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Abstract. We explain the theoretical background of the wide trail de-
sign strategy, which was used to design Rijndael, the Advanced Encryp-
tion Standard (AES). In order to facilitate the discussion, we introduce
our own notation to describe differential and linear cryptanalysis. We
present a block cipher structure and prove bounds on the resistance
against differential and linear cryptanalysis.

1 Introduction

The development of differential [2] and linear cryptanalysis [7] has led to several
design theories for block ciphers. The most important requirement for a new
cipher is that it resists state-of-the-art cryptanalytic attacks. Preferably, this
can be demonstrated in a rigorous, mathematical way. The second requirement
is a good performance and an acceptable ‘cost’, in terms of CPU requirements,
memory requirements, ...

The Wide trail strategy is an approach to design the round transformations of
block ciphers that combine efficiency and resistance against differential and linear
cryptanalysis. The strategy has been used in the design of Rijndael, the block
cipher which has been selected to become the Advanced Encryption Standard
(AES). In this article we describe the application of the strategy to the design
of a certain type of block ciphers only, but the strategy can easily be extended
to more general block cipher structures. Moreover, the wide trail strategy can
also be applied to the design of synchronous stream ciphers and hash functions.

In order to explain the wide trail strategy, we introduce our own notation
for differential and linear cryptanalysis. We are convinced that a good notation
helps to understand the reasonings, and our notation is suited very well to un-
derstand the wide trail strategy. We introduce a general block cipher model and
explain how linear correlations and difference propagation probabilities are built
up in block ciphers designed according to this model. Subsequently, we explain
the basic principles of the wide trail strategy and introduce our new diffusion
measure, the branch number. We explain its relevance in providing bounds for
the probability of differential trails and the correlation of linear trails over two
rounds. We then introduce a cipher structure that combines efficiency with high
resistance against linear and differential cryptanalysis. The resistance against
linear and differential cryptanalysis is based on a theorem that lower bounds the



diffusion after four rounds of the cipher structure. In this paper, we emphasize
the theoretical foundations of the wide trail design strategy. More explanation
about the practical constructions can be found in [4].

In the following, the symbols + and Y are used to denote bit-wise addition
(XOR). The results can be generalized to other definitions for addition.

2 A General Block Cipher Model

We introduce a model for block ciphers that can be analyzed easily for their
resistance against linear and differential cryptanalysis.

2.1 Key-alternating block ciphers

A block cipher transforms plaintext blocks of a fixed length ny, to ciphertext blocks
of the same length under the influence of a key k. An iterative block cipher is
defined as the application of a number of key-dependent Boolean permutations.
The Boolean transformations are called the round transformations. Every ap-
plication of a round transformation is called a round. We denote the number of
rounds by r. We have:

Blk] = p kM) o0 pP[EP] 0 pW[ED] | (1)

In this expression, p(*) is called the i-th round of the block cipher and k() is called
the i-th round key. For instance, the DES has 16 rounds. Every round uses the
same round transformation, so we say there is only one round transformation.
The round keys are computed from the cipher key. Usually, this is specified with
an algorithm, called the key schedule.

A key-alternating block cipher is an iterative block cipher with the following
properties:

— Alternation: the cipher is defined as the alternated application of key-inde-
pendent round transformations and the application of a round key. The first
round key is applied before the first round and the last round key is applied
after the last round.

— Binary Key Addition: the round keys are applied by means of a simple XOR:
to each bit of the intermediate state a round key bit is XORed.

We have:
Blk] = g[k(r)] op o U[k(rfl)] 0---0 a[k(l)} opMo o—[k(o)] ] (2)

As, hopefully, will become clear soon, key-alternating block ciphers lend them-
selves very well to analysis with respect to the resistance against cryptanalysis.



2.2 The A round structure

In the wide trail strategy, the round transformations are composed of two in-
vertible steps:

— ~: a local non-linear transformation. By local, we mean that any output bit
depends on only a limited number of input bits and that neighboring output
bits depend on neighboring input bits.

