not affect the evaluation cost. Hence, we can choose

⟦sum(𝑞)⟧ =
〈
5 + 𝑞c + 𝑞l + 𝑞l ∗ (𝑞c + 𝑞m + 3), 𝑞l ∗ 𝑞m

〉
. This is close to the interpretation

from Example 3.3.5 but differs both in a small overhead for the 𝛽-reductions, and because

our interpretation of foldl slightly overestimates the true cost.

This approach can be used to obtain bounds for any function that may be defined

in terms of foldl, which includes many first-order functions. For example, with a small

change to the signature of foldl, we could let rev(𝑞) = foldl(𝜆𝑥𝑦. (𝑦 : 𝑥), [], 𝑞); however,

this would necessitate corresponding changes in the interpretation of foldl.

4.4 Finding Higher-Order Complexity Bounds

A key notion in complexity analysis of first-order rewriting is runtime complexity,

which we studied in Chapter 3. In this section, we define a conservative notion of

runtime complexity for higher-order term rewriting and show how higher-order strongly

monotonic interpretations can be used to find runtime complexity bounds.



4.4 Finding Higher-Order Complexity Bounds 75

It is not obvious how this notion translates to the higher-order setting. It may be

tempting to directly apply the definition to a TRS, but a “ground constructor term” (or

perhaps “closed constructor term”) is not a natural concept in higher-order rewriting;

it does not intuitively capture data. Moreover, we would like to create a robust notion

which can be extended to simple functional programming languages, so which is not

subject to minor language difference like whether partial application of function symbols

is allowed.

Instead, there are two obvious ways to capture the idea of input in higher-order

rewriting:

• closed irreducible terms: this includes all ground constructor terms, but also for

instance 𝜆𝑥. add 0 𝑥 (but not 𝜆𝑥. add 𝑥 0, since this can be rewritten following the

rules in Example 3.1.1);

• data: this includes only ground constructor terms with no higher-order subterms.

As we observed in Example 4.1.1, the size of a higher-order term does not capture

its behavior. Hence, a notion of runtime complexity using closed irreducible terms

is not obviously meaningful—and might be closer to derivational complexity due to

defined symbols inside abstractions. Therefore, we here take the conservative choice

and consider data terms, as in Definition 2.1.13.

Recall that, in practice, a sort is defined by its data constructors. For example,

nat is defined by 0 and s, and list by [] and cons. In typical examples of first- and

higher-order term rewriting systems, rules are defined to exhaustively pattern match on

all constructors for a sort.

With this definition, we can conservatively extend the original notion of runtime

complexity, as in Section 3.1, to be applicable to both first- and higher-order term

rewriting.

Note that if f(𝑑1, . . . , 𝑑𝑘) is a basic term, then f : 𝜄1 ⇒ · · · ⇒ 𝜄𝑘 ⇒ 𝜏 with all 𝜄𝑖 base

types. Hence, higher-order runtime complexity considers the same (first-order) notion

of basic terms as the first-order case; terms such as map(𝐹, 𝑠) or even map(𝜆𝑥. s(𝑥), [])
are not basic. One might reasonably question whether such a first-order notion is useful

when studying the complexity of higher-order term rewriting. However, we argue that it

is: runtime complexity aims to address the length of computations that begin at a typical

starting point. When performing a full program analysis of a TRS, the computation will

still typically start in a basic term, for instance; the entry-point symbol main applied to

some user input 𝑑1, . . . , 𝑑𝑘 .



76 Higher-Order Tuple Interpretations

Example 4.4.1 (Extrec). We consider a TRS from the Termination Problem Database,

v11.0 [41].

𝑥 + 0 → 𝑥 rec 0 𝑦 𝐹 → 𝑦

𝑥 + s(𝑦) → s(𝑥 + 𝑦) rec s(𝑥) 𝑦 𝐹 → 𝐹 𝑥 (rec 𝑥 𝑦 𝐹)
𝑥 × 𝑦 → rec 𝑦 0 (𝜆𝑛.𝜆𝑚. 𝑥 + 𝑚)

Here, rec : nat ⇒ nat ⇒ (nat ⇒ nat ⇒ nat) ⇒ nat. The only basic terms have the form

s𝑛 0 + s𝑚(0) or s𝑛(0) × s𝑚(0). Using our method, we obtain cubic runtime complexity; to

be precise: 𝒪(𝑚2 ∗ 𝑛).

𝒥0 = ⟨0, 0⟩
𝒥s = λ𝑥. ⟨𝑥c , 𝑥s + 1⟩
𝒥+ = λ𝑥𝑦.

〈
𝑥c + 𝑦c + 𝑦s + 1, 𝑥s + 𝑦s

〉
𝒥× = λ𝑥𝑦.

〈
1 + 𝑦s ∗ (𝑥c + 𝑦c + 𝑥s ∗ (𝑦s + 1)/2 + 3), 𝑥s ∗ 𝑦s

〉
𝒥rec = λ𝑥𝑦𝐹. Helper(𝑥, 𝐹)𝑥s(

〈
1 + 𝑥c + 𝑦c + 𝑥s + 𝐹(0nat, 0nat)c , 𝑦s

〉
)

Helper(𝑥, 𝐹) = 𝑧 ↦→ ⟨𝐹(𝑥, 𝑧)c ,max(𝑧s, 𝐹(𝑥, 𝑧)s)⟩

Checking compatibility conditions for this interpretation is analogous to the foldl case,

see [69, Section A.3].

In the extra examples below we show that our technique can be used to derive

general information about the complexity of higher-order systems (and additionally

prove their termination, as we have seen in this chapter with the compatibility theorem).

Example 4.4.2 (Filter). The next example also comes from the Termination Problem

Database, version 11.0 [41].

rand(𝑥) → 𝑥 filter(𝐹, []) → []
rand(s(𝑥)) → rand(𝑥) filter(𝐹, 𝑥 : 𝑞) → consif(𝐹 𝑥, 𝑥, filter(𝐹, 𝑞))

bool(0) → false consif(true, 𝑥, 𝑞) → 𝑥 : 𝑞

bool(s(0)) → true consif(false, 𝑥, 𝑞) → 𝑞



4.4 Finding Higher-Order Complexity Bounds 77

We let LnatM = N2

and LlistM = N3

as before, and additionally let LbooleanM = N (so

only a cost component and no size components). We let:

⟦true⟧ = ⟨0⟩ ⟦s(𝑥)⟧ = ⟨𝑥c , 𝑥s + 1⟩
⟦bool(𝑥)⟧ = ⟨𝑥c + 1⟩
⟦false⟧ = ⟨0⟩ ⟦[]⟧ = ⟨0, 0, 0⟩

⟦rand(𝑥)⟧ = ⟨1 + 𝑥c + 𝑥s, 𝑥s⟩
⟦0⟧ = ⟨0, 0⟩ ⟦𝑥 : 𝑞⟧ =

〈
𝑥c + 𝑞c , 𝑞l + 1,max(𝑥s, 𝑞m)

〉
⟦consif(𝑧, 𝑥, 𝑞)⟧ =

〈
𝑧c + 𝑥c + 𝑞c + 1, 𝑞l + 1,max(𝑥s, 𝑞m)

〉
⟦filter(𝐹, 𝑞)⟧ =

〈
1 + (𝑞l + 1) ∗ (2 + 𝑞c + 𝐹(

〈
𝑞c , 𝑞m

〉
)c), 𝑞l, 𝑞m

〉
.

It is easy to see that monotonicity requirements are satisfied. Notice that whenever 𝑞

is a data term, then applying filter(𝐹) on 𝑞 does not increase the list’s size or maximum

element. Therefore, we might think of the complexity of this operation as roughly

𝒪
(
𝑞l ∗ 𝐹(𝑞m)

)
. In Chapter 6, we deal with a more formal notion of “higher-order

polynomial time”.

Example 4.4.3. Our final example also comes from the termination problem database.

This example seems to be designed to calculate a function’s derivative. It is worth noting

that all symbols other than der are constructors.

der(𝜆𝑥. 𝑦) → 𝜆𝑧. 0
der(𝜆𝑥. sin(𝑥)) → 𝜆𝑧. cos(𝑧)

der(𝜆𝑥. 𝑥) → 𝜆𝑧. 1
der(𝜆𝑥. cos(𝑥)) → 𝜆𝑧.min(cos(𝑧))

der(𝜆𝑥. add(𝐹 𝑥, 𝐺 𝑥)) → 𝜆𝑧. add(der(𝐹) 𝑧, der(𝐺) 𝑧)
der(𝜆𝑥. times(𝐹 𝑥, 𝐺 𝑥)) → 𝜆𝑧. add(times(der(𝐹) 𝑧, 𝐺 𝑧), times(𝐹 𝑧, der(𝐺) 𝑧))

der(𝜆𝑥. ln(𝐹 𝑥)) → 𝜆𝑧. div(der(𝐹) 𝑧, 𝐹 𝑧)

With der : (real ⇒ real) ⇒ real ⇒ real. We let LrealM = N3

where the first component

indicates cost, and the second and third component roughly indicate the number of

plus/times/ln occurrences and the number of times/ln occurrences respectively. We will

denote 𝑥s for 𝑥2, and 𝑥★ for 𝑥3. We use the following interpretation:

⟦0⟧ = ⟨0, 0, 0⟩ ⟦add(𝑥, 𝑦)⟧ =
〈
𝑥c + 𝑦c , 𝑥s + 𝑦s + 1, 𝑥★ + 𝑦★

〉
⟦1⟧ = ⟨0, 0, 0⟩⟦times(𝑥, 𝑦)⟧ =

〈
𝑥c + 𝑦c , 𝑥s + 𝑦s + 1, 𝑥★ + 𝑦★ + 1

〉
⟦cos(𝑥)⟧ = 𝑥 ⟦ln(𝑥)⟧ = ⟨𝑥c , 𝑥s + 1, 𝑥★ + 1⟩
⟦sin(𝑥)⟧ = 𝑥



78 Higher-Order Tuple Interpretations

Finally, we set the following interpretation for der, by setting 𝐻(𝑧) ≔ 1 + 𝐹(𝑧)c + 2 ∗
𝐹(𝑧)s + 𝐹(𝑧)★ ∗ 𝐹(𝑧)c

⟦der(𝐹)⟧ = 𝑧 ↦→ ⟨𝐻(𝑧), 𝐹(𝑧)s ∗ (𝐹(𝑧)★ + 1), 𝐹(𝑧)★ ∗ (𝐹(𝑧)★ + 1)⟩

Notice that since the only defined symbol in this system is der, its runtime complexity

is actually 𝒪 (1). No “start” term is included in the system. However, this interpretation

does show the termination of the system, and given a specific function of interest 𝐹

built from the basic functions cos, sin, . . . we can utilize our interpretation to bound the

derivation height of terms of the shape der(𝐹).

Notice that with this notion of runtime complexity the results we proved in Lem-

mas 3.3.9 and 3.6.3 easily carry over to this higher-order setting.

4.5 Conclusion

In this chapter, we have introduced tuple interpretations for higher-order term rewriting.

This includes providing a new definition of strongly monotonic algebras, a compatibility

theorem, a function MakeSM that orients 𝛽- and 𝜂-reductions, and several lemmas to prove

monotonicity of interpretation functions. We also show that for certain restrictions on

interpretation functions, we find linear, polynomial or exponential bounds on runtime

complexity (for a simple but natural definition of higher-order runtime complexity).

Our type-based, semantical approach allows us to relate various “size” notions

(e.g., list length, tree depth, term size, etc.) to reduction cost, and thus offers a more

fine-grained analysis than traditional notions like runtime complexity. Most importantly,

we can express the complexity of a higher-order function in terms of the behavior of its

(function) arguments. In the future, we hope that this could be used towards a truly

higher-order complexity notion.

A clear weakness we discovered was that our method can only handle “plain

function-passing” systems [75]. That is, we typically do not succeed on systems where

a variable of function type occurs inside a subterm of base type, and occurs outside

this subterm in the right-hand side. Examples of such systems are ordrec, which has a

rule ordrec (lim 𝐹) 𝑥 𝐺 𝐻 → 𝐻 𝐹 (𝜆𝑛. ordrec (𝐹 𝑛) 𝑥 𝐺 𝐻) with lim : [nat ⇒ ord] ⇒ ord, and

apply, which has a rule lapply(𝑥, fcons(𝐹, 𝑞)) → 𝐹 lapply(𝑥, 𝑞) with fcons : [(a ⇒ a) ⇒
listf] ⇒ listf.



Chapter 5

Higher-Order Tuple Interpretations for
Call-by-Value

5.1 Call-by-Value Higher-order Rewriting

In Chapter 4, we considered full higher-order term rewriting, so without an evaluation

strategy. However, this is not a very realistic setting, especially to eventually extend

the methodology to various functional programming languages. In practice, program

evaluation is deterministic, i.e., it follows a specific strategy such as call-by-value

evaluation. Reduction below a 𝜆-binder is also not usually allowed. The difference can

be substantial: for instance for a pair of rules f 𝑥 0 → 𝑥, f 𝑥 (s 𝑦) → f (pair 𝑥 𝑥) 𝑦, if 𝑥 is

instantiated by a term that is not in normal form, the complexity is linear if we evaluate

call-by-value, and exponential with an arbitrary evaluation strategy. Additionally, in

complexity analysis of first-order term rewriting, considering innermost evaluation is

commonplace [88, 89].

In this chapter, our goal is to extend our techniques from Chapter 4 to weak call-by-
value reduction. To our knowledge, this is the first complexity method for higher-order

term rewriting with an evaluation strategy. While the restriction of the strategy leads

to tighter complexity bounds, the definitions needed to obtain these bounds are much

more intricate, largely due to the potential for rules and 𝛽-redexes of higher type. We

believe that this will bring the method of weakly monotonic algebras closer to the reality

of functional program analysis.

We are interested in a restricted evaluation strategy, which limits reduction to terms

whose immediate subterms that are values:

Definition 5.1.1. Let R be a term rewriting system. A term 𝑠 is a value whenever 𝑠 is:

• of the form f 𝑣1 . . . 𝑣𝑛 , with each 𝑣𝑖 a value and there is no rule f ℓ1 . . . ℓ𝑘 → 𝑟 with

𝑘 ≤ 𝑛;



80 Higher-Order Tuple Interpretations for Call-by-Value

• an abstraction, i.e., 𝑠 = 𝜆𝑥. 𝑡.

Example 5.1.2. In this example, we collect some common higher-order functions

encoded as rules: map applies a function to each element of a list; comp composes

two functions, app is the application functional, and rec encodes primitive recursion.

Their monomorphic signature is defined as expected with functional arguments of type

nat ⇒ nat and lists having type list.

map 𝐹 [] → [] comp 𝐹 𝐺 → 𝜆𝑥. 𝐹 (𝐺 𝑥)
map 𝐹 (cons 𝑥 𝑞) → cons (𝐹 𝑥) (map 𝐹 𝑞) app 𝐹 → 𝜆𝑥. 𝐹 𝑥

rec 0 𝑦 𝐹 → 𝑦 rec (s 𝑥) 𝑦 𝐹 → 𝐹 𝑥 (rec 𝑥 𝑦 𝐹)

Example 5.1.3. Some first-order functions over natural numbers:

dbl 0 → 0 add 𝑥 0 → 0 mult 𝑥 0 → 0

dbl (s 𝑥) → s(s (dbl 𝑥)) add 𝑥 (s 𝑦) → s (add 𝑥 𝑦) mult 𝑥 (s 𝑦) → add 𝑥 (mult 𝑥 𝑦)

Notice that by definition ground constructor terms are values, since there is no rule

c ℓ1 . . . ℓ𝑘 → 𝑟 for any 𝑘 if c ∈ Σcon. More complex values include partially applied func-

tions and lambda-terms; for example, add 0 or a list of functions [add 0;𝜆𝑥.𝑥; mult 0; dbl].
In the weak call-by-value reduction strategy defined below, we shall not reduce under

abstractions.

Definition 5.1.4. The higher-order weak call-by-value rewrite relation →𝑣 induced by

R is defined as follows:

• f (ℓ1𝛾) . . . (ℓ𝑘𝛾) →𝑣 𝑟𝛾, if f ℓ1 . . . ℓ𝑘 → 𝑟 ∈ R and each ℓ𝑖𝛾 is a value;

• (𝜆𝑥. 𝑠) 𝑣 →𝑣 𝑠[𝑥 ≔ 𝑣], if 𝑣 is a value;

• 𝑠 𝑡 →𝑣 𝑠
′ 𝑡 if 𝑠 →𝑣 𝑠

′
; and 𝑠 𝑡 →𝑣 𝑠 𝑡

′
if 𝑡 →𝑣 𝑡

′
.

Notice that when instantiating rules we use value substitutions, that is, their image

for any nontrivial variable is always a value. All reductions in this chapter are weak

call-by-value. So we drop the v from the arrow, and 𝑠 → 𝑡 should be read as 𝑠 →𝑣 𝑡. We

use explicit notation whenever confusion may arise.

5.2 Cost–Size Overview

In this section we sketch the broad idea of the methodology, focusing on intuition.

To start, every term is associated with a size. For a closed term of base type, this size

could for instance be the number of symbols in its normal form; or a pair of integers, or



5.2 Cost–Size Overview 81

a set of terms (e.g., the set of all normal forms of the term). We only require that each

base type is associated with a quasi-ordered set. For a term of higher-order type, the size

is a weakly monotonic function, which provides a bound for applications of the term.

Example 5.2.1. In the signature of 5.1.2 and 2.1.19, we may let 𝒮 𝑖𝑧𝑒(0) = 1 and

𝒮 𝑖𝑧𝑒(s 𝑡) = 1 + 𝒮 𝑖𝑧𝑒(𝑡); intuitively, the size of a ground constructor term of type nat
is the number of function symbols in it. For lists, we could let 𝒮 𝑖𝑧𝑒([]) = (0, 0) and

𝒮 𝑖𝑧𝑒(cons 𝑠 𝑡) = (𝒮 𝑖𝑧𝑒(𝑡)
1
+ 1, max(𝒮 𝑖𝑧𝑒(𝑠),𝒮 𝑖𝑧𝑒(𝑡)

2
)); intuitively, the size of a list of

numbers is the pair (list length, size of its greatest element). We could let 𝒮 𝑖𝑧𝑒(add 𝑠) be

the function that maps 𝑛 to 𝒮 𝑖𝑧𝑒(𝑠) + 𝑛, and 𝒮 𝑖𝑧𝑒(map) the function that takes a (weakly

monotonic) function 𝐹 and a pair (𝑙 , 𝑚), and returns (𝑙 , 𝐹(𝑚)); intuitively, if 𝐹 bounds

the size of the first argument, and we are given a list with maximum element of size 𝑚

and length 𝑙, then applying map to these arguments yields a list which has length 𝑙, and

elements have sizes bounded by 𝐹(𝑚).

Aside from a size, we need to calculate a cost for each term to associate a bound

on the number of steps that can be taken from a given starting term. Aside from

associating a natural number bounding this cost to each term, terms of higher type have

computational content even in normal form; hence, we should associate a cost function
to such terms: a weakly monotonic function that indicates the cost of applying this term

to a value.

Example 5.2.2 (First idea for costs). Intuitively, the number of steps to evaluate add 𝑠 𝑡
is bounded by the cost of evaluating the arguments, plus 𝒮 𝑖𝑧𝑒(𝑠) (as we easily see by

inspecting the rules defining add). Hence, we would let 𝒞 𝑜𝑠𝑡(add 𝑠 𝑡) = 𝒞 𝑜𝑠𝑡(𝑠) +
𝒞 𝑜𝑠𝑡(𝑡) +𝒮 𝑖𝑧𝑒(𝑠), and could define 𝒞 𝑜𝑠𝑡(add) = λ(𝑐1, 𝑠1), (𝑐2, 𝑠2). 𝑐1 + 𝑐2 + 𝑠1. Note that

the cost function takes a pair of values for each argument: respectively, the cost and size

of the argument.

For map, the number of steps to evaluate map 𝑠 𝑡 depends heavily on 𝑠, even if both 𝑠

and 𝑡 are values: map (𝜆𝑥.add 𝑥 0) 𝑡 will take substantially fewer steps than evaluating

map (𝜆𝑥.mult 𝑥 𝑥) 𝑡. Hence, we should take the cost function for 𝑠 into account as well as

its size. This yields 𝒞 𝑜𝑠𝑡(map) = λ(𝐹𝑐𝑜𝑠𝑡 , 𝐹𝑠𝑖𝑧𝑒), (𝑞𝑐𝑜𝑠𝑡 , (𝑙 , 𝑚)). 𝑞𝑐𝑜𝑠𝑡 + 𝑙+ 1+ 𝑙 ∗ 𝐹𝑐𝑜𝑠𝑡(0, 𝑚):
the number of steps to evaluate map 𝑠 𝑡 is bounded by the cost of evaluating 𝑡 first, then

applying 𝑠 ⟨length of list⟩ times to the largest element of 𝑡, plus the 1 + ⟨length of list⟩
steps for the evaluation of map itself. Note that since we use a call-by-value strategy, the

list 𝑞 is evaluated to a value before the map rule fires, which is why 𝐹𝑐𝑜𝑠𝑡 is given a zero

argument.

The cost for constructor applications c 𝑠1 · · · 𝑠𝑚 is always just𝒞 𝑜𝑠𝑡(𝑠1)+· · ·+𝒞 𝑜𝑠𝑡(𝑠𝑚),
since applying a constructor to terms does not lead to a further computation being done.

Examples 5.2.1 and 5.2.2 sketch an idea where 𝒮 𝑖𝑧𝑒(𝑠 𝑡) = 𝒮 𝑖𝑧𝑒(𝑠)(𝒮 𝑖𝑧𝑒(𝑡)) and

𝒞 𝑜𝑠𝑡(𝑠 𝑡) = 𝒞 𝑜𝑠𝑡(𝑠)(𝒞 𝑜𝑠𝑡(𝑡),𝒮 𝑖𝑧𝑒(𝑡)). Unfortunately, while this idea works well for sizes,



82 Higher-Order Tuple Interpretations for Call-by-Value

it has some issues for costs; most importantly, that the computational content of terms

of higher types is ignored. Although a term 𝜆𝑥.𝑠 cannot be reduced, a term such as

add (dbl 0) can be, and the cost for the dbl 0 reduction should be included. Moreover,

terms of higher type can also reduce directly even when their subterms are values; e.g.,

comp 𝑠 𝑡 or (𝜆𝑥.𝑠) 𝑡 of type nat ⇒ nat.
Hence, we will instead consider a pair of costs: each term has a cost number (a bound

on the number of steps to reduce this term to normal form), and a cost function (which

bounds the cost of applying this normal form to a value, or is unit for base-type terms).

Unfortunately, this choice necessarily imposes a more complicated definition, since a

pair cannot be applied like a function can; e.g., if the cost of 𝑠 is (12,λ(𝑥𝑐𝑜𝑠𝑡 , 𝑥𝑠𝑖𝑧𝑒). 𝑥𝑐𝑜𝑠𝑡 +
𝑥𝑠𝑖𝑧𝑒), then when computing the cost for 𝑠 𝑡, we cannot just apply the function and forget

the 12. Hence, we will define (formally in Definition 5.3.8) an alternative interpretation

of application, so that, for 𝑠 : 𝜎 ⇒ 𝜏 and 𝑡 : 𝜎, 𝒞 𝑜𝑠𝑡(𝑠 𝑡) = ( 𝒞 𝑜𝑠𝑡𝒩𝑢𝑚(𝑠) +𝒞 𝑜𝑠𝑡𝒩𝑢𝑚(𝑡) +
𝑐, fun ), where 𝒞 𝑜𝑠𝑡ℱ 𝑢𝑛(𝑠)(𝒞 𝑜𝑠𝑡ℱ 𝑢𝑛(𝑡),𝒮 𝑖𝑧𝑒(𝑡)) is the pair (𝑐, fun).
Example 5.2.3 (Cost pairs). We let 𝒞 𝑜𝑠𝑡(add) = ( 0, λ(𝑢1, 𝑛). ( 0, λ(𝑢2, 𝑚). 𝑛 ) ):
the first 0 is the “cost number” for add, which is 0 because add is in normal form;

and the function λ(𝑢1, 𝑛). ( 0, λ(𝑢2, 𝑚). 𝑛 ) takes a unit element and the size of

a value, and returns a new pair. With the rough definition of application above,

we have 𝒞 𝑜𝑠𝑡(add 𝑠) = ( 𝒞 𝑜𝑠𝑡𝒩𝑢𝑚(𝑠), λ(𝑢, 𝑛). ( 𝒮 𝑖𝑧𝑒(𝑠), u ) ). This matches the

intuition that the number of steps needed to reduce add 𝑠 to normal form is just the

number of steps needed to reduce 𝑠, and the result is a value of function type which,

if applied to a value with size 𝑛, can be normalized in 𝒮 𝑖𝑧𝑒(𝑠) steps. We obtain

𝒞 𝑜𝑠𝑡(add 𝑠 𝑡) = 𝒞 𝑜𝑠𝑡(𝑠) + 𝒞 𝑜𝑠𝑡(𝑡) + 𝒮 𝑖𝑧𝑒(𝑠) as expected.

The notation is rather cumbersome but is needed for the formal definition. In practice,

we can identify unit × 𝐴 and 𝐴 × unit with 𝐴 for any set, and use (𝑥1, . . . , 𝑥𝑛) ↦→ 𝜑

as shorthand for ( 0, λ𝑥1. ( 0, λ𝑥2. . . . 𝜑 ) ). Then we can use more palatable notation

such as 𝒞 𝑜𝑠𝑡(add) = (𝑛, 𝑚) ↦→ 𝑛, or 𝒞 𝑜𝑠𝑡(comp) = ((𝐹𝑐𝑜𝑠𝑡 , 𝐹𝑠𝑖𝑧𝑒), (𝐺𝑐𝑜𝑠𝑡 , 𝐺𝑠𝑖𝑧𝑒)) ↦→
( 2,λ𝑥𝑠𝑖𝑧𝑒 .𝐺𝑐𝑜𝑠𝑡(𝑥𝑠𝑖𝑧𝑒) + 𝐹𝑐𝑜𝑠𝑡(𝐺𝑠𝑖𝑧𝑒(𝑥𝑠𝑖𝑧𝑒)) ) for the symbol comp which admits a rule of

higher type nat ⇒ nat.

With these definitions, if we can show that (𝒞 𝑜𝑠𝑡(ℓ ),𝒮 𝑖𝑧𝑒(ℓ )) ≻ (𝒞 𝑜𝑠𝑡(𝑟),𝒮 𝑖𝑧𝑒(𝑟))
for all value instances of rules, then 𝒞 𝑜𝑠𝑡𝒩𝑢𝑚(𝑠) defines a bound on the number of steps

that can be taken to reduce 𝑠 to normal form. We can use this to define bounds on the

runtime complexity of the rewriting system – that is, on the number of steps that can

be done when starting in certain kinds of terms of a given size (as we will discuss in

Section 5.5).

Example 5.2.4. We choose 𝒮 𝑖𝑧𝑒([]), 𝒮 𝑖𝑧𝑒(cons) and 𝒮 𝑖𝑧𝑒(map) following Example 5.2.1,

and let 𝒞 𝑜𝑠𝑡([]) = 0, 𝒞 𝑜𝑠𝑡(cons) = (𝑛, 𝑚) ↦→ 0 and

𝒞 𝑜𝑠𝑡(map) = ((𝐹𝑐𝑜𝑠𝑡 , 𝐹𝑠𝑖𝑧𝑒), (𝑙 , 𝑚)) ↦→ 𝑙 ∗ 𝐹𝑐𝑜𝑠𝑡(𝑚) + 𝑙 + 1



5.3 Cost–Size Semantics for Simple Types 83

Then, for a list cons ℎ 𝑡 with 𝒮 𝑖𝑧𝑒(𝑡) = (𝑙 , 𝑚), we have

𝒮 𝑖𝑧𝑒(map 𝐹 (cons ℎ 𝑡)) = (𝑙 + 1,𝒮 𝑖𝑧𝑒(𝐹)(max(𝒮 𝑖𝑧𝑒(ℎ)), 𝑚))
= (𝑙 + 1,max(𝒮 𝑖𝑧𝑒(𝐹)(𝒮 𝑖𝑧𝑒(ℎ)),𝒮 𝑖𝑧𝑒(𝐹)(𝑚)))
= 𝒮 𝑖𝑧𝑒(cons (𝐹 ℎ) (map 𝐹 𝑡))

by weak monotonicity of 𝒮 𝑖𝑧𝑒(𝐹). Taking into account that if 𝐹, ℎ and 𝑡 are values, then

they all have a cost number of 0, we also have:

𝒞 𝑜𝑠𝑡(map 𝐹 (cons ℎ 𝑡)) = (𝑙 + 1) ∗ 𝒞 𝑜𝑠𝑡ℱ 𝑢𝑛(𝐹)(max(𝒮 𝑖𝑧𝑒(ℎ), 𝑚)) + 𝑙 + 2

> 𝒞 𝑜𝑠𝑡ℱ 𝑢𝑛(𝐹)(𝒮 𝑖𝑧𝑒(ℎ)) + 𝑙 ∗ 𝒞 𝑜𝑠𝑡ℱ 𝑢𝑛(𝐹)(𝑚) + 𝑙 + 1

= 𝒞 𝑜𝑠𝑡(cons (𝐹 ℎ) (map 𝐹 𝑡))

Hence, all value instantiations of the left-hand side of this rule both have greater cost,

and greater-than-or-equal size, to the right-hand sides. If the other rules are similarly

oriented, we can conclude that 𝒞 𝑜𝑠𝑡𝒩𝑢𝑚(𝑠) provides a bound on the reduction cost of 𝑠.

In the rest of this chapter, the ideas above will be formally defined and their

correctness proven. We will not use the elaborate names 𝒞 𝑜𝑠𝑡𝒩𝑢𝑚, 𝒮 𝑖𝑧𝑒, etc., but rather

define interpretations as tuples that contain all these components.

5.3 Cost–Size Semantics for Simple Types

In this section we build a set-theoretical cost–size semantics to the simple types in T(B).
The goal is to define a function L·M that maps each type 𝜎 ∈ T(B) to a well-founded set

L𝜎M, the cost–size interpretation of 𝜎. We start by formally defining what we mean by

cost–size sets. Recall that these notions were also introduced in Chapter 3 in the context

of first-order rewriting.

Definition 5.3.1. Given a well-founded set (𝒞, >,≳), called the cost set, and a quasi-

ordered set (𝒮,⊒), called the size set, we call 𝒞 × 𝒮 the cost–size product of (𝒞, >,≳)
and (𝒮,⊒), and its elements cost–size tuples.

Given a cost–size product 𝒞 ×𝒮, the well-foundedness of 𝒞 and quasi-ordering on 𝒮
naturally induce an order structure on the product 𝒞 × 𝒮 as follows.

Definition 5.3.2 (Product Order). Let (𝒞, >,≳) × (𝒮,⊒) be a cost–size product. Then we

define the relations ≻,≽ over 𝒞 × 𝒮 as follows: for all

〈
𝑥, 𝑦

〉
and

〈
𝑥′, 𝑦′

〉
in 𝒞 × 𝒮,

•

〈
𝑥, 𝑦

〉
≻

〈
𝑥′, 𝑦′

〉
iff 𝑥 > 𝑥′ and 𝑦 ⊒ 𝑦′, and

•

〈
𝑥, 𝑦

〉
≽

〈
𝑥′, 𝑦′

〉
iff 𝑥 ≳ 𝑥′ and 𝑦 ⊒ 𝑦′.

Next, we show that the triple (𝒞 × 𝒮,≻,≽) is well-founded.



84 Higher-Order Tuple Interpretations for Call-by-Value

Lemma 5.3.3. The triple (𝒞 × 𝒮,≻,≽) defined in Definition 5.3.2 is a well-founded set.

Proof. It follows immediately from Definition 5.3.2 that ≻,≽ are transitive and ≽ is

reflexive. To show well-foundedness of ≻ we note that the existence of an infinite chain〈
𝑥1, 𝑦1

〉
≻

〈
𝑥2, 𝑦2

〉
≻ · · · would imply 𝑥1 > 𝑥2 > · · ·, which cannot be the case since > is

well-founded. We still need to check that ≽ is compatible with ≻.

• Suppose

〈
𝑥, 𝑦

〉
≻

〈
𝑥′, 𝑦′

〉
. Since 𝑥 > 𝑥′ implies 𝑥 ≳ 𝑥′, we have

〈
𝑥, 𝑦

〉
≽

〈
𝑥′, 𝑦′

〉
.

• Suppose

〈
𝑥, 𝑦

〉
≻

〈
𝑥′, 𝑦′

〉
≽

〈
𝑥′′, 𝑦′′

〉
. Since 𝑥 > 𝑥′ ≳ 𝑥′′ implies 𝑥 > 𝑥′′ and ⊒ is

transitive, we have

〈
𝑥, 𝑦

〉
≻

〈
𝑥′′, 𝑦′′

〉
. □

We shall use product orders to induce well-founded ordering on cost–size sets. Let

us define next the requirements for the sets used for size interpretations.

Definition 5.3.4 (Type Interpretation Key). LetB be a set of base types. An interpretation
key for B, denoted 𝒥B, is a function that maps each base type 𝜄 ∈ B to a quasi-ordered

set (𝒥B(𝜄),⊒).

Example 5.3.5 (Cost–Size Tuples over natural numbers). A first example of an interpre-

tation key is that of tuples over N. For each 𝜄 ∈ B, 𝒥B/N(𝜄) is a set of the form (N𝐾(𝜄),⊒),
with 𝐾(𝜄) ≥ 1 and (𝑥1, . . . , 𝑥𝐾(𝜄)) ⊒ (𝑦1, . . . , 𝑦𝐾(𝜄)) iff 𝑥𝑖 ≥ 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝐾(𝜄). Notice

that (N𝐾(𝜄),⊒) is quasi-ordered for any choice of 𝐾(𝜄) and 𝒥B/N is completely determined

by a function mapping each 𝜄 ∈ B to 𝐾(𝜄) ∈ N.

The definition below formalizes our intuition for cost and size from Section 5.2.

Given an interpretation key 𝒥B we inductively interpret the elements of T(B) as cost–size

products.

Definition 5.3.6 (Interpretation of Types). Let 𝒥B be an interpretation key. We define

for each type 𝜎 the cost–size tuple interpretation of 𝜎 as the set L𝜎M = 𝒞𝜎 ×𝒮𝜎 where 𝒞𝜎

and 𝒮𝜎 are defined as follows (mutually with the set ℱ c
𝜎 ):

𝒞𝜎 = N × ℱ c
𝜎 𝒮𝜄 = 𝒥B(𝜄)

ℱ c
𝜄 = unit 𝒮𝜎⇒𝜏 = 𝒮𝜎 =⇒ 𝒮𝜏

ℱ c
𝜎⇒𝜏 = (ℱ c

𝜎 × 𝒮𝜎) =⇒ 𝒞𝜏

The set L𝜎M is ordered as follows:

•

〈
(𝑛, 𝑓1), 𝑓2

〉
≻

〈
(𝑚, 𝑔1), 𝑔2

〉
if 𝑛 > 𝑚, 𝑓1 ≳ 𝑔1 and 𝑓2 ⊒ 𝑔2, and

•

〈
(𝑛, 𝑓1), 𝑓2

〉
≽

〈
(𝑚, 𝑔1), 𝑔2

〉
if 𝑛 ≥ 𝑚, 𝑓1 ≳ 𝑔1 and 𝑓2 ⊒ 𝑔2.

We say a function 𝑓 is a cost (size) function whenever 𝑓 ∈ ℱ c
𝜎 ( 𝑓 ∈ 𝒮𝜎), for some type

𝜎.



5.3 Cost–Size Semantics for Simple Types 85

Lemma 5.3.7. For any type 𝜎, (𝒞𝜎 , >,≳) is well-founded and (𝒮𝜎 ,⊒) is quasi-ordered.

Therefore, L𝜎M is a cost–size product.

Proof. When 𝜎 is a base type, 𝒞𝜎 = N × unit � N and 𝒮𝜎 = 𝒥B(𝜎), so the statement is

trivially true. Let 𝜎 = 𝜏 ⇒ 𝜌, then by induction hypothesis 𝒮𝜏 and 𝒮𝜌 are quasi-ordered.

Quasi-ordering of (𝒮𝜏⇒𝜌 ,⊒) follows from the induced point-wise comparison. Well-

foundedness of (𝒞𝜎 ,≻,≽) follows from Lemma 5.3.3 by showing that ℱ c
𝜏⇒𝜌 is quasi

ordered. □

To map each term 𝑠 : 𝜎 to an element of L𝜎M (Definition 5.4.4), we need a notion of

application for cost-size tuples. More precisely, assume given a type 𝜎 ⇒ 𝜏 and cost–size

tuples f ∈ L𝜎 ⇒ 𝜏M and x ∈ L𝜎M. We define the application of f to x, denoted f · x, as

follows.

Definition 5.3.8. Let 𝜎 ⇒ 𝜏 be an arrow type, f =
〈
(𝑛, 𝑓 c), 𝑓 s〉 ∈ L𝜎 ⇒ 𝜏M, and

x = ⟨(𝑚, 𝑥c), 𝑥s⟩ ∈ L𝜎M. The semantic application of f to x, denoted f · x, is defined by:

let 𝑓 c(𝑥c , 𝑥s) = (𝑘, ℎ); then

〈
(𝑛, 𝑓 c), 𝑓 s〉 · ⟨(𝑚, 𝑥c), 𝑥s⟩ =

〈
(𝑛 + 𝑚 + 𝑘, ℎ), 𝑓 s(𝑥s)

〉
We set the semantic application to be left-associative, so 𝑓 · 𝑔 · ℎ denotes ( 𝑓 · 𝑔) · ℎ.

Example 5.3.9. Let us illustrate semantic application with a concrete example: consider

the type 𝜎 = (nat ⇒ nat) ⇒ list ⇒ list, which is the type of map defined in Example 5.1.2.

The function map takes as argument a function 𝐹:nat ⇒ nat and list 𝑞 and applies 𝐹 to each

element of 𝑞. This formalizes the cost and size ideas in Examples 5.2.1 and 5.2.2. Hence,

the cost–size interpretation of map is an element

〈
(𝑛, 𝑓 c), 𝑓 s〉

of L𝜎M. Its cost component

(𝑛, 𝑓 c) is in 𝒞𝜎 = N×ℱ c
𝜎 which is composed of a numeric and functional component. The

numeric component 𝑛 carries the cost of partial application. Meanwhile, the functional

component in ℱ c
𝜎 is parametrized by functional arguments carrying the cost and size

information of 𝐹. Indeed, Definition 5.3.6 gives us 𝑓 c
: ℱ c

nat⇒nat × 𝒮nat⇒nat =⇒ 𝒞list⇒list,

which can be written explicitly as:

the functional cost of map︷                                                                                                              ︸︸                                                                                                              ︷©­­­«(unit ×N =⇒ N × unit)︸                           ︷︷                           ︸
cost of 𝐹

× (𝒮nat =⇒ 𝒮nat)︸            ︷︷            ︸
size of 𝐹

ª®®®¬ =⇒
©­­­«N ×

unit︸︷︷︸
𝑞c

× 𝒮list︸︷︷︸
𝑞s

=⇒ N × unit


ª®®®¬

The set for the size function is somewhat simpler with 𝑓 s
: (𝒮nat =⇒ 𝒮nat) =⇒ 𝒮list =⇒

𝒮list.

Therefore, we apply f to a cost-size tuple x of the form ⟨(𝑚, 𝑥c), 𝑥s⟩ where 𝑥c
is the

cost of computing 𝐹 (so an element of ℱ c
nat⇒nat) and 𝑥s

is the size of 𝐹, so an element of

𝒮nat⇒nat. We proceed by applying the respective functions so 𝑓 c(𝑥c , 𝑥s) = (𝑘, ℎ) belongs



86 Higher-Order Tuple Interpretations for Call-by-Value

to 𝒞list⇒list and 𝑓 s(𝑥s) is in 𝒮list⇒list. We put everything together and add the numeric

components to obtain: f · x =
〈
(𝑛 + 𝑚 + 𝑘, ℎ), 𝑓 s(𝑥s)

〉
. Notice that this gives us a new

cost–size tuple with the cost component in N × (𝒞list =⇒ 𝒞list) and size component in

𝒮list =⇒ 𝒮list, which is a tuple in Llist ⇒ listM.