— A: a linear mixing transformation providing high diffusion. What is meant
by high diffusion will be explained in the following sections.

Hence we have a round transformation p:

p=2Ao". (3)

and refer to this as a yA round transformation.

A typical construction for v is the so-called bricklayer mapping consisting
of a number of invertible S-boxes. In this construction, the bits of input vector
a are partitioned into n; m-bit bundles a; € Z3* with i € Z by the so-called
bundle partition. Z is called the index space. Clearly, the inverse of v consists
of applying the inverse substitution boxes to the bundles. The block size of the
cipher is given by np = mn;. In the case of the AES, the bundle size m is 8,
hence bundles are bytes. This is by no means a necessity. For instance, Serpent
[1] and Noekeon [5] also can be described in this framework, but have a bundle
size of 4 bits. 3-WAY [3] uses 3-bit bundles.

For the purpose of this analysis, the S-boxes of v need not to be specified.
Since the use of different S-boxes for different bundles does not result in a plau-
sible improvement of the resistance against known attacks, we propose to use
the same S-box for all bundles. This allows to reduce the code size in software,
and the required chip area in hardware implementations.

The transformation A combines the bundles linearly: each bundle at the out-
put is a linear function of bundles at the input. A can be specified at the bit level
by a simple ny, X ny, binary matrix M. We have

Aib=Aa) & b= Ma (4)

A can also be specified at the bundle level. For example, the bundles can be
considered as elements in GF(2™) with respect to some basis. In its most general

form, we have:
A:b= )\(a) S b = Z Z Ci,j’gajgl (5)

j 0<t<m

In most instances a more simple linear function is chosen that is a special case
of (5):
Aib=Aa) &b =Y Cija (6)
J

Figure 1 gives a schematic representation of a yA round transformation, followed
by a key addition.
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Fig. 1. Schematic representation of a v\ round, followed by a key addition.

3 Propagation in Key-alternating Block Ciphers

In the following subsections we describe the anatomy of correlations and differ-
ence propagations in key-alternating block ciphers. This is used to determine
the number of rounds required to provide resistance against linear and differ-
ential cryptanalysis. We assume that the round transformations do not exhibit
correlations with amplitude 1 or difference propagation with probability 1. The
limitation to the key-alternating structure allows us to reason more easily about
linear and differential trails as the effect of the key addition on the propagation
is quite simple.

3.1 Differential cryptanalysis

We assume that the reader has a basic understanding of the principles of dif-
ferential cryptanalysis as explained in [2]. We give a very short overview and
introduce our notation.

Consider a couple of n-bit vectors a and a* with bitwise difference a+a* = o.
Let b = h(a),b* = h(a*) and ¥’ = b + b*. The difference o’ propagates to the
difference b’ through h. In general, b’ is not fully determined by a’ but depends
on the value of a (or a*).

Definition 1. A difference propagation probability P"(a’,b') is defined as

P'(a’, ') =27" ) 5 + h(a+a') + h(a)) . (7)

Here 6(a) denotes the Kronecker delta function, which outputs zero, except when
the input equals zero: §(0) = 1. If a pair is chosen uniformly from the set of all
pairs (a,a*) with a +a* = a’, P"(a’,b') is the probability that h(a)+ h(a*) = b'.

Let 8 be a Boolean mapping operating on n-bit vectors that is composed
of r mappings: 8 = p™ o p Vo ... 0 p®@ o pM) A differential trail A over a
composed mapping consist of a sequence of r 4+ 1 difference patterns:

Q=(q,qM,¢?, ... ¢V ¢ . (8)



A differential trail has a probability. The probability of a differential trail is the
number of values ag for which the difference patterns follow the differential trail
divided by the number of possible values for ag. This differential trail is composed
of r differential steps (q(i_l), q(i)), that have a propagation probability:

@ (i— i
PP (gl gl 9)

Differential cryptanalysis exploits difference propagations (¢(?),¢(™) with large
probabilities. The probability of difference propagation (a’,b’) is the sum of
the probabilities of all r-round differential trails with initial difference a’ and
terminal difference ¥/, i.e.,

P(d',b) = > PQ) . (10)

g =q/ q(r=p'

3.2 Achieving low difference propagation probabilities

For a successful classical differential cryptanalysis attack, the cryptanalyst needs
to know an input difference pattern that propagates to an output difference
pattern over all but a few (2 or 3) rounds of the cipher, with a probability that
is significantly larger than 2'~">. To avoid this, we choose the number of rounds
so that there are no differential trails with a probability above 217>,

This strategy does not guarantee that there are no such difference propaga-
tions with a high probability. Equation (10) shows that in principle, many trails
with each a low probability may add up to a difference propagation with high
probability. As a matter of fact, for any Boolean mapping, a difference pattern
at the input must propagate to some difference pattern at the output, and the
sum of the difference propagation probabilities over all possible output differ-
ences is 1. Hence, there must be difference propagations with probability equal
to or larger than 2'~™ . This also applies to the Boolean mapping formed by
a cipher for a given value of the cipher key. Hence, the presence of difference
propagations with a high probability over any number of rounds of the cipher is
a mathematical fact which can’t be avoided by design.

Let us analyze a difference propagation with probability y for a given key
value. A difference propagation probability y means that there are exactly y2">~!
pairs with the given input difference pattern and the given output difference
pattern. Each of these pairs follows a particular differential trail.

Assuming that the pairs are distributed over the trails according to a Poisson
distribution, the expected number of pairs that, for a given key value, follow a
differential trail with propagation probability 277, is 2"»~1=2. Consider a dif-
ferential trail with a propagation probability 27% smaller than 2'~"> that is
followed by at least one pair. The probability that this trail is followed by more
than one pair, is approximately 27>~1=2. It follows that if there are no differ-
ential trails with a propagation probability above 2=, the y2">~! pairs that
have the correct input difference pattern and output difference pattern, follow
almost 32"~ different differential trails.



If there are no differential trails with a low weight, difference propagations
with a large probability are the result of multiple differential trails that happen
to be followed by a pair in the given circumstances, i.e. for the given key value.
For another key value, each of these individual differential trails may be fol-
lowed by a pair, or not. This makes predicting the input difference patterns and
output difference patterns that have large difference propagation probabilities
practically infeasible. This is true if the key is known, and even more so if it is
unknown.

We conclude that restricting the probability of difference propagations is a
sound design strategy. However, it doesn’t result in a proof of security.

3.3 Linear cryptanalysis

We assume again that the reader is familiar with the basic principles of linear
cryptanalysis [7]. However, instead of using the notions probability of a linear
approzimation, and deviation, we prefer to use our own formalism, based on
correlation.

Definition 2. The correlation C(f,g) between two Boolean functions f(a) and
g(a) is defined as

C(f,9) =2-Prob(f(a) = g(a)) =1 . (11)

It follows that C(f,g) = C(g,f). A parity of a Boolean vector is a Boolean
function that consists of the XOR of a number of bits. A parity is determined
by the positions of the bits of the Boolean vector that are included in the XOR.
The selection pattern w of a parity is a Boolean vector value that has a 1 in
the components that are included in the parity and a 0 in all other components.
Analogous to the inner product of vectors in linear algebra, we express the parity
of vector a corresponding with selection pattern w as w'a. In this expression the
t suffix denotes transposition of the vector w.

Note that for a vector a with n bits, there are 2™ different parities. The set
of parities of a Boolean vector is in fact the set of all linear Boolean functions of
that vector.