Observe that our intention with Definition 5.3.8 is that the semantic application

conforms with a form of “application typing rule”. A straightforward analysis on

Definition 5.3.8 shows that this is indeed the case. This is summarized in the lemma

below.

Lemma 5.3.10. If f ∈ L𝜎 ⇒ 𝜏M and x ∈ L𝜎M, then f · x belongs to L𝜏M.

Definition 5.3.6 gives us a family of cost–size sets 𝒯 = {L𝜎M}𝜎∈T(B) indexed by T(B),
and combined with Definition 5.3.8 we get a family of application operators

(𝒯 , ·) =
(
{L𝜎M}𝜎∈T(B), {·𝜎,𝜏}𝜎,𝜏∈T(B)

)
, with ·𝜎,𝜏 : L𝜎 ⇒ 𝜏M × L𝜎M −→ L𝜏M

We call the pair (𝒯 , ·) the cost–size type structure generated by the interpretation key

𝒥B. Indeed, in the next Lemma we show that such structure preserves the orderings ≻
and ≽ on cost–size tuples.

Lemma 5.3.11. The application operator is strongly monotonic in both arguments.

Proof. We need to prove the following: (i) if f ≻ g and x ≽ y, then f · x ≻ g · y; (ii) if

f ≽ g and x ≻ y, then f · x ≻ g · y; (iii) if f ≽ g and x ≽ y, then f · x ≽ g · y. Consider

cost–size tuples f , g ∈ L𝜎 ⇒ 𝜏M and x, y ∈ L𝜎M. Let f =
〈
(𝑛, 𝑓 c), 𝑓 s〉

, g =
〈
(𝑚, 𝑔c), 𝑔s〉

,

x =
〈
(𝑗 , 𝑥c), 𝑥s〉

, and y =
〈
(𝑗′, 𝑦c), 𝑦s〉

. We proceed to show (i) and observe that (ii) and

(iii) follow similar reasoning. Indeed, if f ≻ g and x ≽ y we have that 𝑛 > 𝑚, 𝑓 c ≳ 𝑔c
,

𝑓 s ⊒ 𝑔s
, 𝑗 ≥ 𝑗′, 𝑥c ≳ 𝑦c

, and 𝑥s ⊒ 𝑦s
. Let 𝑓 c(𝑥c , 𝑥s) = (𝑘, ℎ) and 𝑔c(𝑦c , 𝑦s) = (𝑘′, ℎ′), we

get:

f · x =
〈
(𝑛 + 𝑗 + 𝑘, ℎ), 𝑓 s(𝑥s)

〉
≻

〈
(𝑚 + 𝑗′ + 𝑘′, ℎ′), 𝑔s(𝑦s)

〉
= g · y

□

Remark 5.3.12. Notice that the type structure (𝒯 , ·) is nonstandard. Indeed, the intended

standard semantics given to arrow types is usually a functional space [14, Chapter 3].

So inhabitants of functional types are interpreted as functions. Since our intention with

defining cost–size type structures as above is to capture the complexity-wise behavior

of functions (defined by rewriting rules) and a cost component associated with the

computational environment, this non-standardness is expected. In the next sections we

show that even though our interpretations do not give rise to a standard semantic of

simple types, we can still prove classical lemmata for substitution and compatibility.



5.4 Cost–Size Semantics for Terms 87

Example 5.3.13. In Examples 5.1.2 and 5.1.3 we have two examples of base types: nat
and list. Values of type nat are built using the constructors 0 : nat and s : nat ⇒ nat.
Similarly, for list we have [] : list and cons : nat ⇒ list ⇒ list.

Let us give a cost–size type structure over N (Example 5.3.5) for B = {nat, list}.
Essentially, we need to choose the numbers 𝐾(nat), 𝐾(list) associated with nat and list,
respectively. To do so we take the intended size semantic of nat, list into account. Let

us set 𝐾(nat) = 1 and 𝐾(list) = 2. This exactly gives the size sets we used in Section 5.2,

and allows us to use “number of symbols” as a notion of size in a unary representation

of numbers, and (length, maximum element size) as a size notion for lists. Intuitively,

since a list is a container-like data structure we want to be able to simultaneously give

upper bounds to “the size of the container” (which is length for lists) and “the size of its

elements”. This choice of 𝒥B/N affects the shape of interpretations for symbols in Σ, as

we will see in Example 5.4.2.

Even though we have manually chosen the size tuples for 𝒥B/N above, an automated

procedure can still be devised to determine the number 𝐾(𝜄), for 𝜄 ∈ B. In fact, this is

implemented in Hermes. See Section 3.7.

5.4 Cost–Size Semantics for Terms

In the previous section, we established a cost–size semantics for the simple types in

T(B). Our goal in this section is to interpret terms as elements of those sets.

An interpretation of a signature F = (B,Σ, typeOf) interprets the base types in B
and each f ∈ Σ of arity typeOf( 𝑓 ) = 𝜎 as an element of L𝜎M which is constructed by

Definition 5.3.6. This is formally stated in the definition below.

Definition 5.4.1. A cost–size tuple interpretation ℱ for a signature F = (B,Σ, typeOf)
consists of a pair of functions (𝒥B,𝒥Σ) where

• 𝒥B is a type interpretation key (Definition 5.3.4),

• 𝒥Σ is an interpretation of symbols in Σ which maps each f ∈ Σ with typeOf(f) = 𝜎 to

a cost–size tuple in L𝜎M, where L𝜎M is built using 𝒥B in Definition 5.3.6.

In what follows we slightly abuse notation by writing 𝒥f for 𝒥Σ(f) and just 𝒥 for 𝒥Σ.

Example 5.4.2. As a first example of interpretation, let us interpret the data signature

from Example 5.3.13. Recall that 0 : nat, s : nat ⇒ nat are the constructors for nat and

𝐾(nat) = 1.

𝒥0 =

〈
(0, u) , 1

〉
𝒥s =

〈
(0,λ𝑥.(0, u)) ,λ𝑥.𝑥 + 1

〉



88 Higher-Order Tuple Interpretations for Call-by-Value

The highlighted cost components for the constructors are filled with zeroes. That is

because in the rewriting cost model data values do not fire rewriting sequences. In the

language of Section 5.2: the cost number for 0 is 0, (because it is a value), the cost function
is the unit element u (because it is of base type), and size component is 1 (since we chose a

notion of size for terms of type nat to mean “number of symbols”). The cost number for

s is 0, the cost function is the constant function mapping to 0, and the size component is

the function λ𝑥.𝑥 + 1 in 𝒮nat⇒nat. We interpret the constructors for list, i.e., [] and cons,

following the same principle, with 𝐾(list) = 2. We write a size tuple 𝑞 in 𝒮list as (𝑞l, 𝑞m)
since the first component is the length of the list and the second is a bound on the size

of its elements.

𝒥[] =
〈

(0, u) , (0, 0)
〉

𝒥cons =
〈

(0,λ𝑥.(0,λ𝑞.(0, u))) ,λ𝑥𝑞.(𝑞l + 1,max(𝑥, 𝑞m))
〉

The highlighted cost components are filled with zeroes for lists as well. Size components

are interpreted as expected, and exactly following Example 5.2.1.

The next step is to extend the interpretation of a signature F to the set of terms. But

first, we define valuation functions to interpret the variables in 𝑥 : 𝜎 as elements of L𝜎M.

Definition 5.4.3. A cost–size valuation 𝛼 is a function that maps each 𝑥 : 𝜎 to a cost-size

tuple in L𝜎M such that:

• 𝛼(𝑥) = ⟨(0, u), 𝑥s⟩, for all 𝑥 ∈ X of base type, and

• 𝛼(𝐹) = ⟨(0, 𝐹c), 𝐹s⟩ when 𝐹 :: 𝜎 ⇒ 𝜏.

Notice that, in this definition, the cost component of 𝛼(𝑥) has the form (0, u), if 𝑥 : 𝜄.

This interpretation is motivated by Definition 5.1.4, where a matching substitution 𝛾

(i.e., a substitution such that ℓ𝛾 →𝑣 𝑟𝛾) must map each 𝑥 : 𝜄 to a value of base type.

Those can only have the form c(𝑣1, . . . , 𝑣𝑚) with c ∈ Σcon. Variables of arrow type still

have a cost number 0; however, they can be instantiated to values that carry indirect
computational content: a partial application or abstraction. For instance, a variable of

type 𝐹 : nat ⇒ nat can be instantiated with add 0, which is a value that produces a cost

as soon as it is applied to the next argument. We use the notation 𝐹c/𝐹s
to denote the

cost/size component of 𝛼(𝐹).

Definition 5.4.4. Assume given a signature F = (B,Σ, typeOf) and its cost–size tuple

interpretation ℱ = (𝒥B,𝒥) together with a valuation 𝛼. The term interpretation ⟦𝑠⟧𝒥𝛼
of 𝑠 under 𝒥 and 𝛼 is defined by induction on the structure of 𝑠 as follows:

⟦𝑥⟧𝒥𝛼 = 𝛼(𝑥) ⟦f⟧𝒥𝛼 = 𝒥f ⟦𝑠 𝑡⟧𝒥𝛼 = ⟦𝑠⟧𝒥𝛼 · ⟦𝑡⟧𝒥𝛼
⟦𝜆𝑥. 𝑠⟧𝒥𝛼 =

〈(
0,λ𝑑.(1 + 𝜋11(⟦𝑠⟧𝒥[𝑥≔𝑑]𝛼),𝜋12(⟦𝑠⟧𝒥[𝑥≔𝑑]𝛼))

)
,λ𝑑s.𝜋2(⟦𝑠⟧𝒥[𝑥≔(0,𝑑)]𝛼)

〉
,



5.4 Cost–Size Semantics for Terms 89

where 𝜋𝑖 is the projection on the ith-component and 𝜋𝑖 𝑗 is the composition 𝜋 𝑗 ◦ 𝜋𝑖 , and

0 is a cost function of the form λ𝑥1.(0,λ𝑥2 . . . (0, u) . . . ). If 𝑑 = (𝑑𝑐 , 𝑑𝑠), the notation

[𝑥 ≔ 𝑑]𝛼 denotes the valuation that maps 𝑥 to ⟨(0, 𝑑𝑐), 𝑑𝑠⟩ and every other variable 𝑦 to

𝛼(𝑦).

We write ⟦𝑠⟧ for ⟦𝑠⟧𝒥𝛼 whenever 𝛼 and 𝒥 are universally quantified or clear from

the context.

The interpretation for abstractions may seem baroque, but can be understood as

follows: an abstraction is a value, so its cost number is 0. The cost of applying that

abstraction on a value 𝑣 is 1 plus the cost number for 𝑠[𝑥 := 𝑣] – which is obtained by

evaluating ⟦𝑠⟧𝒥[𝑥≔𝑑]𝛼 if 𝑑 is the cost function/size pair for 𝑣. The cost function of this

application is exactly the cost function of 𝑠[𝑥 := 𝑣]. The size of an abstraction 𝜆𝑥.𝑠 is

exactly the function that takes a size and maps it to the size interpretation of 𝑠 where 𝑥

is mapped to that size. Technically, to obtain the size component of ⟦𝑠⟧𝒥[𝑥≔𝑑]𝛼 we also

need a cost component, but by definition, this component does not play a role, so we

can safely choose an arbitrary pair 0 in the right set.

Example 5.4.5. We continue with Example 5.4.2 by interpreting ground constructor

terms fully. A ground constructor term 𝑑 of type nat is of the form s (s . . . (s 0) . . . ) where

the number 𝑛 ∈ N is represented by 𝑛 successive applications of s to 0. Recall that ⌜n⌝ is

our shorthand notation for such terms. Similarly, for ground constructor terms of type

list, we write [⌜n⌝1; . . . ; ⌜n⌝𝑘] for the term cons ⌜n⌝1 . . . (cons ⌜n⌝𝑘 []). The empty list

constructor is written as [] in this notation, as usual. Hence, the cost–size interpretation

of ⌜3⌝ : nat is given by:

⟦⌜3⌝⟧ = ⟦s (s (s 0))⟧ = ⟦s⟧ · (⟦s⟧ · (⟦s⟧ · ⟦0⟧)) =
〈

(0, u) , 4
〉
.

Consider, for instance, the list [⌜1⌝; ⌜7⌝; ⌜9⌝]. Its cost–size interpretation is given by:

⟦[⌜1⌝; ⌜7⌝; ⌜9⌝]⟧ = ⟦cons ⌜1⌝ (cons ⌜7⌝ (cons ⌜9⌝ []))⟧ =

〈
(0, u) , (3, 10)

〉
.

The important information we can extract from such interpretations is their size

component. Indeed, ⟦⌜3⌝⟧s
= 4 counts the number of constructor symbols in the term

representation ⌜3⌝ and ⟦[⌜1⌝; ⌜7⌝; ⌜9⌝]⟧s
= (3, 10) gives us the length and an upper

bound on the size of each element in [⌜1⌝; ⌜7⌝; ⌜9⌝]. The size interpretation for the

constructors of nat and list correctly capture our notion of “size” given in Example 5.3.13.

The next lemma expresses the soundness of term interpretation, that is, the interpre-

tation of terms preserves the type structure:

Lemma 5.4.6 (Type Soundness). If 𝑠 : 𝜎 then ⟦𝑠⟧ ∈ L𝜎M.



90 Higher-Order Tuple Interpretations for Call-by-Value

Proof. The proof is by induction on the structure of 𝑠. The base cases follow directly

from Definitions 5.4.1 and 5.4.3. We use Lemmas 5.3.10 and 5.3.11 in the application

case. The abstraction case follows from the induction hypothesis and weak monotonicity

of 𝜋𝑖 . □

Up to now, we have given cost–size semantics for types and terms. Observe that

Definition 5.4.1 only requires that we interpret function symbols as cost–size tuples

in the correct domain. For instance, we might interpret all function components as

constant functions. This is a valid, but not so useful, interpretation of terms. So we

move on to the next component of our interpretation framework: we want to interpret

terms in such a way that ⟦𝑠⟧ ≻ ⟦𝑡⟧ whenever 𝑠 → 𝑡, for any pair of terms 𝑠, 𝑡.

Definition 5.4.7. Consider a signature F = (B,Σ, typeOf). A cost–size call-by-value ter-
mination model for a term rewriting system (F,R) consists of the following ingredients:

• a cost–size interpretation (𝒥B,𝒥Σ) (Definition 5.4.1), such that 𝜋11(⟦𝑣⟧) = 0 for all

values 𝑣

such that the following compatibility conditions hold:

• for all value substitutions 𝛾 and all terms 𝑠 and 𝑡, ⟦𝑠𝛾⟧ ≻ ⟦𝑡𝛾⟧ whenever

⟦𝑠⟧ ≻ ⟦𝑡⟧;

• for every term 𝑠 and value 𝑣, ⟦(𝜆𝑥. 𝑠) 𝑣⟧ ≻ ⟦𝑠[𝑥 ≔ 𝑣]⟧;

• for all terms 𝑠 and 𝑡,

– ⟦𝑠 𝑡⟧ ≻ ⟦𝑠′ 𝑡⟧ whenever ⟦𝑠⟧ ≻ ⟦𝑠′⟧, and ⟦𝑠 𝑡⟧ ≻ ⟦𝑠 𝑡′⟧ whenever ⟦𝑡⟧ ≻ ⟦𝑡′⟧;

• for all rules ℓ → 𝑟 ∈ R, we have ⟦ℓ⟧ ≻ ⟦𝑟⟧.

Roughly speaking, a call-by-value termination model is an interpretation of types

and terms that is compatible with each rule in R, the call-by-value beta rule and the

formation of terms, and which is closed under value substitutions. By a straightforward

induction on the reduction 𝑠 →𝑣 𝑡, we can establish the following result.

Theorem 5.4.8. Let (F,R) be a TRS. If we have a termination model of (F,R), then the

higher-order call-by-value rewriting relation →𝑣 is strongly normalizing.

Hence, termination models collect sufficient conditions for strong normalization.

The lemmata below are to show that cost–size interpretations satisfy some of the

compatibility conditions for termination models. Let us first prove closure under

substitutions.

Definition 5.4.9. Given a substitution 𝛾 and valuation 𝛼, we define the 𝛾-extension of
𝛼 as the valuation defined by 𝛼𝛾 = ⟦·⟧𝒥𝛼 ◦ 𝛾.



5.4 Cost–Size Semantics for Terms 91

Lemma 5.4.10. If 𝑥 ∉ fv(𝑠) then ⟦𝑠⟧[𝑥≔𝑑]𝛼 = ⟦𝑠⟧𝛼. Consequently, if 𝑥 is not free in 𝑦𝛾

for any variable 𝑦, then ([𝑥 ≔ 𝑑]𝛼)𝛾 = [𝑥 ≔ 𝑑]𝛼𝛾
.

Lemma 5.4.11 (Substitution Lemma). For any value substitution 𝛾 and valuation 𝛼, we

have that ⟦𝑠𝛾⟧𝛼 = ⟦𝑠⟧𝛼𝛾 .

Proof. Let us work out the abstraction case 𝑠 = 𝜆𝑥. 𝑡. Since we assume that the application

of substitution is capture-avoiding, we can assume that 𝑥 does not occur free in any

term in the range of 𝛾. Hence,

⟦𝜆𝑥. (𝑡𝛾)⟧𝛼
=

〈(
0,λ𝑑.(1 + 𝜋11(⟦𝑡𝛾⟧𝒥[𝑥≔𝑑]𝛼),𝜋12(⟦𝑡𝛾⟧𝒥[𝑥≔𝑑]𝛼))

)
,λ𝑑s.𝜋2(⟦𝑡𝛾⟧𝒥[𝑥≔(0,𝑑)]𝛼)

〉
𝐼𝐻
=

〈(
0,λ𝑑.(1 + 𝜋11(⟦𝑡⟧𝒥([𝑥≔𝑑]𝛼)𝛾),𝜋12(⟦𝑡⟧𝒥([𝑥≔𝑑]𝛼)𝛾))

)
,λ𝑑s.𝜋2(⟦𝑡⟧𝒥([𝑥≔(0,𝑑)]𝛼)𝛾)

〉
=

〈(
0,λ𝑑.(1 + 𝜋11(⟦𝑡⟧𝒥[𝑥≔𝑑]𝛼𝛾),𝜋12(⟦𝑡⟧𝒥[𝑥≔𝑑]𝛼𝛾))

)
,λ𝑑s.𝜋2(⟦𝑡⟧𝒥[𝑥≔(0,𝑑)]𝛼𝛾)

〉
= ⟦𝜆𝑥. 𝑡⟧𝛼𝛾 .

□

As a consequence of the substitution lemma, if ⟦𝑠⟧𝒥𝛼 ≻ ⟦𝑡⟧𝒥𝛼 for all 𝛼, then

⟦𝑠𝛾⟧𝒥𝛼 ≻ ⟦𝑡𝛾⟧𝒥𝛼 for all 𝛼. Consequently, the first compatibility condition is valid

for any interpretation. The second compatibility requirement is for 𝛽 reductions.

Lemma 5.4.12. The call-by-value beta rule scheme (𝜆𝑥. 𝑠) 𝑣 →𝑣 𝑠[𝑥 ≔ 𝑣] is strictly

decreasing for any cost–size interpretation.

Proof. The proof reduces to checking ⟦(𝜆𝑥. 𝑠) 𝑣⟧ ≻ ⟦𝑠[𝑥 ≔ 𝑣]⟧. Let ⟦𝑣⟧ = ⟨(0, 𝑣c), 𝑣s⟩,
and denote 𝑉 for the pair (𝑣c , 𝑣s). Then we have the following:

⟦(𝜆𝑥. 𝑠) 𝑣⟧ = ⟦𝜆𝑥. 𝑠⟧ · ⟦𝑣⟧

=

〈(
0,λ𝑑.(1 + 𝜋11(⟦𝑠⟧𝒥[𝑥≔𝑑]𝛼),𝜋12(⟦𝑠⟧𝒥[𝑥≔𝑑]𝛼))

)
,λ𝑑s.𝜋2(⟦𝑠⟧𝒥[𝑥≔(0,𝑑s)]𝛼)

〉
· ⟦𝑣⟧

=

〈(
0 + 0 + 1 + 𝜋11(⟦𝑠⟧𝒥[𝑥≔𝑉]𝛼),𝜋12(⟦𝑠⟧𝒥[𝑥≔𝑉]𝛼)

)
,𝜋2(⟦𝑠⟧𝒥[𝑥≔⟨0,𝑣s⟩]𝛼)

〉
≻

〈(
𝜋11(⟦𝑠⟧𝒥[𝑥≔𝑉]𝛼),𝜋12(⟦𝑠⟧𝒥[𝑥≔𝑉]𝛼)

)
,𝜋2(⟦𝑠⟧𝒥[𝑥≔𝑉]𝛼)

〉
= ⟦𝑠[𝑥 ≔ 𝑣]⟧𝛼 .

In the second-to-last step, we use that the size component of ⟦𝑠⟧𝒥𝛼 does not regard any

cost component in 𝛼, so 𝜋2(⟦𝑠⟧𝒥[𝑥≔⟨0,𝑣s)⟩]𝛼) = 𝜋2(⟦𝑠⟧𝒥[𝑥≔𝑉]𝛼). In the last step, we use the

substitution lemma. □

Compatibility over applicative terms is a consequence of Lemma 5.3.11. Notice that

the results above do not depend on a particular interpretation. Hence, to establish a



92 Higher-Order Tuple Interpretations for Call-by-Value

termination model for a TRS, only the last compatibility condition remains to be checked,

i.e., ⟦ℓ⟧ ≻ ⟦𝑟⟧ for all rules ℓ → 𝑟 in R. We collect this fact below, which is a consequence

of Theorem 5.4.8 and the lemmas above.

Corollary 5.4.13. Let R be a TRS that admits a cost–size interpretation (𝒥B,𝒥Σ). If

⟦ℓ⟧ ≻ ⟦𝑟⟧ for all rules ℓ → 𝑟 in R, then R is a termination model, and consequently

strongly normalizing.

5.5 Complexity Analysis of Call-by-Value Rewriting

In the previous section, we showed that cost–size tuples can be used to establish

termination of call-by-value rewriting. In this section, we concentrate on a quantitative

analysis of such termination proofs. Hence, the goal is not merely to find tuple

interpretations that prove termination but also ones that establish “good” upper bounds

on the complexity of reducing terms to normal form. To start, we will extend the notion

of derivation height to our setting:

Definition 5.5.1. The weak call-by-value derivation height of a term 𝑠, notation dhR(𝑠),
is the largest number 𝑛 such that 𝑠 →𝑣 𝑠1 →𝑣 . . . →𝑣 𝑠𝑛 .

This notion is defined for all terms when the TRS is finitely branching and terminating.

We will simply refer to the weak call-by-value derivation height as “derivation height”.

The methodology of weakly monotonic algebras offers a systematic way to derive

bounds for the derivation height of a given term:

Lemma 5.5.2. If ⟦𝑠⟧ = ⟨(𝑛, 𝐹c), 𝐹s⟩, then dhR(𝑠) ≤ 𝑛.

Proof. By the lemmas in Section 5.4 we see that ⟦𝑠⟧ ≻ ⟦𝑡⟧ whenever 𝑠 → 𝑡. Since this

implies 𝜋11(𝑠) > 𝜋11(𝑡), the lemma follows. □

As an illustration of how this is used, we present the formalized examples of

Section 5.2 and complete the interpretation of Examples 5.1.2 and 5.1.3.

Let us start with the system Radd which intuitively defines addition over nat. We

will use the type and constructor interpretations as given in Example 5.4.2. The rules

add 𝑥 0 → 0 and add 𝑥 (s 𝑦) → s (add 𝑥 𝑦) suggest the following cost–size interpretation:

𝒥add =

〈
(0,λ𝑥.(0,λ𝑦.(𝑦s, u))) ,λ𝑥𝑦.𝑥 + 𝑦

〉
. (5.1)

Notice that the (highlighted) cost component of 𝒥add suggests a linear cost measure

for computing with add. We also set the intermediate numeric components in the

cost tuple to zero. The reason for this choice is that in a cost tuple 𝒞𝜎 = N × ℱ c
𝜎 , the

numeric component N captures the cost of partially applying terms, which is 0 in this



5.5 Complexity Analysis of Call-by-Value Rewriting 93

case. Using the shorthand notation of Example 5.2.3, we could alternatively write

𝒥add =
〈
(𝑥s, 𝑦s) ↦→ 𝑦s, λ𝑥s𝑦s.𝑥s + 𝑦s〉

.

Now, consider the partially applied term 𝑠 = add (add ⌜2⌝ ⌜3⌝) (of type nat ⇒ nat).
Intuitively, the cost of reducing this term to normal form, is the cost of reducing the

subterm add ⌜2⌝ ⌜3⌝ to ⌜5⌝, since the partially applied term add ⌜5⌝ cannot be reduced.

Hence, dhR(𝑠) = 4. This is also the bound we find through interpretation:

⟦𝑠⟧ = ⟦add⟧ · (⟦add⟧ · ⟦⌜2⌝⟧ · ⟦⌜3⌝⟧)
= ⟦add⟧ · ⟨(4, u), 7⟩

=

〈
(4,λ𝑦.(𝑦s, u)) ,λ𝑦.7 + 𝑦

〉
.

While in this case the bound we find is tight, this is not always the case; for instance

⟦add ⌜0⌝ (add ⌜0⌝ ⌜0⌝)⟧ = ⟨(3, u), 3⟩, even though dhR(add ⌜0⌝ (add ⌜0⌝ ⌜0⌝)) = 2. We

could obtain a tight bound by choosing a different interpretation, but this is also not

always possible.

Remark 5.5.3. Intuitively, we think of the numeric component of a partially applied term

f 𝑠1 . . . 𝑠𝑛 that cannot be reduced at the root as the “environment cost” of computing

functional arguments to values. This plays an important role in the complexity analysis

in our setting. Namely, when interpreting terms this is what allows us to limit interest to

value substitutions, since the cost of reducing arguments to values is captured implicitly

by the · operator. This assumption consequently allows us to limit the class of cost

functions to weakly monotonic functions as used in Definition 5.3.6, as opposed to the

strongly monotonic functionals used in the full rewriting setting [69, 92].

In complexity analysis of term rewriting, it is common to consider bounds on the

derivation height for terms of a given size. However, it is useful to impose some

limitations. Consider for example a TRS consisting only of the two add rules. Then, we

might construct a term (𝜆𝑥.add 𝑥 𝑥) ((𝜆𝑥.add 𝑥 𝑥) (. . . (s 0) . . . )), with 𝑛 occurrences of

(𝜆𝑥.add 𝑥 𝑥). The size of this term is linear in 𝑛, but its derivation height is exponential,

since each contraction of a 𝜆 essentially duplicates the number of s occurrences. Hence,

the traditional notion of derivational complexity (which maps a natural number 𝑛 to the

largest derivation height a term of size at most 𝑛 can have) is arguably not so useful in a

setting with 𝜆.

Instead, we will consider the runtime complexity of a TRS. Following the definition in

Chapter 4 for full higher-order runtime complexity, we recall the following notions.

Definition 5.5.4. The weak call-by-value runtime complexity of a TRS is the function

𝑛 ↦→ rcR(𝑛) that maps each natural number 𝑛 to the largest number ℎ with dhR(𝑠) = ℎ

for some basic term 𝑠 of size at most 𝑛.



94 Higher-Order Tuple Interpretations for Call-by-Value

Note that for instance lists of functions are not data terms, and therefore not

considered as viable inputs in the notion of runtime complexity. As discussed in

Chapter 4, this arguably makes the notion somewhat first-order, but it can still be used

to analyze higher-order programs or modules (so long as they, for instance, have a

rule start 𝑥 → 𝑟 where 𝑥 has base type, and 𝑟 is allowed to use abstractions, partial

application or calls to higher-order functions).

Example 5.5.5. Let us collect the interpretation for dbl and mult from Example 5.1.3.

𝒥dbl =
〈

(0,λ𝑥.(𝑥s, u)) ,λ𝑥.2𝑥
〉

𝒥mult =
〈

(0,λ𝑥.(0,λ𝑦.2𝑥s𝑦s, u)) ,λ𝑥𝑦.𝑥𝑦
〉

In the TRS of Example 5.1.3, the only basic terms have the form add 𝑣1 𝑣2 or dbl 𝑣 or

mult 𝑣1 𝑣2. Since by Equation (5.1) we have ⟦s𝑛 0⟧s
= 𝑛 + 1, Lemma 5.5.2 allows us to

conclude that rcR(𝑛) < 𝑛2

.

Now, the size bound for data constructors introduced in Example 5.4.2 is well-

behaved. However, suppose we had defined 𝒥0 = ⟨(0, u), 1⟩ and the interpretation of

s as 𝒥s = ⟨(0,λ𝑥.(0, u)),λ𝑥.2𝑥 + 1⟩. In this case, for a data term ⌜n⌝ = s𝑛 0, we would

have ⟦⌜n⌝⟧s
= 2

𝑛 + 𝑛 ≥ 2
𝑛
. As a result, we would only be able to derive exponential

runtime complexity. Notice that this choice is compatible with Radd, and hence proves

its termination; however, it induces an exponential overhead on the cost tuple of add,

whose actual runtime complexity is linearly bounded as we saw in Example 5.5.5. Such

a huge overestimation is not desirable in a complexity analysis setting. This behavior

suggests an upper bound to the interpretation of data constructors; namely, we seek to

bound the constructor’s size interpretations additively.

Let c be a data constructor of type 𝜎 = 𝜄1 ⇒ . . . ⇒ 𝜄𝑚 ⇒ 𝜅. The size component

of L𝜎M is 𝒮𝜎 = N𝐾(𝜄1) =⇒ . . . =⇒ N𝐾(𝜄𝑚) =⇒ N𝐾(𝜅)
. The size tuple 𝒥 s

c when fully

applied can be written in terms of its functional components. Hence, 𝒥 s
c (𝑥1, . . . , 𝑥𝑚) =〈

𝑓 s
1
(𝑥1, . . . , 𝑥𝑚), . . . , 𝑓 s

𝐾(𝜅)(𝑥1, . . . , 𝑥𝑚)
〉
.

Definition 5.5.6. If c : 𝜎 is a data constructor as above, we say 𝒥 s
c is additive if there is a

constant 𝑎 ∈ N such that

𝐾(𝜅)∑
𝑙=1

𝑓 s
𝑙 (𝑥1, . . . , 𝑥𝑚) ≤ 𝑎 +

𝑚∑
𝑖=1

𝐾(𝜄𝑖)∑
𝑗=1

𝑥𝑖 𝑗 .

It is easy to show that size components for nat and list in 5.4.2 are additive.

If data constructors are additive, and there are only finitely many of them, then there

exists a constant 𝑎 such that, for every data term 𝑑 of size at most 𝑛: ⟦𝑑⟧s ≤ 𝑎𝑛. Hence,

for instance the following result from [69], which we proved in Chapter 4, also extends

to our setting:



5.5 Complexity Analysis of Call-by-Value Rewriting 95

Lemma 5.5.7 (From [69]; Corollary 33). Let R be a TRS. If all interpretations for data

constructors are additive and the interpretations for all defined symbols are polynomially

bounded, then the weak call-by-value runtime complexity of R is polynomially bounded.

This result provides us with a systematic approach to establishing bounds to the

runtime complexity of weak call-by-value systems. The difficulty now lies in developing

techniques to find suitable interpretation shapes. For instance, a first example of a

higher-order function over lists is that of map. We studied the structure of its cost–size

tuples in Example 5.3.9 to illustrate semantical application. We give a concrete cost–size

interpretation for map below:

𝒥map =

〈
(0,λ𝐹.(0,λ𝑞.(𝑞l + 𝐹c(u, 𝑞m)𝑞l + 1, u))) ,λ𝐹𝑞.(𝑞l, 𝐹(𝑞m))

〉
,

The highlighted cost component accounts for 𝑞l possible 𝛽 steps, the cost of applying the

higher-order argument 𝐹 over the list 𝑞 is bounded by 𝐹c(u, 𝑞m)𝑞l since 𝐹c
is assumed to

be weakly monotonic, and the unitary component is for dealing with the empty list case.

Finding such interpretations for higher-order systems can become quite challenging.

In the example below we collect basic weakly monotonic combinators in order to generate

more complex cost/size interpretations.

Example 5.5.8. We list the following weakly monotonic combinators. Here, sets 𝑋,𝑌, 𝑍

are used generically to denote cost/size sets:

• for any 𝑋 and 𝑎 ∈ 𝑌, there is a constant functional λ𝑥.𝑎 in 𝑋 =⇒ 𝑌;

• for 𝑓 : 𝑋 =⇒ 𝑌 and 𝑔 : 𝑌 =⇒ 𝑍, we write 𝑔 ◦ 𝑓 : 𝑋 =⇒ 𝑍 as the composition of 𝑓

and 𝑔.

• the projection function on the 𝑖th coordinate, 𝜋𝑖 : 𝑋1 × · · · × 𝑋𝑘 =⇒ 𝑋𝑖 ;

• given 𝑓 : 𝑋 =⇒ 𝑌 and 𝑔 : 𝑋 =⇒ 𝑍, we have a function

〈
𝑓 , 𝑔

〉
: 𝑋 =⇒ 𝑌 ×𝑍 which

is defined by

〈
𝑓 , 𝑔

〉
(𝑥) =

〈
𝑓 (𝑥), 𝑔(𝑥)

〉
;

• given 𝑓 : 𝑌 × 𝑋 =⇒ 𝑍, we get a function λ 𝑓 : 𝑋 =⇒ (𝑌 =⇒ 𝑍). For each 𝑥 ∈ 𝑋
and 𝑦 ∈ 𝑌, we define (λ 𝑓 (𝑥))(𝑦) = 𝑓 (𝑦, 𝑥);

• given 𝑓 : 𝑋 =⇒ (𝑌 =⇒ 𝑍) and 𝑔 : 𝑋 =⇒ 𝑌, we obtain 𝑓 . 𝑔 : 𝑋 =⇒ 𝑍, which is

defined as ( 𝑓 . 𝑔)(𝑥) = 𝑓 (𝑥)(𝑔(𝑥));

• given 𝑓 : 𝑋 =⇒ 𝑌 and 𝑥 ∈ 𝑋, we have an element application functional with

domain app𝑥 : (𝑋 =⇒ 𝑌) =⇒ 𝑌 which sends 𝑓 to 𝑓 (𝑥), i.e., app𝑥( 𝑓 ) = 𝑓 (𝑥).

Notice that we can use the combinators above with the usual monotonic functionals and

operators over N to produce new monotonic functionals and pointwise operators over

sets 𝑋 =⇒ 𝑌. For instance, we can utilize +, ∗, ⌊·⌋,max, log(⌊·⌋), and so forth.



96 Higher-Order Tuple Interpretations for Call-by-Value

These basic combinators provide the building blocks for cost–size interpretations.

Example 5.5.9. The higher-order functions in Example 5.1.2 admit the following inter-

pretations:

𝒥app =

〈
(0,λ𝐹.(2,λ𝑥.(𝐹c(u, 𝑥s), u))) ,λ𝐹𝑥.𝐹(𝑥)

〉
𝒥comp =

〈
(0,λ𝐹.(0,λ𝐺.(2,λ𝑥.(𝐹c(u, 𝐺s(𝑥s)) + 𝐺c(u, 𝑥s), u)))) ,λ𝐹𝐺𝑥.𝐹(𝐺(𝑥))

〉
𝒥rec =

〈
(0,λ𝑥.(0,λ𝑦.(0,λ𝐹.(𝑥s + 𝐻c(𝑥, 𝑦, 𝐹), u)))) ,λ𝑥𝑦𝐹.𝐻s(𝑥, 𝑦, 𝐹)

〉
In the cost component for 𝒥rec, the term 𝑥s

computes the total number of rewriting steps

using the rec symbol. Meanwhile, 𝐻c
is an auxiliary symbol computing the total cost of

recursively applying the higher-order argument 𝐹. It can be defined as follows

𝐻c(𝑥, 𝑦, 𝐹) =
𝑥s−1∑
𝑖=1

𝜋1(𝐹c((u, 𝑖), (u, 𝐻s(𝑖 , 𝑦s, 𝐹s))))

with the size helper function 𝐻s
given as a weakly monotonic variant of the recursor

over N:

𝐻s(𝑥, 𝑦, 𝐹) =
{
𝑦 if 𝑥 ≤ 1

max(𝑦, 𝐹(𝑥 − 1, 𝐻s(𝑥 − 1, 𝑦, 𝐹))) if 𝑥 > 1

5.6 Conclusions and Future Work

In this chapter, we built an interpretation method for higher-order rewriting with weak

call-by-value reduction. In this approach, we build on existing work defining tuple

interpretations [69, 109], but restrict the evaluation strategy, and define a cost–size

semantics for types and terms which generates a whole new class of cost–size termination

models that can be used to reason about both termination and complexity of weak

call-by-value systems. We showed that cost–size tuples correctly capture call-by-value

termination and allow us to bound both the cost (number of steps to reach normal

forms) and a variety of size notions for different data types. A second advantage of

the call-by-value approach compared to full rewriting in Chapter 4 is that the cost

functionals are now weakly rather than strongly monotonic functionals, which simplifies

the search for cost interpretations.

This is foundational work in the research direction of transposing the methodology

and tools from (higher-order) term rewriting to program analysis. A first step for future

work is to consider more expressive type theories, so we can capture more programs.

For instance, the power of the techniques developed here would be greatly improved if

polymorphic types are taken into account. A second step is to expand other complexity



5.6 Conclusions and Future Work 97

methods for innermost/call-by-value rewriting to the higher-order setting, such as

dependency tuples [89] or polynomial path orders [8]. Also for termination analysis, it

would be interesting to combine tuple interpretations with a higher-order variant of

innermost dependency pairs [5], similar to what was done for full rewriting with tuple

interpretations in [66].

Finally, we plan to implement this work, to automatically derive bounds to the

derivation height of individual terms, as well as provide bounds for both full and call-

by-value runtime complexity of higher-order term rewriting systems. The automation

approach could build on the strategy for higher-order polynomial interpretations

for full rewriting (not using tuples) in [38, Section 5]. While the search for tuple

interpretations has more unknowns (because it can happen that 𝐾(𝜄) > 1) than the

search for interpretations to N, and will therefore likely take longer, we expect that

the overall methodology can stay largely unchanged at least when it comes to an

unrestricted evaluation strategy. Adapting to weak call-by-value rewriting may require

some additional study, however.





Chapter 6

A Rewriting Characterization of
Higher-Order Feasibility

6.1 Higher-Order Feasibility

Computational complexity classes, and in particular those relating to polynomial time

and space [27, 49] capture the concept of a feasible problem, and as such have been

scrutinized with great care by the scientific community in the last fifty years. The

fact that even apparently simple problems, such as establishing nontrivial separations

between those classes, remain open today has highlighted the need for a comprehensive

study aimed at investigating the deep nature of computational complexity. The so-called

implicit computational complexity [12, 33, 60, 78, 90] fits well into this picture and is

concerned with characterizations of complexity classes based on tools from mathematical

logic and the theory of programming languages.

After the introduction of FPTIME, it became clear that the study of computational

complexity also applies to higher-order functionals which — as we have seen in previous

chapters — are those functions that take not only data but also other functions as inputs.

The pioneering work of Constable [29], Mehlhorn [79], and Kapron and Cook [60] laid

the foundations of the so-called higher-order complexity theory which remains a prolific

research area to this day. Motivations for this line of work can be found e.g. in computable

analysis [62], NP search problems [16], and programming language theory [35].

There have been several proposals for a class of second order (type-two) functionals

that correctly generalizes FPTIME. However, the most widely accepted one is the class

BFF of Basic Feasible Functionals. The class BFFwas then the object of study by the research

community, which over the years has introduced a variety of characterizations, e.g.,

in terms of programming languages with restricted recursion schemes [35, 56], typed

imperative languages [44, 45], and restricted forms of iteration in OTMs [61]. An investi-

gation of higher-order complexity classes employing the higher-order interpretation



100 A Rewriting Characterization of Higher-Order Feasibility

method (in the context of a pure higher-order functional language) was also proposed

in [46]. However, this paper does not provide a characterization of the standard BFF

class. Instead, it characterizes a newly proposed class SFF2 (Safe Feasible Functionals)

which is defined as the restriction of BFF to argument functions in FPTIME (see Sect. 4.2

and the conclusion in [46]).