A linear trail U over a composed mapping consist of a sequence of r + 1
selection patterns

U=@® uv® u® o= 40y (12)

This linear trail is composed of r linear steps (u(ifl), u(i)), that have a correla-
tion: o o
C(u(z) p(Z)(a),u(l—l) a)

The correlation contribution Cp of a linear trail is the product of the correlation
of all its steps:

c, ) =Tlc

w(@)qi—1) -

(13)
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3.4 Achieving low correlation amplitudes

For a successful linear cryptanalysis attack, the cryptanalyst needs to know an
input parity and an output parity after all but a few rounds of the cipher that
have a correlation with an amplitude that is significantly larger than 2-"»/2. To
avoid this, we choose the number of rounds so that there are no linear trails with
a correlation contribution above n, lo=m/2,

This does not guarantee that there are no high correlations over r rounds.
From Parseval’s equality, it follows that for any output parity, the sum of the
squared amplitudes of the correlations with all input parities is 1. In the as-
sumption that the output parity is equally correlated to all 2™ possible input
parities, the correlation to each of these input parities has amplitude 2-"/2.
In practice it is very unlikely that such a uniform distribution will be attained
and correlations will exist that are orders of magnitude higher than 2-"»/2. This
also applies to the Boolean mapping formed by a cipher for a given value of the
cipher key. Hence, the presence of high correlations over (all but a few rounds
of) the cipher is a mathematical fact that can’t be avoided by design.

However, in the absence of local clustering of linear trails, high correlations
can only occur as the result of ‘constructive interference’ of many linear trails
that share the same initial and final selection patterns. Specifically, any such
correlation with an amplitude above 27"»/2 must be the result of at least ny
different linear trails. The condition that a linear trail in this set contributes
constructively to the resulting correlation imposes a linear relation on the round
key bits. From the point that more than ny linear trails are combined, it is very
unlikely that all such conditions can be satisfied by choosing the appropriate
cipher key value.

The strong key-dependence of this interference makes it very unlikely that
if a specific output parity has a high correlation with a specific input parity
for a given key, that this will also be the case for another value of the key. In
other words, although it follows from Parseval’s Theorem that high correlations
over the cipher will exist whatever the number of rounds, the strong round
key dependence of interference makes locating the input and output selection
patterns for which high correlations occur practically infeasible. This is true if
the key is known, and even more so if it is unknown.

Again we conclude that restricting the amplitude of the correlation between
input parities and output parities is a sound design strategy. However, it doesn’t
result in a proof of security.

3.5 Weight of a trail

v is a bricklayer mapping consisting of S-boxes. It is easy to see that the corre-
lation over 7 is the product of the correlations over the different S-box positions
for the given input and output selection patterns. We define the weight of a cor-
relation as the negative logarithm of its amplitude. The correlation weight for
an input selection pattern and output selection pattern is the sum of the corre-
lation weights of the different S-Box positions. If the output selection pattern is



non-zero for a particular S-box position or bundle, we call this S-box or bundle
active.

Similarly, the weight of the difference propagation over ~ is defined as the
negative logarithm of its probability. The weight of the difference propagation
over < is given by the sum of the weights of the difference propagations of
the S-box positions for the given input difference pattern and output difference
pattern. If the input difference pattern is non-zero for a particular S-box position
or bundle, we call this S-box or bundle active.

The correlation contribution of a linear trail is the product of the correlation
of all its steps. The weight of such a trail is defined as the sum of the weights
of its steps. As the weight of a step is the sum of the weights of its active S-box
positions, the weight of a linear trail is the sum of that of its active S-boxes. An
upper limit to the correlation is a lower limit to the weight per S-box. Hence, the
weight of a linear trail is equal to or larger than the number of active bundles
in all its selection patterns times the minimum (correlation) weight per S-box.
We call the number of active bundles in a pattern or a trail its bundle weight.

A differential trail is defined by a series of difference patterns. The weight
of such a trail is the sum of the weights of the difference patterns of the trail.
Completely analogous to linear trails, the weight of a differential trail is equal
to or larger than the number of active S-boxes times the minimum (differential)
weight per S-box.

3.6 Wide trails

The reasoning above suggests two possible mechanisms to eliminate low-weight
trails:

1. Choose S-boxes with high minimum differential and correlation weight.
2. Design the round transformation such a way that there are no relevant trails
with low bundle weight.

The maximum correlation amplitude of an m-bit invertible S-box is above
2/2 yielding an upper bound for the minimum (correlation) weight of n/2. The
maximum difference propagation probability is at least 2™~2, yielding an upper
bound for the minimum (differential) weight of m — 2. This seems to suggest
that one should take large S-boxes. This is not the approach we follow in the
wide trail design strategy.

Instead of spending most of the resources on large S-boxes, the wide trail
strategy aims at designing the round transformation(s) such that there are
no trails with a low bundle weight. In ciphers designed by the wide trail
strategy, a relatively large amount of resources is spent in the linear step to
provide high multiple-round diffusion.

4 Diffusion

Diffusion is the term introduced by C. Shannon to denote the quantitative
spreading of information [9]. Diffusion is a rather vague concept the exact mean-



ing of which strongly depends on the context in which it is used. We will explain
now what we mean by diffusion in the context of the wide trail strategy.

Inevitably, the mapping v provides some interaction between the different
bits within the bundles that may be referred to as diffusion. However, it does
not provide any inter-bundle interaction: difference propagation and correlation
over v stays confined within the bundles. In the context of the wide trail strategy,
it is not this kind of diffusion we are interested in. We use the term diffusion to
indicate properties of a mapping that increase the minimum bundle weight of
linear and differential trails. In this sense, all diffusion is realized by A. v does
not provide any diffusion at all.

For single-round trails, obviously the bundle weight of a single round trail,
differential or linear, is equal to the number of active bundles at its input. It
follows that the minimum bundle weight of a single-round trail is 1, independent
of . The situation becomes interesting as soon as we consider two-round trails.

4.1 Branch Numbers and Two-Round Trails

In two-round trails, the bundle weight is the sum of the number of active bundles
in the (selection or difference) patterns at the beginning of the first and the input
of the second round. We will see that the bundle weight of two-round trails can
be expressed elegantly by using branch numbers.

Consider a partition « that divides the different bit positions of a state into
ne sets called a-sets. An example of this is the partition that divides the bits
in a number of bundles. The weight of a state value with respect to a partition
« is equal to the number of a-sets that have at least one non-zero bit. This
is denoted by w,(a). If this is applied to a difference pattern a’, wy(a’) is the
number of active a-sets in a/. Applied to a selection pattern v, wq(v) is the
number of active a-sets in v. If «v is the partition that forms the bundles, w, (a)
is the number of active bundles in the pattern a and is denoted by wy(a).

We make a distinction between the differential and the linear branch number
of a transformation.

Definition 3. The differential branch number of a transformation ¢ with re-
spect to a partition o is defined by
Ba(é, @) = min {wa(a & b) + wa(¢(a) & (b))} (14)

For a linear transformation A(a) @ A(b) = A(a ® b), and (14) reduces to:
Ba(h.a) = min{ua(@) + wa(\@))} - (15)

An upper bound for the differential branch number of a Boolean transformation
¢ with respect to a partition « is given by n,, since the output difference corre-
sponding to an input difference with a single non-zero bundle can have at most
weight n,. Therefore, the differential branch number of ¢ with respect to « is
upper bounded by

Bd(¢aa) <ng+ 1L (16)



Analogous to the differential branch number, we can define the linear branch
number.

Definition 4. The linear branch number of a transformation ¢ with respect to
a is given by

Bl((baa) =

= min We ( +wo¢ 17
Otﬁ,C(a‘x,ﬁ%(m));éo{ (a) (8)} (17)

Many of the following discussions are valid both for differential and linear
branch numbers and both B; and B; are denoted simply by B. Moreover, in
many cases the partition is clear from the context and B(¢, «) is expressed as

B(¢).

4.2 Some properties

In general, the linear and differential branch number of a transformation with
respect to a partition are not equal. From the symmetry of Definition 3 and 4 it
follows that the branch number of a transformation and that of its inverse are
the same. Moreover, we have the following properties:

— a (differential or selection) pattern a is not affected by a key addition and
hence its weight w,(a) is not affected. This property holds independently of
the partition a.

— a bricklayer permutation compatible with « cannot turn an active a-subset
into a non-active one or vice versa. Hence, it does not affect the weight

we(a).