The studies cited above present structurally complex programming languages and

logical systems, precisely due to the presence of higher-order functions. It is not currently

known whether it is possible to give a characterization of BFF in terms of mainstream

concepts of rewriting theory, although the latter has long been known to provide tools

for the modeling and analysis of functional programs with higher-order functions [63].

In this chapter, we go precisely in this direction by showing that the interpretation

method we introduced in Chapters 4 and 5 provides the right tools to characterize BFF

via a higher-order rewriting setting. More precisely, we consider a class of higher-order

rewriting systems admitting cost–size tuple interpretations (with some mild upper-

bound conditions on their cost and size components) and show that this class contains

exactly the functionals in BFF. Such a characterization could not have been obtained

employing classical integer interpretations as e.g. in [21] because BFF crucially relies

on some simultaneous conditions over both notions of time and size. This is the main

contribution of this chapter, and it is formally stated in Theorem 6.5.9.

We believe that a benefit of this characterization is that it opens the way to effectively

handling programs or executable specifications implementing BFF functions, in full

generality. For instance, we expect that such a characterization could be integrated into

rewriting-based tools for complexity analysis of rewriting systems such as e.g. [9, 42].

6.2 Basic Feasible Functionals

As stated before in the thesis, N denotes the set of natural numbers. In this chapter

we also identify 𝑛 ∈ N with its dyadic representation over {0, 1}. With that we have

for instance 0 ≡ 𝜖, 1 ≡ 0, 2 ≡ 1, 3 ≡ 00, etc. We freely switch between 𝑛 ∈ N as a

number and its binary representation. The function | · | : N −→ N maps each 𝑛 to the

length of its dyadic representation. It is well-known that this function can be defined as

|𝑥| = ⌈log
2
(𝑥 + 1)⌉. For complexity analysis, it is useful to consider the binary successors

𝑆0, 𝑆1 with semantics 𝑆0(𝑥) = 2𝑥 and 𝑆1(𝑥) = 2𝑥 + 1. We also write [𝑥] = 2
|𝑥|

.

We call a function from N to N a type-1 function. As usual in this thesis, N −→ N
denotes the set of all functions from N to N. We say a type-2 function is a mapping

Ψ : (N −→ N)𝑘 −→ N𝑙 −→ N, for some 𝑘, 𝑙 ≥ 1. We call this mapping a type-2 functional

of rank (𝑘, 𝑙). For type-1 functions, the notion of feasibility is well understood in the

literature. Its first characterization is due to Cobham [27]. In this germinal work,

Cobham defines the class ℒ of feasible functions in terms of limited recursion on notation.



6.2 Basic Feasible Functionals 101

Definition 6.2.1. We say that a function 𝑓 : N𝑛+1 → N is defined from ℎ : N𝑛+1 → N,

𝑔0 : N𝑛 → N, and 𝑔1 : N𝑛+2 → N by limited recursion on notation if and only if 𝑓 is

given by the following equations:

𝑓 (0, ®𝑦) = 𝑔0( ®𝑦)
𝑓 (𝑥, ®𝑦) = 𝑔1( 𝑓 (⌊𝑥/2⌋, ®𝑦), 𝑥, ®𝑦), if 𝑥 > 0

| 𝑓 (𝑥, ®𝑦)| ≤ |ℎ(𝑥, ®𝑦)|

With this Cobham [27] defined the class ℒ as follows.

Definition 6.2.2 (Cobham’sℒ). Letℒ be the smallest collection of functions that contains

the initial functions: λ𝑥.0, λ𝑥.2𝑥, λ𝑥.2𝑥 + 1, λ𝑥𝑦.2|𝑥||𝑦|, and the projection functions

λ𝑥0 . . . 𝑥𝑛 .𝑥 𝑗 (one such function for all 𝑛 and all 𝑗 ≤ 𝑛); and that is closed under

composition and limited recursion on notation.

Example 6.2.3. Let us define the following type-1 function 𝑓 : N −→ N by limited

recursion on notation:

𝑓 (0) = 1 ℎ(𝑥) = 2
2|𝑥|

𝑓 (𝑥) = 𝑆0(𝑆0( 𝑓 (⌊𝑥/2⌋))), if 𝑥 > 0

This function is of quadratic growth. In fact, 𝑓 (𝑥) = [𝑥]2.

In [27] the Cobham argues that ℒ is exactly the class of feasible functions, which

today we call polytime functions. A variety of characterizations of this class appeared

over the years. A low-level definition of polytime is understood as the set of functions

computable in polynomial time by a Turing machine.

Definition 6.2.4. We formally define FPTIME as the class of functions contained in

∪𝑘>0(N𝑘 −→ N) such that a function 𝑓 : N𝑘 −→ N is in FPTIME if and only if there exists a

deterministic Turing machine 𝑀 and a polynomial 𝑝 such that for each input 𝑥1, . . . , 𝑥𝑘 :

1. the machine 𝑀 outputs 𝑓 (®𝑥), and

2. 𝑀 runs within 𝑝(|𝑥1|, . . . , |𝑥𝑘|) steps.

Theorem 6.2.5 (Cobham’s Characterization of Polytime). A function is in FPTIME if and

only if it is in ℒ.

Example 6.2.6. Consider the type-1 function 𝑓 as in Example 6.2.3. Let us define a new

type-1 function 𝑔 in terms of 𝑓 as follows:

𝑔(0) = 2

𝑔(𝑥) = 𝑓 (𝑔(⌊𝑥/2⌋)), if x > 0



102 A Rewriting Characterization of Higher-Order Feasibility

This recursion leads to exponential growth, indeed, 𝑔(𝑥) = 2
[𝑥]

. Even though there is a

function ℎ bounding 𝑓 , there cannot be such ℎ function in ℒ. Therefore, when we say

ℒ is closed by limited recursion on notation it is important to note that the bounding

function should also be a member of ℒ.

The question of higher-order analogue classes for polytime computability is long

standing in complexity theory. It was initially posed by Constable [29]. Following

Constable’s work, Mehlhorn [79], defined a higher-order analogue of Cobham’s syntactic

characterization of FPTIME, which Mehlhorn called ℒ(). This class is a relativization
1

of

Cobham’s syntactic characterization of polytime via ℒ. Mehlhorn [79] provided some

evidence that this class is a sensible type-2 analogue to FPTIME from the fact that ℒ() is

a natural type-2 extension of the limited recursion on notation recursion schemata.

Definition 6.2.7. Given a functional 𝐹 we say that

• 𝐹 is defined from 𝐻, 𝐺1, . . . , 𝐺𝑙 by functional composition if for all
®𝑓 and ®𝑥,

𝐹( ®𝑓 , ®𝑥) = 𝐻( ®𝑓 , 𝐺1( ®𝑓 , ®𝑥), . . . , 𝐺𝑙( ®𝑓 , ®𝑥)).

• 𝐹 is defined from 𝐺 by expansion if for all
®𝑓 , ®𝑔, ®𝑥, and ®𝑦,

𝐹( ®𝑓 , ®𝑔, ®𝑥, ®𝑦) = 𝐺( ®𝑓 , ®𝑥).

• 𝐹 is defined from 𝐺, 𝐻, and 𝐾 by limited recursion on notation (LRN) if for all

®𝑓 , ®𝑥, and 𝑦,

𝐹( ®𝑓 , ®𝑥, 0) = 𝐺( ®𝑓 , ®𝑥)
𝐹( ®𝑓 , ®𝑥, 𝑦) = 𝐻( ®𝑓 , ®𝑥, 𝑦, 𝐹( ®𝑓 , ®𝑥, ⌊𝑦/2⌋)), if 𝑦 > 0,

|𝐹( ®𝑓 , ®𝑥, 𝑦)| ≤ |𝐾( ®𝑓 , ®𝑥, 𝑦)|.

Definition 6.2.8. The class BFF of Basic Feasible Functionals is defined as the smallest

class of type-2 functionals containing FPTIME, the application functional (i.e., λ 𝑓 𝑥. 𝑓 (𝑥)),
and it is closed under composition, expansion, and limited recursion on notation.

1

A relativization of a complexity class 𝐶 is, intuitively, the replacement of the usage of Turing machines

occurring in the machine-based definition of 𝐶 by oracle Turing machines. For instance, we relativize the

definition of NP as follows. We say that a language 𝐿 is in NP𝐴 iff there is a relation 𝑅 and a polynomial 𝑞
such that membership in 𝑅 can be checked in polynomial time by an oracle Turing machine 𝐴, and such

that 𝑥 ∈ 𝐿 ⇔ ∃𝑦.|𝑦| ≤ 𝑝(|𝑥|) ∧ (𝑥, 𝑦) ∈ 𝑅. A subtle but important note is that relativization is not an

operation that is applied to a complexity class, such as NP, and an oracle 𝐴 to get the relativized class NP𝐴.

Indeed, if relativization was an operation on complexity classes, then we would have that P = NPwould

imply P𝐴 = NP𝐴 for any oracle 𝐴, which is not the case. See [91, Section 14.3].



6.2 Basic Feasible Functionals 103

This is the definition we will consider for higher-order feasibility. For an overview of

characterizations of this class, we refer the reader to [57]. Recently, a new characterization

of BFF also appears in [45]. Taking such works as inspiration — in particular the work

done in [46, 60] — we set out to provide a rewriting-based characterization of higher-order

feasibility via our notion of tuple interpretations. The characterization we will provide

makes usage of Oracle Turing Machines and uses the characterization of Kapron and Cook

as in Theorem 6.4.1.

Simply Typed Rewriting Systems. In this chapter, we consider “terms without

lambdas” in order to simplify our proofs. Hence, we consider the set T(F,X) by

removing the abstraction rule in Definition 2.1.4. The definitions for substitutions,

rewriting rules, and so on, remain the same but without the abstraction case. The

interpretation theory we use is that of Chapter 5. So reduction follows a call-by-value

strategy, and the rewriting relation is given by Definition 5.1.4. The interpretation of

terms is from Definition 5.4.4, again, with terms without abstractions. So the abstraction

case is never used in this chapter. We use the acronym (STRS) for such rewriting systems

as this restriction essentially coincides with the formalism introduced by Kusakari [73].

An orthogonality condition will be required in this chapter, and it is defined as usual.

In this chapter, we work with STRSs assuming orthogonality holds. Orthogonality is

required for efficiency of graph rewriting, which we provide in Section 6.6.2.

Moreover, for the rest of this chapter, rules have base types. Hence, to satisfy the

requirement that values have zero cost component (Definition 5.4.7) 𝒥f must be as in

𝒥f = ⟨(0,λ𝑥1.(0, . . . ,λ𝑥𝑚 .(𝐶, u))),λ𝑥1 . . . 𝑥𝑚 .𝑆⟩

whenever typeOf(f) = 𝜎1 ⇒ · · · ⇒ 𝜎𝑚 ⇒ 𝜄. We will then write 𝒥 c
f for the function 𝐶

and 𝒥 s
f for the function 𝑆. In this way, 𝒥 c

f and 𝒥 s
f are functions such that

𝒥f =
〈
(0,λ𝑥1.(0, . . . ,λ𝑥𝑚 .(𝒥 c

f (𝑥1, . . . , 𝑥𝑚), u))),λ𝑥1 . . . 𝑥𝑚 .𝒥 s
f (𝑥1, . . . , 𝑥𝑚)

〉
Additionally, for terms of a base type, we will often suggestively write ⟦𝑠⟧c

and ⟦𝑠⟧s
to

denote their numeric cost component (so without u) and size components, respectively.

Restrictions to BFF. While BFFs are in principle defined with the potential for multiple

functional and numeric parameters, in the formal definitions in this chapter, we follow

what is done in Kapron and Cook [60] and limit proofs to single-oracle machines, so

they do not become cumbersome. We will also assume only a single input of type-0 and

another of type-1 (so 𝑘 = 𝑙 = 1). These definitions and proofs generalize naturally to the

multi-tape setting. We choose to proceed with a restricted assumption in the proofs

(and the formal definition below) to avoid bureaucracy that would obfuscate intuition.



104 A Rewriting Characterization of Higher-Order Feasibility

6.3 Oracle Turing Machines

We assume familiarity with Turing Machines and their various equivalent extensions,

see [91, Definition 2.1]. The notion of Turing machine used to define Basic Feasible

Functionals is that of deterministic multi-tape Turing machines. This is, conceptually, a

machine consisting of a finite set of internal control states and one or more (but a fixed

number of) right-infinite tapes divided into cells. Each tape is equipped with a tape

head that scans the symbols on the tape and may write on it. The head can move to

the left or right. The terminology “right-infinite tape” means that it has no rightmost

cell but does have a leftmost one. When the head is reading the leftmost cell, it is not

allowed to move left.

Consider 𝑓 : N −→ N. An oracle Turing machine (OTM) over 𝑓 , written 𝑀 𝑓 , is a

deterministic 3-tape Turing machine, that has the following designated components:

• a starting state;

• one input tape;

• two distinguished working tapes, which we call the query tape and answer tape

of the oracle 𝑓 ;

• additional distinct distinguished states: a query state query and a answer state
answer

This is formally expressed in the definition below.

Definition 6.3.1. An Oracle Turing machine 𝑀 with oracle function 𝑓 — written 𝑀 𝑓 —

is a tuple (𝑄, Γ, start, end, query, answer, 𝑓 , 𝒯 ) consisting of the following components:

1. 𝑄 ⊇ {start, end, query, answer} is a finite set of states such that start, end, query, and

answer are all pairwise distinct;

2. Γ ⊇ {0, 1, B} is a finite set of tape symbols;

3. 𝑓 is a function in N −→ N;

4. 𝒯 is a finite set of transitions (𝑖 , 𝑟 , 𝑡 , 𝑣, 𝑑, 𝑗) such that

(a) 𝑖 ∈ 𝑄 \ {query, end} is the original state,

(b) 𝑟 ∈ Γ is the read symbol,

(c) 𝑡 ∈ {1, 2, 3} is the tape of interest,2

2

Commonly in definitions of multi-tape Turing Machines, a machine can simultaneously move each

one of its head in one step of its computation. However, in order to facilitate a less cumbersome rewriting

encoding in Section 6.7, we assume that at each transition the machine moves only one head, and looks

only at one tape. This assumption does not pose any threat to the generality of our results since it is in

practice a sequentialization of the parallel moves of the standard multi-tape machine. Indeed, it is easy to

see that these two models can simulate each other with polynomial overhead.



6.3 Oracle Turing Machines 105

(d) 𝑣 ∈ Γ is the written symbol,

(e) 𝑑 ∈ {L, R} is the direction,

(f) 𝑗 ∈ 𝑄 is the result state.

We only consider deterministic machines in this chapter, so we put the following

restrictions on the set 𝒯 of transitions:

1. for all 𝑖 ∈ 𝑄 \ {query, end} and 𝑟 ∈ Γ there is exactly one transition (𝑖 , 𝑟 , 𝑡 , 𝑣, 𝑑, 𝑗)
in 𝒯 , and

2. for all 𝑖 ∈ 𝑄 \ {query, end}: if both (𝑖 , 𝑟 , 𝑡 , 𝑣, 𝑑, 𝑗) ∈ 𝒯 and (𝑖 , 𝑟′, 𝑡′, 𝑣′, 𝑑′, 𝑗′) ∈ 𝒯 ,

then 𝑡 = 𝑡′; that is, a given state only looks at one tape.

Now that we formally defined our notion of oracle Turing machines, we need to

formally capture what we mean by tape. Recall that intuitively we idealize a machine’s

tape consisting of an infinite number of cells. At each cell, the machine may write a

symbol from its alphabet. Hence, if 𝑛 is a natural number and the word 𝑤0𝑤1 . . . 𝑤𝑚 is

its binary representation, it can be written on a machine’s tape as in the figure below.

𝑤0 𝑤1
. . . 𝑤𝑚 B B . . .

Fig. 6.1 Illustration of a tape.

Notice that words written on the tape are finite, but since the tape is infinite we

assume all the other cells are filled in with a special symbol B.

Definition 6.3.2. A tape is a function ℎ : N −→ Γ such that {𝑛 | ℎ(𝑛) ≠ B} is finite.

If 𝑤 is a nonempty word 𝑤0𝑤1 . . . 𝑤𝑛 over Γ+, we denote ⟨𝑤⟩ for the tape func-

tion mapping 𝑖 to 𝑤𝑖 if 0 ≤ 𝑖 ≤ 𝑛, and to B otherwise. Intuitively, ⟨𝑤⟩ is the tape

𝑤1 · · ·𝑤𝑛BBB · · ·. This allows us to formally express “writing a word 𝑤 to a tape”.

Similarly, to read from a tape, let us denote ℎ|𝑝 for the binary string starting at position

𝑝; that is, if ℎ(𝑝 + 𝑖) ∈ {0, 1} for 0 ≤ 𝑖 < 𝑛, and ℎ(𝑝 + 𝑛) ∉ {0, 1}, then ℎ|𝑝 is the number

whose binary representation corresponds with ℎ(𝑝)ℎ(𝑝 + 1) · · · ℎ(𝑝 + 𝑛 − 1). If 𝑛 = 0 then

𝑤 = 𝜖, so we let ℎ|𝑝 := 0. Note that for any tape ℎ, the number ℎ|𝑝 is always defined

and ⟨𝑤⟩ is a tape for any string 𝑤 as above.

We have not formally defined how a machine computes yet. However, let us once

again invoke intuition and recall how we conceptualize its computation. Indeed, suppose

that at a certain moment of its computation the machine is at some state 𝑞 and its head

is reading the symbol 𝑤𝑖 from a tape. The figure below describes this scenario.



106 A Rewriting Characterization of Higher-Order Feasibility

𝑤0
. . . 𝑤𝑖−1 𝑤𝑖 𝑤𝑖+1

. . . 𝑤𝑘

q

Fig. 6.2 The machine is reading 𝑤𝑖 on this tape and is at state 𝑞.

Then, according to its internal controller (which by Definition 6.3.1 is a transition

tuple in 𝒯 ), it changes to a new state 𝑠, writes a new symbol 𝑤′
𝑖 at this tape’s position,

and moves the head to the left or right. We pick a movement to the right as an example:

𝑤0
. . . 𝑤𝑖−1 𝑤′

𝑖
𝑤𝑖+1

. . . 𝑤𝑘

s

Fig. 6.3 Illustration of a tape.

Now, the machine is in the state 𝑠 and reading the symbol 𝑤𝑖+1 on the tape. The

Section 6.3 above describe the machine’s configuration for a tape before and after a

computational step, respectively. As such, so they serve as a snapshot of what the

machine is doing. This is valid for one single tape in the oracle machine. However, we

want to express this configuration of the machine for all tapes.

Definition 6.3.3. Let 𝑀 𝑓 = (𝑄, Γ, start, end, query, answer, 𝑓 , 𝒯 ) be an oracle Turing

machine. A configuration of 𝑀 𝑓 is a tuple (𝑠, ℎ1, ℎ2, ℎ3, 𝑝1, 𝑝2, 𝑝3) where 𝑠 is a state in

𝑄, ℎ1, ℎ2, ℎ3 are valid tapes, and 𝑝1, 𝑝2, 𝑝3 ∈ N are positions in those tapes, respectively.

So a configuration (𝑠, ℎ1, ℎ2, ℎ3, 𝑝1, 𝑝2, 𝑝3) tells us the current state of the machine,

the contents of each one of its tapes, and the positions of the respective tape heads.

This definition is good for a formal representation. In practice, however, we write

configurations as words in order to ease notation and evoke intuition. So we may write

a configuration using the special symbol # ∉ Γ to indicate the position of each tape head

as follows:

(𝑞, 𝑤0 . . . 𝑤𝑝1−1#𝑤𝑝1
. . . 𝑤𝑘 , 𝑢0 . . . 𝑢𝑝2−1#𝑢𝑝2

. . . 𝑢𝑙 , 𝑣0 . . . 𝑣𝑝3−1#𝑣𝑝3
. . . 𝑣𝑚)

This configuration that uses words represents the same information as the more formal

one given in Definition 6.3.3. The only difference is that here we accept that after the

end of a word written on the tape, there are only blanks, so we can ignore them. This

is particularly useful for examples and our rewriting encoding of OTMs in Section 6.7.

Notice however that for formal proofs Definition 6.3.3 is used.



6.3 Oracle Turing Machines 107

6.3.1 Computing with Oracle Turing Machines

Based on our previous discussions, it is natural to expect the computation of a machine

to be expressed as stepwise transformations on the configuration tuples that respect the

transition tuples in 𝒯 . This is the case indeed, and we formalize this intuition in the

definition below.

Definition 6.3.4. Let 𝑀 𝑓 = (𝑄, Γ, start, end, query, answer, 𝑓 , 𝒯 ) be an oracle Turing

machine. We say a configuration (𝑠, ®ℎ, ®𝑝) steps to the configuration (𝑞, ®𝑔, ®𝑜) — which

we denote by (𝑠, ®ℎ, ®𝑝) ⇝ (𝑞, ®𝑔, ®𝑜) — if one of the following holds:

1. (Transition Step). There exists a transition (𝑠, 𝑟, 𝑡 , 𝑣, 𝑑, 𝑞) ∈ 𝒯 such that

(a) ℎ𝑡(𝑝𝑡) = 𝑟 and 𝑔𝑡(𝑝𝑡) = 𝑣, and ℎ𝑡(𝑛) = 𝑔𝑡(𝑛) for 𝑛 ∈ N \ {𝑝𝑡};

(The symbol read by the machine at tape 𝑡 and position 𝑝𝑡 is 𝑟. It is replaced

by 𝑣 in the next configuration. All other symbols remain unaltered.)

(b) if 𝑑 = R then 𝑜𝑡 = 𝑝𝑡 + 1; and if 𝑑 = L then 𝑜𝑡 = 𝑝𝑡 − 1

(The position of the head at the relevant tape is changed following 𝑑.)

(c) For each 𝑡′ ∈ {1, 2, 3} \ {𝑡}, we have 𝑔𝑡′ = ℎ𝑡′ and 𝑜𝑡′ = 𝑝𝑡′.

(The tapes other than the relevant one are unaltered, and their respective

head does not move.)

2. (Query Step). If 𝑠 = query and 𝑞 = answer then

• 𝑔1 = ℎ1 and 𝑜1 = 𝑝1

(The input/output tape is unaltered, and its head does not move.)

• 𝑔2 = 𝑖 ↦→ B and 𝑜2 = 0

(The query tape is erased, and its head is moved to the start of the tape.)

• 𝑔3 = ⟨ 𝑓 (ℎ3|𝑝3)⟩ and 𝑜3 = 0

(The new answer tape is obtained by reading the binary word starting at the

head of the query tape, then executing 𝑓 on this word and printing the result

in binary at the start of the answer tape, while moving its head to the start of

this answer.)

Definition 6.3.5. An OTM halts whenever it enters the final state end or whenever a

transition to the left, i.e., 𝑜𝑡 = 𝑝𝑡 − 1, is undefined.

Notice that it is always possible to move to the right, but moving to the left from the

leftmost position of a type (so 𝑝𝑡 = 0) would cause 𝑜𝑡 = 𝑝𝑡 − 1 = −1 which is not in N. So

this is the case when the machine halts via an invalid transition.



108 A Rewriting Characterization of Higher-Order Feasibility

Definition 6.3.4 above formalizes how one step of a machine computation occurs. In

essence, computation proceeds in a standard way for non-query states. However, if at

some step of the computation the machine wants to know the value of some 𝑓 on a word

𝑥, it writes the argument 𝑥 on the query tape, moves the read head to the beginning of

that tape, and enters the special query state query. Then in one step:

• the contents of the query tape are read, let 𝑥 be the corresponding number;

• the contents of the answer tape are changed to the image of 𝑓 on 𝑥;

• the head of the answer tape gets moved to its first symbol;

• the machine transitions to the answer state answer.

We observe that when the machine transitions to the answer state, answer, the

contents of the answer tape are changed to 𝑓 (𝑥) in one step; regardless of the length of 𝑥

or 𝑓 (𝑥), or even the computational complexity of determining the value of 𝑓 on 𝑥. After

this, computation resumes as usual. In this thesis, we only consider machines that halt

on all inputs, so such computations are always finite.

Remark 6.3.6. It is important to note that the requirement of having one tape for calling

the oracle and another distinct one to get its answer is strictly necessary. The reason

is that due to this restriction iterated calls to the oracle, i.e., 𝑓 ( 𝑓 (. . . 𝑓 (𝑥) . . .)), can only

be computed by copying each intermediate result of the application from the answer

tape to the query tape. Dropping this restriction would make the machine substantially

more powerful, and potentially bring us outside of BFF.

We are usually interested in a full computation of the machine, that is, a computation

starting with an input 𝑥 and ending with an output 𝑦.

Definition 6.3.7. Let 𝑥 ∈ N. The initial configuration initial(𝑥) to execute 𝑀 𝑓 on 𝑥

is (start, ⟨𝑥⟩, 0, 𝑖 ↦→ B, 0, 𝑖 ↦→ B, 0). A configuration of the form (end, ®ℎ, ®𝑝) is a final
configuration, and it yields 𝑦 if ℎ1|𝑝1 = 𝑦.

A computation of 𝑀 𝑓 on an input 𝑥 proceeds by starting with the initial configuration

and taking ⇝ steps until a final configuration is reached.

Definition 6.3.8. Let 𝑀 𝑓 be an OTM and 𝑥 a natural number. A computation of 𝑀 𝑓 on

𝑥 is a finite sequence of configuration steps such that initial(𝑥) ⇝ · · · ⇝ (end, ®ℎ, ®𝑝).

We observe that a computation with an OTM 𝑀 𝑓 requires the oracle function 𝑓 to be

previously fixed. However,𝑄, Γ, start, end, query, answer, 𝒯 do not depend on 𝑓 . Hence,

given an OTM 𝑀 𝑓 , we can let 𝑓 range over N −→ N to obtain a map that sends each

oracle function 𝑓 to the OTM 𝑀 𝑓 . Henceforth, we will call both the OTM 𝑀 𝑓 and the

functional 𝑓 ↦→ 𝑀 𝑓 “Oracle Turing Machines”. Notwithstanding, we write 𝑀 for this



6.3 Oracle Turing Machines 109

functional and 𝑀 𝑓 for its image under 𝑓 . This allows us to write 𝑀 for an OTM and say

that it receives as input a type-1 argument 𝑓 and a type-0 argument 𝑥. We then write

𝑀 𝑓 (𝑥) for the computation of 𝑀 given 𝑓 and 𝑥 as input.

A Machine-Based Computational Model for Type-2 Functionals. In type-1 com-

putability, we say a Turing machine computes a function 𝑓 : N −→ N whenever for all 𝑥,

with ⟨𝑥⟩ writen on its input tape, the machine halts in a final configuration that yields

⟨ 𝑓 (𝑥)⟩. We say this notion of computability is finitary in the sense that all arguments to

the computation are finite, that is, of type-0. Kapron and Cook [60] then extend type-1

computability by adding to it infinitary objects, i.e., the functional parameters.

Definition 6.3.9 (Type-2 Computability). Let Ψ : (N −→ N) × N −→ N be a type-2

functional. We say the oracle Turing machine 𝑀 computes Ψ if and only if for all type-1

𝑓 and for all type-0 𝑥: if 𝑀 𝑓 is started with initial configuration initial(𝑥), it halts with a

final configuration that yields Ψ( 𝑓 , 𝑥).

6.3.2 Complexity of Oracle Turing Machines

Recall that the running time of a Turing machine is just the number of steps that it

executes before halting. This cost model is natural as each step of a Turing machine is

atomic in the sense that at each step it can only change a single bit of information on the

tape. Hence, running time and number of steps coincide. For oracle Machines, however,

that is not the case. Indeed, whenever an OTM queries the oracle it creates more than a

bit worth of information in one single step. The following question then arises: “what is

a reasonable cost model for OTMs?”

There are two possibilities. The first, which is usually called unit cost model is to

charge the machine exactly one unit of time for calling the oracle. This cost model reflects

the intuition that oracles are all-powerful and external to the system. So querying an

oracle only costs the time of “calling it”. Observe that in this model we still take into

account the time needed to write the query string in the query tape; and similarly, the

time required to read from the answer tape. The second approach is to charge the length

of the oracle’s answer. This cost model reflects the fact that the value returned by the

oracle must still be written down on the answer tape and read by the machine. So even

though the oracle is like a subroutine with infinite power, its answer must still be read

by the caller.

In this thesis, we follow Kapron and Cook [60] and choose the latter. More precisely,

if we query the oracle 𝑓 on input 𝑥, the associated cost is max(1, | 𝑓 (𝑥)|). As usual, a

non-query step in an OTM computation costs 1 unit of time. This cost model is easier to

work with since queries to the oracle have an explicit size component which, as we shall

see later in this chapter, plays nicely with tuple interpretations. In [79] Mehlhorn works



110 A Rewriting Characterization of Higher-Order Feasibility

with the unit cost model, and Kapron and Cook [60] observed that the two models are

equivalent.

Definition 6.3.10. The running time of an OTM with a given input is the sum of the

costs of the steps on its execution. We denote by Time𝑀( 𝑓 , 𝑥) the running time of 𝑀 on

inputs 𝑓 and 𝑥.

Notice that in a Turing machine computation the number of steps from an initial

configuration initial(𝑥) to a final configuration (end, ℎ, 𝑝) is exactly the time measure.

However, because of the cost model we have chosen for oracle calls, the number of steps

in an oracle machine computation is not equal to its running time, as oracle calls are

atomic steps with nonunit cost.

As usual in complexity theory, we would like to be able to supply upper bounds

for the running time of an OTM in terms of the size of its inputs. To do this, we must

define what the size of an input means. This is straightforward for elements of N (i.e.,

the type-0 arguments): we let |𝑥| be its size (recall that |𝑥| = ⌈log
2
(𝑥 + 1)⌉). For functions,

it would be of no surprise that we use a size functional, in the same fashion of size

interpretations we studied in the rewriting setting.
3

Therefore, we define the length of a

type-1 functional 𝑓 as the function below.

Definition 6.3.11. For any type-1 𝑓 : N −→ N its length is the function defined by

| 𝑓 | = λ𝑥.max

|𝑦|≤𝑥
| 𝑓 (𝑦)|

Second-Order Polynomials. In order to majorize the running time of OTMs we define

the class of second-order polynomials as follows.

Definition 6.3.12. Let {𝑥1, . . . , 𝑥𝑙} be a set of type-0 variables and {𝐹1, . . . , 𝐹𝑘} be a set of

type-1 variables. The set Pol2

N[𝐹1, . . . , 𝐹𝑘 ; 𝑥1, . . . , 𝑥𝑙] of second-order polynomials over N
with indeterminates 𝐹1, . . . , 𝐹𝑘 ; 𝑥1, . . . , 𝑥𝑙 is generated by the grammar:

𝑃, 𝑄 ≔ 𝑛 | 𝑥 | 𝑃 +𝑄 | 𝑃 ∗𝑄 | 𝐹(𝑄)

where 𝑛 ∈ N, 𝑥 ∈ {𝑥1, . . . , 𝑥𝑙}, and 𝐹 ∈ {𝐹1, . . . , 𝐹𝑘}.

Example 6.3.13. Examples of polynomial expressions are 𝑃 = 𝐹(𝑥 + 1) + 𝑥2 + 3 and

𝑄 = (𝑥 + 1) ∗ 𝐹(𝑦) + 3.

Let type-0 variables range over elements of N and type-1 variables range over

elements of N −→ N. We then interpret +, ∗ as addition and multiplication over

3

Indeed, as we shall see in this chapter, the innovation brought by tuple interpretations, i.e., the ability

to explicitly split cost and size, makes reasoning about those size functionals easier. Yes, of course, we are

going to use tuple interpretations and higher-order rewriting to capture BFF. I am a rewriter after all.



6.4 Kapron and Cook’s Characterization of BFF 111

N, respectively. Therefore, polynomial expressions can be interpreted as type-2

functionals in (N −→ N)𝑘 −→ N𝑙 −→ N. If 𝑃 is a second-order polynomial in

Pol2

N[𝐹1, . . . , 𝐹𝑘 ; 𝑥1, . . . 𝑥𝑙], we write λ𝐹1 . . . 𝐹𝑘𝑥1 . . . 𝑥𝑙 .𝑃 to denote the associated type-2

functional. We also write λ®𝐹 ®𝑥.𝑃 as shorthand notation for such type-2 functionals.

Example 6.3.14. The polynomials in Example 6.3.13 can be viewed as the type-2 functional

𝑃 = λ𝐹𝑥.𝐹(𝑥 + 1) + 𝑥2 + 3 and 𝑄 = λ𝐹𝑥𝑦.(𝑥 + 1) ∗ 𝐹(𝑦) + 3, respectively. When those are

applied to a concrete argument we may write 𝑃(𝐹, 𝑥) and 𝑄(𝐹, 𝑥).

Lemma 6.3.15. If 𝑃 is a second-order polynomial in some Pol2

N[𝐹1, . . . , 𝐹𝑘 ; 𝑥1, . . . , 𝑥𝑙],
then the associated type-2 functional λ®𝐹 ®𝑥.𝑃 is weakly monotonic on each one of its

arguments.

Proof. By induction on the structure of 𝑃 and observing that addition, multiplication,

and functional application over N are all weakly monotonic. □

6.4 Kapron and Cook’s Characterization of BFF

In [60], Kapron and Cook characterized BFF as those functionals that can be computed

by OTMs whose running times are majorized by second-order polynomials in terms of

the size of their arguments. This is stated as the theorem below.

Theorem 6.4.1. A type-2 functional Ψ is in BFF if and only if there exists an oracle Turing

machine 𝑀 and a second-order polynomial 𝑃 such that 𝑀 computes Ψ and for all 𝑓

and 𝑥, Time𝑀( 𝑓 , 𝑥) ≤ 𝑃(| 𝑓 |, |𝑥|).

6.5 From Higher-Order Rewriting to BFF and Back Again

The main result of this chapter is to show that BFFs are captured by a class of STRSs with

second-order polynomially bounded interpretations. To formally state this result in

Theorem 6.5.9, we must first define what it means for an STRS to compute a higher-order

function.

6.5.1 Type-2 Computability via Higher-Order Rewriting

We start by representing a natural number in N as a term over a signature F.

Definition 6.5.1. Let 𝒞𝒩 be a set of data constructors. This set defines N if there is

a bijection N −→ 𝒩 , with 𝒩 ⊆ T(𝒞𝒩 ). That is, each 𝑛 ∈ N has a unique data term

representation ⌊n⌋.



112 A Rewriting Characterization of Higher-Order Feasibility

Remark 6.5.2. There are multiple ways of representing natural numbers as terms. In the

earlier chapters, we have used for instance unary encoding. In this chapter, however,

the term encoding of N will be mainly on binary numbers. That choice makes our

proofs more sensible for the efficiency of the encoding and the fact that we also deal

with low-level Turing machines that in practice use binary encoding. Therefore, to

differentiate from the previous chapters we write such terms as ⌊n⌋. Similarly, we call

the base type of such encoding terms bnat.

Example 6.5.3 (Encoding Binary Numbers as Terms). In order to encode the binary

representation of numbers in N as terms, we let bit, bnat ∈ B and introduce symbols

o, i : bit and [] : bnat, :: : bit ⇒ bnat ⇒ bnat. Then for instance 001 is encoded as the term

:: o (:: o (:: i [])). We use the cleaner list-like notation [o; o; i] in practice.

We also fix the following interpretation for these data constructors:

𝒥o = ⟨0, 0⟩ 𝒥i = ⟨0, 0⟩ 𝒥:: =

〈 (
λ𝑥𝑞.0

)
,λ𝑥𝑞.1 + 𝑞

〉
So, the size of such encoding is the length of the corresponding binary word.

Example 6.5.4 (Implementing Binary Addition). Let us implement binary addition.

For this purpose, we consider binary sequences written in little-endian format, i.e., the

most significant digit is at the head of the list. So the binary number 110 (in big-endian
notation) is written as 011 in little-endian notation. As a data term, this is equivalent to

reversing the list [i; i; o]. We need the following logical operations on bit symbols.

o xor o → o i xor i → o o xor i → i i xor o → i

o and o → o i and i → i o and i → o i and o → o

o or o → o i or i → i o or i → i i or o → i

We can interpret the rules above as follows. The cost–size interpretation for each

constructor i, o is ⟨0, 0⟩. The cost component of xor, and, or are given by λ𝑥𝑦.1 and

size component by λ𝑥𝑦.0.

The rules defining aux : bnat ⇒ bnat ⇒ bit ⇒ bnat below compute the bitwise

addition and carrying value recursively on the size of the input lists. We define such a



6.5 From Higher-Order Rewriting to BFF and Back Again 113

function using case distinction on the shape of the two input numbers.

aux [] [] o → []
aux [] [] i → i :: []
aux (𝑎 :: []) (𝑏 :: []) 𝑎𝑐𝑐 → ((𝑎 xor 𝑏) xor 𝑎𝑐𝑐) :: aux [] [] (((𝑎 xor 𝑏) and 𝑎𝑐𝑐) or (𝑎 and 𝑏))
aux (𝑎 :: []) (𝑏 :: 𝑏′ :: 𝑏𝑠) 𝑎𝑐𝑐 →

((𝑎 xor 𝑏) xor 𝑎𝑐𝑐) :: aux (o :: []) (𝑏′ :: 𝑏𝑠) (((𝑎 xor 𝑏) and 𝑎𝑐𝑐) or (𝑎 and 𝑏))
aux (𝑎 :: 𝑎′ :: 𝑎𝑠) (𝑏 :: []) 𝑎𝑐𝑐 →

((𝑎 xor 𝑏) xor 𝑎𝑐𝑐) :: aux (𝑎′ :: 𝑎𝑠) (o :: []) (((𝑎 xor 𝑏) and 𝑎𝑐𝑐) or (𝑎 and 𝑏))
aux (𝑎 :: 𝑎′ :: 𝑎𝑠) (𝑏 :: 𝑏′ :: 𝑏𝑠) 𝑎𝑐𝑐 →

((𝑎 xor 𝑏) xor 𝑎𝑐𝑐) :: aux (𝑎′ :: 𝑎𝑠) (𝑏′ :: 𝑏𝑠) (((𝑎 xor 𝑏) and 𝑎𝑐𝑐) or (𝑎 and 𝑏))

We then set the following interpretation:

𝒥aux =

〈 (
λ𝑥𝑦𝑎.3 + 6 max(𝑥, 𝑦)

)
,λ𝑥𝑦𝑎.1 + max(𝑥, 𝑦)

〉
Finally, we write the addition of binary numbers as the rule 𝑥 +B 𝑦 → aux 𝑥 𝑦 o.

Definition 6.5.5. A set of rules R 𝑓 over 𝒞𝒩 ∪ {S 𝑓 : bnat ⇒ bnat} defines a function

𝑓 : N −→ N by way of the symbol S 𝑓 if and only if for each 𝑛, 𝑚 ∈ N such that 𝑚 = 𝑓 (𝑛),
the rule Sf ⌊n⌋ → ⌊m⌋ is in R 𝑓 and there is no other other rule ℓ → 𝑟 in R 𝑓 with ℓ = Sf ⌊n⌋.

Intuitively, this infinite set of rules simulates an oracle 𝑓 , which, in one step of

computation provides us with the value ⌊f(x)⌋. In the next definition, we extend a

finite TRS with such an oracle. Henceforth, we assume given that our STRS (F,R)
at hand is such that F contains o, i, [], :: typed as above and a distinguished symbol

F : (bnat ⇒ bnat) ⇒ bnat ⇒ bnat.

Definition 6.5.6. Let a distinguished function symbol F ∈ Σ of type (bnat ⇒ bnat) ⇒
bnat ⇒ bnat be given, and assume given a type-1 function 𝑓 : N −→ N, and fresh

symbols G,S 𝑓 : bnat ⇒ bnat not in Σ. We write RF, 𝑓 ,G for the infinite TRS

R ∪ R 𝑓 ∪ {G 𝑥 → F S 𝑓 𝑥}.

This definition allows us to state what it means for an STRS to compute a second-order

function. As it is done with higher-order computability for OTMs in Definition 6.3.9, we

start with a finitary notion of computability.

Definition 6.5.7 (Type-1 Computability). Let (F,R) be a TRS and f ∈ Σ. We say that the

symbol f computes a type-1 function 𝑓 : N −→ N whenever f ⌊n⌋ +−→ ⌊m⌋ if and only if

𝑓 (𝑛) = 𝑚.



114 A Rewriting Characterization of Higher-Order Feasibility

Then we extend this notion by adding to it the infinitary parameters.

Definition 6.5.8 (Type-2 Computability). We say that in a finite TRS R the function

symbol F : (bnat ⇒ bnat) ⇒ bnat ⇒ bnat computes the type-2 functional Ψ : (N −→
N) −→ N −→ N if and only if for every type-1 function 𝑓 in N −→ N, the TRS RF, 𝑓 ,G is

such that the symbol G computes Ψ( 𝑓 ).

This finally allows us to state the main result:

Theorem 6.5.9 (BFF Characterization Theorem). A type-2 functional Ψ is in BFF if and

only if there exists an orthogonal STRS (Σ,R) such that F ∈ Σ computes Ψ, and which

admits a second-order polynomially-bounded interpretation such that

1. there exist constants 𝑐 ≥ 1 and 𝑑 ≥ 0 such that for all 𝑛 ∈ N we have |𝑛| ≤ ⟦⌊n⌋⟧s ≤
𝑐 ∗ |𝑛| + 𝑑, and

2. 𝒥 c
F and 𝒥 s

F are polynomially bounded.

In this chapter, we make a slight abuse of nomenclature and say that such interpreta-

tions are polynomially bounded to mean that the function of interest F is polynomially

bounded. This comes from the fact that we can in practice interpret the size components

of other data types — which are not bnat — using sets that are not numeric. Indeed, the

only required numeric notion of size should be given to bnat in order to even talk about

polynomially bounded interpretations.

In the following sections, we will prove this result. We will refer to an interpretation

that satisfies the property that always |𝑛| ≤ ⟦⌊n⌋⟧s ≤ 𝑐 ∗ |𝑛| + 𝑑 as a bnat-size reflecting
interpretation. Note that if constructor interpretations are additive, we can always find

𝑐, 𝑑 such that ⟦⌊n⌋⟧s ≤ 𝑐 ∗ |𝑛| + 𝑑. However, the property also restricts us from, for

instance, letting ⟦⌊n⌋⟧s
be the number of 0s in the binary representation of 𝑛. This is

needed to ensure that the interpretation can be extended to include S 𝑓 .

Proving Theorem 6.5.9 requires non-trivial work. We split this proof in two major

properties that in the literature are called soundness and completeness of the characteriza-

tion. This first property is to ensure that whenever a type-2 functional can be computed

by a STRS satisfying our conditions it is a member of BFF. The second is to ensure that

STRSs satisfying our requirements capture all type-2 functionals. In essence, soundness

states that we are correct in our conditions to model elements of BFF and completeness

state that we do not “miss” functionals, i.e., the entire class is captured.

Example 6.5.10. Let us consider the type-2 functional defined by Ψ ≔ λ 𝑓 𝑥.
∑
𝑖<|𝑥|

𝑓 (𝑖).

Notice that Ψ adds all 𝑓 (𝑖) over each word 𝑖 ∈ N whose value (as a natural number) is

smaller than the length of 𝑥. This functional was proved to lie in BFF in [56], where the

authors utilized an encoding of Ψ as a BTLP2 program. We can encode Ψ as an STRS as



6.6 Soundness 115

follows. Let us consider ancillary symbols lengthOf : bnat ⇒ nat and toBin : nat ⇒ bnat.
The former computes the length of a given word and the latter converts a number from

unary to binary representation. We also consider rules for addition on binary words,

i.e., +B : bnat ⇒ bnat ⇒ bnat, which we write using infix notation below.

compute 𝐹 𝑥 0 𝑎𝑐𝑐 → 𝑎𝑐𝑐

compute 𝐹 𝑥 (s 𝑖) 𝑎𝑐𝑐 → compute 𝐹 𝑥 𝑖 (𝑎𝑐𝑐 +B 𝐹(toBin 𝑖))
start 𝐹 𝑥 → compute 𝐹 𝑥 (lengthOf 𝑥) []

Now, if we want to compute Ψ( 𝑓 , 𝑥) we simply normalize the term start S 𝑓 ⌊x⌋.

6.6 Soundness

In this section, we prove soundness, that is, if a type-2 functional Ψ is computed by an

orthogonal STRS that admits a suitable interpretation, then it is in BFF. The proof of this

takes roughly the following form:

• If the STRS that computesΨ admits a suitable second-order polynomially-bounded

interpretation, then so does the extended STRS RF, 𝑓 ,G. The restriction that the

interpretation is bnat-size reflecting implies that both ⟦G ⌊n⌋⟧c
and ⟦G ⌊n⌋⟧s

are

bounded by second-order polynomials over | 𝑓 |, |𝑛|. Since ⟦𝑠⟧c > ⟦𝑡⟧c
whenever

𝑠 →R 𝑡, the former bounds the number of steps we can do, starting in G ⌊n⌋, by a

polynomial. The latter bounds the size of the normal form.

• The cost polynomial also restricts the size of any input that the function variable

𝐹 is applied to (since, for instance, a cost bound of 3 + 𝐹c(⟦𝑛⟧s) implies that 𝐹 is

never called on a term with size interpretation > ⟦𝑛⟧s
).

• By using the observation above, and using sharing to handle data duplication (for

instance by a rule f 𝑥 → g 𝑥 𝑥), we can represent terms without excessive space

blowup, and compute each reduction step in only polynomially many steps on an

oracle Turing machine.

In the remainder of this section, we assume given a fixed STRS (Σ,R), and a second-order

polynomially-bounded bnat-size reflecting interpretation that orients R.

6.6.1 Interpreting the extended TRS

To start, we will extend the interpretation function to the system RF, 𝑓 ,G, which has

infinitely many rules defining 𝑓 by S 𝑓 . The first question regarding this extended system

is the following: “how do we interpret the additional symbols S 𝑓 and G”?



116 A Rewriting Characterization of Higher-Order Feasibility

Since S 𝑓 basically represents a call for an oracle to compute 𝑓 in a single step, we can

set its cost component to 1. So we get

𝒥 c
S 𝑓

= λ𝑥.1 (6.1)

Meanwhile, the size interpretation of S 𝑓 is given by the length of the oracle output,

just like in Definition 6.3.11. We can hence define ⟦S 𝑓 ⟧
s

in terms of | 𝑓 | as follows: let

𝑐 ≥ 1, 𝑑 ≥ 0 be the integers such that always |𝑛| ≤ ⟦⌊n⌋⟧s ≤ 𝑐 ∗ |𝑛| + 𝑑. Then

𝒥 s
S 𝑓

= λ𝑥.𝑐 ∗ | 𝑓 |(𝑥) + 𝑑 (6.2)

This is weakly monotonic because | 𝑓 | is, and we can interpret the infinitely many rules

defining 𝑓 by way of S 𝑓 as follows:

⟦S 𝑓 ⌊n⌋⟧ =
〈

(0,λ𝑥.(1, u)) ,λ𝑥.𝑐 ∗ | 𝑓 |(𝑥) + 𝑑
〉
· ⟨0, 𝑖⟩ ,

for some 𝑖 ∈ {|𝑛|, . . . , 𝑐 ∗ |𝑛| + 𝑑}
=

〈
1, 𝑐 ∗ | 𝑓 |(𝑖) + 𝑑

〉
≽

〈
1, 𝑐 ∗ | 𝑓 (𝑛)| + 𝑑

〉
(by definition of | 𝑓 |, since 𝑖 ≥ |𝑛|)

≻
〈
0, 𝑐 ∗ | 𝑓 (𝑛)| + 𝑑

〉
≽ ⟦⌊f(n)⌋⟧

This orients each S 𝑓 rule added to the system for any function 𝑓 ∈ N −→ N.

To orient the rule G 𝑥 → F S 𝑓 𝑥, we use the fact that all rules in the original system

are already oriented. With this, we get

𝒥G =

〈(
0,λ𝑥.

(
1 + 𝒥 c

F

(〈
𝒥 c

S 𝑓
,𝒥S 𝑓

〉
, 𝑥

)))
,λ𝑥.𝒥 s

F (𝒥 s
S 𝑓
, 𝑥)

〉
Notice that in the cost component of 𝒥G 𝑓

we just sum 1 to the total numeric component

of F S 𝑓 𝑥. This is to encode that exactly one step is needed to eliminate the symbol G. So

we can write its interpretation as follows:

⟦G 𝑥⟧ =
〈
1 + ⟦F S 𝑓 𝑥⟧

c , ⟦F G 𝑥⟧s〉
Indeed, the rule G 𝑥 → F S 𝑓 𝑥 does this in exactly one step. Sizes can remain the same,

so we can choose the same size component for G as the right-hand side of the rule,

which we interpreted above. The compatibility conditions can be checked by combining



6.6 Soundness 117

the two previous equations as follows:

⟦G 𝑥⟧ =
〈(

0,λ𝑥.
(
1 + 𝒥 c

F

(〈
𝒥 c

S 𝑓
,𝒥S 𝑓

〉
, 𝑥

)))
,λ𝑥.𝒥 s

F (𝒥 s
S 𝑓
, 𝑥)

〉
· ⟨0, 𝑥⟩

=

〈
0 + 1 + ⟦F G 𝑥⟧c , ⟦F S 𝑓 𝑥⟧

s
〉

≻
〈
⟦F G 𝑥⟧c , ⟦F S 𝑓 𝑥⟧

s
〉

= ⟦F⟧ · ⟦S 𝑓 ⟧ · ⟦𝑥⟧
= ⟦F S 𝑓 𝑥⟧

Which orients the rule G 𝑥 → F S 𝑓 𝑥. We collect this result in the lemma below.

Lemma 6.6.1. Suppose (F,R) is a TRS compatible with a bnat-size reflecting cost–size

tuple interpretation and F : (bnat ⇒ bnat) ⇒ bnat ⇒ bnat is a second-order symbol in

Σ. Then for any type-1 function 𝑓 , the extended TRS RF, 𝑓 ,G is also compatible with a

bnat-size reflecting cost–size tuple interpretation.

Next, we reason about the polynomial bounds to the extended TRSs computing a

type-2 functional.

Theorem 6.6.2. Let (F,R) be a finite TRS such that the symbol F : (bnat ⇒ bnat) ⇒
bnat ⇒ bnat ∈ Σ computes the type-2 functional Ψ : (N −→ N) −→ N −→ N. Suppose R
is compatible with a polynomially-bounded bnat-size reflecting cost–size interpretation.

Then we can define second-order polynomials 𝐶, 𝑆 such that, for any oracle function 𝑓

and argument 𝑥 ∈ 𝒩 , the derivation height of G 𝑥 is bounded by 𝐶(| 𝑓 |, |𝑥|) and the size

of its normal form by 𝑆(| 𝑓 |, |𝑥|).

Proof. First, note that 𝒥F is polynomially bounded, so there exist second-order polyno-

mials 𝑃𝑐 , 𝑃𝑠 such that 𝑃𝑐 ≥ 𝒥 c
F and 𝑃𝑠 ≥ 𝒥 s

F . Then 𝑃𝑐 : (N −→ N) −→ (N −→ N) −→
N −→ N (taking a cost function, a size function, and the size of an input argument, and

returning a cost bound) and 𝑃𝑠 : (N −→ N) −→ N −→ N (taking a size function and the

size of an input argument, and returning a size bound). We let:

𝐶(𝐹, 𝑧) = 1 + 𝑃𝑐(λ𝑥.1,λ𝑥.𝑐 ∗ 𝐹(𝑥) + 𝑑, 𝑐 ∗ 𝑧 + 𝑑)
𝑆(𝐹, 𝑧) = 𝑃𝑠(λ𝑥.𝑐 ∗ 𝐹(𝑥) + 𝑑, 𝑐 ∗ 𝑧 + 𝑑)

Then indeed, recall that

⟦G 𝑥⟧ =
〈

1 + ⟦F S 𝑓 𝑥⟧
c
, ⟦F S 𝑓 𝑥⟧

s
〉



118 A Rewriting Characterization of Higher-Order Feasibility

Let us first “compress” the cost component of this interpretation, see Definition 5.4.4,

hence we can write this interpretation as follows

⟦G 𝑥⟧c =
1 + 𝒥 c

F

(〈
𝒥 c

S 𝑓
,𝒥 s

S 𝑓

〉
, ⟦𝑥⟧s

)
Observe that this shaded component is the component bounding the derivation height of

G 𝑥 since this system respects compatibility. We continue by plugging in Equations (6.1)

and (6.2) and using 𝑃𝑐 as defined above to get the following.

⟦G 𝑥⟧c = 1 + 𝒥 c
F

(〈
(0,λ𝑥.(1, u)),λ𝑥.𝑐 ∗ | 𝑓 |(𝑥) + 𝑑

〉
, ⟦𝑥⟧s)

≤ 𝑃𝑐(λ𝑦.1,λ𝑦.𝑐 ∗ | 𝑓 |(𝑦) + 𝑑, 𝑐 ∗ |𝑥| + 𝑑)

≤ 𝐶(| 𝑓 |, |𝑥|)

As the derivation height of a term is bounded by its cost interpretation, clearly 𝐶 is a

polynomial bound to the number of steps — in terms of | 𝑓 | and |𝑥| — we need to reduce

G 𝑥 to normal form.

We treat the size component similarly. Indeed, we get the following:

⟦G 𝑥⟧s = ⟦F S 𝑓 𝑥⟧
s

= 𝒥 s
F (𝒥 s

S 𝑓
, ⟦𝑥⟧s)

≤ 𝑃𝑠(λ𝑦.𝑐 ∗ | 𝑓 |(𝑦) + 𝑑, 𝑐 ∗ |𝑥| + 𝑑)
= 𝑆(| 𝑓 |, |𝑥|)

As for the size of the normal form we observe that if G 𝑥
+−→ 𝑠 with 𝑠 ∈ 𝒩 then

⟦G 𝑠⟧s ≥ ⟦𝑠⟧s ≥ |𝑠| since the interpretation is bnat-size reflecting. Additionally, if 𝑥 ∈ 𝒩
then necessarily the normal form of G 𝑥 is in 𝒩 since F computes Ψ by assumption. □

Notice that this theorem does not imply Ψ is in BFF. It only guarantees that there is a

polynomial bound to the runtime complexity of such systems. However, it does not

immediately follow that the number of rewriting steps is a reasonable upper bound for

the actual computational cost of simulating a reduction on a Turing machine. Consider

for example a rule f (s 𝑛) 𝑡 → f 𝑛 (c 𝑡 𝑡). Every step doubles the size of the term, and in

a polynomial number of steps we can create exponentially large terms. Therefore, in

order to establish the soundness result, we need to show how to realize a reasonable

implementation of term rewriting w.r.t. OTMs; in essence, we show that duplication

is not an issue with a suitable representation of rewriting. We achieve this in the next

section using term graph rewriting.



6.6 Soundness 119

6.6.2 Term Graph Rewriting

In this section, we adapt the development of [77] to our higher-order setting. We also

adapt notions from [15]. Let us start by defining our main object, i.e., labeled graphs.

Term Graphs

Definition 6.6.3. A labeled graph 𝐺 over a set of symbols Σ is a triple (𝑉, label, succ)
that consists of the following components:

1. 𝑉 is a finite nonempty set of vertices;

2. label : 𝑉 −→ Σ ∪ {@} is a partial function, and @ is a symbol not occurring in Σ;

3. succ : 𝑉 −→ 𝑉∗
is a total function such that

(a) succ(𝑣) = 𝑣1𝑣2 whenever label(𝑣) = @ and succ(𝑣) = 𝜀 otherwise,

(b) for every 𝑣 ∈ 𝑉 , succ(𝑣) does not contain 𝑣.

Definition 6.6.4. A term graph is a quadruple (𝑉, label, succ,Λ) such that the tuple

(𝑉, label, succ) is a labeled graph and Λ is a vertex in 𝑉 . We call such vertex the root
of the term graph. A vertex labeled with @ is an application vertex, otherwise, it is a

terminal vertex.

Example 6.6.5. Consider 𝐺 over Σ, where Σ contains the symbols from Example 5.1.2,

with vertices 𝑉 = {Λ, 𝑣1, 𝑣2, 𝑣3, 𝑣4}, label = [𝑣0 ↦→ @, 𝑣1 ↦→ @, 𝑣2 ↦→ app], successors

succ = [Λ ↦→ 𝑣1𝑣4, 𝑣1 ↦→ 𝑣2𝑣3, 𝑣2 ↦→ 𝜀, 𝑣3 ↦→ 𝜀, 𝑣4 ↦→ 𝜀], and the root symbol is Λ.

Λ : @

𝑣1 : @

𝑣2 : app 𝑣3 : ⊥

𝑣4 : ⊥

@

@

app ⊥

⊥

Fig. 6.4 Example of term graph

The picture on the left completely describes 𝐺 with the circled vertex representing

the root and the left-to-right positioning of the outgoing arrows representing the order

of the successors in each application node. In the picture on the right, we simplify it

by not writing the vertices names. We use the symbol ⊥ for the vertices where the

labeling function is undefined. Each such vertex represents distinct variable names (in

the corresponding term). Hence, the graph term in Example 6.6.5 represents a term of

the form app 𝐹 𝑥. We consider those up to variable names so app𝐺 𝑦 is also valid.



120 A Rewriting Characterization of Higher-Order Feasibility

Example 6.6.6. In the following examples some vertices are shared. We say a vertex is

shared whenever its in-degree is greater than one.

@

@

app @

⊥

add

@

@

f @

g ⊥

Definition 6.6.7. A (𝑣0, 𝑣𝑚)-path in a graph 𝐺 is a sequence of vertices 𝑣0𝑣1 . . . 𝑣𝑚 such

that 𝑣𝑘+1 = 𝜋𝑖(succ(𝑣𝑘)), for 𝑖 = 1, 2. The length of a (𝑣0, 𝑣𝑚)-path 𝑣0𝑣1 . . . 𝑣𝑚 is 𝑚. A

cyclic path in 𝐺 is a (𝑣, 𝑣)-path in 𝐺. A term graph is acyclic if it contains no cyclic path.

The set G(Σ) collects the acyclic term graphs over Σ. Essentially, an acyclic term

graph 𝐺 over Σ is a directed acyclic graph where the nodes are labeled with @ and some

leaves may be labeled with symbols from Σ.

Example 6.6.8. A (Λ, 𝑣121)-path is highlighted in the term graph below:

Λ : @

𝑣1 : @

𝑣11 : app 𝑣12 : @

𝑣2 : ⊥

𝑣121 : add

Definition 6.6.9. Let 𝐺 = (𝑉, label, succ,Λ) be a term graph and 𝑣 ∈ 𝑉 . The subgraph
of 𝐺 rooted at 𝑣 is the term graph 𝐺

��
𝑣
= (𝑉

��
𝑣
, label′, succ′, 𝑣) where 𝑉

��
𝑣

is the subset

of 𝑉 whose elements are those vertices 𝑣′ ∈ 𝑉 such that there is a (𝑣, 𝑣′)-path in 𝐺.

The labeling and successor functions label′, succ′ are the respective restrictions of

label, succ to 𝑉
��
𝑣
.

Definition 6.6.10. A homomorphism between term graphs 𝐺 given by the tuple

(𝑉𝐺 , label𝐺 , succ𝐺 ,Λ𝐺) and𝐻 given by the tuple (𝑉𝐻 , label𝐻 , succ𝐻 ,Λ𝐻) is a function

𝜙 : 𝑉𝐺 −→ 𝑉𝐻 that preserves the labeled graph structure. That is, it satisfies the

following conditions:

label𝐻(𝜙(𝑣)) = label𝐺(𝑣) succ𝐻(𝜙(𝑣)) = 𝜙∗(succ𝐺(𝑣)),

where 𝜙∗
is the homomorphic extension of 𝜙 to 𝑉∗

𝐺, i.e., 𝜙∗(𝜀) = 𝜀 and 𝜙∗(𝑣1 . . . 𝑣𝑘) =
𝜙(𝑣1) . . . 𝜙(𝑣𝑘).



6.6 Soundness 121

Term Graph Rules and Rewrite Relation

As is the case with term rewriting, in the graph rewriting case we also express reducibility

as a binary relation on the set of objects: in this case G(Σ).

Definition 6.6.11. A graph rewrite rule 𝜌 is a triple (𝐺, ℓ , 𝑟) such that 𝐺 is a term graph

and ℓ , 𝑟 are vertices of 𝐺 called, respectively, the left and right root of 𝜌.

Definition 6.6.12. A redex in 𝐺 is a pair (𝜌, 𝜙) consisting of a graph rule 𝜌 = (𝑃, ℓ , 𝑟)
and a homomorphism 𝜙 : 𝑃

��
ℓ
−→ 𝐺.

We define redirection as the operation in a term graph that replaces every reference

to 𝑣1 with references to 𝑣2.

Definition 6.6.13. Let 𝐺 = (𝑉𝐺 , label𝐺 , succ𝐺 ,Λ𝐺) be a term graph and 𝑣1, 𝑣2 vertices

in 𝐺. The term graph 𝐺[𝑣1 ≫ 𝑣2] is the term graph (𝑉𝐺 , label𝐺 , succ𝐺′ ,Λ𝐺) with

succ𝐺′(𝑣)𝑖 =
{
𝑣2, if succ𝐺(𝑣)𝑖 = 𝑣1

succ𝐺(𝑣)𝑖 , otherwise

Example 6.6.14. The redirected edge is dashed in the example below:

@

@

f @

g ⊥

@

@

f @

g ⊥

Definition 6.6.15. Let 𝐺 be a term graph and (𝜌, 𝜙) be a redex in 𝐺, with 𝜌 = (𝑃, ℓ , 𝑟).
The contraction of (𝜌, 𝜙) in 𝐺 is the term graph produced after the following steps: 𝐻

(the build phase), 𝐼 (the redirection phase), and 𝐽 (the garbage collection phase).

1. The term graph 𝐻 is built as follows:

(a) its vertex set is given by 𝑉𝐻 := 𝑉𝐺 ⊎ (𝑉𝑃|𝑟 \𝑉𝑃|ℓ )

(b) label𝐻(𝑣) :=

{
label𝐺(𝑣), if 𝑣 ∈ 𝑉𝐺
label𝑃(𝑣), if 𝑣 ∈ 𝑉𝑃|𝑟 \𝑉𝑃|ℓ

(c) succ𝐻(𝑣)𝑖 :=


succ𝐺(𝑣)𝑖 , if 𝑣 ∈ 𝑉𝐺
succ𝑃(𝑣)𝑖 , if 𝑣, succ𝑃(𝑣)𝑖 ∈ 𝑉𝑃|𝑟 \𝑉𝑃|ℓ
𝜙(succ𝑃(𝑣)𝑖), if 𝑣 ∈ 𝑉𝑃|𝑟 \𝑉𝑃|ℓ and succ𝑃(𝑣)𝑖 ∈ 𝑉𝑃|ℓ

(d) its root is Λ𝐺.



122 A Rewriting Characterization of Higher-Order Feasibility

2. In the redirection phase, we redirect in 𝐻 all references to 𝜙(ℓ ) by references to 𝑟.

Notice that if 𝑉𝑃|𝑟 \𝑉𝑃|ℓ is empty, then 𝐻 = 𝐺 in the previous step. The redirection

phase is done by replacing every reference to 𝜙(ℓ ) by a reference to 𝜙(𝑟). Therefore,

we have:

𝐼 ≔

{
𝐻[𝜙(ℓ ) ≫ 𝑟], if 𝑉𝑃|𝑟 \𝑉𝑃|ℓ is empty,

𝐻[𝜙(ℓ ) ≫ 𝜙(𝑟)], otherwise

3. Finally, we take the subgraph of 𝐼 which is accessible from its root, i.e., 𝐽 := 𝐼
��
Λ𝐼

.

We then write 𝐺 ⇝ 𝐽 in one step, and 𝐺 ⇝𝑛 𝐽 for the 𝑛-step reduction.

We illustrate this with two examples. First, we aim to rewrite the graph of Figure 6.5a

with a rule add 0 𝑦 → 𝑦 at vertex 𝑣. Since the right-hand side is a variable, the building

phase does nothing. The result of the redirection phase is given in Figure 6.5b, and the

result of the garbage collection in Figure 6.5c.

@

s 𝑣: @

@ @

add 0 s

(a)

@

s 𝑣: @

@ @

add 0 s

(b)

@

s @

s 0

(c)

Fig. 6.5 Reducing a graph with the rule add 0 𝑦 → 𝑦

Second, we consider a reduction by mult (s 𝑥) 𝑦 → add 𝑦 (mult 𝑥 𝑦).Figure 6.6a shows

the result of the building phase, with the vertices and edges added during this phase in

red. Redirection sets the root to the squared node (the root of the right-hand side), and

the result after garbage collection is in Figure 6.6b.

@

@

mult
@

s 0

@

@

add

@

@

mult

(a)

@

@

add

@

@

mult@

s 0
(b)

Fig. 6.6 Reducing a term graph with substantial sharing



6.6 Soundness 123

From Term Rewriting to Graph Rewriting and Back Again

We need to simulate term rewriting steps using graph rewriting. We start with the

observation that each term 𝑠 has a natural representation as a term tree.

Definition 6.6.16. Given a term 𝑠, we define the term graph [𝑠]G = (𝑉, label, succ,Λ)
as follows:

1. we take as vertices the set of positions of 𝑠, that is 𝑉 = pos(𝑠);

2. we construct the function label as follows:

label(𝑣) =


@ if 𝑠

��
𝑣

is an application

f if 𝑠
��
𝑣
= f

⊥ if 𝑠
��
𝑣
∈ X

3. for the successor function, we recall that in applicative terms the only positions

with direct successors are the applicative ones, hence if 𝑠
��
𝑣
= 𝑠1 𝑠2 then succ(𝑣) =

(1𝑣)(2𝑣) and succ(𝑣) = 𝜀 otherwise.

4. the root of the term graph is the vertex Λ, which is equivalent to the root position

in the term 𝑠.

Example 6.6.17. Consider the term 𝑠 = app (add 𝑥) 𝑥. In the figure on the left, we

informally write a term tree for 𝑠 annotating each position. On the right, we picture the

formal term graph representation of 𝑠.

·𝜀

·1 𝑥2

app11 ·12

add121 𝑥121

Tree for 𝑠 Term graph [𝑠]G

Λ : @

𝑣1 : @ 𝑣2 : ⊥

𝑣11 : app 𝑣12 : @

𝑣121 : add 𝑣121 : ⊥

Essentially, [𝑠]G maintain the positioning structure of 𝑠 and forgets variable names.

Our next goal is to translate rewriting rules ℓ → 𝑟 to a graph rewriting rule such that

multiple occurrences of the same variable are shared.

Definition 6.6.18 (Maximum Sharing of Variables). Let 𝑠 be a term. For each variable 𝑥

with multiple occurrences in 𝑠we collect the set of positions o(𝑥) ≔ {𝑝 ∈ pos(𝑠) | 𝑠
��
𝑝
= 𝑥}.

We choose one 𝑝 ∈ o(𝑥). For each 𝑝′ ∈ o(𝑥) \ {𝑝}, we redirect all references to 𝑝′ to



124 A Rewriting Characterization of Higher-Order Feasibility

references to 𝑝 in [𝑠]G. Formally, [𝑠]G[𝑝′ ≫ 𝑝]. Finally, we remove from the resulting

graph all vertices in o(𝑥) \ {𝑝}. The result of this process is a graph such that all

occurrences of a variable in 𝑠 are shared in one position.

Example 6.6.19. The graph below is the result of sharing the variable 𝑥 in the term

graph [app (add 𝑥) 𝑥]G from Example 6.6.17.

@

@

app @

add ⊥

Definition 6.6.20. Let R be a TRS. For each rule ℓ → 𝑟, the graph [ℓ → 𝑟]G is the graph

rewriting rule (𝑃, 𝑝ℓ , 𝑝𝑟) defined as the disjoint union of [ℓ ]G and [𝑟]G after sharing

variables.

Example 6.6.21. Consider the rule mult 𝑥 (s 𝑦) → add 𝑥 (mult 𝑥 𝑦) from Example 2.1.19.

We get the following graph rewriting rule where 𝑝ℓ is the circled node and 𝑝𝑟 is the

squared node.

@

@

mult ⊥

@

s ⊥

@

@

add

@

@

mult

Consider a term 𝑠 and the term graph [𝑠]G. Since all variables in [𝑠]G are maximally

shared, each variable vertice ⊥ in [𝑠]G represents a different variable from 𝑠. Conse-

quently, we can reconstruct 𝑠 from [𝑠]G as follows: for each vertex 𝑣𝑖 labeled with ⊥ in

[𝑠]G we choose a variable 𝑥𝑖 ; next, we go through the structure of [𝑠]G and build a new

term taking into account those edges pointing to 𝑣𝑖 , which we use the variable name

𝑥𝑖 . This gives rise to a function [·]−1

G from term graphs to terms such that [𝑠]−1

G = 𝑠′

where 𝑠′ = 𝑠𝛾 and 𝛾 is a variable renaming substitution. Notice that if 𝐺 is a term graph

isomorphic to [𝑠]G then [𝐺]−1

G is equal to 𝑠 up to renaming of variables.



6.6 Soundness 125

Simulating Call-by-Value Term Rewriting by Term Graph Rewriting

We need to simulate a trace of computation (so reductions) with an STRS as appropriate

reductions in Term Graph rewriting. For this purpose, the following definition of

rewriting is more useful than that of Definition 5.1.4, from a computation point of view.

Definition 6.6.22. Let R be a TRS. We say 𝑠 reduces to 𝑡 if and only if there exist a

position 𝑝 in pos(𝑠), a value substitution 𝛾, and a rule 𝜌 : ℓ → 𝑟 ∈ R such that

𝑠
��
𝑝
= ℓ𝛾 and 𝑡 = 𝑠[𝑟𝛾]𝑝 .

Recall that such reductions will take place whenever the immediate subterms ℓ𝑖𝛾 of

ℓ𝛾 = f (ℓ1𝛾) . . . (ℓ𝑘𝛾) are values. With this information we can write 𝑠 →𝑝,𝜌 𝑡 to say that

𝑠 reduces to 𝑡 at position 𝑝 using the rule 𝜌. In this case, whenever 𝑠 reduces in 𝑛 steps

to its normal form, we can trace the reduction sequence exactly:

𝑠 = 𝑠0 →𝑝0 ,𝜌0 𝑠1 →𝑝1 ,𝜌1 · · · →𝑝𝑚 ,𝜌𝑚 𝑠𝑚 = 𝑡

Hence, we can write a sequence consisting of pairs of positions and labels for rules

𝑝0𝜌0 . . . 𝑝𝑚𝜌𝑚 , we call such sequence a trace for the reduction of 𝑠. This trace gives us

exactly the positions where the reductions can be applied on the term side. To simulate

this as graph rewriting, we apply graph reductions at the same positions. We note,

however, that orthogonality is necessary here. Otherwise, overlapping applications of

rules can destroy redexes [77]. This observation is collected in the following lemma.

Lemma 6.6.23 (Graph Rewriting Simulation). Let (F,R) be an orthogonal term rewriting

system. Suppose 𝑠 →𝑝,𝜌 𝑡 and that [𝐺]−1

G = 𝑠. Then there exists a graph 𝐻 such that

𝐺 ⇝ 𝐻 and [𝐻]−1

G = 𝑡.

The Efficiency of Graph Rewriting

In this section, we deal with the reasonability of graph rewriting w.r.t OTMs.

Lemma 6.6.24 (Subterm Lemma). Let (F,R) be a term rewriting system compatible

with a polynomially-bounded bnat-size reflecting cost–size interpretation. Then there

is a second-order polynomial interpretation 𝐵 such that for every type-1 functional

𝑓 : N −→ N, data term ⌊n⌋ : bnat, and context 𝐶: if F S 𝑓 ⌊n⌋ +−→ 𝐶[S 𝑓 ⌊m⌋] then

|⌊m⌋| ≤ 𝑃(| 𝑓 |, |⌊n⌋|).

Proof. Let us consider a polynomial interpretation for the distinguished function symbol

F : (bnat ⇒ bnat) ⇒ bnat ⇒ bnat over the extended system RF, 𝑓 ,G. By assumption, we

have that the cost interpretation of F is polynomially bounded. Hence,

𝒥 c
F ≤ λ𝐹c𝐹s𝑥.𝑃c



126 A Rewriting Characterization of Higher-Order Feasibility

where 𝑃c
is a polynomial expression (Definition 6.3.12) over Pol2

N[𝐹c , 𝐹s, 𝑥]. Since 𝑃c
is a

second-order polynomial expression, each occurrence of a sub-expression 𝐹c(𝑒) in 𝑃c
is

a second-order polynomial, so each argument 𝑒 given to 𝐹c
is a second-order polynomial

expression of base type as well. Let us enumerate these arguments as 𝑒1, . . . , 𝑒𝑛 . We can

form the new polynomial 𝐵, defined as:

𝐵 ≔

∑
𝑖

𝑒𝑖 where occurrences of 𝐹c(𝑒′𝑗) inside 𝑒𝑖 are replaced by 1

Remark 6.6.25. As a concrete example of this construction take for instance 𝒥F =

λ𝐹c𝐹s𝑥s.𝑥s𝐹c(3 + 𝐹s(9𝑥s)) + 𝐹c(12) ∗ 𝐹c(3 + 𝑥s ∗ 𝐹c(2)) + 5. Then we would define

𝑄′ = λ𝐹c𝐹s𝑥.3 + 𝐹s(9𝑥) + 12 + 3 + 𝑥 ∗ 1 + 2 = λ𝐹c𝐹s𝑥.20 + 𝐹s(9𝑥) + 𝑥; we then have

𝐵(𝐺, 𝑦) = 20 + 𝑐 ∗ 𝐺s(9 ∗ 𝑐 ∗ 𝑦 + 9 ∗ 𝑑) + 𝑐 ∗ 𝑦 + 2 ∗ 𝑑, where 𝑥 ≔ 𝑐 ∗ 𝑦 + 𝑑. This comes

from the fact that terms bnat typed terms are bnat-size reflecting. Note that if 𝐹c
does

not occur in 𝑃c
, then 𝑄 = 0. Additionally, note that for a variable of base type, its cost

component is zero (due to call-by-value). Hence, 𝑥s
is mapped to the variable 𝑥 in 𝐵.

The proof idea is to show that if we can reduce F S 𝑓 ⌊n⌋ to a context 𝐶[𝐹 ⌊m⌋] such

that ⌊m⌋ is bigger than 𝐵(| 𝑓 |, |𝑛|), then we can construct an alternative term S′
𝑓 ⌊n⌋ in

place of our oracle S 𝑓 , so that F (S′
𝑓 ⌊n⌋) ⌊n⌋ will need more than ⟦F (S′

𝑓 ⌊n⌋) ⌊n⌋⟧c
steps

to reduce to normal form. This gives a contradiction with the compatibility theorem.

To implement the above idea, let us start by defining 𝑁(𝑛) = ⟦F S 𝑓 ⌊n⌋⟧c
. Thus, 𝑛 is

a function mapping natural numbers to natural numbers. We let 𝑁(𝑛) denote the unary

encoding s (s . . . (s 0) . . . ) (with 𝑁(𝑛) successor symbols) of this number.

Consider a TRS RF, 𝑓 ′,G such that 𝑓 ′ is the following oracle:

𝑓 ′(𝑥, 𝑦) ≔ 𝑓 (𝑦)

Now consider a set of rules where, instead of the oracle S 𝑓 , we define:

S 𝑓 ′ ⌊x⌋ ⌊y⌋ → ⌊f(y)⌋ if |𝑦| ≤ 𝐵(| 𝑓 |, |𝑥|)
S 𝑓 ′ ⌊x⌋ ⌊y⌋ → helper𝑁(𝑥) ⌊f(y)⌋ otherwise

There are infinitely many rules both of the first kind and of the second kind. Additionally,

we add to this new system the rules defining the symbol helper.

helper 0 𝑦 → 𝑦

helper (s 𝑥) 𝑦 → helper 𝑥 𝑦

Notice that by their definition, the rules for S 𝑓 ′ will produce ⌊f(y)⌋ in one step if

|𝑦| ≤ 𝐵(| 𝑓 |, |𝑥|), but they will take 𝑁(𝑥) + 1 steps otherwise. Also, observe that S 𝑓

behaves exactly as (S 𝑓 ′ ⌊n⌋) : bnat ⇒ bnat, where ⌊n⌋ is the fixed but arbitrary input we



6.6 Soundness 127

give as the argument to the initial term 𝑠0 = F S 𝑓 ⌊n⌋. That is, S 𝑓 ′ ⌊n⌋ ⌊m⌋ and S 𝑓 ⌊m⌋
have the same normal form. Hence, the normal forms (F S 𝑓 ⌊n⌋)↓ and (F (S 𝑓 ′ ⌊n⌋) ⌊n⌋)↓
are equal for any initial ⌊n⌋.

We interpret this new oracle symbol as follows:

𝒥 c
S 𝑓 ′

= λ𝑥𝑦.

{
1 if |𝑦| ≤ 𝐵(| 𝑓 |, |𝑥|)
𝑁(𝑥) + 1 if |𝑦| > 𝐵(| 𝑓 |, |𝑥|) 𝒥 s

S 𝑓 ′
= λ𝑥𝑦.𝒥 s

S 𝑓
(𝑦)

Meanwhile, we interpret the helper symbol and constructors for unary numbers as

follows:

𝒥 c
helper = λ𝑥𝑦.𝑥 + 1 𝒥 s

helper = λ𝑥𝑦.𝑦 𝒥 s
0 = 0 𝒥 s

s = λ𝑥.𝑥 + 1

We easily see that this indeed orients the rules for S 𝑓 ′ and helper. Moreover, ⟦F S 𝑓 ⌊n⌋⟧ =
⟦F (S 𝑓 ′ ⌊n⌋) ⌊n⌋⟧ since the size interpretations of S 𝑓 and S 𝑓 ′ ⌊n⌋ are equal, and ⟦S 𝑓 𝑒⟧

c =

⟦S 𝑓 ′ ⌊n⌋ 𝑒⟧c
for any 𝑒 that occurs as an argument to 𝐹c

in 𝑃c
.

Hence, if we replace the rule G 𝑥 → F S 𝑓 𝑥 by the rule G 𝑥 → F (S 𝑓 ′ 𝑥) 𝑥, this new

rule is still oriented by our interpretation, without having to alter 𝒥G.

To finally prove the Lemma we reason as follows. Suppose that F S 𝑓 ⌊n⌋ →𝑘 𝐶[S 𝑓 ⌊m⌋]
and 𝑘 is the least number such that the context 𝐶 is of this shape but |𝑚| > 𝐵(| 𝑓 |, |𝑛|).
Remark 6.6.26. It worth noting that if, for such minimum 𝑘, we can choose more than

one context, i.e., 𝑘 is the minimum number such that F S 𝑓 ⌊n⌋ →𝑘 𝑠 and 𝑠 can be written

as 𝑠 = 𝐶1[S 𝑓 ⌊m⌋1], 𝑠 = 𝐶2[S 𝑓 ⌊m⌋2], . . . we may pick any of the positions.

Now, we argue that in the extended system RF, 𝑓 ′,G, that uses the alternative oracle 𝑓 ′

and corresponding function S 𝑓 ′, we have

F S 𝑓 ′ ⌊n⌋ →𝑘 𝐶[(S 𝑓 ′ ⌊n⌋) ⌊m⌋]

So both RF, 𝑓 ,G and RF, 𝑓 ′,G take the same number of steps to reduce G ⌊n⌋.
All in all, we have the following reduction chain:

G ⌊n⌋ → F S 𝑓 ⌊n⌋ →𝑘 𝐶[S 𝑓 ⌊m⌋] → 𝐶[⌊f(m)⌋] →𝑙 ⌊q⌋



128 A Rewriting Characterization of Higher-Order Feasibility

However, due to the use of the alternative oracle function S′
𝑓 and our assumption that

|𝑚| > 𝐵(| 𝑓 |, |𝑛|), the reduction chain in the second extended system works as follows:

G ⌊n⌋ → F (S 𝑓 ′ ⌊n⌋) ⌊n⌋
→𝑘 𝐶[(S 𝑓 ′ ⌊n⌋) ⌊m⌋]
→ 𝐶[helper𝑁(𝑛) ⌊f(m)⌋]
→𝑁(𝑛)+1 𝐶[⌊f(m)⌋]
→𝑙′ ⌊q⌋

In this reduction, the number 𝑙′ ≥ 𝑙. Indeed, this comes from the fact that 𝑘 is minimal

and there can be calls for oracles on intermediate terms after the 𝑘-th position. Hence,

reducing G ⌊n⌋ term to normal form in RF,S 𝑓 ′ ,G requires more than ⟦G ⌊n⌋⟧ number of

steps. This is impossible due to the compatibility theorem.