Assume we have a transformation ¢ composed of a transformation ¢; and a
bricklayer transformation ¢, operating on a-subsets, i.e., ¢ = ¢ 0¢1. As ¢, does
not affect the number of active a-subsets in a propagation pattern, the branch
number of ¢ and ¢; are the same. More general, if propagation of patterns is
analyzed at the level of a-subsets, bricklayer transformations compatible with «
may be ignored.

If we apply this to the bundle weight of a v\ round transformation p, it
follows immediately that the (linear or differential) bundle branch number of p
is that of its linear part .

4.3 A two-round propagation theorem

The following theorem relates the value of B(\) to a bound on the number of
active bundles in a trail. The proof is valid both for linear and differential trails:
in the case of linear trails B stands for B; and in the case of differential trails B
stands for By.

Theorem 1 (Two-Round Propagation Theorem).
For a key-alternating block cipher with a YA round structure the number of active
bundles of any two-round trail is lower bounded by the (bundle) branch number

of \.

10



Proof. Figure 2 depicts two rounds. Since the transformations v and o[k] operate
on each bundle individually, they do not affect the propagation of patterns. Hence
it follows that wy(a™)) +wy(a(?) is only bounded by the properties of the linear
transformation A of the first round. Definition 3 and 4 imply that the sum of the
active bundles before and after A of the first round is lower bounded by B(\).

O
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Fig. 2. Transformations relevant in the proof of Theorem 1.

5 An Efficient Key-Alternating Structure

In trails of more than two rounds, the desired diffusion properties of p are less
trivial. It is clear than any 2n-round trail can be decomposed in n 2-round trails
and hence that its bundle weight is lower bounded by n times the branch num-
ber of p. The ‘greedy’ approach to eliminate low-weight trails is to consider
Theorem 1 only and to design a round transformation with a maximum branch
number. However, transformations that provide high branch numbers have a ten-
dency to have a high implementation cost. More efficient designs can be achieved
in the following way. We build a key-alternating block cipher that consists of an
alternation of two different round transformations defined by:

p*=0or (18)
p' =00y (19)

The transformation « is defined as before and operates on n, m-bit bundles.

11



5.1 The diffusion transformation 0

With respect to €, the bundles of the state are grouped into a number of columns
by a partition = of the index space Z. We denote a column by £ and the number
of columns by n=. The column containing an index 7 is denoted by £(i) and the
number of indices in a column & by n¢. The size of the columns relates to the

block length by
m Z ne = many.
ez

f is a bricklayer mapping with component mappings that each operate on a
column. Within each column, bundles are linearly combined. We have

0:b=0(a) &b =Y Cija (20)
=30
The bricklayer transformation 6 only needs to realize diffusion within the columns
and has hence an implementation cost that is much lower.

Fig. 3. The diffusion transformation 6

Similar to active bundles, we can speak of active columns. The number of
active columns of a propagation pattern a is denoted by w(a). The round trans-
formation p® = Ao~ is a bricklayer transformation operating independently on a
number of columns. Taking this bricklayer structure into account we can extend
the result of Section 4.1 slightly. The branch number of 0 is given by the min-
imum branch number of its component transformations. Applying (16) to the
component mappings defined by the matrices C¢ results in the following upper
bound:

B(9) < mginng + 1. (21)

Hence, the smallest column imposes the upper limit for the branch number. The
Two-Round Propagation Theorem (Theorem 1) implies the following Lemma.

Lemma 1. The bundle weight of any two-round trail in which the first round has
a v0 round transformation is lower bounded by NB(0), where N is the number
of active columns at the input of the second round.

Proof. Theorem 1 can be applied to each of the component mappings of the
bricklayer mapping p® separately. For each active column there are at least B(6)
active bundles in the two-round trail. O

12



5.2 The linear transformation @
© mixes bundles across columns.

O:0=0() b = Z Ci ja; (22)
J

The goal of © is to provide inter-column diffusion. The design criterion for © is
to have a high branch number with respect to =. This is denoted by B(©, Z)
and called its column branch number.