Hence, by contradiction, we conclude that while reducing G ⌊n⌋, we do not ever

encounter subterms S 𝑓 ⌊m⌋ with |𝑚| > 𝐵(| 𝑓 |, |𝑛|). □

With this lemma in hand, we can finally prove the soundness of our approach, which

we state as the following theorem.

Theorem 6.6.27 (Soundness). Let (F,R) be an orthogonal STRS compatible with a

polynomially-bounded bnat-size reflecting cost–size interpretation. If F ∈ Σ computes

the type-2 functional Ψ, then Ψ ∈ BFF.

Proof. Let 𝑓 be a type-1 functional. Consider the oracle Turing machine𝑀 𝑓 that, on input

𝑛 ∈ N, evaluates G ⌊n⌋ according to the extended system RF, 𝑓 ,G using graph rewriting
4

.

So this machine implements the steps described in Definition 6.6.15. Rewriting steps

that do not call the oracle are performed exactly as their term rewriting counterparts.

Now, observe that each call to the oracle, which we implement in rewriting by way

of S 𝑓 , Definition 6.5.1, is resolved by the OTM 𝑀 𝑓 by querying the oracle and adjoining

the answer into the graph. We first notice that the size of any intermediary graph is

polynomially bounded by a second-order polynomial. Indeed, the total number of

rewriting steps is bounded polynomially due to Theorem 6.6.2, and as a consequence of

Lemma 6.6.24, each rewriting step can increase the size of the corresponding graph by

at most a second-order polynomial factor. Therefore, along the evaluation, graph sizes

are bounded polynomially. Secondly, there is a cost to 𝑀 𝑓 for performing each graph

reduction step. The contraction algorithm we defined in Definition 6.6.15 is clearly

4

Notice that we do not give an explicit definition of this OTM. The major limitation of low-level machine

descriptions of algorithms is that no sensible person wants to write or read a non-trivial machine program.

Hence, we appeal to the reader’s intuition and observation that graph rewriting can be implemented as

such machines. Indeed, it is certainly possible to give a concrete implementation of Definition 6.6.15 in a

high-level programming language.



6.7 Completeness 129

feasible and by the previous observation graph sizes are polynomially bounded. So

the machine takes no more than a polynomial number of steps to perform each graph

reduction step. Finally, the total cost of the machine 𝑀 running on 𝑓 and 𝑛 as inputs

is bounded by a second-order polynomial in terms of |𝑛| and | 𝑓 |. Additionally, since

𝑀 𝑓 simulates RF, 𝑓 ,G via graph rewriting and RF, 𝑓 ,G computes Ψ, we have that 𝑀 also

computes Ψ. So it computes Ψ in time bounded by a second-order polynomial in terms

of | 𝑓 | and |𝑛|. By Theorem 6.4.1, Ψ is in BFF. □

6.7 Completeness

In this section, we prove the other side of Theorem 6.5.9: if a given type-2 functional Ψ is

in BFF, then there exists an orthogonal STRS that computes Ψ and admits a polynomially

bounded interpretation. We prove this by providing an encoding of OTMs as STRSs

that admit a polynomially bounded interpretation.

The encoding is divided into three steps. In Section 6.7.1, we will define the function

symbols that will allow us to encode any possible machine configuration as terms. In

Section 6.7.2, we will encode transitions as reduction rules that rewrite configuration

terms. Lastly, we will design an STRS to simulate a complete execution of an OTM in

polynomially many steps. Achieving this polynomial bound is non-trivial and is done

in Sections 6.7.3–6.7.4.

Henceforth, we assume given a fixed OTM 𝑀, and a second-order polynomial 𝑃𝑀 ,

such that 𝑀 operates in time 𝑃𝑀 . For simplicity, we assume the machine has only three

tapes (one input/output tape, one query tape, one answer tape); that each non-oracle

transition only operates on one tape (i.e., reading/writing and moving the tape head);

and that we only have tape symbols {0, 1, B}.

6.7.1 Constructors

To start, we define the types and data constructors to represent configurations and 𝒩 .

Encoding the tape alphabet. For all 𝑎 ∈ Γ, we introduce a fresh symbol Sa : symbol.
We also introduce a constant nil : symblist, and :: : symbol ⇒ symblist ⇒ symblist. For

example, for machines with Γ = {0, 1, B}, we have:

S0 : symbol nil : symblist

S1 : symbol :: : symbol ⇒ symblist ⇒ symblist

SB : symbol



130 A Rewriting Characterization of Higher-Order Feasibility

The list constructor :: is denoted in right-infix notation as usual; we use [𝑎1; . . . ; 𝑎𝑛] as

syntactic sugar for 𝑎1 :: 𝑎2 :: · · · :: 𝑎𝑛 :: nil. We can represent the contents of any tape using

the signature above. Indeed, recall that a tape necessarily has a form 𝑤0𝑤1 . . . 𝑤𝑘BBB · · ·,
where the blank after the end of the content is repeated indefinitely. Consider for

instance the tape with the following content 01101BB · · ·. This may be represented by the

data term: [S0; S1; S1; S0; S1] of type symblist. We may also add an arbitrary number of

blanks in the representation; e.g., [S0; S1; S1; S0; S1; SB; SB], and retain a representation

of the same tape.

Lemma 6.7.1. Let 𝒩 be the set of ground terms of type symblist built only from

S0,S1, nil, ::, which do not have a form S0 :: 𝑡. There exists a bijection from N to 𝒩 .

Proof. Let 𝑛 ∈ N. If 𝑛 = 0 let ⌊n⌋ := nil. Otherwise, let 𝑤1 · · ·𝑤𝑘 be the binary

representation of 𝑛; then 𝑘 > 0 and 𝑤1 = 1. We define ⌊n⌋ := 𝜙(𝑤1 · · ·𝑤𝑘), where 𝜙(𝑤)
is defined by induction on |𝑤|, as follows:

𝜙(𝑤) =


S0 :: nil, if |𝑤| = 1 and 𝑤 = 0

S1 :: nil, if |𝑤| = 1 and 𝑤 = 1

S0 :: 𝜙(𝑤′), if 𝑤 = 0𝑤′

S1 :: 𝜙(𝑤′), if 𝑤 = 1𝑤′

Now it is easy to see that this function is indeed bijective. □

We choose the following interpretations for these constructors:

⟦nil⟧s = 0 ⟦𝑥 :: 𝑦⟧s = 1 + ⟦𝑦⟧s ⟦Sa⟧s = 0 for all symbols 𝑎

That is, the size of a symbol list is the length of the list.

Encoding tape configurations. Recall that, by our definitions, we view a tape as a

function ℎ ∈ ΓN along with the position 𝑝 ∈ N of its head. Now that we can express

the contents of a tape, the next step is to also capture this position of the head. In

practice, we may think of a tape with the tape head at position 𝑝 as a finite word

𝑤1 . . . 𝑤𝑝−1#𝑤𝑝𝑤𝑝+1 . . . 𝑤𝑘 (followed by an infinite number of blanks). This means the

tape’s head is currently reading the symbol 𝑤𝑝 of the tape. So we can split this tape into

three components: left is the word 𝑤1 . . . 𝑤𝑝−1, the symbol currently being read is 𝑤𝑝 ,

and the right word is 𝑤𝑝+1 . . . 𝑤𝑘 .

We introduce the following new constructors.

L : symblist ⇒ left R : symblist ⇒ right split : left ⇒ right ⇒ tape



6.7 Completeness 131

Here, L,R hold the content of the left and right split of the tape, respectively. For

convenience in rewriting transitions, later on, we will encode the left side of the split in

reverse order. Specifically, we encode 𝑤1 . . . 𝑤𝑝−1#𝑤𝑝𝑤𝑝+1 . . . 𝑤𝑘 as

split (L [𝑤𝑝−1; . . . ;𝑤2;𝑤1]) (R [𝑤𝑝𝑤𝑝+1; . . . ;𝑤𝑘−1;𝑤𝑘])

Notice that here we are using the type system to correctly encode the configuration

word𝑤1 . . . 𝑤𝑖−1#𝑤𝑖𝑤𝑖+1 . . . 𝑤𝑘 . In the term encoding of this split, we say that the symbol

currently being read is the first element of the list that is the argument of R. In the case

of R nil, the symbol currently being read is B.

Let us consider a concrete example: the state of the input tape for an initial

configuration of a machine M on the word 10110 is represented as #10110. So in the

initial configuration, the head is reading the first symbol on the input tape. As such, we

construct the following term:

split (L nil) (R [S1; S0; S1; S1; S0])

There is no split yet, so the first argument of split is an empty word, L nil. The whole

content of the tape is at the right of the tape’s head, which is encapsulated by the

constructor R. Notice that its immediate subterm is [S1; S0; S1; S1; S0], whose first

element is S1. This denotes the symbol currently being read.

Now, suppose a few transitions later the machine has changed the contents of the

tape for instance to 1B0#10. The representation of this is given by:

split (L [S0; SB; S1]) (R [S1; S0])

We shall see later how to emulate these transitions using rewriting rules. The lemma

below states that this encoding is correct.

Lemma 6.7.2. There exists an injection from the set of valid tape configurations, that is,

the set {ℎ : N −→ Γ | ∃𝑁∀𝑖 > 𝑁, ℎ(𝑖) = B} ×N, to the set of ground terms of type tape.

Proof. Let ℎ ∈ ΓN, 𝑝 ∈ N and 𝑁 ∈ N such that ℎ(𝑖) = B for all 𝑖 > 𝑁 . Let 𝑤𝑙 =

ℎ(𝑝 − 1)ℎ(𝑝 − 2) · · · ℎ(0) and 𝑤𝑟 = ℎ(𝑝)ℎ(𝑝 + 1) · · · ℎ(𝑁). Consider the translation

function 𝜙 constructed in the proof of Lemma 6.7.1. We map (ℎ, 𝑝) to the term

split (L 𝜙(𝑤𝑙)) (R 𝜙(𝑤𝑟)). Clearly, if ℎ ≠ ℎ′ or 𝑝 ≠ 𝑝′, then (ℎ′, 𝑝′) is mapped to a different

term, so this function is injective. □

Note that this is not a bijection, since we may choose different numbers 𝑁 for the

same tape. This technically yields a different term. However, in practice, these terms

will be treated the same.



132 A Rewriting Characterization of Higher-Order Feasibility

We conclude that terms of type tape faithfully encode tape configurations. Notice

that the only way to build a ground inhabitant of this type is by using the constructor

split, which will enforce a correct encoding for tape configurations. We choose the

following interpretations for these constructors:

⟦L 𝑥⟧s = ⟦𝑥⟧s ⟦R 𝑥⟧s = ⟦𝑥⟧s ⟦split 𝑥 𝑦⟧s = ⟦𝑥⟧s + ⟦𝑦⟧s

That is, the size of a tape is the total number of known symbols on the tape (both to the

left and to the right of the tape head). Those are all constructor symbols, so their cost

interpretation is the constant function returning zero on all components.

Encoding machine configurations. Recall that — since our notion of OTM has

three tapes — a configuration of a machine at any moment is a tuple of the form

(𝑞, ℎ1, ℎ2, ℎ3, 𝑝1, 𝑝2, 𝑝3). Hence, given an oracle machine 𝑀 with components given by

the tuple (𝑄, Γ, start, end, query, answer, 𝑓 , 𝒯 ). For each state 𝑞 in 𝑄, we introduce one

constructor given by the signature:

q : tape ⇒ tape ⇒ tape ⇒ config

The constructor symbol indicates the state; the three arguments are the term representa-

tions of the three tape configurations.

Example 6.7.3. Let us write the term encoding of the initial configuration of a machine

𝑀 𝑓 on input 𝑛. Recall that this is a tuple (start, ⟨𝑛⟩, 0, 𝑖 ↦→ B, 0, 𝑖 ↦→ B, 0). It is encoded

as follows: start (split (L nil) (R ⌊n⌋)) (split (L nil) (R nil)) (split (L nil) (R nil)).

Lemma 6.7.4. There exists an injection from the set of configuration tuples for 𝑀 to the

set of ground terms of type config.

For all states 𝑞 we choose the following interpretation:

𝒥 s
q = λ𝑥𝑦.𝑥 + 𝑦

That is, the size of a configuration is the size of its first and second tapes combined. We

do not include the third tape, because it does not directly affect either the result yielded

by a final configuration nor the size of a number that the function 𝑓 is applied on.

Unary numbers. The role of the type bnat in Definition 6.5.1 — so the type of elements

of 𝒩 — is filled by the type symblist. In addition, it proves useful to define a set of unary

numbers, to represent lengths and the polynomial 𝑃𝑀(| 𝑓 |, |𝑤|). For this, we let 0 : unat
and s : unat ⇒ unat. We can now represent a number 𝑛 in unary notation as s𝑛 0. Notice



6.7 Completeness 133

that we use the new base type unat here to differentiate it from the nat type we used in

previous chapters. We chose the following size interpretations:

𝒥 s
0 = (0, 0) 𝒥 s

s = λ𝑥.(𝑥1 + 1, 𝑥2 + 1)

That is, we map unat to (N,≥) × (N,≤); the size of a unary number s𝑛 0 is just (𝑛, 𝑛). We

refer to the first size component of ⟦𝑛⟧ as ⟦𝑛⟧s
and to the second size component as

⟦𝑛⟧n
.

6.7.2 Executing the machine

Having encoded our configurations, we will define rules to encode the transitions. To

start, we introduce a function symbol step : (symblist ⇒ symblist) ⇒ config ⇒ config
designed to execute a single step of the machine. The first argument, of type symblist ⇒
symblist, is to capture the usage of the oracle function, so it can be used when the machine

calls the oracle. The second argument represents the current configuration. Hence, we

model the computation of OTMs as rules that simulate the small step semantics given

for the machine.

Encoding transitions as rules. Recall from Definition 6.3.4 that a (non-oracle) transition

for a configuration (𝑞, ®ℎ, ®𝑝) is only allowed to operate in one of the tape configurations

(ℎ𝑖 , 𝑝𝑖). We work on the first tape configuration in the construction below and emphasize

that the same process applies to all tapes. So assume given a transition (𝑞𝑖 , 𝑎, 1, 𝑐, 𝑑, 𝑞𝑜) ∈
𝒯 . We have two possibilities for 𝑑.

Moving the tape’s head to the left. If 𝑑 = L, there are three cases to consider.

1. In the first case, there is no symbol to the left of the tape’s head. This only happens

when the head is at the leftmost position of the tape. If there is a transition to the

left then the machine halts, so no rewriting rule is added for this case. Note that

this should not arise in practice, since we assumed that the machine maps all valid

input to a valid final configuration.

2. In the second case, there are symbols to the left and right of the tape head. So the

tape configuration steps from 𝑤1 . . . 𝑤𝑖−1𝑤𝑖#𝑎𝑤𝑖+2 . . . 𝑤𝑘 to the new configuration

𝑤1 . . . 𝑤𝑖−1#𝑤𝑖𝑐𝑤𝑖+2 . . . 𝑤𝑘 . Note that 𝑤𝑖 is moved to the right side of the tape

configuration in this case. Hence, this transition is modeled by the rule:

step 𝐹 (qi (split (L (𝑥 :: 𝑦)) (R (Sa :: 𝑧))) 𝑢 𝑣) → qo (split (L 𝑦) (R (𝑥 :: Sc :: 𝑧))) 𝑢 𝑣



134 A Rewriting Characterization of Higher-Order Feasibility

3. In the third case, there are symbols to the left but not to the right of the tape head.

Hence, if 𝑎 = B, we must also add the following rule:

step 𝐹 (qi (split (L (𝑥 :: 𝑦)) (R nil)) 𝑢 𝑣) → qo (split (L 𝑦) (R (𝑥 :: Sc :: nil))) 𝑢 𝑣

This is because our tapes are infinite, even though we encode only a finite number

of symbols. This rule handles the case where the tape head is at the end of the

represented symbols: 𝑤1 . . . 𝑤𝑘#. Hence, the rule reads the (implicit) blank at the

reader’s head and reduces this state to 𝑤1 . . . 𝑤𝑘−1#𝑤𝑘𝑐.

Moving the tape’s head to the right. If 𝑑 = R, the tape configuration changes from

𝑤1 . . . 𝑤𝑖#𝑎𝑤𝑖+2 . . . 𝑤𝑘 to 𝑤1 . . . 𝑤𝑖𝑐#𝑤𝑖+2 . . . 𝑤𝑘 This gives rise to the following rule:

step 𝐹 (qi (split (L 𝑦) (R (Sa :: 𝑧))) 𝑢 𝑣) → qo (split (L (Sc :: 𝑦)) (R 𝑧)) 𝑢 𝑣

As before, if 𝑎 = B we also handle the case when the tape’s head is at the end of the

represented input symbols:

step 𝐹 (qi (split (L 𝑦) (R nil)) 𝑢 𝑣) → qo (split (L (Sc :: 𝑦)) (R nil)) 𝑢 𝑣

Rules that encode oracle calls. We also need to encode the machine’s call to the oracle.

Recall that in order to query the machine for the value of 𝑓 at 𝑢, we first write 𝑢 on

the second tape (the query tape), move its head to the leftmost position, and enter the

query state query. Then, in one step the content of the second tape is erased and the

image of 𝑓 over 𝑢 is written in the third tape (the answer tape). Visually, this step can be

represented as follows:

(query, 𝑤, #⌊n⌋𝑎 · · · , 𝑣) ⇝ (answer, 𝑤, #B, #⌊f(n)⌋)

where 𝑎 ∈ Γ \ {0, 1}. This suggests the following rule:

step 𝐹 (query𝑤 (split 𝑥 (R 𝑦)) 𝑣) → answer𝑤 (split 𝑒 (R nil)) (split 𝑒 (R (𝐹 (clean 𝑦)))),

where 𝑒 = (L nil). Here, clean, clean2 : symblist ⇒ symblist are new function symbols

defined by the rules:

clean (S0 :: 𝑥) → clean 𝑥 clean (Sa :: 𝑥) → nil for 𝑎 ∈ Γ \ {0, 1}
clean (S1 :: 𝑥) → S1 :: (clean2 𝑥) clean nil → nil

clean2 (S0 :: 𝑥) → S0 :: (clean2 𝑥) clean2 (Sa :: 𝑥) → nil for 𝑎 ∈ Γ \ {0, 1}
clean2 (S1 :: 𝑥) → S1 :: (clean2 𝑥) clean2 nil → nil



6.7 Completeness 135

This function cleans up the content of the query tape (which may for instance have

more than one word on it) to return an element of 𝒩 . If split (L 𝑠) (R 𝑡) encodes a tape

configuration (ℎ, 𝑝), then clean 𝑡 exactly reduces to ℎ|𝑝.

We observe that the various step rules as well as the clean-rules are non-overlapping,

due to our requirement that the OTM is deterministic (and that there are no transitions

defined from the query state). They are also left-linear. We choose the following

interpretations:

𝒥clean =

〈
(0,λ𝑥.(𝑥, u)) ,λ𝑥.𝑥 + 1

〉
𝒥clean2 =

〈
(0,λ𝑥.(𝑥 + 1, u)) ,λ𝑥.𝑥

〉
One can check by (somewhat boring) calculations and easily see that this interpreta-

tion orients all eight rules.

Properties of the step relation. For step, we choose the following interpretation:

𝒥step =

〈
(0,λ𝐹𝑥.(2 + 𝑥 + 𝐹c(𝑥), u)) ,λ𝐹𝑥.𝑥 + 1

〉
We notice that non-query transition steps can be oriented directly by this interpreta-

tion. Let us work out the oracle steps below. For the numeric component of the cost

interpretation, we get:

𝜋1(⟦step 𝐹 (query𝑤 (split 𝑥 (R 𝑦)) 𝑣)⟧)
= 2 + ⟦query𝑤 (split 𝑥 (R 𝑦)) 𝑣⟧s + 𝐹c(⟦query𝑤 (split 𝑥 (R 𝑦)) 𝑣⟧s)
= 2 + (⟦𝑤⟧s + ⟦𝑥⟧s + ⟦𝑦⟧s) + 𝐹c(⟦𝑤⟧s + ⟦𝑥⟧s + ⟦𝑦⟧s)
> 1 + ⟦𝑦⟧s + 𝐹c(⟦𝑤⟧s + ⟦𝑥⟧s + ⟦𝑦⟧s)
≥ (⟦𝑦⟧s + 1) + 𝐹c(⟦𝑦⟧s)
= 𝜋1(⟦clean 𝑦⟧) + 𝐹c(⟦clean 𝑦⟧s)
= 𝜋1(⟦answer𝑤 (split (L nil) (R nil)) (split (L nil) (R (𝐹 (clean 𝑦))))⟧)

For the size interpretation, we have:

⟦step 𝐹 (query𝑤 (split 𝑥 (R 𝑦)) 𝑣)⟧s

= ⟦query𝑤 (split 𝑥 (R 𝑦)) 𝑣⟧s + 1

= ⟦𝑤⟧s + ⟦𝑥⟧s + ⟦𝑦⟧s + 1

≥ ⟦𝑤⟧s

= ⟦𝑤⟧s + ⟦(split (L nil) (R nil))⟧s

= ⟦answer𝑤 (split (L nil) (R nil)) (split (L nil) (R (𝐹 (clean 𝑦))))⟧s



136 A Rewriting Characterization of Higher-Order Feasibility

since the third tape is not included in the size of the configuration. From the definition

we proposed to step rules, we collect the following lemma.

Lemma 6.7.5. Let 𝑀 𝑓 be an OTM and 𝐶, 𝐶′
be machine configurations of 𝑀 𝑓 such that

𝐶 ⇝ 𝐶′
. Then step S 𝑓 [𝐶]

+−→ [𝐶′], where [𝐶] is the encoding of the configuration 𝐶.

We also introduce a fresh symbol extract : tape ⇒ symblist, defined by the rule

extract (split (L 𝑥) (R 𝑦)) → clean 𝑦

Then if 𝑡 encodes a tape configuration (ℎ, 𝑝), the term extract 𝑡 reduces to ⌊h|p⌋. This

helper function will allow us to avoid pattern matching on configurations going forward.

This rule is oriented by using the interpretation:

𝒥extract =
〈

(0,λ𝑥.(𝑥 + 2, u)) ,λ𝑥.𝑥
〉

6.7.3 A bound on the number of steps

To generalize from performing a single step of the machine to tracing a full computation

on the machine level, the natural idea would be to introduce a defined symbol execute :

(symblist ⇒ symblist) ⇒ config ⇒ symblist and rules

execute 𝐹 (q 𝑥 𝑦 𝑧) → execute 𝐹 (step(q 𝑥 𝑦 𝑧)) for q ≠ end
execute 𝐹 (end (split (L 𝑥) (R𝑤)) 𝑦 𝑧) → clean𝑤

Having this, and letting 𝑖𝑛 denote the term encoding of the initial state initial(𝑛), we

certainly have execute S 𝑓 𝑖𝑛
+−→ ⌊m⌋, for 𝑚 the result of executing the OTM 𝑀 𝑓 on 𝑛.

However, we cannot find a general interpretation for execute which orients the rule

above. Indeed, it is very possible that the system with this rule is non-terminating, for

instance if there is an (unreachable) state 𝑞 with a transition (𝑞, B, 1, B.R, 𝑞).
Instead, a common idea is to give execute an additional argument of type unat , and

replace the first rule above by

execute 𝐹 (s𝑚) (q 𝑥 𝑦 𝑧) → execute 𝐹 𝑚 (step(q 𝑥 𝑦 𝑧)) for q ≠ end

The ancillary argument of type unat is used to compute the total number of steps we are

allowed to take in the computation, and is what ensures termination. If we can start

the computation with execute S 𝑓 (s𝑁 0) 𝑖𝑛 for some 𝑁 ≥ 𝑃𝑀(| 𝑓 |, |𝑛|), we will certainly

reduce to the desired return value.

Unfortunately, we cannot: to compute 𝑃𝑀(| 𝑓 |, |𝑛|) from 𝑓 and 𝑛 in general, we

need to have access to | 𝑓 | — but it is not in general possible to compute | 𝑓 | from 𝑓 in

polynomial time, that is the length of a type-1 parameter itself is not in BFF. This was



6.7 Completeness 137

proved by Kapron and Cook [60]. Indeed, since | 𝑓 |(𝑥) = max

𝑦≤𝑥
𝑓 (𝑦) computing the value

| 𝑓 |(𝑥) depends on exponentially many potential choices for 𝑦. It turns out that we do

not actually need all such values to compute | 𝑓 |. Rather, it suffices to know a bound for

the size of 𝑓 (𝑥) for only those 𝑥 on which the oracle is actually questioned. That is: for a

set 𝐴 ⊆ N, we define | 𝑓 |𝐴 as the function mapping 𝑛 to max{| 𝑓 (𝑥)| | 𝑥 ∈ 𝐴 ∧ |𝑥| ≤ 𝑛}.

Lemma 6.7.6. Let 𝑀 be an oracle Turing machine operating in time bounded by the

second-order polynomial 𝑃𝑀 . Let 𝑥 ∈ N and 𝑓 ∈ N −→ N. Suppose initial(𝑥) ⇝∗ 𝐶, and

during this execution, the oracle is only called on numbers in the set 𝐴 ⊆ N. Then the

cost of the execution initial(𝑥) ⇝∗ 𝐶 is bounded by | 𝑓 |𝐴.

Proof. Let 𝑓 ′ be the function

𝑛 ↦→
{
𝑓 (𝑛) if 𝑛 ∈ 𝐴
0 otherwise

Since the machine acts exactly the same on every oracle query for 𝑓 and 𝑓 ′, clearly also

initial(𝑥) ⇝∗ 𝐶 in 𝑀 𝑓 ′, at the same cost. This cost is bounded by 𝑃𝑀(| 𝑓 ′|, |𝑥|). But | 𝑓 ′| is

exactly | 𝑓 |𝐴. □

This observation was also made by Kapron and Cook in [60, Proposition 2.3].

Representing | 𝑓 |𝐴 in term rewriting. We will now stepwise define a term rewriting

system to compute 𝑃(| 𝑓 |𝐴 , |𝑥|) including its interpretation.

Let length : symblist ⇒ unat be defined by the rules:

length nil → 0 length (𝑥 :: 𝑦) → s (length 𝑦)

Then length 𝑎
+−→ s|𝑎| 0: this function computes the length of a list. We choose:

𝒥length =

〈
(0,λ𝑥.(𝑥1 + 1, u)) ,λ𝑥.(𝑥1, 0)

〉
It is easy to see that this interpretation orients both rules.

Next, let limit : symblist ⇒ unat ⇒ symblist be defined by the rules:

limit (𝑥 :: 𝑦) (s 𝑛) → 𝑥 :: (limit 𝑦 𝑛) limit nil 𝑛 → nil limit (𝑥 :: 𝑦) 0 → nil

Then limit 𝑎 (s𝑛 0) reduces to 𝑎 if |𝑎| ≤ 𝑛 and to its first 𝑛 symbols otherwise. We choose:

𝒥limit =
〈

(0,λ𝑥.(0,λ𝑛.(𝑛1 + 1, u))) ,λ𝑥𝑛.𝑛1

〉



138 A Rewriting Characterization of Higher-Order Feasibility

Here, it is straightforward to show that this interpretation orients both rules. Next,

let checkbound : symblist ⇒ unat ⇒ symblist ⇒ symblist be defined by the rules:

checkbound (𝑥 :: 𝑦) (s 𝑛) 𝑧 → checkbound 𝑦 𝑛 𝑧 checkbound nil 𝑛 𝑧 → 𝑧

checkbound (𝑥 :: 𝑦) 0 𝑧 → nil

Then checkbound 𝑎 (s𝑛 0) 𝑏 reduces to 𝑏 if |𝑎| ≤ 𝑛 and to [] otherwise. We choose:

⟦checkbound 𝑥 𝑛 𝑧⟧s = ⟦𝑧⟧s ⟦checkbound 𝑥 𝑛 𝑧⟧c = ⟦𝑛⟧s + 1

which is once more easily seen to orient these rules.

Now we can put those three symbols (and their meanings) together. Let tryapply :

(symblist ⇒ symblist) ⇒ symblist ⇒ unat ⇒ unat be defined by the rule:

tryapply 𝐹 𝑎 𝑛 → length (checkbound 𝑎 𝑛 (𝐹 (limit 𝑎 𝑛)))

We now see that tryapply 𝐹 𝑎 (s𝑛 0) reduces to |𝐹(𝑎)| if |𝑎| ≤ 𝑛, and to 0 otherwise. That

is, it exactly returns |𝐹|{𝑎}(𝑛). We choose the following interpretation:

⟦tryapply 𝐹 𝑎 𝑛⟧s = ⟦𝐹⟧s(⟦𝑛⟧s) ⟦tryapply 𝐹 𝑎 𝑛⟧n = 0

⟦tryapply 𝐹 𝑎 𝑛⟧c = ⟦𝐹⟧c(⟦𝑛⟧s) + ⟦𝐹⟧s(⟦𝑛⟧s) + 2 ∗ ⟦𝑛⟧s + 4

By writing out ⟦length (checkbound 𝑎 𝑛 (𝐹 (limit 𝑎 𝑛)))⟧ we can see that this orients the

rule.

Next, let max : unat ⇒ unat ⇒ unat be defined by the rules:

max (s 𝑛) (s𝑚) → s (max 𝑛 𝑚) max 0𝑚 → 𝑚 max (s 𝑛) 0 → s 𝑛

Then clearly max (s𝑛 0) (s𝑚 0) reduces to smax(𝑛,𝑚) 0. These rules are oriented by the

following interpretation:

𝒥max =
〈

(0,λ𝑛.(0,λ𝑦.(𝑛1 + 1, u))) ,λ𝑛𝑚.(max(𝑛1, 𝑚1), 0)
〉

Note that this interpretation is allowed because we are polynomially bounded; there

is no requirement that all interpretation functions are polynomial. Clearly (𝑛, 𝑚) ↦→
max(𝑛, 𝑚) is bounded by (𝑛, 𝑚) ↦→ 𝑛 + 𝑚.

Now, at last, we can define the rules to compute | 𝑓 |𝐴. For this, let ∅ : set and

setcons : symblist ⇒ set ⇒ set be new constructors — used to express a set of symbol

lists — and tryall : (symblist ⇒ symblist) ⇒ set ⇒ unat ⇒ unat, be a new function symbol,



6.7 Completeness 139

defined by the rules:

tryall 𝐹 ∅ 𝑛 → 0
tryall 𝐹 (setcons 𝑎 𝑡𝑙) 𝑛 → max (tryapply 𝐹 𝑎 𝑛) (tryall 𝐹 𝑡𝑙 𝑛)

Taking into account the meanings of tryapply and max, we see that if 𝐴 is the encoding

of a set {𝑎1, . . . , 𝑎𝑘}, then tryapply S 𝑓 𝐴 (s𝑛 0) computes max

1≤𝑖≤𝑘
{| 𝑓 |{𝑎𝑖}}, which is exactly

| 𝑓 |{𝑎1 ,...,𝑎𝑘}. We choose the following interpretation:

⟦∅⟧s
= 0 ⟦setcons 𝑥 𝑦⟧s = ⟦𝑦⟧s + 1

⟦tryall 𝐹 𝑎 𝑛⟧s = ⟦𝐹⟧s(⟦𝑛⟧s) ⟦tryall 𝐹 𝑎 𝑛⟧n = 0

⟦tryall 𝐹 𝑎 𝑛⟧c = 1 + ⟦𝑎⟧s ∗ (⟦𝐹⟧c(⟦𝑛⟧s) + 2 ∗ ⟦𝐹⟧s(⟦𝑛⟧s) + 2 ∗ ⟦𝑛⟧s + 6)

This indeed orients both tryall rules (and is monotonic).

Computing 𝑃𝑀(|𝐴|,|𝑥|). Now, for a given second-order polynomial 𝑃, we would like

to find its value as a term of type unat. To do this, we use additional function symbols

add,mult : unat ⇒ unat ⇒ unat, defined by the rules:

add 𝑥 0 → 𝑥 mult 𝑥 0 → 0
add 𝑥 (s 𝑦) → s (add 𝑥 𝑦) mult 𝑥 (s 𝑦) → add (mult 𝑥 𝑦) 𝑥

These clearly implement addition and multiplication, and are oriented by the following

interpretations:

⟦add 𝑥 𝑦⟧s = ⟦𝑥⟧s + ⟦𝑦⟧s ⟦mult 𝑥 𝑦⟧s = ⟦𝑥⟧s ∗ ⟦𝑦⟧s

⟦add 𝑥 𝑦⟧n = 0 ⟦mult 𝑥 𝑦⟧n = 0

⟦add 𝑥 𝑦⟧c = ⟦𝑦⟧s + 1 ⟦mult 𝑥 𝑦⟧c = ⟦𝑥⟧s ∗ ⟦𝑦⟧s + 2 ∗ ⟦𝑦⟧s + 1

Then, for any higher-order polynomial 𝑃( 𝑓 , 𝑥) and terms 𝐹 : unat ⇒ symblist, 𝑎 : set, and

𝑧 : unat we define Θ
𝐹;𝑎;𝑧
𝑃

inductively:

Θ𝐹;𝑎;𝑧
n = s𝑛 0 Θ

𝐹;𝑎;𝑧
𝑃1+𝑃2

= addΘ
𝐹;𝑎;𝑧
𝑃1

Θ
𝐹;𝑎;𝑧
𝑃2

Θ
𝐹;𝑎;𝑧
𝑥 = 𝑧 Θ

𝐹;𝑎;𝑧
𝑃1∗𝑃2

= multΘ𝐹;𝑎;𝑧
𝑃1

Θ
𝐹;𝑎;𝑧
𝑃2

Θ
𝐹;𝑎;𝑧

𝑓 (𝑃1) = tryall 𝐹 𝑎 Θ𝐹;𝑎;𝑧
𝑃1

It is clear that if 𝑧 = s|𝑥| 0 and 𝑎 represents the set of symbol lists 𝐴, then Θ
S 𝑓 ;𝑎;𝑧

𝑃

reduces to s𝑃(| 𝑓 |𝐴 ,|𝑥|) 0. Moreover, by induction on the size of 𝑃 we quickly see that

⟦Θ𝐹;𝑎;𝑧
𝑃
⟧

s
= 𝑃(⟦𝐹⟧s, ⟦𝑧⟧s) for any 𝑃 — so we retain the originally intended size bound.

We also see that we can find higher-order polynomials 𝐴𝑃( 𝑓 c , 𝑓 s, 𝑧s), 𝐵𝑃( 𝑓 c , 𝑓 s, 𝑧c , 𝑧s)



140 A Rewriting Characterization of Higher-Order Feasibility

such that ⟦Θ𝐹;𝑎;𝑧
𝑃
⟧

c ≤ ⟦𝑎⟧s ∗ 𝐴𝑃(⟦𝐹⟧c , ⟦𝐹⟧s, ⟦𝑧⟧c , ⟦𝑧⟧s) + 𝐵𝑃(⟦𝐹⟧c , ⟦𝐹⟧s, ⟦𝑧⟧c , ⟦𝑧⟧s).
That is, the use of ⟦𝑎⟧ is limited.

Rules for unary subtraction. For our eventual execution rules (in Section 6.7.4), it will

prove very useful to also be able to subtract unary numbers. For this, we use the symbol

minus : unat ⇒ unat ⇒ unat and rules:

minus (s 𝑥) (s 𝑦) → minus 𝑥 𝑦 minus 𝑥 0 → 𝑥 minus 0 (s 𝑦) → 0

We see that minus (s𝑛 0) (s𝑚 0) reduces to s𝑘 0 where 𝑘 = max(𝑛 − 𝑚, 0). We orient the

rules with the following interpretation:

⟦minus 𝑥 𝑦⟧s = max(⟦𝑥⟧s − ⟦𝑦⟧n, 0) ⟦minus 𝑥 𝑦⟧n = 0

⟦minus 𝑥 𝑦⟧c = ⟦𝑥⟧s + 1

Note that this interpretation is monotonic despite the use of the minus function

because the second size argument of unat is in (N,≤). If ⟦𝑦⟧n ≤ ⟦𝑦′⟧n
then indeed

max(⟦𝑥⟧s − ⟦𝑦⟧n, 0) ≥ max(⟦𝑥⟧s − ⟦𝑦′⟧n, 0).

6.7.4 Finalizing execution

Now, at last, we have all the preparations to define execution in a way that can be

bounded by a polynomial interpretation. We let execute : (symblist ⇒ symblist) ⇒
unat ⇒ unat ⇒ unat ⇒ set ⇒ config ⇒ symblist, and will define rules to reduce

expressions execute 𝐹 𝑛 𝑚 𝑧 𝑎 𝑐 where

1. 𝐹 is the function to be used in oracle calls

2. 𝑛 − 1 is a bound on the number of steps that can be done before the next oracle

call (or the end of the machine’s execution)

3. 𝑚 counts the number of steps that has been done so far

4. 𝑧 is a unary representation of |𝑥|, where 𝑥 is the input number

5. 𝑎 is a set with all the inputs the oracle has been executed on so far

6. 𝑐 is the current configuration

We also introduce F : (symblist ⇒ symblist) ⇒ symblist ⇒ symblist, as well as the

helper symbols F′
: (symblist ⇒ symblist) ⇒ unat ⇒ config ⇒ symblist and execute′ :

(symblist ⇒ symblist) ⇒ unat ⇒ unat ⇒ unat ⇒ set ⇒ config ⇒ symblist. We provide



6.7 Completeness 141

the following rules, to execute the oracle Turing machine 𝑀 operating in time bounded

by 𝑃𝑀 .

F 𝐹 𝑛 → F′ 𝐹 (length 𝑛) (start (split(L nil) (R 𝑛)) (split(L nil) (R nil)) (split(L nil) (R nil)))
F′ 𝐹 𝑧 𝑐 → execute 𝐹Θ𝐹;∅;𝑧

𝑃𝑀+1
0 𝑧 ∅ 𝑐

execute 𝐹 (s 𝑛)𝑚 𝑧 𝑎 (q 𝑡1 𝑡2 𝑡3) → execute 𝐹 𝑛 (s𝑚) 𝑧 (step 𝐹 (q 𝑡1 𝑡2 𝑡3)),
for q ∉ {query, end}
execute 𝐹 (s 𝑛)𝑚 𝑧 𝑎 (query 𝑡1 𝑡2 𝑡3) →

execute′ 𝐹 𝑛 (s𝑚) 𝑧 (setcons (extract 𝑡2) 𝑎) (query 𝑡1 𝑡2 𝑡3)
execute′ 𝐹 𝑛 𝑚 𝑧 𝑎 𝑐 → execute 𝐹 (minusΘ𝐹;𝑎;𝑧

𝑃𝑀+1
𝑚)𝑚 𝑧 𝑎 (step 𝐹 𝑐)

execute 𝐹 𝑛 𝑚 𝑧 𝑎 (end 𝑡1 𝑡2 𝑡3) → extract 𝑡1

Before explaining these rules, let us revisit the shape of a machine execution: if

initial(𝑛) ⇝∗ 𝐶 in the oracle Turing machine 𝑀 𝑓 , and {𝑎1, . . . , 𝑎𝑘} are the numbers on

which the oracle is called during the transition up to configuration 𝐶, then let 𝑀 be the

number of ⇝ steps, and 𝑁 := 𝑃𝑀(| 𝑓 |{𝑎1 ,...,𝑎𝑘}, |⌊n⌋|) + 1 −𝑀. By Lemma 6.7.6, 𝑁 > 0

(since the cost of a sequence of transition steps is at least the number of steps), and

there must be strictly less than 𝑁 steps before the next oracle call, or the final state

must be reached instead. Writing 𝑖 for a unary number s𝑖 0 and #ak . . . a1# for the

data term setcons ⌊ap⌋ (setcons ⌊ap−1⌋ (. . . (setcons ⌊a1⌋ ∅) . . . )), we let [⇝∗ 𝐶] denote

the term execute Sf 𝑁 𝑀 ⌊n⌋ #ak . . . a1# [𝐶]. We will prove the following result:

Lemma 6.7.7. Let 𝑀 𝑓 be an OTM running in time bounded by 𝑃𝑀 . Let 𝐶 be a machine

configuration such that initial(𝑛) ⇝∗ 𝐶. Then F S 𝑓 ⌊n⌋ +−→ [⇝∗ 𝐶]. Moreover, if 𝐶 is a

final configuration that yields 𝑚, then [⇝∗ 𝐶] +−→ ⌊m⌋.

Thus, we use F as the distinguished function symbol of Definition 6.5.6.

Proof. The application F S 𝑓 ⌊n⌋ first computes 𝑧 := |⌊n⌋|, and the initial configuration

[initial(𝑛)]. Both are passed to the helper function F′
, which reduces to [⇝∗ initial(𝑛)];

that is: execute S 𝑓 𝑃𝑀(| 𝑓 |∅ , |⌊n⌋|) + 1 0 ∅ [initial(𝑛)].
So suppose that F S 𝑓 ⌊n⌋ +−→ [⇝∗ 𝐶] and 𝐶 ⇝ 𝐶′

. We can always write [⇝∗ 𝐶] =
execute S 𝑓 𝑁 𝑀 |⌊n⌋| #ak . . . a1# [𝐶] There are two possibilities:

• The step is by a normal transition. In that case, necessarily 𝑁 ≥ 2 (since 𝑁 − 1

must be at least 1 since it bounds the number of steps that can be done before

the next oracle call), and [⇝∗ 𝐶] +−→ execute𝑁 − 1𝑀 + 1 |⌊n⌋| #ak . . . a1# [𝐶′] by

Lemma 6.7.5. Note that since the next oracle step or the end of the computation is

now one step closer, indeed (𝑁 − 1) − 1 bounds this number of steps for the new

configuration.



142 A Rewriting Characterization of Higher-Order Feasibility

• The step is by an oracle call. In that case, 𝑁 ≥ 1 since 𝑁 − 1 ≥ 0, so we have the

right shape to apply the second execute rule. Hence,

[⇝∗ 𝐶] +−→ execute′ S 𝑓 𝑁 𝑀 + 1 |⌊n⌋| #ak+1ak · · · a1# [𝐶]

where 𝑎𝑘+1 is the number to be read from the query tape, and this reduces to

execute S 𝑓 𝑃𝑀(| 𝑓 |{𝑎1 ,...,𝑎𝑘+1
}, |⌊n⌋|) + 1 − (𝑀 + 1)𝑀 + 1 |⌊n⌋| #ak+1ak · · · a1# [𝐶′]

by Lemma 6.7.5, and the observations on Θ
𝐹;𝑎;𝑧
𝑃

from Section 6.7.3. This is exactly

[⇝∗ 𝐶′]: clearly an extra step has been made, so 𝑀 is increased by one, and the

set of arguments the oracle has been applied to has been extended with the new

element 𝑎𝑘+1. The counter is 𝑃𝑀(| 𝑓 |{𝑎1 ,...,𝑎𝑘+1
}, |⌊n⌋|) + 1 − (𝑀 + 1) is also exactly as

expected, and indeed bounds the number of steps before the next oracle call as

explained before the lemma.

This provides the first part of the lemma. As for the second part: if 𝐶 is a final

configuration, note that the second argument 𝑁 > 0 as observed above the lemma, so

the last execute rule applies, and [⇝∗ 𝐶] reduces to extract ⟨second tape⟩, which exactly

reduces to the number yielded by this configuration. □

We orient the execution rules by the interpretation below. Here we present each

component separately since each component is large: ⟦·⟧c
is used to represent the

numeric cost component of interpretations. The full interpretation is given below.



6.7 Completeness 143

⟦F 𝐹 𝑛⟧s = ⟦𝑛⟧s + 𝑃𝑀(⟦𝐹⟧s, ⟦𝑛⟧s) + 1

⟦F′ 𝐹 𝑧 𝑐⟧s
= ⟦𝑐⟧s + 𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 1

⟦execute 𝐹 𝑛 𝑚 𝑧 𝑎 𝑐⟧s = ⟦𝑐⟧s + 𝜃𝐹,𝑧,𝑛,𝑚
⟦execute′ 𝐹 𝑛 𝑚 𝑧 𝑎 𝑐⟧s

= ⟦𝑐⟧s + 1 + 𝜃𝐹,𝑧,𝑛,𝑚
⟦F 𝐹 𝑛⟧c = (𝑃𝑀(⟦𝐹⟧s, ⟦𝑛⟧s) + 1) ∗ (

8 + 3 ∗ 𝑃𝑀(⟦𝐹⟧s, ⟦𝑛⟧s) + 2 ∗ ⟦𝑛⟧s+
⟦𝐹⟧c(𝑃𝑀(⟦𝐹⟧s, ⟦𝑛⟧s) + ⟦𝑛⟧s + 1)+
POLY𝐹,𝑧[𝑃𝑀(⟦𝐹⟧s, ⟦𝑛⟧s) + 1]

) + 6 + 2 ∗ ⟦𝑛⟧s + POLY𝐹,𝑧[0]
⟦F′ 𝐹 𝑧 𝑐⟧c

= (𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 1) ∗ (
8 + 3 ∗ 𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 2 ∗ ⟦𝑐⟧s+
⟦𝐹⟧c(𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 1 + ⟦𝑐⟧s)+
POLY𝐹,𝑧[𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 1]

) + 4 + ⟦𝑐⟧s + POLY𝐹,𝑧[0]
⟦execute 𝐹 𝑛 𝑚 𝑧 𝑎 𝑐⟧c = 𝜃𝐹,𝑧,𝑛,𝑚 ∗ (

5+
2 ∗ (𝜃𝐹,𝑧,𝑛,𝑚 + ⟦𝑐⟧s)+
⟦𝐹⟧c(𝜃𝐹,𝑧,𝑛,𝑚 + ⟦𝑐⟧s)+
POLY𝐹,𝑧[𝜃𝐹,𝑧,𝑛,𝑚 + ⟦𝑎⟧s]+
𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s)

) + 3 + 𝜃𝐹,𝑧,𝑛,𝑚 + ⟦𝑐⟧s

⟦execute′ 𝐹 𝑛 𝑚 𝑧 𝑎 𝑐⟧c
= (𝜃𝐹,𝑧,𝑛,𝑚 + 1) ∗ (

5+
2 ∗ (𝜃𝐹,𝑧,𝑛,𝑚 + ⟦𝑐⟧s + 1)+
⟦𝐹⟧c(𝜃𝐹,𝑧,𝑛,𝑚 + ⟦𝑐⟧s + 1)+
POLY𝐹,𝑧[𝜃𝐹,𝑧,𝑛,𝑚 + ⟦𝑎⟧s] + 𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s)

) + 1

Where 𝜃𝐹,𝑧,𝑛,𝑚 := max(𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 1 − ⟦𝑚⟧n, ⟦𝑛⟧s) and

POLY𝐹,𝑧[𝑥] := 𝑥 ∗ 𝐴𝑃𝑀+1(⟦𝐹⟧c , ⟦𝐹⟧s, ⟦𝑧⟧s) + 𝐵𝑃𝑀+1(⟦𝐹⟧c , ⟦𝐹⟧s, ⟦𝑧⟧s)

so the polynomial bounding ⟦Θ𝐹;𝑎;𝑧
𝑃𝑀
⟧

c
if ⟦𝑎⟧s = 𝑥.

To see that these interpretations are correct, we first observe:

𝜃𝐹,𝑧,s 𝑛,𝑚 = max(𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 1 − ⟦𝑚⟧n, ⟦𝑛⟧s + 1)
= max(𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 1 − (⟦𝑚⟧n + 1), ⟦𝑛⟧s) + 1

= 𝜃𝐹,𝑧,𝑛,s𝑚 + 1



144 A Rewriting Characterization of Higher-Order Feasibility

(Because max(𝑎 + 1, 𝑏 + 1) = max(𝑎, 𝑏) + 1.) We also have, for all 𝑎:

𝜃𝐹,𝑧,𝑛,𝑚 = max(𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 1 − ⟦𝑚⟧n, ⟦𝑛⟧s)
≥ max(𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 1 − ⟦𝑚⟧n, 0)
= max(𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 1 − ⟦𝑚⟧n,max(𝑃𝑀(⟦𝐹⟧s, ⟦𝑧⟧s) + 1 − ⟦𝑚⟧n), 0)
= 𝜃

𝐹,𝑧,minusΘ𝐹;𝑎;𝑧
𝑃𝑀+1

,𝑚

The cost inequalities now follow by writing out definitions.

We observe:

Lemma 6.7.8. Let Ψ : (N −→ N) ×N −→ N be a type-2 functional, which is computed

by the oracle Turing machine 𝑀 in time 𝑃. Then for all 𝑓 ∈ N −→ N and 𝑛 ∈ N,

F S 𝑓 Size 𝑓 ⌊n⌋ +−→ ⌊f(n)⌋ in the STRS R ∪ R′
𝑓 defined in this section.

Finally, we conclude with the completeness result.

Corollary 6.7.9 (Completeness). If a type-2 functional Ψ is in BFF, then there exists an

orthogonal STRS (Σ,R) that computesΨ, and which admits a second-order polynomially-

bounded interpretation such that a constant 𝑐 exists with, for all ⌊n⌋ ∈ 𝒩 : |⌊n⌋| = ⟦⌊n⌋⟧s
.

6.8 Conclusions and Future Work

In this chapter, we have shown that BFF can be characterized through second-order term

rewriting systems admitting polynomially bounded cost–size interpretations. This is

arguably the first characterization of the basic feasible functionals purely in terms of

rewriting theoretic concepts.

For the purpose of presentation, we have imposed some mild restrictions that we

believe are not essential in practice. In future extensions, we can eliminate these

restrictions, such as allowing lambda-abstraction, non-base type rules, and higher-order

functions (assuming that F is still second-order). We can also allow arbitrary inductive

data structures as input.

Another direction we definitely wish to explore is the characterization of polynomial

time complexity for functionals of order strictly higher than two. It is well known that

the underlying theory in this case becomes less robust than in type-2 complexity. As

such, it is not clear which of the existing proposals for complexity classes of higher-order

polytime complexity we can hope to capture within our framework.



Chapter 7

Certification of Higher-Order
Polynomial Interpretations

7.1 Certifying Termination Tools

Up to now in this thesis, we have been working mainly with complexity-related

questions. In this chapter, we look at the certification (defined precisely below) problem

for termination tools. Termination of the term rewriting system at hand guarantees that

the derivational complexity function is well-defined, i.e., every term can be mapped

to a natural number. For practical purposes, automating the termination proof is of

major interest. Therefore, automatically proving termination is an important problem

in term rewriting, and numerous tools have been developed for this purpose, such

as AProVE [40], NaTT [110], MatchBox [104], Mu-Term [43], SOL [47], TTT2 [72] and

Wanda [65], which compete against each other in an annual termination competition [41].

Aside from basic (first-order) term rewriting, this includes tools analyzing for instance

string, conditional, and higher-order term rewriting.

Developing termination tools is a difficult and error-prone endeavor. On the one

hand, the termination techniques that are implemented may contain errors. This is

particularly relevant in higher-order term rewriting, where the proofs are often very

intricate due to partial application, type structure, beta-reduction, and techniques

often not transferring perfectly between different formalisms of higher-order rewriting.

Hence, it should come as no surprise that errors have been found in published papers

on higher-order rewriting. On the other hand, it is very easy for a tool developer to

accidentally omit a test whether some conditions to apply specific termination techniques

are satisfied, or to incorrectly translate a method between higher-order formalisms.

To exacerbate this issue, termination proofs are usually complex and technical in

nature, which makes it hard to assess the correctness of a prover’s output by hand. Not

only do many benchmarks contain hundreds of rules, modern termination tools make



146 Certification of Higher-Order Polynomial Interpretations

use of various proof methods that have been developed for decades. Indeed, a single ter-

mination proof might, for instance, make use of a combination of dependency pairs [5, 39,

68], recursive path orders [19, 71], rule removal, and multiple kinds of interpretations [38,

69, 85, 109]. This makes bugs very difficult to find. Hence, there is a need to formally

certify the output of termination provers, ideally automatically. There are two common

engineering strategies to provide such certification. In the first, one builds the certifier as

a library in a proof assistant along with tools to read the prover’s output and construct

a formal proof, which we call proof script. The proof script is then verified by a proof

assistant. Examples of this system design are the combinations Coccinelle/CiME3 [31]

and CoLoR/Rainbow [20]. In the second, the formalization includes certified algorithms

for checking the correctness of the prover’s output. This allows for the whole certifier to

be extracted, using code extraction, and be used as a standalone program. Hence, the

generation of proof scripts by a standalone tool is not needed in this approach, but it

comes with a higher formalization cost. IsaFoR/CeTA [101] utilizes this approach.

When it comes to higher-order rewriting, however, the options are limited. Both

Coccinelle [31] and IsaFoR/CeTA [101] only consider first-order rewriting. Meanwhile,

CoLoR/Rainbow [20] does include a formalization of an early definition of HORPO [71].

Since here we use a different term formalism compared to that of [71], our results are not

directly compatible. See for instance [3, 95] for more formalization results in rewriting.

In this chapter, we introduce a new combination Nijn/ONijn for the certification of

higher-order rewriting termination proofs. We follow the first aforementioned system

design: Nijn is a Coq library providing a formalization of the underlying higher-order

rewriting theory and ONijn is a proof script generator that given a minimal description

of a termination proof (which we call proof trace), outputs a Coq proof script. The proof

script then utilizes results from Nijn for checking the correctness of the traced proof. The

schematic below depicts the basic steps to produce proof certificates using Nijn/ONijn.

Fig. 7.1 Nijn/ONijn schematics

While Nijn is the certified core part of our tool since it is checked by Coq, the proof

script generation implemented in OCaml (ONijn) is not currently certified and must be



7.1 Certifying Termination Tools 147

trusted. For this reason, we deliberately keep ONijn as simple as possible and minimal

checking or computation is done by it. The only task delegated to ONijn is that of parsing

the proof trace given by the termination prover to a Coq proof script. Additionally,

checking the correctness of polynomial termination proofs in Coq is an inherently

incomplete task, since it would require a method to solve inequalities over arbitrary

polynomials, which is undecidable in general.

Technical Overview. This chapter orbits Nijn, a Coq library formalizing higher-order

rewriting. It can be found in the following repository:

https://zenodo.org/records/7913023

The formalization is based on intensional dependent type theory extended with

two axioms: function extensionality and uniqueness of identity proofs [55]. Currently,

the termination criterion formalized in the library is the higher-order polynomial method,

introduced in [38]. The tool coqwc counts the following number of lines of code:

spec proof comments

5497 1985 272 total

The higher-order interpretation method roughly works as follows. First, types are

interpreted as well-ordered structures (Definition 7.3.4), compositionally. For instance,

we interpret base types as natural numbers (with the usual ordering). Then we interpret

a functional type 𝜎 ⇒ 𝜏 as the set of weakly monotonic functions from L𝜎M to L𝜏M
where L𝜎M, L𝜏M denote the interpretations of 𝜎, 𝜏 respectively. The second step is to map

inhabitants of a type 𝜎 to elements of L𝜎M, which is expressed here by Definition 7.3.10.

This interpretation, called extended monotonic algebras in [38], alone does not suffice

for termination. To guarantee termination, we interpret both term application (Defini-

tion 7.4.6) and function symbols as strongly monotonic functionals. In addition, terms

must be interpreted in such a way that the rules of the system are strictly oriented, i.e.,

⟦ℓ⟧ > ⟦𝑟⟧, for all rules ℓ → 𝑟. This means that whenever a rewriting is fired in a term,

the interpretation of that term strictly decreases. As such, termination is guaranteed.

Here we use termination models (Definition 7.3.11) to collect these necessary conditions.

The main result establishing the correctness of this technique in the higher-order

case is expressed by Theorem 7.3.12. To the reader familiar with the interpretation
method in first-order rewriting, Theorem 7.4.7 would be no surprise. It is essentially

the combination of the Manna–Ness criterion with higher-order polynomials and the

additional technicalities that are needed for the higher-order case.

https://zenodo.org/records/7913023
https://zenodo.org/records/7913023


148 Certification of Higher-Order Polynomial Interpretations

7.2 The Basics of Higher-Order Rewriting in Coq

In this section, we introduce the basic coq constructs needed to formalize important

aspects of higher-order rewriting theory, mainly some notions from Chapter 2 like types,

terms, substitutions, and rewriting rules. We end the section with an exposition on how

to express termination constructively in Coq.

7.2.1 Terms and Rewrite Rules

Let us start by defining simple types.

Definition 7.2.1 (ty). Simple types over a type B are defined as follows:

Inductive ty (B : Type) : Type :=

| Base : B → ty B
| Fun : ty B → ty B→ ty B.

Elements of B are called base types, as before. Every inhabitant b : B gives rise to a

simple type Base b and if A1, A2 are simple types then so is Fun A1 A2. We write A1 −→ A2

for Fun A1 A2.

In Chapter 2 we defined terms with named variables and identified them up to

𝛼-equivalence. In contrast, for the formalization, we work with the so-called de Bruijn
indices, also called the nameless representation of terms. In this representation, we do not

use variable names but refer to their position in a context. We need (variable) contexts
in order to type terms that may contain free variables. Conceptually, a context is a list

of variables with their respective types. For instance, [𝑥0 : 𝜎0; . . . ; 𝑥𝑛 : 𝜎𝑛] is the context

with variables 𝑥0 of type 𝜎0, . . . , 𝑥𝑛 of type 𝜎𝑛 . However, we use nameless variables in

our development, so we do not keep track of their names. Consequently, a context is

represented by a list of types. Then we only consider the list [𝜎0, . . . , 𝜎𝑛]. However, we

still need to refer to the free variables in terms. In order to do so, we represent them

through indexing positions in the context. For instance, in the context [𝜎0; . . . ; 𝜎𝑛] we

have 𝑛 + 1 position indexes 0, 1, . . . , 𝑛, which we use as variables.

Definition 7.2.2 (con). The type of variable contexts over a type B is defined as follows.

Inductive con (B : Type) : Type :=

| Empty : con B

| Extend : ty B → con B→ con B.

We write • for Empty and A ,, C for Extend A C.

Definition 7.2.3 (var). We define the type var C A of variables of type A in context C as

Inductive var {B : Type} : con B → ty B→ Type :=

| Vz : forall {C : con B} {A : ty B}, var (A ,, C) A

| Vs : forall {C : con B} {A1 A2 : ty B}, var C A2→ var (A1 ,, C) A2.

https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Types.html#ty
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Contexts.html#con
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Contexts.html#var


7.2 The Basics of Higher-Order Rewriting in Coq 149

Let us consider an example of a context and some variables. Suppose that we have a

base type denoted by b. Then we can form the context

Base b ,, Base b −→ Base b ,, Empty.

In this context, we have two variables. The first one, which is Vz, has type Base b, and

the second variable, which is Vs Vz, has type Base b −→ Base b, The context that we

discussed corresponds to [𝑥0 : 𝑏; 𝑥1 : 𝑏 −→ 𝑏]. The variable Vz represents 𝑥0, while Vs Vz

represents 𝑥1.

In Definition 7.2.4 below we define the notion of well-typed terms-in-context which

consists of those expressions such that there is a typing derivation. We use dependent

types to ensure well-typedness of such expressions. The type of terms depends on

a simple type A : ty B (which represents the object-level type of the expression) and

context C : con B that carries the types of all free variables in the term. We also need

to type function symbols. So we require a type F : Type of function symbols and

ar : F → ty B, which maps f : F to a simple type ar f.

Definition 7.2.4 (tm). We define the type of well-typed terms as follows

Inductive tm {B : Type} {F : Type} (ar : F → ty B) (C : con B) : ty B → Type :=

| BaseTm : forall (f : F), tm ar C (ar f)

| TmVar : forall {A : ty B}, var C A → tm ar C A
| Lam : forall {A1 A2 : ty B}, tm ar (A1 ,, C) A2→ tm ar C (A1 −→ A2)

| App : forall {A1 A2 : ty B}, tm ar C (A1 −→ A2) → tm ar C A1→ tm ar C A2.

For every function f : F we have a term BaseTm f of type ar f. Every variable v gives

rise to a term TmVar v. For 𝜆-abstractions, given a term s : tm ar (A1 ,, C) A2, there is

a term 𝜆 s : tm ar C (A1 −→ A2), namely Lam s. The last constructor represents term

application. If we have a term s : tm ar C (A1 −→ A2) and a term t : tm ar C A1, we get a

term s · t : tm ar C A2, which is defined to be App s t.

While it may be more cumbersome to write down terms using de Bruijn indices, it

does have several advantages. Most importantly, it eliminates the need for 𝛼-equivalence,

so that determining equality between terms is reduced to a simple syntactic check.

Our notion of rewriting rules deviates from the presentation in [38]. Mainly, we do

not impose the pattern restriction on the left-hand side of rules nor that free variables on

the right-hand side occur on the left-hand side. This choice simplifies the formalization

effort because when defining a concrete TRS, one does not need to check this particular

condition. Note that in IsaFoR [101] the authors also do not impose any variable

conditions when defining rewriting rules.

https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Terms.html#tm


150 Certification of Higher-Order Polynomial Interpretations

Definition 7.2.5 (rewriteRule). The type of rewrite rules is defined as follows:

Record rewriteRule {B : Type} {F : Type} (ar : F → ty B) :=

make_rewrite {

vars_of : con B ;

tar_of : ty B ;

lhs_of : tm ar vars_of tar_of ;

rhs_of : tm ar vars_of tar_of

}.

The context vars_of carries the variables used in the rule, and the type tar_of is used

to guarantee that both the lhs_of and rhs_of are terms of the same type.

Definition 7.2.6 (afs). The type of algebraic functional systems1

is defined as follows

Record afs (B : Type) (F : Type) :=

make_afs {

arity : F → ty B ;

list_of_rewriteRules : list (rewriteRule arity)

}.

As usual, every AFS induces a rewrite relation on the set of terms, which we denote

by ∼>. The formal definition is found in RewritingSystem.v. The rewrite relation ∼> is

defined to be the closure of the one-step relation under transitivity and compatibility

with the term constructors. In Coq, we use an inductive type to define this relation. Each

rewrite step is represented by a constructor. More specifically, we have a constructor for

rewriting the left-hand and the right-hand side of an application, we have a constructor

for 𝛽-reduction, and we have a constructor for the rewrite rules of the AFS.

Example 7.2.7 (map_afs). Let us encode Rmap in Coq. It is composed of two rules:

map 𝐹 [] → [] and map 𝐹 (cons 𝑥 𝑞) → cons (𝐹 𝑥) (map 𝐹 𝑞). We start with base types.

Inductive base_types := TBtype | TList.

Definition Btype : ty base_types := Base TBtype.

Definition List : ty base_types := Base TList.

The abbreviations Btype and List is to smoothen the usage of the base types. There are

three function symbols in this system:

Inductive fun_symbols := TNil | TCons | TMap.

The arity function map_armaps each function symbol in fun_symbols to its type.

1

The nomenclature algebraic functional systems used here is an unfortunate legacy of old Nijn code. So it

is not supposed to model algebraic functional systems as defined in [58] but the formalism we defined in

Chapter 2. Major renamings in the formalization will come in the next major version of Nijn.

https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.html#rewriteRule
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.html#afs
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.RewritingSystem.html
https://nmvdw.github.io/Nijn/html/Nijn.Examples.Map.html#map_afs


7.2 The Basics of Higher-Order Rewriting in Coq 151

Definition map_ar f : ty base_types

:= match f with

| TNil⇒ List
| TCons⇒ Btype −→List −→ List

| TMap⇒ (Btype −→ Btype) −→ List −→ List

end.

So, TNil is a list and given an inhabitant of Btype and List, the function symbol TCons

gives a List. Again we introduce some abbreviations to simplify the usage of the

function symbols.

Definition Nil {C} : tm map_ar C _ := BaseTm TNil.

Definition Cons {C} x xs : tm map_ar C _ := BaseTm TCons · x · xs.
Definition Map {C} f xs : tm map_ar C _ := BaseTm TMap · f · xs.

The first rule, map 𝐹 [] → [], is encoded as the following Coq construct:

Program Definition map_nil :=

make_rewrite

(_ ,, •) _

(let f := TmVar Vz in Map · f · Nil)
Nil.

Notice that we only defined the pattern of the first two arguments of make_rewrite,

leaving the types in the context (_ ,, •) and the type of the rule unspecified. Coq can

fill in these holes automatically, as long as we provide a context pattern of the correct

length. In this particular rewrite rule, there is only one free variable. As such, the

variable TmVar Vz refers to the only variable in the context. In addition, we use iterated

let-statements to imitate variable names. For every position in the context, we introduce

a variable in Coq, which we use in the left- and right-hand sides of the rule. This makes

the rules more human-readable. Indeed, the lhs map 𝐹 [] of this rule is represented as

Map · f · Nil in code. The second rule for map is encoded following the same ideas.

Program Definition map_cons :=

make_rewrite

(_ ,, _ ,, _ ,, •) _

(let f := TmVar Vz in

let x := TmVar (Vs Vz) in

let xs := TmVar (Vs (Vs Vz)) in

Map · f · (Cons · x · xs))
(let f := TmVar Vz in

let x := TmVar (Vs Vz) in

let xs := TmVar (Vs (Vs Vz)) in

Cons · (f · x) · (Map · f · xs)).



152 Certification of Higher-Order Polynomial Interpretations

Putting this all together, we obtain an AFS, which we call map_afs.

Definition map_afs :=

make_afs map_ar (map_nil :: map_cons :: List.nil).

7.2.2 Termination

Strong normalization is usually defined as the absence of infinite rewrite sequences.

Such a definition is sufficient in a classical setting where the law of excluded middle

holds. However, we work in a constructive setting, and thus we are interested in a

stronger definition. Therefore, we need a constructive predicate, formulated positively,

which implies there are no infinite rewrite sequences. This idea is captured by the

following definition

Definition 7.2.8 (WellfoundedRelation.v). The well-foundedness predicate for a relation

R is defined as follows

Inductive isWf {X : Type} (R : X → X→ Type) (x : X) : Prop :=

| acc : (forall (y : X), R x y → isWf R y) → isWf R x.

A relation is well-founded if the well-foundedness predicate holds for every element.

Definition Wf {X : Type} (R : X → X→ Type) :=

forall (x : X), isWf R x.

Note that this definition has been considered numerous times before, for example

in [18] and in CoLoR [20]. An element x is well-founded if all y such that R x y are

well-founded. Note that if there is no y such that R x y, then x is vacuously well-founded.

From the rewriting perspective, this definition properly captures the notion of strong

normalization. Indeed, a term 𝑠 is strongly normalizing iff every 𝑠′ such that 𝑠 rewrites

to 𝑠′ is strongly normalizing.

Well-foundedness contradicts the existence of infinite rewrite sequences, even in a

constructive setting. As such, it indeed gives a stronger condition.

Proposition 7.2.9 (no_infinite_chain). If 𝑅 is well-founded, then there is no infinite

sequence 𝑠0, 𝑠1, . . . such that 𝑅(𝑠𝑛 , 𝑠𝑛+1), for all 𝑛.

Next, we define strong normalization using well-founded predicates.

Definition 7.2.10 (is_SN). An algebraic functional system is strongly normalizing if for

every context C and every type A the rewrite relation for terms of type A in context C is

well-founded. We formalize that as follows:

Definition isSN {B F : Type} (X : afs B F) : Prop :=

forall (C : con B) (A : ty B),

Wf (fun (t1 t2 : tm X C A) ⇒ t1 ∼> t2).

https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Relations.WellfoundedRelation.html
https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Relations.WellfoundedRelation.html#no_infinite_chain
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.StrongNormalization.SN.html#is_SN


7.3 Higher-Order Interpretation Method in Coq 153

7.3 Higher-Order Interpretation Method in Coq

In this section, we formalize the method of weakly monotonic algebras for algebraic

functional systems. We proceed by providing type-theoretic semantics for the syntactic

constructions introduced in the last section and a sufficient condition for which such

semantics can be used to establish strong normalization.

7.3.1 Interpreting types and terms

In weakly monotonic algebras, types are interpreted as sets along with a well-founded

ordering and a quasi-ordering [38, 92]. For that reason, we start by defining compatible
relations. Intuitively, these are the domain for our semantics.

Definition 7.3.1 (CompatibleRelation.v). Compatible relations are defined as follows

Record CompatRel := {

carrier :> Type ;

gt : carrier→ carrier→ Prop ;

ge : carrier→ carrier→ Prop
}.

We write x > y and x >= y for gt x y and ge x y respectively.

The record CompatRel consists of the data needed to express compatibility between

> and >=. The conditions it needs to satisfy, are in the type class isCompatRel, defined

below.

Class isCompatRel (X : CompatRel) := {

gt_trans : forall {x y z : X}, x > y → y > z→ x > z ;

ge_trans : forall {x y z : X}, x >= y→ y >= z→ x >= z ;

ge_refl : forall (x : X), x >= x ;

compat : forall {x y : X}, x > y → x >= y ;

ge_gt : forall {x y z : X}, x >= y→ y > z→ x > z ;

gt_ge : forall {x y z : X}, x > y → y >= z→ x > z

}.

Note that the field gt_trans in isCompatRel follows from compat and ge_gt. The type

nat of natural numbers with the usual orders is the first example of data that satisfies

isCompatRel. We denote this one by nat_CompatRel.

This type class essentially models the notion of extended well-founded set introduced

in Chapter 2. An extended well-founded set is a set together with compatible orders >,≳
such that > is well-founded and ≳ is a quasi-ordering. This compatibility requirement

corresponds to the axiom compat in the type class isCompatRel. However, since we do not

require > to be well-founded in this definition, we instead call it a compatible relation.

https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Orders.CompatibleRelation.html


154 Certification of Higher-Order Polynomial Interpretations

More specifically, X is a compatible relation if it is of type CompatRel and satisfies the

constraints in the type class isCompatRel.

In order to interpret simple types (Definition 7.2.1), we start by fixing a type B : Type

of base types and an interpretation semB : B → CompatRel such that each semB b is a

compatible relation. Whenever semB satisfies such property we call it an interpretation
key for B, like in Definition 5.3.4. Notice that here we do not formalize call-by-value

rewriting, like in Chapter 5. An interpretation key in this chapter is just the function

that maps each base type to a compatible relation type. We interpret arrow types

as functional compatible relations, i.e., compatible relations such that the inhabitants

of their carrier are functional. The class of functionals we are interested in is that of

weakly-monotone maps.

Definition 7.3.2 (MonotonicMaps.v). Weakly monotone maps are defined as follows

Class weakMonotone {X Y : CompatRel} (f : X → Y) :=

map_ge : forall (x y : X), x >= y→ f x >= f y.

Record weakMonotoneMap (X Y : CompatRel) :=

make_monotone {

fun_carrier :> X→ Y ;

is_weak_monotone : weakMonotone fun_carrier

}.

The class weakMonotone says when a function is weakly monotonic, and an inhabitant

of the record weakMonotoneMap consists of a function together with proof of its weak

monotonicity. Then we define fun_CompatRel which is of type CompatRel and represents

the functional compatible relations from X to Y. It is defined as follows:

Definition fun_CompatRel (X Y : CompatRel) : CompatRel :={|

carrier := weakMonotoneMap X Y ;

gt f g := forall (x : X), f x > g x ;

ge f g := forall (x : X), f x >= g x

|}.

In what follows, we write X →wm Y for fun_CompatRel X Y. The semantics for a type is

parametrized by an interpretation key semB.

Here, the idea is the same: an interpretation key maps base types to elements of the

interpretation’s domain. In our case, this is a CompatRel.

Definition 7.3.3. In the file OrderInterpretation.v we introduce the following Coq-level

context to define the notion of interpretation key over a type B.

Context {B : Type}

(semB : B → CompatRel)

‘{ forall (b : B), isCompatRel (semB b)}.

https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Orders.MonotonicMaps.html
https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html


7.3 Higher-Order Interpretation Method in Coq 155

This Coq context makes explicit the information that the output Now we proceed to

define the interpretation of types.

Definition 7.3.4 (sem_Ty). Assume A : ty B and semB is an interpretation key for B. Then

Fixpoint sem_Ty (A : ty B) : CompatRel :=

match A with

| Base b ⇒ semB b
| A1 → A2 ⇒ sem_Ty A1→wm sem_Ty A2
end.

We also show how to interpret contexts, and to do so, we need to interpret the empty

context and context extension. For those, we define the unit and product of compatible

relations.

Definition 7.3.5 (Examples.v). The unit compatible relations

Definition unit_CompatRel :

CompatRel := {|

carrier := unit ;

gt _ _ := False ;

ge _ _ := True

|}.

The product compatible relation is implemented as follows:

Definition prod_CompatRel (X Y : CompatRel) :

CompatRel := {|

carrier := X ‗ Y ;

gt x y := fst x > fst y ∧ snd x > snd y ;

ge x y := fst x >= fst y ∧ snd x >= snd y

|}.

Note that unit_CompatRel is the compatible relation on the type with only one element,

for which the ordering is trivial. In addition, prod_CompatRel is the compatible relation

on the product, for which we compare elements coordinate-wise. We write X ‗ Y for

prod_CompatRel X Y.

Definition 7.3.6 (sem_Con). Contexts are interpreted as follows

Fixpoint sem_Con (C : con B) : CompatRel :=

match C with

| • ⇒ unit_CompatRel
| A ,, C ⇒ sem_Ty A ‗ sem_Con C

end.

https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#sem_Ty
https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Orders.Examples.html
https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#sem_Con


156 Certification of Higher-Order Polynomial Interpretations

Next, we give semantics to variables and terms. The approach we use here is slightly

different from what is usually done in higher-order rewriting. In [38, 69, 92], for instance,

context information is lifted to the meta-level and variables are interpreted using the

notion of valuations. In contrast, in our setting, the typing context lives at the syntactic

level and variables are interpreted as weakly monotonic functions. Consequently, to

every term t : tm C A, we assign a map from sem_Con C to sem_Ty A. In the remainder, we

need the following weakly monotonic functions.

Definition 7.3.7 (Examples.v). We define the following weakly monotonic functions.

• Given y : Y, we write const_wm y : X →wm y for the constant function.

• Given f : X →wm Y and g : Y →wm Z, we define g ◦wm f : X →wm Z to be their com-

position.

• We have the first projection fst_wm : X ‗ Y →wm X, which sends a pair (x , y) to x,

and the second projection snd_wm : X ‗ Y →wm Y, which sends (x , y) to y.

• Given f : X →wm Y and g : X →wm Z, we have a function 〈 f , g 〉 : X →wm (Y ‗ Z).

For x : X, we define 〈 f , g 〉 x to be (f x , g x).

• Given f : Y ‗ X →wm Z, we get 𝜆wm f : X →wm (Y →wm Z). For every x : X and y : Y,

we define 𝜆wm f y x to be f (y , x).

• Given f : X →wm (Y →wm Z) and x : X →wm Y, we obtain f ·wm x : X →wm Z, which

sends every a : X to f a (x a).

• Given x : X, we have apply_el_wm x : (X →wm Y) →wm Ywhich is a weakly monotonic

function that sends f : X →wm Y to f x.

Recall that variables are represented by positions in a context which in turn is

interpreted as a weakly monotonic product (Definition 7.3.6). This allows us to interpret

the variable at a position in a context as the corresponding interpretation of the type in

that position.

Definition 7.3.8 (sem_Var). We interpret variables with the following function

Fixpoint sem_Var {C : con B} {A : ty B} (v : var C A) : sem_Con C→wm sem_Ty A
:= match v with

| Vz ⇒ fst_wm
| Vs v ⇒ sem_Var v ◦wm snd_wm
end.

We need the following data in order to provide semantics to terms. An arity function

ar : F → ty B, together with its interpretation semF : forall (f : F), sem_Ty (ar f), and

an application operator given by

https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Orders.Examples.html
https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#sem_Var


7.3 Higher-Order Interpretation Method in Coq 157

semApp : forall (A1 A2 : ty B),

(sem_Ty A1→wm sem_Ty A2) ‗ sem_Ty A1→wm sem_Ty A2

to interpret term application.

Remark 7.3.9. A first, but incorrect, guess to interpret application would have been

by interpreting the application of f : sem_Ty A1→wm sem_Ty A2 to x : sem_Ty A1 by f x.

However, there is a significant disadvantage of this interpretation. Ultimately, we want

to deduce strong normalization from the interpretation, and the main idea is that if we

have a rewrite x ∼> x’ , then we have semTm x > semTm x’. This requirement would not be

satisfied if we interpret term application as functional application. Indeed, if we have

x < x’ , then one is not guaranteed that we also have f x < f x’ , because f is only weakly

monotone.

There are two ways to deal with this. One way is by interpreting function types as

strictly monotonic maps [69]. In this approach, this interpretation of application is valid.

However, it comes at a price, because the interpretation of lambda abstraction becomes

more difficult.

Another approach, which we use here, is also used in [38]. We add a parameter to our

interpretation method, namely semApp, which abstractly represents the interpretation of

application. To deduce strong normalization in this setting, we add requirements about

semApp in Section 7.3.2. As a result, in concrete instantiations of this method, we need to

provide an actual definition for semApp. We see this in Section 7.4.2.

Definition 7.3.10 (sem_Tm). Given a function semF : forall (f : F), sem_Ty (ar f), the

semantics of terms is given by

Fixpoint sem_Tm {C : con B} {A : ty B} (t : tm ar C A) : sem_Con C→wm sem_Ty A :=

match t with

| BaseTm f ⇒ const_wm (semF f)

| TmVar v ⇒ sem_Var v
| 𝜆 f ⇒ 𝜆wm (sem_Tm f)

| f · t ⇒ semApp _ _ ◦wm 〈sem_Tm f , sem_Tm t 〉
end.

Notice that we could have chosen a fixed way of interpreting term application. We

follow the same approach used by Fuhs and Kop [38] in our formalization and leave

semApp abstract. This choice is essential if we want to use the interpretation method for

both rule removal and the dependency pair approach. See [64, Chapters 4 and 6] for more

detail.

7.3.2 Termination Models

Now we have set up everything that is necessary to define the main notion of this

section: termination models. From a termination model of an algebraic functional system,

https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#sem_Tm


158 Certification of Higher-Order Polynomial Interpretations

one obtains an interpretation of the types and terms. In addition, every rewrite rule is

satisfied in this interpretation that is the interpretation of the left-hand side of rules is

strictly greater than the interpretation of the right-hand side.

Definition 7.3.11 (Interpretation). Let R be an algebraic functional system with base

type B and function symbols F. A termination model of R consists of the following:

1. an interpretation key semB;

2. a function semF : forall (f : F), sem_Ty (ar f);

3. a function

semApp : forall (A1 A2 : ty B),

(sem_Ty A1→wm sem_Ty A2) ‗ sem_Ty A1→wm sem_Ty A2

such that the following axioms are satisfied

• each semB b is well-founded and inhabited;

• if f > f’ , then semApp _ _ (f , x) > semApp _ _ (f’ , x);

• if x > x’ , then semApp _ _ (f , x) > semApp _ _ (f , x’) ;

• we have semApp _ _ (f , x) >= f x for all f and x;

• for every rewrite rule r, substitution s, and element x, we have

semTm (lhs r [ s ]) x > semTm (rhs r [ s ]) x.

Notice that given a termination model for R, the fact that the left-hand side of every

rewrite rule is greater than its right-hand side only orients those rewriting sequences

that do not have any 𝛽-steps. In contrast with our development in Chapter 4 in which

we showed how to interpret the 𝛽 rule scheme. In the setting of Kop [64], termination

models alone are not enough to conclude strong normalization. Kop [64] solves this issue

by employing rule removal to show that strong normalization of all rewriting sequences

follows from the strong normalization of 𝛽-reduction, which is a famous theorem proven

by Tait [99]. The strong normalization of 𝛽-reduction has been formalized numerous

times and an overview can be found in [1]. Now we are ready to state and prove the

main theorem of this section.

Theorem 7.3.12 (afs_is_SN_from_Interpretation). Let R be an algebraic functional

system. If we have a termination model of 𝑋, then 𝑋 is strongly normalizing.

https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#Interpretation
https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#afs_is_SN_from_Interpretation


7.4 The Higher-Order Polynomial Method in Coq 159

7.4 The Higher-Order Polynomial Method in Coq

7.4.1 Polynomials

In this section, we instantiate the material of Section 7.3 to a concrete instance, namely the
polynomial method [38]. For that reason, we define the notation of higher-order polynomial.

Definition 7.4.1 (Polynomial.v). We define the type base_poly of base polynomials and

poly of higher-order polynomials by mutual induction as follows:

Inductive base_poly {B : Type} : con B → Type :=

| P_const : forall {C : con B},

nat→ base_poly C
| P_plus : forall {C : con B},

(P1 P2 : base_poly C) → base_poly C
| P_mult : forall {C : con B},

(P1 P2 : base_poly C)→ base_poly C

| from_poly : forall {C : con B} {b : B},

poly C (Base b) → base_poly C

with poly {B : Type} : con B → ty B → Type :=

| P_base : forall {C : con B} {b : B},

base_poly C→poly C (Base b)

| P_var : forall {C : con B} {A : ty B},

var C A → poly C A

| P_app : forall {C : con B} { 1A 2A : ty B},

poly C ( 1A −→2 A)→
poly C 1A→
poly C 2A

| P_lam : forall {C : con B} { 1A 2A : ty B},

poly (1A ,, C) 2A → poly C ( 1A −→2 A).

We can make expressions of base polynomials using P_const (constants), P_plus

(addition), and P_mult (multiplication). In addition, from_poly takes an inhabitant of

poly C (Base b) and returns a base polynomial in context C. Using P_base, we can turn a

base polynomial into a polynomial of any base type. The constructors, P_var, P_app, and

P_lam, are remniscent of the simply typed lambda calculus. We get variables from P_var,

𝜆-abstraction from P_lam, and application from P_app. Note that combining from_poly

and P_var, we can use variables in base polynomials.

Let us make some remarks about the design choices we made and how they affected

the definition of polynomials. One of our requirements is that we are able to add and

multiply polynomials on different base types. This is frequently used in actual examples,

such as Example 7.4.2. Function symbols might use arguments from different base types,

and we would like to use both of them in polynomial expressions.

https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html


160 Certification of Higher-Order Polynomial Interpretations

Note that our definition of higher-order polynomials is rather similar to the one

given by Fuhs and Kop [38, Definition 4.1]. They define a set Pol(𝑋), which consists

of polynomial expressions, and for every type 𝐴 a set Pol𝐴(𝑋). The set Pol𝐴(𝑋) is

defined by recursion: for base types, it is the set of polynomials over 𝑋 and for function

types 𝐴1 −→ 𝐴2, it consists of expressions Λ(𝑦 : 𝐴1).𝑃 where 𝑃 is a polynomial of

type 𝐴2 using an extra variable 𝑦 : 𝐴1. Our base_poly C and poly C A correspond to

Pol(𝑋) and Pol𝐴(𝑋) respectively. However, there are some differences. First of all, Fuhs

and Kop require variables to be fully applied, whereas we permit partially applied

variables. Secondly, Fuhs and Kop define polynomials in such a way that for every two

base types 𝑏1, 𝑏2 the types Pol𝑏1(𝑋) and Pol𝑏2(𝑋) are equal. This is not the case in our

definition: instead we use constructors from_poly and P_base to relate base_poly C and

poly C (Base b).

In the polynomial method, the interpretation key sends every base type to a type

nat_CompatRel, and in what follows, we write ⟦ C ⟧con and ⟦ A ⟧ty for the interpretation

of contexts and types respectively. Note that every polynomial P : poly C A gives rise

to a weakly monotonic function sem_poly P : ⟦ C ⟧con→wm ⟦ A ⟧ty and that every base

polynomial P : base_poly C gives rise to sem_base_poly P : ⟦ C ⟧con→wm nat_CompatRel.

These two functions are defined using mutual recursion and every constructor is

interpreted in the expected way: sem_poly.

In order to actually use base_poly C and poly C A, we provide convenient notations

for operations on polynomials. More concretely, we define notations +, ‗, and ·P that

represent addition, multiplication, and application respectively. These operations must

be overloaded since we need to be able to add polynomials of different types. To do so,

we similarly use type classes as in MathClasses [97]. For details, we refer the reader to

the formalization.

Example 7.4.2 (map_fun_poly). We continue with Example 7.2.7 and provide a polyno-

mial interpretation to the system map_afs as follows:

Definition map_fun_poly fn_symbols : poly •(arity trs fn_symbols) :=

match fn_symbols with

| Tnil⇒ to_Poly (P_const 3)

| Tcons ⇒ 𝜆P 𝜆P let y1 := P_var Vz in

to_Poly (P_const 3 + P_const 2 ‗ y1)

| Tmap ⇒ 𝜆P let y0 := P_var (Vs Vz) in 𝜆P let G1 := P_var Vz in

to_Poly (P_const 3 ‗ y0 + P_const 3 ‗ y0 ‗ (G1 ·P (y0)))

end.

Informally, the interpretation of nil is the constant 3. The interpretation of cons is the

function that sends 𝑦1 : N to 3 + 2𝑦1, and map is interpreted as the function that sends

𝑦0 : N and 𝐺1 : N =⇒ N to 3𝑦0 + 3𝑦0𝐺1(𝑦0).

https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#sem_poly
https://nmvdw.github.io/Nijn/html/Nijn.Examples.Map.html#map_fun_poly


7.4 The Higher-Order Polynomial Method in Coq 161

7.4.2 Polynomial Interpretation

Using polynomials, we deduce strong normalization under certain circumstances

using Theorem 7.3.12. Suppose that for all function symbols f we have a polynomial

J : poly • (arity X f), and now we need to provide the interpretation for application.

Following Fuhs and Kop [38], we use a general method to interpret application. We

start by constructing a minimal element in the interpretation of every type.

Definition 7.4.3 (min_el_ty). For every simple type Awe define a minimal element of

⟦ A ⟧ty as follows

Fixpoint min_el_ty (A : ty B) : minimal_element ⟦A ⟧ty

:= match A with

| Base _⇒ nat_minimal_element
| A1 −→ A2⇒ min_el_fun_space (min_el_ty A2)

end.

Here nat_minimal_element is defined to be 0, and min_el_fun_space (min_el_ty A2) is the

constant function on (min_el_ty A2).

In order to define the semantics of application, we need several operations involving

⟦ A ⟧ty. First, we consider lower value functions.

Definition 7.4.4 (lvf). We define the lower value function as follows

Fixpoint lvf {A : ty B} : ⟦ A ⟧ty →wm nat_CompatRel :=

match A with

| Base _⇒ id_wm
| A1 −→ A2⇒ lvf ◦wm apply_el_wm (min_el_ty A1)

end.

Note that we construct lvf directly as a weakly monotonic function. In addition, we

reuse the combinators defined in Definition 7.3.7. As such, we do not need to prove

separately that this function is monotonic.

In Fuhs and Kop [38], this definition is written down in a different, but equivalent, way.

Instead of defining lvf𝜎 recursively, they look at full applications, which would be more

complicated in our setting. More specifically, since we are working with simple types,

we must have that 𝜎 = 𝜎1 ⇒ . . . ⇒ 𝜎𝑛 ⇒ 𝜏. Then they define lvf𝜎( 𝑓 ) B 𝑓 (⊥𝜎1
, . . . ,⊥𝜎𝑛 ),

where ⊥𝜎 is the minimum element of L𝜎M, the interpretation of 𝜎. Next, we define two

addition operations on ⟦ A ⟧ty.

Definition 7.4.5 (plus_ty_nat). Addition of natural numbers and elements on ⟦ A ⟧ty is

defined as follows

https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#min_el_ty
https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#lvf
https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#plus_ty_nat


162 Certification of Higher-Order Polynomial Interpretations

Fixpoint plus_ty_nat {A : ty B} : ⟦ A ⟧ty ‗ nat_CompatRel→wm ⟦A ⟧ty
:= match A with

| Base _⇒ plus_wm
| A1 −→ A2⇒
let f := fst_wm ◦wm snd_wm in
let x := fst_wm in

let n := snd_wm ◦wm snd_wm in
𝜆wm (plus_ty_nat ◦wm 〈f ·wm x , n 〉)

end.

The function plus_ty_nat allows us to add arbitrary natural numbers to elements of

the interpretation of types. Note that there are two cases in Definition 7.4.5. First of all,

the type A could be a base type. In that case, we are adding two natural numbers, and we

use the usual addition operation. In the second case, we are working with a functional

type A1 −→ A2. The resulting function is defined using pointwise addition with the

relevant natural number. Now we have everything in place to define the interpretation

of application.

Definition 7.4.6 (p_app). Application is interpreted as the following function

Definition p_app {A1 A2 : ty B}

: ⟦ A1 −→ A2 ⟧ty ‗ ⟦ A1 ⟧ty →wm ⟦ A2 ⟧ty
:= let f := fst_wm in

let x := snd_wm in

plus_ty_nat ◦wm 〈f ·wm x , lvf ◦wm x 〉.

If both A1 and A2 are base types, then p_app (f , x) reduces to f x + x. Note that p_app

satisfies the requirements from Theorem 7.3.12. Hence, we obtain the following.

Theorem 7.4.7 (poly_Interpretation). Let R be an AFS. Suppose that for every function

symbol f we have a polynomial p_fun_sym f such that for all rewrite rules l ∼> r in R
we have semTm l x > semTm r x for all x. Then R has a termination model.

7.4.3 Constraint Solving Tactic

Notice that in order to formally verify a proof of termination of a system using

Theorem 7.4.7, we need to provide a polynomial interpretation and show that ⟦ℓ⟧ > ⟦𝑟⟧

holds for all rules ℓ → 𝑟. This will introduce inequality proof-goals into the Coq context

that must be solved. Let us consider a concrete example.

Example 7.4.8. We use the polynomials given in Example 7.4.2 to show strong nor-

malization of Example 7.2.7. This example introduces two inequalities, one for each

rule. Let 𝐺0 : N =⇒ N be weakly monotonic. For rule map_nil, we need to prove

https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#p_app
https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#poly_Interpretation


7.4 The Higher-Order Polynomial Method in Coq 163

that for all 𝐺0, the constraint 12 + 𝐺0(0) + 9𝐺0(3) > 3 holds. For the second rule,

map_cons, the constraint is: 12 + 4𝑦0 + 12𝑦1 + 𝐺0(0) + (3𝑦0 + 9𝑦1 + 9)𝐺0(3 + 𝑦0 + 3𝑦1) >
3 + 𝑦0 + 12𝑦1 + 3𝐺0(0) + 𝐺0(𝑦0) + 9𝑦1𝐺0(𝑦1), for all 𝑦0, 𝑦1 ∈ N and 𝐺0.

Manually finding witnesses for such inequalities is tedious, and we would like to

automate this task. For that reason, we developed a tactic (solve_poly) that automatically

solves the inequalities coming from Theorem 7.4.7. Essentially, this tactic tries to mimic

how one would solve those goals in a pen-and-paper proof, and the same method is

used by Wanda.

Example 7.4.9. We show how to solve the constraint arising from map_consmentioned

in Example 7.4.8. The first step is to find matching terms on both sides of the inequality

and subtract them. In our example, 3 + 𝑦0 + 12𝑦1 + 𝐺0(0) occurs on both sides, and after

subtraction, we obtain the following constraint:

9 + 3𝑦0 + 9𝑦1 + (3𝑦0 + 9𝑦1 + 9)𝐺0(3 + 𝑦0 + 3𝑦1) > 2𝐺0(0) + 𝐺0(𝑦0) + 9𝑦1𝐺0(𝑦1).

The second step is combining the arguments for the higher-order variable 𝐺0 using its

monotonicity. Note that each of 0, 𝑦0, and 𝑦1 is less than or equal to 3+ 𝑦0 + 3𝑦1, because

they are natural numbers. Since 𝐺0 is weakly monotonic, we get

2𝐺0(0) + 𝐺0(𝑦0) + 9𝑦1𝐺0(𝑦1) ≤ (9𝑦1 + 3)𝐺0(3 + 𝑦0 + 3𝑦1).

Now we can simplify our original constraint to

9 + 3𝑦0 + 9𝑦1 + (3𝑦0 + 9𝑦1 + 9)𝐺0(3 + 𝑦0 + 3𝑦1) > (9𝑦1 + 3)𝐺0(3 + 𝑦0 + 3𝑦1).

Since 3𝑦0 + 9𝑦1 + 9 ≥ 9𝑦1 + 3, we have

(3𝑦0 + 9𝑦1 + 9)𝐺0(3 + 𝑦0 + 3𝑦1) ≥ (9𝑦1 + 3)𝐺0(3 + 𝑦0 + 3𝑦1).

This is sufficient to conclude that the constraints for map_cons are satisfied.

The tactic solve_poly (solve_poly) follows the steps described above. Note that we

use the tactic nia, which is a tactic in Coq that can solve inequalities and equations in

nonlinear integer arithmetic. More specifically, solve_polyworks as follows:

• First, we generate a goal for every rewrite rule, and we destruct the assumptions

so that each variable in the context is either a natural number or a function.

• For every variable 𝑓 that has a function type, we look for pair (𝑥, 𝑦) such that 𝑓 (𝑥)
on the left hand side and 𝑓 (𝑦) occurs on the right-hand side. We try using nia

whether we can prove 𝑥 < 𝑦 from our assumptions. If so, we add 𝑥 < 𝑦 to the

assumptions, and otherwise, we continue.

https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#solve_poly
https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.PolynomialTactics.html#solve_poly


164 Certification of Higher-Order Polynomial Interpretations

• The resulting goals with the extra assumptions are solved using nia.

Note that solve_poly is not complete, because nia is incomplete. As such, if a proof

using this tactic is accepted by Coq, then that proof is correct. However, if the proof is

not accepted, then it does not have to be the case that the proof is false. With the material

discussed in this section, we can write down the polynomials given in Example 7.4.2,

and the tactic is able to verify strong normalization.

7.5 Generating Proof Scripts

In this section, we discuss the practical aspects of our verification framework. In principle

one can manually encode rewrite systems as Coq files and use the formalization we

provide to verify their own termination proofs. However, this is cumbersome to do.

Indeed, in Example 7.2.7 we used abbreviations to make the formal description of Rmap

more readable. A rewrite system with many more rules would be difficult to encode

manually. Additionally, to formally establish termination we also need to encode proofs.

We did this in Example 7.4.2. The full formal encoding of Rmap and its termination proof

is found in the file Map.v.

7.5.1 Proof traces for polynomial interpretation

This difficulty of manual encoding motivates the usage of proof traces. A proof trace is a

human-friendly encoding of a TRS and the essential information needed to reconstruct

the termination proof as a Coq script. Let us again consider Rmap as an example. The

proof trace for this system starts with YES to signal that we have a termination proof for

it. Then we have a list encoding the signature and the rules of the system.

YES

Signature: [

cons : a -> list -> list ;

map : list -> (a -> a) -> list ;

nil : list

]

Rules: [

map nil F => nil ;

map (cons X Y) G => cons (G X) (map Y G)

]

Notice that the free variables in the rules do not need to be declared nor their typing

information provided. Coq can infer this information automatically. The last section of

the proof trace describes the interpretation of each function symbol in the signature.

https://nmvdw.github.io/Nijn/html/Nijn.Examples.Map.html


7.5 Generating Proof Scripts 165

Interpretation: [

J(cons) = Lam[y0;y1].3 + 2*y1;

J(map) = Lam[y0;G1].3*y0 + 3*y0 * G1(y0);

J(nil) = 3

]

We can fully reconstruct a formal proof of termination for Rmap, which uses Theo-

rem 7.4.7, with the information provided in the proof trace above. The full description of

proof traces can be found at https://github.com/deividrvale/nijn-coq-script-generation,

the API for ONijn. Proof traces are not Coq files. So we need to further compile them

into a proper Coq script. The schematics in Figure 7.1 describe the steps necessary for it.

We use ONijn to compile proof traces to Coq script. It is invoked as follows:

onijn path/to/proof/trace.onijn -o path/to/proof/script.v

Here, the first argument is the file path to a proof trace file and the -o option requires

the file path to the resulting Coq script. The resulting Coq script can be verified by Nijn
as follows:

coqc path/to/proof/script.v

Instructions on how to locally install ONijn/Nijn can be found in the following repository:

https://github.com/deividrvale/nijn-coq-script-generation

7.5.2 Verifying Wanda’s Polynomial Interpretations

It is worth noticing that the termination prover is abstract in our certification framework.

This means that we are not bound to a specific termination tool. So we can verify any

termination tool that implements the interpretation method described here and can

output proof traces in ONijn format.

Since Wanda [65] is a termination tool that implements the interpretation method

in [38], it is our first candidate for verification. We added to Wanda the runtime argument

--formal so it can output proof traces in ONijn format. In [65] one can find details on

how to invoke Wanda. For instance, we illustrate below how to run Wanda on the map
AFS.

./wanda.exe -d rem --formal Mixed_HO_10_map.afs

The setting -d rem sets Wanda to disable rule removal. The option --formal sets Wanda
to only use polynomial interpretations and output proofs to ONijn proof traces. Running

Wanda with these options gives us the proof trace we used for Rmap above. The latest

version of Wanda, which includes this parameter, is found in the following repository:

https://github.com/hezzel/wanda.

https://github.com/deividrvale/nijn-coq-script-generation
https://github.com/deividrvale/nijn-coq-script-generation
https://github.com/hezzel/wanda


166 Certification of Higher-Order Polynomial Interpretations

The table below describes our experimental evaluation on verifying Wanda’s output

with the settings above. The benchmark set consists of those 46 TRSs for which Wanda
outputs YESwhile using only polynomial interpretations and no rule removal. The time

limit for certification of each system is set to 60 seconds.

Wanda Nijn/ONijn

Technique # YES Pct. Avg. Time # Cert. Perc. Avg. Time

Poly, no rule removal 46 23% 0.07s 46 100% 4.06s

Table 7.1 Experimental Results

The experiment was run in a machine with M1 Pro 2021 processor with 16GB of

RAM. Memory usage of Nijn during certification ranges from 400MB to 750MB. We

provide the experimental benchmarks at the link below

https://github.com/deividrvale/nijn-coq-script-generation.

Hence, we can certify all TRSs proven strongly normalizing by Wanda while using

only polynomial interpretations.

7.6 Conclusions and Future Work

We presented a formalization of the polynomial method in higher-order rewriting. This

not only included the basic notions, such as algebraic functional systems, but also the

interpretation method and the instantiation of this method to polynomials. In addition,

we showed how to generate Coq scripts from the output of termination provers. This

allowed us to certify their output and construct a formal proof of strong normalization.

We also applied our tools to a concrete instance, namely to check the output of Wanda.

There are numerous ways to extend this work. First, one could formalize more

techniques from higher-order rewriting, such as tuple interpretations [69] and depen-

dency pairs [68, 74]. One could also integrate HORPO into our framework [71]. Second,

in the current formalization, the interpretation of application is fixed for every instance

of the polynomial method. One could also provide the user with the option to select

their own interpretation. Third, currently, only Wanda is integrated with our work. This

could be extended so that there is direct integration for other tools as well.

https://github.com/deividrvale/nijn-coq-script-generation
https://github.com/deividrvale/nijn-coq-script-generation


Chapter 8

Conclusions

The beauty — and oftentimes the root of all evil — in higher-order rewriting is that

a lot of one’s expectations on how higher-order systems should behave are usually

broken. This is especially true in the complexity analysis setting as even defining a

complexity function for such systems was not initially obvious nor trivial. If abstractions

are added to the play, 𝛽 reductions introduce new complications not present in the

first-order counterpart. Let us not even take note of the fact that accidentally encoding

the untyped 𝜆-calculus and “proving” its termination is commonplace for novices in

the field. I do not emphasize this as a message of despair, however. Instead, it should be

taken as a message of encouragement. Higher-order rewriting introduces a fairly simple

framework to model higher-order computations, but it is complex enough to provide

very interesting research opportunities. After all, higher-order functions are pervasive

in both mathematics and computer science.

On The Interpretation Method. In this thesis, we focused mainly on providing

a semantical treatment of higher-order systems (in the form of curried functional

systems) with emphasis on their complexity-related properties. We developed a class

of interpretations called tuple interpretations that allowed us to split complexity into

two components: cost and size. This idea gave rise to a fairly robust complexity

analysis framework capable of subsuming interpretation methods such as higher-order

polynomial and matrix interpretations.

In Chapter 3, we focused on first-order systems, and consider both full and innermost

evaluation strategies. We showed that tuple interpretations are amenable to implemen-

tation and provided a tool implementing a search algorithm for it, Hermes. In Chapter 4,

we considered full rewriting and strongly monotonic tuple interpretations. In this

setting 𝛽-reductions introduced an interesting problem: the expected interpretation of

abstraction is not necessarily strongly monotonic. This phenomenon happens exactly

when interpreting an abstraction term 𝜆𝑥. 𝑠 such that 𝑥 does not occur free in 𝑠. Indeed,

if abstraction is interpreted naively, we get ⟦𝜆𝑥. 𝑠⟧ = 𝑑 ↦→ ⟦𝑠⟧[𝑑≔𝑥]𝛼 which is a constant



168 Conclusions

function. To deal with this case we introduced a MakeSM functional capable of taking

the costs of such tuples into account and adding them back into the cost of the whole

interpretation. In Chapter 5 we moved to a more “realistic” setting by considering the

common evaluation strategy of weak call-by-value. Here, we introduced a notion of

values and do not allow reductions to take place under a lambda. This development is

the first step towards a rewriting-based complexity analysis framework that can capture

call-by-value functional programs more naturally.

On Higher-Order Feasibility. On Chapter 6 we turned our attention to the problem

of characterizing some notion of higher-order computational feasibility. This problem

is interesting from both a theoretical and practical point of view. In the former, it

shows that our interpretation method can be used to capture exactly BFF in a nicer

language than that of oracle Turing machines. In the latter, this result opens the way to

a rewriting-based analysis of the complexity of programs that would give meaningful

complexity results.

On Certifying Termination Tools. Lastly, in Chapter 7, we focus on the certification

problem for termination provers. We have provided Nijn which is a Coq library containing

a formalization of higher-order rewriting theory. The focus here are polynomial

interpretations. This opens the way for other formalizations based on semantics, like

tuple interpretations. In this work, we not only formalize the theory but also provide a

set of tooling so that Nijn can be used to certify the output of termination provers. That

is where ONijn comes into play. Termination provers can describe their proof informally

via a proof trace, and ONijn translates it to a Coq script, which can be checked by Coq.

On Future Work. The study of semantical properties of higher-order term rewriting

systems is by no means complete. In fact, the work presented here can be extended in

numerous ways. From a termination point of view, tuple interpretations were developed

by Yamada [109] to show the termination of first-order TRSs. An obvious direction for

further research is to adapt our tuple interpretations to show termination. This would

mostly require tuples to be combined with other termination proof methods. Static

Dependency Pairs would be my first attempt.

If one is interested in complexity, the first direction for future work would be a

proper implementation of the theoretical development we introduce here. We could

provide implementations for first-order complexity namely the Hermes tool presented in

Chapter 3. In a higher-order setting, however, automation becomes more complicated.

More research is needed to properly develop heuristics and better strategies to find

useful interpretations automatically.



169

I believe that using tuple interpretations in a practical setting would require two

main tasks to be completed. First, we must extend it to richer type systems. Simple types

are “too simple” to model proper real-world programs. This seems like a promising

direction and the first candidate would be types a la Milner [80]. By considering more

expressive type systems, finding interpretations automatically becomes even more

difficult and more research is needed for such extensions. The second problem is that

tuple interpretations are not easily modularized. Further research in the direction of

Kop [66] may provide an excellent starting point.

Finally, formalizing such theory is an exciting direction for future work. The

base of such formalization is already in Nijn. One can have access to a term library,

which by design formalizes the same curried functional systems we used in this thesis.

Formalizations for termination properties as well. The formalization direction can focus

on either complexity or termination. In both cases, one needs to formalize cost–size

tuples, rewriting strategies (if call-by-value is the goal), and their respective compatibility

theorems. With that comes the practical aspects like defining new notions of proof

certificates and extending ONijn to support those.





References

[1] Andreas Abel et al. “POPLMark reloaded: Mechanizing proofs by logical rela-

tions”. In: J. Funct. Program. 29 (2019), e19. doi: 10.1017/S0956796819000170.

[2] Beniamino Accattoli and Ugo Dal Lago. “(Leftmost-Outermost) Beta Reduction is

Invariant, Indeed”. In: Log. Methods Comput. Sci. 12.1 (2016). doi: 10.2168/LMCS-

12(1:4)2016.

[3] Ariane Alves Almeida and Mauricio Ayala-Rincón. “Formalizing the dependency

pair criterion for innermost termination”. In: Sci. Comput. Program. 195 (2020),

p. 102474. doi: 10.1016/j.scico.2020.102474.

[4] Sandra Alves, Delia Kesner, and Daniel Ventura. “A Quantitative Understanding

of Pattern Matching”. In: 25th International Conference on Types for Proofs and
Programs, TYPES 2019, June 11-14, 2019, Oslo, Norway. Ed. by Marc Bezem

and Assia Mahboubi. Vol. 175. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2019, 3:1–3:36. doi: 10.4230/LIPIcs.TYPES.2019.3.

[5] Thomas Arts and Jürgen Giesl. “Termination of term rewriting using dependency

pairs”. In: Theor. Comput. Sci. 236.1-2 (2000), pp. 133–178. doi: 10.1016/S0304-

3975(99)00207-8.

[6] Martin Avanzini and Ugo Dal Lago. “Automating sized-type inference for

complexity analysis”. In: vol. 1. ICFP. 2017, 43:1–43:29. doi: 10.1145/3110287.

[7] Martin Avanzini, Ugo Dal Lago, and Georg Moser. “Analysing the complexity

of functional programs: higher-order meets first-order”. In: Proceedings of the
20th ACM SIGPLAN International Conference on Functional Programming, ICFP
2015, Vancouver, BC, Canada, September 1-3, 2015. Ed. by Kathleen Fisher and

John H. Reppy. ACM, 2015, pp. 152–164. doi: 10.1145/2784731.2784753.

[8] Martin Avanzini and Georg Moser. “Complexity Analysis by Rewriting”. In:

Functional and Logic Programming, 9th International Symposium, FLOPS 2008, Ise,
Japan, April 14-16, 2008. Proceedings. Ed. by Jacques Garrigue and Manuel V.

Hermenegildo. Vol. 4989. Lecture Notes in Computer Science. Springer, 2008,

pp. 130–146. doi: 10.1007/978-3-540-78969-7_11.

[9] Martin Avanzini, Georg Moser, and Michael Schaper. “TcT: Tyrolean Complexity

Tool”. In: Proceedings of TACAS 2016 conference. Ed. by Marsha Chechik and

Jean-François Raskin. Vol. 9636. Lecture Notes in Computer Science. Springer,

2016, pp. 407–423. doi: 10.1007/978-3-662-49674-9\_24.

[10] Mauricio Ayala-Rincón, Maribel Fernández, Daniele Nantes-Sobrinho, and Deivid

Vale. “Nominal Equational Problems”. In: Foundations of Software Science and
Computation Structures - 24th International Conference, FOSSACS 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021,
Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings. Ed. by Stefan

Kiefer and Christine Tasson. Vol. 12650. Lecture Notes in Computer Science.

Springer, 2021, pp. 22–41. doi: 10.1007/978-3-030-71995-1_2.

https://doi.org/10.1017/S0956796819000170
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.1016/j.scico.2020.102474
https://doi.org/10.4230/LIPIcs.TYPES.2019.3
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1145/3110287
https://doi.org/10.1145/2784731.2784753
https://doi.org/10.1007/978-3-540-78969-7_11
https://doi.org/10.1007/978-3-662-49674-9\_24
https://doi.org/10.1007/978-3-030-71995-1_2


172 References

[11] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge

University Press, 1998. doi: 10.1017/CBO9781139172752.

[12] Patrick Baillot, Erika De Benedetti, and Simona Ronchi Della Rocca. “Charac-

terizing polynomial and exponential complexity classes in elementary lambda-

calculus”. In: Inf. Comput. 261 (2018), pp. 55–77. doi: 10.1016/J.IC.2018.05.005.

[13] Patrick Baillot and Ugo Dal Lago. “Higher-order interpretations and program

complexity”. In: Inf. Comput. 248 (2016), pp. 56–81. doi: 10.1016/j.ic.2015.12.008.

[14] H. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with Types. Perspec-

tives in Logic. Cambridge University Press, 2013. doi: 10.1017/CBO9781139032636.

[15] Hendrik Pieter Barendregt et al. “Term Graph Rewriting”. In: PARLE, Parallel
Architectures and Languages Europe, Volume II: Parallel Languages, Eindhoven, The
Netherlands, June 15-19, 1987, Proceedings. Ed. by J. W. de Bakker, A. J. Nijman,

and Philip C. Treleaven. Vol. 259. Lecture Notes in Computer Science. Springer,

1987, pp. 141–158. doi: 10.1007/3-540-17945-3\_8.

[16] Paul Beame et al. “The Relative Complexity of NP Search Problems”. In: J. Comput.
Syst. Sci. 57.1 (1998), pp. 3–19. doi: 10.1006/JCSS.1998.1575.

[17] Ralph Benzinger. “Automated higher-order complexity analysis”. In: Theor.
Comput. Sci. 318.1-2 (2004), pp. 79–103. doi: 10.1016/j.tcs.2003.10.022.

[18] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical

Computer Science. An EATCS Series. Springer, 2004. doi: 10.1007/978-3-662-

07964-5.

[19] Frédéric Blanqui, Jean-Pierre Jouannaud, and Albert Rubio. “The computability

path ordering”. In: Log. Methods Comput. Sci. 11.4 (2015). doi: 10.2168/LMCS-

11(4:3)2015.

[20] Frédéric Blanqui and Adam Koprowski. “CoLoR: a Coq library on well-founded

rewrite relations and its application to the automated verification of termination

certificates”. In: Math. Struct. Comput. Sci. 21.4 (2011), pp. 827–859. doi: 10.1017/

S0960129511000120.

[21] Guillaume Bonfante, Adam Cichon, Jean-Yves Marion, and Hélène Touzet.

“Algorithms with polynomial interpretation termination proof”. In: J. Funct.
Program. 11.1 (2001), pp. 33–53. doi: 10.1017/s0956796800003877.

[22] Guillaume Bonfante, Jean-Yves Marion, and Jean-Yves Moyen. “On Lexicographic

Termination Ordering with Space Bound Certifications”. In: Perspectives of System
Informatics, 4th International Andrei Ershov Memorial Conference, PSI 2001, Akadem-
gorodok, Novosibirsk, Russia, July 2-6, 2001, Revised Papers. Ed. by Dines Bjørner,

Manfred Broy, and Alexandre V. Zamulin. Vol. 2244. Lecture Notes in Computer

Science. Springer, 2001, pp. 482–493. doi: 10.1007/3-540-45575-2_46.

[23] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao.

“End-to-end verification of stack-space bounds for C programs”. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI ’14,
Edinburgh, United Kingdom - June 09 - 11, 2014. Ed. by Michael F. P. O’Boyle and

Keshav Pingali. ACM, 2014, pp. 270–281. doi: 10.1145/2594291.2594301.

[24] Ahlem Ben Cherifa and Pierre Lescanne. “Termination of Rewriting Systems by

Polynomial Interpretations and Its Implementation”. In: Sci. Comput. Program.
9.2 (1987), pp. 137–159. doi: 10.1016/0167-6423(87)90030-X.

https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1016/J.IC.2018.05.005
https://doi.org/10.1016/j.ic.2015.12.008
https://doi.org/10.1017/CBO9781139032636
https://doi.org/10.1007/3-540-17945-3\_8
https://doi.org/10.1006/JCSS.1998.1575
https://doi.org/10.1016/j.tcs.2003.10.022
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.2168/LMCS-11(4:3)2015
https://doi.org/10.2168/LMCS-11(4:3)2015
https://doi.org/10.1017/S0960129511000120
https://doi.org/10.1017/S0960129511000120
https://doi.org/10.1017/s0956796800003877
https://doi.org/10.1007/3-540-45575-2_46
https://doi.org/10.1145/2594291.2594301
https://doi.org/10.1016/0167-6423(87)90030-X


References 173

[25] Ezgi Çiçek, Deepak Garg, and Umut A. Acar. “Refinement Types for Incremental

Computational Complexity”. In: Programming Languages and Systems - 24th
European Symposium on Programming, ESOP 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. Ed. by Jan Vitek. Vol. 9032. Lecture Notes in Computer Science.

Springer, 2015, pp. 406–431. doi: 10.1007/978-3-662-46669-8_17.

[26] Adam Cichon and Pierre Lescanne. “Polynomial Interpretations and the Com-

plexity of Algorithms”. In: Automated Deduction - CADE-11, 11th International
Conference on Automated Deduction, Saratoga Springs, NY, USA, June 15-18, 1992,
Proceedings. Ed. by Deepak Kapur. Vol. 607. Lecture Notes in Computer Science.

Springer, 1992, pp. 139–147. doi: 10.1007/3-540-55602-8_161.

[27] Alan Cobham. “The Intrinsic Computational Difficulty of Functions”. In: Logic,
Methodology and Philosophy of Science: Proceedings of the 1964 International Congress
(Studies in Logic and the Foundations of Mathematics). Ed. by Yehoshua Bar-Hillel.

North-Holland Publishing, 1965, pp. 24–30.

[28] Michael Codish et al. “SAT-based termination analysis using monotonicity

constraints over the integers”. In: Theory Pract. Log. Program. 11.4-5 (2011),

pp. 503–520. doi: 10.1017/S1471068411000147.

[29] Robert L. Constable. “Type Two Computational Complexity”. In: Proceedings of
the 5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973,
Austin, Texas, USA. Ed. by Alfred V. Aho et al. ACM, 1973, pp. 108–121. doi:

10.1145/800125.804041.

[30] Evelyne Contejean, Claude Marché, Ana Paula Tomás, and Xavier Urbain. “Me-

chanically Proving Termination Using Polynomial Interpretations”. In: J. Autom.
Reason. 34.4 (2005), pp. 325–363. doi: 10.1007/s10817-005-9022-x.

[31] Evelyne Contejean et al. “Automated Certified Proofs with CiME3”. In: Proceedings
of the 22nd International Conference on Rewriting Techniques and Applications, RTA
2011, May 30 - June 1, 2011, Novi Sad, Serbia. Ed. by Manfred Schmidt-Schauß.

Vol. 10. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011, pp. 21–

30. doi: 10.4230/LIPIcs.RTA.2011.21.

[32] Pierre Courtieu, Gladys Gbedoand, and Olivier Pons. “Improved Matrix Interpre-

tation”. In: SOFSEM 2010: Theory and Practice of Computer Science. Ed. by Jan van

Leeuwen et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 283–295.

doi: 10.1007/978-3-642-11266-9_24.

[33] Ugo Dal Lago and Martin Hofmann. “Realizability models and implicit complex-

ity”. In: Theor. Comput. Sci. 412.20 (2011), pp. 2029–2047. doi: 10.1016/J.TCS.2010.

12.025.

[34] Norman Danner, Daniel R. Licata, and Ramyaa. “Denotational cost semantics

for functional languages with inductive types”. In: Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2015, Vancouver,
BC, Canada, September 1-3, 2015. Ed. by Kathleen Fisher and John H. Reppy. ACM,

2015, pp. 140–151. doi: 10.1145/2784731.2784749.

[35] Norman Danner and James S. Royer. “Adventures in time and space”. In: Proceed-
ings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2006, Charleston, South Carolina, USA, January 11-13, 2006. Ed. by

J. Gregory Morrisett and Simon L. Peyton Jones. ACM, 2006, pp. 168–179. doi:

10.1145/1111037.1111053.

https://doi.org/10.1007/978-3-662-46669-8_17
https://doi.org/10.1007/3-540-55602-8_161
https://doi.org/10.1017/S1471068411000147
https://doi.org/10.1145/800125.804041
https://doi.org/10.1007/s10817-005-9022-x
https://doi.org/10.4230/LIPIcs.RTA.2011.21
https://doi.org/10.1007/978-3-642-11266-9_24
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1145/2784731.2784749
https://doi.org/10.1145/1111037.1111053


174 References

[36] Ankush Das et al. “Resource-Aware Session Types for Digital Contracts”. In: 34th
IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June
21-25, 2021. IEEE, 2021, pp. 1–16. doi: 10.1109/CSF51468.2021.00004.

[37] Jörg Endrullis, Johannes Waldmann, and Hans Zantema. “Matrix Interpretations

for Proving Termination of Term Rewriting”. In: J. Autom. Reason. 40.2-3 (2008),

pp. 195–220. doi: 10.1007/s10817-007-9087-9.

[38] Carsten Fuhs and Cynthia Kop. “Polynomial Interpretations for Higher-Order

Rewriting”. In: 23rd International Conference on Rewriting Techniques and Applications
(RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan. Ed. by Ashish Tiwari.

Vol. 15. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp. 176–

192. doi: 10.4230/LIPIcs.RTA.2012.176.

[39] Carsten Fuhs and Cynthia Kop. “A Static Higher-Order Dependency Pair Frame-

work”. In: Programming Languages and Systems - 28th European Symposium on
Programming, ESOP 2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings. Ed. by Luís Caires. Vol. 11423. Lecture Notes in Computer Science.

Springer, 2019, pp. 752–782. doi: 10.1007/978-3-030-17184-1_27.

[40] Jürgen Giesl et al. “Analyzing Program Termination and Complexity Automati-

cally with AProVE”. In: J. Autom. Reason. 58.1 (2017), pp. 3–31. doi: 10.1007/s10817-

016-9388-y.

[41] Jürgen Giesl et al. “The Termination and Complexity Competition”. In: Tools
and Algorithms for the Construction and Analysis of Systems - 25 Years of TACAS:
TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part III. Ed. by Dirk Beyer, Marieke Huisman, Fabrice Kordon, and

Bernhard Steffen. Vol. 11429. Lecture Notes in Computer Science. Springer, 2019,

pp. 156–166. doi: 10.1007/978-3-030-17502-3_10.

[42] Liye Guo and Deivid Vale. “Analyzing Innermost Runtime Complexity Through

Tuple Interpretations”. In: Proceedings 17th International Workshop on Logical and
Semantic Frameworks with Applications, LSFA 2022, Belo Horizonte, Brazil (hybrid), 23-
24 September 2022. Ed. by Daniele Nantes-Sobrinho and Pascal Fontaine. Vol. 376.

EPTCS. 2022, pp. 34–48. doi: 10.4204/EPTCS.376.5.

[43] Raúl Gutiérrez and Salvador Lucas. “mu-term: Verify Termination Properties

Automatically (System Description)”. In: Automated Reasoning - 10th International
Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II. Ed. by

Nicolas Peltier and Viorica Sofronie-Stokkermans. Vol. 12167. Lecture Notes in

Computer Science. Springer, 2020, pp. 436–447. doi: 10.1007/978-3-030-51054-

1_28.

[44] Emmanuel Hainry, Bruce M. Kapron, Jean-Yves Marion, and Romain Péchoux.

“A tier-based typed programming language characterizing Feasible Functionals”.

In: LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
Saarbrücken, Germany, July 8-11, 2020. Ed. by Holger Hermanns, Lijun Zhang,

Naoki Kobayashi, and Dale Miller. ACM, 2020, pp. 535–549. doi: 10.1145/3373718.

3394768.

[45] Emmanuel Hainry, Bruce M. Kapron, Jean-Yves Marion, and Romain Péchoux.

“Complete and tractable machine-independent characterizations of second-order

polytime”. In: Foundations of Software Science and Computation Structures - 25th
International Conference, FOSSACS 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings. Ed. by Patricia Bouyer and Lutz Schröder. Vol. 13242. Lecture Notes

https://doi.org/10.1109/CSF51468.2021.00004
https://doi.org/10.1007/s10817-007-9087-9
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.1007/978-3-030-17184-1_27
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.4204/EPTCS.376.5
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1145/3373718.3394768
https://doi.org/10.1145/3373718.3394768


References 175

in Computer Science. Springer, 2022, pp. 368–388. doi: 10.1007/978-3-030-99253-

8_19.

[46] Emmanuel Hainry and Romain Péchoux. “Theory of higher order interpretations

and application to Basic Feasible Functions”. In: Log. Methods Comput. Sci. 16.4

(2020). doi: 10.23638/LMCS-16(4:14)2020.

[47] Makoto Hamana. “Theory and Practice of Second-Order Rewriting: Foundation,

Evolution, and SOL”. In: Functional and Logic Programming - 15th International
Symposium, FLOPS 2020, Akita, Japan, September 14-16, 2020, Proceedings. Ed.

by Keisuke Nakano and Konstantinos Sagonas. Vol. 12073. Lecture Notes in

Computer Science. Springer, 2020, pp. 3–9. doi: 10.1007/978-3-030-59025-3_1.

[48] Martin A. T. Handley, Niki Vazou, and Graham Hutton. “Liquidate your assets:

reasoning about resource usage in liquid Haskell”. In: Proc. ACM Program. Lang.
4.POPL (2020), 24:1–24:27. doi: 10.1145/3371092.

[49] Juris Hartmanis and Richard Edwin Stearns. “Automata-based computational

complexity”. In: Inf. Sci. 1.2 (1969), pp. 173–184. doi: 10.1016/0020-0255(69)90014-

0.

[50] Nao Hirokawa and Georg Moser. “Automated Complexity Analysis Based on

the Dependency Pair Method”. In: Automated Reasoning, 4th International Joint
Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings. Ed. by

Alessandro Armando, Peter Baumgartner, and Gilles Dowek. Vol. 5195. Lecture

Notes in Computer Science. Springer, 2008, pp. 364–379. doi: 10.1007/978-3-540-

71070-7_32.

[51] Dieter Hofbauer. “Termination Proofs by Multiset Path Orderings Imply Primitive

Recursive Derivation Lengths”. In: Theor. Comput. Sci. 105.1 (1992), pp. 129–140.

doi: 10.1016/0304-3975(92)90289-R.

[52] Dieter Hofbauer. “Termination Proofs by Context-Dependent Interpretations”.

In: Rewriting Techniques and Applications, 12th International Conference, RTA 2001,
Utrecht, The Netherlands, May 22-24, 2001, Proceedings. Ed. by Aart Middeldorp.

Vol. 2051. Lecture Notes in Computer Science. Springer, 2001, pp. 108–121. doi:

10.1007/3-540-45127-7_10.

[53] Dieter Hofbauer and Clemens Lautemann. “Termination Proofs and the Length of

Derivations (Preliminary Version)”. In: Rewriting Techniques and Applications, 3rd
International Conference, RTA-89, Chapel Hill, North Carolina, USA, April 3-5, 1989,
Proceedings. Ed. by Nachum Dershowitz. Vol. 355. Lecture Notes in Computer

Science. Springer, 1989, pp. 167–177. doi: 10.1007/3-540-51081-8_107.

[54] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. “Resource Aware ML”. In:

Computer Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA,
USA, July 7-13, 2012 Proceedings. Ed. by P. Madhusudan and Sanjit A. Seshia.

Vol. 7358. Lecture Notes in Computer Science. Springer, 2012, pp. 781–786. doi:

10.1007/978-3-642-31424-7_64.

[55] Martin Hofmann and Thomas Streicher. “The Groupoid Model Refutes Unique-

ness of Identity Proofs”. In: Proceedings of the Ninth Annual Symposium on Logic in
Computer Science (LICS’94), Paris, France, July 4-7, 1994. IEEE Computer Society,

1994, pp. 208–212. doi: 10.1109/LICS.1994.316071.

[56] Robert J. Irwin, James S. Royer, and Bruce M. Kapron. “On characterizations of the

basic feasible functionals (Part I)”. In: J. Funct. Program. 11.1 (2001), pp. 117–153.

doi: 10.1017/s0956796800003841.

https://doi.org/10.1007/978-3-030-99253-8_19
https://doi.org/10.1007/978-3-030-99253-8_19
https://doi.org/10.23638/LMCS-16(4:14)2020
https://doi.org/10.1007/978-3-030-59025-3_1
https://doi.org/10.1145/3371092
https://doi.org/10.1016/0020-0255(69)90014-0
https://doi.org/10.1016/0020-0255(69)90014-0
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1016/0304-3975(92)90289-R
https://doi.org/10.1007/3-540-45127-7_10
https://doi.org/10.1007/3-540-51081-8_107
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1109/LICS.1994.316071
https://doi.org/10.1017/s0956796800003841


176 References

[57] Robert J. Irwin, James S. Royer, and Bruce M. Kapron. “On characterizations of the

basic feasible functionals (Part I)”. In: J. Funct. Program. 11.1 (2001), pp. 117–153.

doi: 10.1017/s0956796800003841.

[58] Jean-Pierre Jouannaud and Mitsuhiro Okada. “A Computation Model for Ex-

ecutable Higher-Order Algebraic Specification Languages”. In: Proceedings of
the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam,
The Netherlands, July 15-18, 1991. IEEE Computer Society, 1991, pp. 350–361. doi:

10.1109/LICS.1991.151659.

[59] David M. Kahn and Jan Hoffmann. “Exponential Automatic Amortized Resource

Analysis”. In: Foundations of Software Science and Computation Structures - 23rd
International Conference, FOSSACS 2020, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020,
Proceedings. Ed. by Jean Goubault-Larrecq and Barbara König. Vol. 12077. Lecture

Notes in Computer Science. Springer, 2020, pp. 359–380. doi: 10.1007/978-3-030-

45231-5_19.

[60] Bruce M. Kapron and Stephen A. Cook. “A New Characterization of Type-

2 Feasibility”. In: SIAM J. Comput. 25.1 (1996), pp. 117–132. doi: 10 . 1137 /

S0097539794263452.

[61] Bruce M. Kapron and Florian Steinberg. “Type-two polynomial-time and re-

stricted lookahead”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. Ed. by Anuj

Dawar and Erich Grädel. ACM, 2018, pp. 579–588. doi: 10.1145/3209108.3209124.

[62] Akitoshi Kawamura and Stephen A. Cook. “Complexity Theory for Operators

in Analysis”. In: ACM Trans. Comput. Theory 4.2 (2012), 5:1–5:24. doi: 10.1145/

2189778.2189780.

[63] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. “Com-

binatory Reduction Systems: Introduction and Survey”. In: Theor. Comput. Sci.
121.1&2 (1993), pp. 279–308. doi: 10.1016/0304-3975(93)90091-7.

[64] Cynthia Kop. “Higher Order Termination: Automatable Techniques for Proving

Termination of Higher-Order Term Rewriting Systems”. English. PhD thesis.

Vrije Universiteit Amsterdam, 2012. url: https://hdl.handle.net/1871/39346.

[65] Cynthia Kop. “WANDA - a Higher Order Termination Tool (System Description)”.

In: 5th International Conference on Formal Structures for Computation and Deduction,
FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference). Ed. by Zena M.

Ariola. Vol. 167. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020,

36:1–36:19. doi: 10.4230/LIPIcs.FSCD.2020.36.

[66] Cynthia Kop. “Cutting a Proof into Bite-Sized Chunks: Incrementally proving

termination in higher-order term rewriting (Invited Talk)”. In: 7th International
Conference on Formal Structures for Computation and Deduction, FSCD 2022, August
2-5, 2022, Haifa, Israel. Ed. by Amy P. Felty. Vol. 228. LIPIcs. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2022, 1:1–1:17. doi: 10.4230/LIPIcs.FSCD.2022.1.

[67] Cynthia Kop, Aart Middeldorp, and Thomas Sternagel. “Complexity of Condi-

tional Term Rewriting”. In: Log. Methods Comput. Sci. 13.1 (2017). doi: 10.23638/

LMCS-13(1:6)2017.

[68] Cynthia Kop and Femke van Raamsdonk. “Dynamic Dependency Pairs for

Algebraic Functional Systems”. In: Log. Methods Comput. Sci. 8.2 (2012). doi:

10.2168/LMCS-8(2:10)2012.

https://doi.org/10.1017/s0956796800003841
https://doi.org/10.1109/LICS.1991.151659
https://doi.org/10.1007/978-3-030-45231-5_19
https://doi.org/10.1007/978-3-030-45231-5_19
https://doi.org/10.1137/S0097539794263452
https://doi.org/10.1137/S0097539794263452
https://doi.org/10.1145/3209108.3209124
https://doi.org/10.1145/2189778.2189780
https://doi.org/10.1145/2189778.2189780
https://doi.org/10.1016/0304-3975(93)90091-7
https://hdl.handle.net/1871/39346
https://doi.org/10.4230/LIPIcs.FSCD.2020.36
https://doi.org/10.4230/LIPIcs.FSCD.2022.1
https://doi.org/10.23638/LMCS-13(1:6)2017
https://doi.org/10.23638/LMCS-13(1:6)2017
https://doi.org/10.2168/LMCS-8(2:10)2012


References 177

[69] Cynthia Kop and Deivid Vale. “Tuple Interpretations for Higher-Order Com-

plexity”. In: 6th International Conference on Formal Structures for Computation and
Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference).
Ed. by Naoki Kobayashi. Vol. 195. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2021, 31:1–31:22. doi: 10.4230/LIPIcs.FSCD.2021.31.

[70] Cynthia Kop and Deivid Vale. “Cost-Size Semantics for Call-By-Value Higher-

Order Rewriting”. In: 8th International Conference on Formal Structures for Computa-
tion and Deduction, FSCD 2023, July 3-6, 2023, Rome, Italy. Ed. by Marco Gaboardi

and Femke van Raamsdonk. Vol. 260. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2023, 15:1–15:19. doi: 10.4230/LIPIcs.FSCD.2023.15.

[71] Adam Koprowski. “Coq formalization of the higher-order recursive path or-

dering”. In: Appl. Algebra Eng. Commun. Comput. 20.5-6 (2009), pp. 379–425. doi:

10.1007/s00200-009-0105-5.

[72] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. “Tyrolean

Termination Tool 2”. In: Rewriting Techniques and Applications, 20th International
Conference, RTA 2009, Brasília, Brazil, June 29 - July 1, 2009, Proceedings. Ed. by

Ralf Treinen. Vol. 5595. Lecture Notes in Computer Science. Springer, 2009,

pp. 295–304. doi: 10.1007/978-3-642-02348-4_21.

[73] Keiichirou Kusakari. “On Proving Termination of Term Rewriting Systems with

Higher-Order Variables”. In: IPSJ Transactions on Programming 42.SIG 7 (PRO 11)

(2001), pp. 35–45. url: http://id.nii.ac.jp/1001/00016864/.

[74] Keiichirou Kusakari, Yasuo Isogai, Masahiko Sakai, and Frédéric Blanqui. “Static

Dependency Pair Method Based on Strong Computability for Higher-Order

Rewrite Systems”. In: IEICE Trans. Inf. Syst. 92-D.10 (2009), pp. 2007–2015. doi:

10.1587/transinf.E92.D.2007.

[75] Keiichirou Kusakari and Masahiko Sakai. “Enhancing dependency pair method

using strong computability in simply-typed term rewriting”. In: Appl. Algebra
Eng. Commun. Comput. 18.5 (2007), pp. 407–431. doi: 10.1007/s00200-007-0046-9.

[76] Ugo Dal Lago and Marco Gaboardi. “Linear Dependent Types and Relative

Completeness”. In: vol. 8. 4. 2011. doi: 10.2168/LMCS-8(4:11)2012.

[77] Ugo Dal Lago and Simone Martini. “Derivational Complexity Is an Invariant

Cost Model”. In: Foundational and Practical Aspects of Resource Analysis - First
International Workshop, FOPARA 2009, Eindhoven, The Netherlands, November 6, 2009,
Revised Selected Papers. Ed. by Marko C. J. D. van Eekelen and Olha Shkaravska.

Vol. 6324. Lecture Notes in Computer Science. Springer, 2009, pp. 100–113. doi:

10.1007/978-3-642-15331-0_7.

[78] Daniel Leivant. “A Foundational Delineation of Computational Feasiblity”. In:

Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS
’91), Amsterdam, The Netherlands, July 15-18, 1991. IEEE Computer Society, 1991,

pp. 2–11. doi: 10.1109/LICS.1991.151625.

[79] Kurt Mehlhorn. “Polynomial and Abstract Subrecursive Classes”. In: J. Comput.
Syst. Sci. 12.2 (1976), pp. 147–178. doi: 10.1016/S0022-0000(76)80035-9.

[80] Robin Milner. “A Theory of Type Polymorphism in Programming”. In: J. Comput.
Syst. Sci. 17.3 (1978), pp. 348–375. doi: 10.1016/0022- 0000(78)90014- 4. url:

https://doi.org/10.1016/0022-0000(78)90014-4.

https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/10.4230/LIPIcs.FSCD.2023.15
https://doi.org/10.1007/s00200-009-0105-5
https://doi.org/10.1007/978-3-642-02348-4_21
http://id.nii.ac.jp/1001/00016864/
https://doi.org/10.1587/transinf.E92.D.2007
https://doi.org/10.1007/s00200-007-0046-9
https://doi.org/10.2168/LMCS-8(4:11)2012
https://doi.org/10.1007/978-3-642-15331-0_7
https://doi.org/10.1109/LICS.1991.151625
https://doi.org/10.1016/S0022-0000(76)80035-9
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4


178 References

[81] Fabian Mitterwallner and Aart Middeldorp. “Polynomial Termination Over N Is

Undecidable”. In: 7th International Conference on Formal Structures for Computation
and Deduction, FSCD 2022, August 2-5, 2022, Haifa, Israel. Ed. by Amy P. Felty.

Vol. 228. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 27:1–

27:17. doi: 10.4230/LIPIcs.FSCD.2022.27.

[82] Georg Moser. “Derivational Complexity of Knuth-Bendix Orders Revisited”.

In: Logic for Programming, Artificial Intelligence, and Reasoning, 13th International
Conference, LPAR 2006, Phnom Penh, Cambodia, November 13-17, 2006, Proceedings.
Ed. by Miki Hermann and Andrei Voronkov. Vol. 4246. Lecture Notes in Computer

Science. Springer, 2006, pp. 75–89. doi: 10.1007/11916277_6.

[83] Georg Moser, Andreas Schnabl, and Johannes Waldmann. “Complexity Analysis

of Term Rewriting Based on Matrix and Context Dependent Interpretations”.

In: IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2008, December 9-11, 2008, Bangalore, India. Ed. by

Ramesh Hariharan, Madhavan Mukund, and V. Vinay. Vol. 2. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2008, pp. 304–315. doi: 10.4230/

LIPIcs.FSTTCS.2008.1762.

[84] Georg Moser, Andreas Schnabl, and Johannes Waldmann. “Complexity Analysis

of Term Rewriting Based on Matrix and Context Dependent Interpretations”.

In: IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2008, December 9-11, 2008, Bangalore, India. Ed. by

Ramesh Hariharan, Madhavan Mukund, and V. Vinay. Vol. 2. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2008, pp. 304–315. doi: 10.4230/

LIPIcs.FSTTCS.2008.1762.

[85] Friedrich Neurauter and Aart Middeldorp. “Revisiting Matrix Interpretations for

Proving Termination of Term Rewriting”. In: Proceedings of the 22nd International
Conference on Rewriting Techniques and Applications, RTA 2011, May 30 - June 1,
2011, Novi Sad, Serbia. Ed. by Manfred Schmidt-Schauß. Vol. 10. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2011, pp. 251–266. doi: 10.4230/

LIPIcs.RTA.2011.251.

[86] Tobias Nipkow. “Higher-Order Critical Pairs”. In: Proceedings of the Sixth Annual
Symposium on Logic in Computer Science (LICS ’91), Amsterdam, The Netherlands,
July 15-18, 1991. IEEE Computer Society, 1991, pp. 342–349. doi: 10.1109/LICS.

1991.151658.

[87] Yue Niu and Jan Hoffmann. “Automatic Space Bound Analysis for Functional

Programs with Garbage Collection”. In: LPAR-22. 22nd International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, Awassa, Ethiopia, 16-21
November 2018. Ed. by Gilles Barthe, Geoff Sutcliffe, and Margus Veanes. Vol. 57.

EPiC Series in Computing. EasyChair, 2018, pp. 543–563. doi: 10.29007/xkwx.

[88] Lars Noschinski, Fabian Emmes, and Jürgen Giesl. “A Dependency Pair Frame-

work for Innermost Complexity Analysis of Term Rewrite Systems”. In: Automated
Deduction - CADE-23 - 23rd International Conference on Automated Deduction, Wro-
claw, Poland, July 31 - August 5, 2011. Proceedings. Ed. by Nikolaj S. Bjørner and

Viorica Sofronie-Stokkermans. Vol. 6803. Lecture Notes in Computer Science.

Springer, 2011, pp. 422–438. doi: 10.1007/978-3-642-22438-6_32.

[89] Lars Noschinski, Fabian Emmes, and Jürgen Giesl. “Analyzing Innermost Run-

time Complexity of Term Rewriting by Dependency Pairs”. In: J. Autom. Reason.
51.1 (2013), pp. 27–56. doi: 10.1007/s10817-013-9277-6.

https://doi.org/10.4230/LIPIcs.FSCD.2022.27
https://doi.org/10.1007/11916277_6
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.4230/LIPIcs.RTA.2011.251
https://doi.org/10.4230/LIPIcs.RTA.2011.251
https://doi.org/10.1109/LICS.1991.151658
https://doi.org/10.1109/LICS.1991.151658
https://doi.org/10.29007/xkwx
https://doi.org/10.1007/978-3-642-22438-6_32
https://doi.org/10.1007/s10817-013-9277-6


References 179

[90] Isabel Oitavem. “Implicit Characterizations of Pspace”. In: Proof Theory in Com-
puter Science, International Seminar, PTCS 2001, Dagstuhl Castle, Germany, October
7-12, 2001, Proceedings. Ed. by Reinhard Kahle, Peter Schroeder-Heister, and

Robert F. Stärk. Vol. 2183. Lecture Notes in Computer Science. Springer, 2001,

pp. 170–190. doi: 10.1007/3-540-45504-3\_11.

[91] C.H. Papadimitriou. Computational Complexity. Theoretical computer science.

Addison-Wesley, 1994.

[92] J.C. van de Pol. “Termination of Higher-order Rewrite Systems”. PhD thesis.

University of Utrecht, 1996. url: https://www.cs.au.dk/~jaco/papers/thesis.

pdf.

[93] Vineet Rajani, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. “A unifying

type-theory for higher-order (amortized) cost analysis”. In: Proc. ACM Program.
Lang. 5.POPL (2021), pp. 1–28. doi: 10.1145/3434308.

[94] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. “Liquid types”.

In: (2008). Ed. by Rajiv Gupta and Saman P. Amarasinghe, pp. 159–169. doi:

10.1145/1375581.1375602.

[95] José-Luis Ruiz-Reina, José-Antonio Alonso, María-José Hidalgo, and Francisco-

Jesús Martín-Mateos. “Formalizing Rewriting in the ACL2 Theorem Prover”.

In: Artificial Intelligence and Symbolic Computation, International Conference AISC
2000 Madrid, Spain, July 17-19, 2000, Revised Papers. Ed. by John A. Campbell and

Eugenio Roanes-Lozano. Vol. 1930. Lecture Notes in Computer Science. Springer,

2000, pp. 92–106. doi: 10.1007/3-540-44990-6_7.

[96] Moritz Sinn, Florian Zuleger, and Helmut Veith. “A Simple and Scalable Static

Analysis for Bound Analysis and Amortized Complexity Analysis”. In: Computer
Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Ed. by

Armin Biere and Roderick Bloem. Vol. 8559. Lecture Notes in Computer Science.

Springer, 2014, pp. 745–761. doi: 10.1007/978-3-319-08867-9_50.

[97] Bas Spitters and Eelis van der Weegen. “Type classes for mathematics in type

theory”. In: Math. Struct. Comput. Sci. 21.4 (2011), pp. 795–825. doi: 10.1017/

S0960129511000119.

[98] Joachim Steinbach. “Proving Polynomials Positive”. In: Foundations of Software
Technology and Theoretical Computer Science, 12th Conference, New Delhi, India,
December 18-20, 1992, Proceedings. Ed. by R. K. Shyamasundar. Vol. 652. Lecture

Notes in Computer Science. Springer, 1992, pp. 191–202. doi: 10.1007/3-540-

56287-7_105.

[99] William W. Tait. “Intensional Interpretations of Functionals of Finite Type I”. In:

J. Symb. Log. 32.2 (1967), pp. 198–212. doi: 10.2307/2271658.

[100] Robert Endre Tarjan. “Amortized Computational Complexity”. In: SIAM J.
Algebraic Discrete Methods 6.2 (Apr. 1985), pp. 306–318. doi: 10.1137/0606031.

[101] René Thiemann and Christian Sternagel. “Certification of Termination Proofs

Using CeTA”. In: Theorem Proving in Higher Order Logics, 22nd International
Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings. Ed.

by Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel.

Vol. 5674. Lecture Notes in Computer Science. Springer, 2009, pp. 452–468. doi:

10.1007/978-3-642-03359-9_31.

https://doi.org/10.1007/3-540-45504-3\_11
https://www.cs.au.dk/~jaco/papers/thesis.pdf
https://www.cs.au.dk/~jaco/papers/thesis.pdf
https://doi.org/10.1145/3434308
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1007/3-540-44990-6_7
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1007/3-540-56287-7_105
https://doi.org/10.1007/3-540-56287-7_105
https://doi.org/10.2307/2271658
https://doi.org/10.1137/0606031
https://doi.org/10.1007/978-3-642-03359-9_31


180 References

[102] Yoshihito Toyama. “Counterexamples to Termination for the Direct Sum of

Term Rewriting Systems”. In: Inf. Process. Lett. 25.3 (1987), pp. 141–143. doi:

10.1016/0020-0190(87)90122-0.

[103] Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. “Abstract Refinement

Types”. In: Programming Languages and Systems - 22nd European Symposium on
Programming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. Ed. by

Matthias Felleisen and Philippa Gardner. Vol. 7792. Lecture Notes in Computer

Science. Springer, 2013, pp. 209–228. doi: 10.1007/978-3-642-37036-6_13.

[104] Johannes Waldmann. “Matchbox: A Tool for Match-Bounded String Rewriting”.

In: Rewriting Techniques and Applications, 15th International Conference, RTA 2004,
Aachen, Germany, June 3-5, 2004, Proceedings. Ed. by Vincent van Oostrom. Vol. 3091.

Lecture Notes in Computer Science. Springer, 2004, pp. 85–94. doi: 10.1007/978-

3-540-25979-4_6.

[105] Peng Wang, Di Wang, and Adam Chlipala. “TiML: a functional language for

practical complexity analysis with invariants”. In: Proc. ACM Program. Lang.
1.OOPSLA (2017), 79:1–79:26. doi: 10.1145/3133903.

[106] Niels van der Weide, Deivid Vale, and Cynthia Kop. “Certifying Higher-Order

Polynomial Interpretations”. In: 14th International Conference on Interactive Theorem
Proving, ITP 2023, July 31 to August 4, 2023, Białystok, Poland. Ed. by Adam

Naumowicz and René Thiemann. Vol. 268. LIPIcs. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2023, 30:1–30:20. doi: 10.4230/LIPIcs.ITP.2023.30.

[107] Andreas Weiermann. “Termination Proofs for Term Rewriting Systems by Lexico-

graphic Path Orderings Imply Multiply Recursive Derivation Lengths”. In: Theor.
Comput. Sci. 139.1&2 (1995), pp. 355–362. doi: 10.1016/0304-3975(94)00135-6.

[108] Akihisa Yamada. “Multi-Dimensional Interpretations for Termination of Term

Rewriting”. In: Automated Deduction - CADE 28 - 28th International Conference on
Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings. Ed. by André

Platzer and Geoff Sutcliffe. Vol. 12699. Lecture Notes in Computer Science.

Springer, 2021, pp. 273–290. doi: 10.1007/978-3-030-79876-5_16.

[109] Akihisa Yamada. “Tuple Interpretations for Termination of Term Rewriting”. In:

J. Autom. Reason. 66.4 (2022), pp. 667–688. doi: 10.1007/s10817-022-09640-4.

[110] Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. “Nagoya Termination

Tool”. In: Rewriting and Typed Lambda Calculi - Joint International Conference, RTA-
TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
14-17, 2014. Proceedings. Ed. by Gilles Dowek. Vol. 8560. Lecture Notes in Computer

Science. Springer, 2014, pp. 466–475. doi: 10.1007/978-3-319-08918-8_32.

https://doi.org/10.1016/0020-0190(87)90122-0
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1007/978-3-540-25979-4_6
https://doi.org/10.1007/978-3-540-25979-4_6
https://doi.org/10.1145/3133903
https://doi.org/10.4230/LIPIcs.ITP.2023.30
https://doi.org/10.1016/0304-3975(94)00135-6
https://doi.org/10.1007/978-3-030-79876-5_16
https://doi.org/10.1007/s10817-022-09640-4
https://doi.org/10.1007/978-3-319-08918-8_32


Samenvatting

In 1965 stelde Alan Cobham de volgende breed geformuleerde vragen: “is het altijd

moeilijker om te vermenigvuldigen dan om op te tellen?” en “waarom?” Het blijkt

dat deze ogenschijnlijk onschuldige vragen geformuleerd in rekenkunde een diep

verband hebben met algoritmes en hun intrinsieke complexiteit. Een algoritme is als

een taartrecept. Het vertelt ons precies wat we moeten doen om een doel te bereiken:

de taart. Met intrinsieke complexiteit bedoelen we dat het precieze recept van de

taart niet uitmaakt voor de moeilijkheid ervan. Cobham stelt vervolgens een klasse

van “eenvoudige” algoritmes vast: zulke algoritmes kunnen we uitvoeren in een klein

genoeg aantal stappen. Deze verzameling staat tegenwoordig bekend als de klasse van

algoritmes die in polynomiale tijd worden uitgevoerd. De hypothese van Cobham stelt

dat we zulke algoritmes in de praktijk efficiënt kunnen uitvoeren.

Sindsdien zijn er talloze berekeningsmodellen voorgesteld en elk daarvan heeft een

eigen notie van efficiëntie. Als voorbeeld hebben we termherschrijfsystemen, die gebruikt

kunnen worden om polynomiaal berekenbare functies te beschrijven. Dit resultaat is

interessant, omdat we algoritmes eenvoudiger kunnen uitdrukken in een declaratieve

herschrijfstijl dan met Turingmachines. Echter, tot nu toe zijn karakteriseringen van

polynomiale tijd van herschrijfsystemen beperkt tot eerste-orde systemen. Dit zijn

systemen waarbij functies niet als argumenten mogen worden doorgegeven, maar

daarmee zijn functies zoals map en fold uitgesloten.

Het doel van dit proefschrift is om deze tekortkoming op te vullen en om een raam-

werk te ontwikkelen waarmee we de hogere-orde complexiteit kunnen analyseren met

hogere-orde herschrijfsystemen als berekeningsmodel. Om dit te bereiken, introduceren

we een nieuwe klasse van hogere-orde algebraïsche semantiek: tupelinterpretaties. Het

definiërende kenmerk van tupelinterpretaties is de splitsing van kosten en grootte bij

het beschrijven van de complexiteit van hogere-orde systemen. Dit maakt een verfijnde

studie van hun looptijd mogelijk door vaak nauwkeurige bovengrenzen te geven,

waarbij de kosten en de grootte van de invoer de parameters zijn. Vervolgens passen we

deze methode toe op een aantal hogere-orde systemen met verschillende operationele

semantiek, d.w.z. volledig herschrijven (dus geen beperking op de evaluatie) en de

call-by-value evaluatiestrategie.



182 Samenvatting

Als belangrijkste resultaat van dit proefschrift geven we een karakterisering van de

hogere-orde complexiteitsklasse BFF (Basic Feasible Functions) in termen van tweede-

orde herschrijfsystemen met een semantische tupelinterpretatie die polynomiaal be-

grensd is. Tot slot, geven we een certificatie-engine Nijn/ONijn die in staat is om formeel

terminatiebewijzen gegeven door hogere-orde terminatiegereedschappen te verifiëren.



Summary

In 1965 Alan Cobham proposed the following broadly formulated questions: “is it

always more difficult to multiply than to add?” and “why?”. It turns out that these

apparently innocent questions formulated in the context of basic arithmetical operations

carry a deep connection with the notions of algorithm and their intrinsic complexity. An

algorithm is like a cake recipe. It tells us precisely how to execute tasks to achieve an end:

the cake. By intrinsic complexity, we mean that no matter how we choose to formulate

the cake’s recipe there will be an intrinsic difficulty to it. Cobham then proceeds to

establish a class of those algorithms that are “simple” in the sense that we can execute

them in a small enough number of steps. This collection is today known as the class of

algorithms computed in polynomial time. Cobham’s thesis states that such algorithms

can be efficiently executed in practice.

Since then a myriad of computational models have been proposed and each of them

came with their own notion of feasibility. An example of this consists of those term

rewriting systems that can be used to capture functions computable in polynomial time.

This result is interesting since expressing algorithms in a declarative rewriting style

is often easier than explicitly defining them in terms of Turing machines. However,

hitherto works in this area have been formulated in terms of first-order rewriting, i.e.,

systems where functions may not be passed as arguments. As such, one excludes

commonly used higher-order functions like map and fold.

The goal of this thesis is to fill in this gap and develop a higher-order complexity

analysis framework using higher-order rewriting systems as the underlying computa-

tional model. To this end, we introduce a new class of higher-order algebraic semantics:

tuple interpretations. The defining characteristic of tuple interpretations is that we can

completely split the dual notions of cost and size when measuring the complexity of

such systems. This allows for a fine-grained study of their running time by providing

often tight upper bounds parametrized by both the cost and the size of the arguments.

We then proceed to apply this method in a variety of higher-order systems with different

operational semantics, i.e., full rewriting (so no restriction on the evaluation) and the

call-by-value evaluation strategy.

As a main result of this thesis, we provide a characterization of the higher-order

complexity class BFF (Basic Feasible Functions) in terms of second-order rewriting



184 Summary

systems admitting a semantic tuple interpretation that is polynomially bounded. Finally,

we provide a certification engine Nijn/ONijn capable of formally certifying termination

proofs given by higher-order termination tools.



Research Data Management

This thesis research has been carried out under the research data management policy

of the Institute for Computing and Information Science of Radboud University, The

Netherlands.
1

The following research code repositories have been produced during this

Ph.D. research:

• Chapter 3. The source code for Hermes is available under MIT license. Version

1.0.0 of Hermes comprises the work done for this thesis. It is permanently “frozen”

and available on Zenodo with DOI:10.5281/zenodo.8317571.

• Chapter 7. This chapter produces two code bases. The first is for Nijn (v1.0.0),

which is stored on Zenodo with DOI:10.5281/zenodo.7913023. The second

is the repository for ONijn (v1.0.0), which is also available on Zenodo with

DOI:10.5281/zenodo.7915736.

No data or code has been produced for the other chapters of the thesis.

1

https://www.ru.nl/icis/research-data-management/, accessed Wednesday 13
th

March, 2024.

https://zenodo.org/record/8317571
https://zenodo.org/record/7913023
https://zenodo.org/record/7915736
https://www.ru.nl/icis/research-data-management/


Titles in the IPA Dissertation Series since 2021

D. Frumin. Concurrent Separation Logics
for Safety, Refinement, and Security. Faculty

of Science, Mathematics and Computer

Science, RU. 2021-01

A. Bentkamp. Superposition for Higher-
Order Logic. Faculty of Sciences, Depart-

ment of Computer Science, VU. 2021-02

P. Derakhshanfar. Carving Information
Sources to Drive Search-based Crash Repro-
duction and Test Case Generation. Faculty of

Electrical Engineering, Mathematics, and

Computer Science, TUD. 2021-03

K. Aslam. Deriving Behavioral Specifica-
tions of Industrial Software Components. Fac-

ulty of Mathematics and Computer Sci-

ence, TU/e. 2021-04

W. Silva Torres. Supporting Multi-Domain
Model Management. Faculty of Mathemat-

ics and Computer Science, TU/e. 2021-05

A. Fedotov. Verification Techniques for
xMAS. Faculty of Mathematics and Com-

puter Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled Automated
Reasoning. Faculty of Mathematics and

Computer Science, TU/e. 2022-02

M. Safari. Correct Optimized GPU Pro-
grams. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2022-03

M. Verano Merino. Engineering Language-
Parametric End-User Programming Environ-
ments for DSLs. Faculty of Mathematics

and Computer Science, TU/e. 2022-04

G.F.C. Dupont. Network Security Monitor-
ing in Environments where Digital and Physi-

cal Safety are Critical. Faculty of Mathemat-

ics and Computer Science, TU/e. 2022-05

T.M. Soethout. Banking on Domain
Knowledge for Faster Transactions. Faculty

of Mathematics and Computer Science,

TU/e. 2022-06

P. Vukmirović. Implementation of Higher-
Order Superposition. Faculty of Sci-

ences, Department of Computer Science,

VU. 2022-07

J. Wagemaker. Extensions of (Concur-
rent) Kleene Algebra. Faculty of Sci-

ence, Mathematics and Computer Science,

RU. 2022-08

R. Janssen. Refinement and Partiality
for Model-Based Testing. Faculty of Sci-

ence, Mathematics and Computer Science,

RU. 2022-09

M. Laveaux. Accelerated Verification of Con-
current Systems. Faculty of Mathematics

and Computer Science, TU/e. 2022-10

S. Kochanthara. A Changing Landscape:
On Safety & Open Source in Automated and
Connected Driving. Faculty of Mathemat-

ics and Computer Science, TU/e. 2023-01

L.M. Ochoa Venegas. Break the Code?
Breaking Changes and Their Impact on Soft-
ware Evolution. Faculty of Mathematics

and Computer Science, TU/e. 2023-02

N. Yang. Logs and models in engineering
complex embedded production software sys-
tems. Faculty of Mathematics and Com-

puter Science, TU/e. 2023-03

J. Cao. An Independent Timing Analysis
for Credit-Based Shaping in Ethernet TSN.



Faculty of Mathematics and Computer

Science, TU/e. 2023-04

K. Dokter. Scheduled Protocol Program-
ming. Faculty of Mathematics and Natural

Sciences, UL. 2023-05

J. Smits. Strategic Language Workbench Im-
provements. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Science,

TUD. 2023-06

A. Arslanagić. Minimal Structures for Pro-
gram Analysis and Verification. Faculty of

Science and Engineering, RUG. 2023-07

M.S. Bouwman. Supporting Railway Stan-
dardisation with Formal Verification. Faculty

of Mathematics and Computer Science,

TU/e. 2023-08

S.A.M. Lathouwers. Exploring Annota-
tions for Deductive Verification. Faculty

of Electrical Engineering, Mathematics

& Computer Science, UT. 2023-09

J.H. Stoel. Solving the Bank, Lightweight
Specification and Verification Techniques for
Enterprise Software. Faculty of Mathemat-

ics and Computer Science, TU/e. 2023-10

D.M. Groenewegen. WebDSL: Linguistic
Abstractions for Web Programming. Faculty

of Electrical Engineering, Mathematics,

and Computer Science, TUD. 2023-11

D.R. do Vale. On Semantical Methods for
Higher-Order Complexity Analysis. Faculty

of Science, Mathematics and Computer

Science, RU. 2024-01





Curriculum Vitae

Deivid Rodrigues do Vale was born in 1992 in Unaí — Minas Gerais, Brazil. He graduated

from high school in 2010 at the Escola Estadual Delvito Alves da Silva, also in Unaí.

In 2011 Deivid completed his technical education cum laude in industrial informatics

at the Federal Institute of Education, Science and Technology in Unaí. From 2009 to

2013, he worked as a teacher in such institutes teaching computer networks, Linux

system administration, database administration, and programming language courses.

During this same period, he worked as an information systems technician for a variety

of companies in Brazil.

After this period in industry, in 2013, Deivid decided to start his academic life and

moved to Brasília. In 2017, he graduated cum laude from the Bachelor of Science in

Mathematics at the University of Brasília. Deivid then continues to the master’s at the

University of Brasília, which he graduated from in 2019. In September 2019 he started

his Ph.D. at Radboud University in Nijmegen — The Netherlands, advised by Cynthia

Kop. As of April 2024, Deivid works as a scientific programmer and post-doctoral

researcher at Radboud University.




	Table of contents
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work
	1.3 Content Overview and Contributions

	2 Higher-Order Rewriting
	2.1 Curried Higher-Order Rewrite Systems
	2.1.1 The Syntax of Types and Terms
	2.1.2 Higher-Order Rewrite Rules

	2.2 Ordered Sets and Monotonic Functions

	3 First-Order Tuple Interpretations
	3.1 Derivation Height and Complexity
	3.2 From Termination Proofs to Complexity Bounds
	3.3 Tuple Interpretations for Full Rewriting
	3.3.1 Strongly Monotonic Tuple Algebras
	3.3.2 Runtime Complexity Analysis

	3.4 Cost–Size Products
	3.5 Tuple Interpretations for Innermost Rewriting
	3.5.1 Cost–Size Tuple Algebras
	3.5.2 Innermost Compatibility Theorem

	3.6 Upper Bounds for Innermost Runtime Complexity
	3.7 Automation
	3.7.1 Parametric Tuple Interpretations
	3.7.2 Strategy-based Search for Tuple Interpretations.
	3.7.3 Prototype Implementation


	4 Higher-Order Tuple Interpretations
	4.1 Strongly monotonic algebras
	4.1.1 Higher-Order Compatibility

	4.2 Interpreting abstractions
	4.2.1 Strongly Monotonic Combinators
	4.2.2 Making a MakeSM
	4.2.3 Orienting Beta and Eta

	4.3 Creating strongly monotonic interpretation functions
	4.4 Finding Higher-Order Complexity Bounds
	4.5 Conclusion

	5 Higher-Order Tuple Interpretations for Call-by-Value
	5.1 Call-by-Value Higher-order Rewriting
	5.2 Cost–Size Overview
	5.3 Cost–Size Semantics for Simple Types
	5.4 Cost–Size Semantics for Terms
	5.5 Complexity Analysis of Call-by-Value Rewriting
	5.6 Conclusions and Future Work

	6 A Rewriting Characterization of Higher-Order Feasibility
	6.1 Higher-Order Feasibility
	6.2 Basic Feasible Functionals
	6.3 Oracle Turing Machines
	6.3.1 Computing with Oracle Turing Machines
	6.3.2 Complexity of Oracle Turing Machines

	6.4 Kapron and Cook's Characterization of BFF
	6.5 From Higher-Order Rewriting to BFF and Back Again
	6.5.1 Type-2 Computability via Higher-Order Rewriting

	6.6 Soundness
	6.6.1 Interpreting the extended TRS
	6.6.2 Term Graph Rewriting

	6.7 Completeness
	6.7.1 Constructors
	6.7.2 Executing the machine
	6.7.3 A bound on the number of steps
	6.7.4 Finalizing execution

	6.8 Conclusions and Future Work

	7 Certification of Higher-Order Polynomial Interpretations
	7.1 Certifying Termination Tools
	7.2 The Basics of Higher-Order Rewriting in Coq
	7.2.1 Terms and Rewrite Rules
	7.2.2 Termination

	7.3 Higher-Order Interpretation Method in Coq
	7.3.1 Interpreting types and terms
	7.3.2 Termination Models

	7.4 The Higher-Order Polynomial Method in Coq
	7.4.1 Polynomials
	7.4.2 Polynomial Interpretation
	7.4.3 Constraint Solving Tactic

	7.5 Generating Proof Scripts
	7.5.1 Proof traces for polynomial interpretation
	7.5.2 Verifying Wanda's Polynomial Interpretations

	7.6 Conclusions and Future Work

	8 Conclusions
	References
	Samenvatting
	Summary
	Research Data Management
	Titles in the IPA Dissertation Series since 2021
	Curriculum Vitae