5.3 A lower bound on the bundle weight of 4-round trails

The combination of the bundle branch number of § and the column branch
number of @ allows us to prove a lower bound on the bundle weight of any trail
over 4 rounds starting with p®.

Theorem 2 (Four-round Propagation Theorem for §© construction).
For a key-alternating block cipher with round transformations as defined in (18)
and (19), the bundle weight of any trail over

p’op*opop
is lower bounded by B(0) x B(©, =).

Proof. Figure 4 depicts four rounds. As the key additions play no role in the
propagation of patterns, they have been left out. It is easy to see that the linear
transformation of the fourth round plays no role. The sum of the number of active

Fig. 4. Relevant transformations for the proof of Theorem 2.

columns in ¢ and a® is lower bounded by B(6, 5). According to Lemma 1,
for each active column in a(®) there are at least B(f) active bundles in the
corresponding columns of a(*) and a(®. Similarly, for each active column in
a® there are at least B(6) active bundles in the corresponding columns of a(®)
and a®. Hence the total number of active bundles is lower bounded by B(#) x

B(O, ). 0

13



5.4 An efficient construction for @

As opposed to 0, © does not operate on different columns independently and
hence may have a much higher implementation cost. In this we present a con-
struction of @ in terms of 6 and bundle transpositions denoted by 7w. We define

O@=mofom . (23)

In the following we will define w and prove that if 7 is well chosen the column
branch number of @ can be made equal to the bundle branch number of 6.

The bundle transposition 7w The bundle transposition 7 is defined as
m:b=m7(a) & b = apy) , (24)

with p(i) a permutation of the index space Z. The inverse of 7 is defined by
p~1(i). Observe that a bundle transposition 7 does not affect the bundle weight
of a propagation pattern and hence that the branch number of a transformation
is not affected if it is composed with .

Contrary to 6, 7 provides inter-column diffusion. Intuitively, good diffusion
for m would mean that it distributes the different bundles of a column to as
many different columns as possible. We say 7 is diffusion-optimal if the different
bundles in each column are distributed over all different columns. More formally,
we have:

Definition 5. 7 is diffusion-optimal if and only if

Vi,j e L,i+#j:(8() =¢() = (E(p(i) # E(p(5)))- (25)
It is easy to see that this implies the same condition for 7—!. A diffusion-optimal
bundle transposition 7 implies

ws(m(a)) = max(wy(ag)) -

Therefore a diffusion-optimal transformation can only exist if nz > max;(ng,).
In words, 7w can only be diffusion-optimal if there are at least as many columns
as there are bundles in the largest column. If 7 is diffusion-optimal, we can
prove that the column branch number of the mapping © is lower bounded by
the branch number of 6.

Lemma 2. If7 is a diffusion-optimal transposition of bundles, the column branch
number of wo ¢ om is lower bounded by the bundle branch number of ¢

Proof. We refer to Figure 5 for the notations used in this proof. We have to
demonstrate that
w,(a) +w,(d) > B(@) .

For any active column in b, the number of active bundles in that column and
the corresponding column of ¢ is at least B(¢). m moves all active bundles in an
active column of ¢ to different columns in d and 7~! moves all active bundles in
an active column of b to different columns in a. It follows that the sum of the
number of active columns in a and in d is lower bounded by the bundle branch
number of ¢. ad

14
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Fig. 5. Transformations relevant in the proof of Lemma 2.

6 Using Identical Round Transformations

The efficient structure described in Section 5 uses two different round transfor-
mations. It is possible to define a block cipher structure with only one round
transformation, that achieves the same bound. This is the round structure used
in the AES and related ciphers. The advantage of having a single round trans-
formation is a reduction in software code in software implementations and chip
area in dedicated hardware implementations. For this purpose, A is composed of
two types of the mappings:

— 0: the linear bricklayer mapping that provides high local diffusion, as defined
in Section 5.1, and

— m: the transposition mapping that provides high dispersion, as defined in
Section 5.4.

Hence we have for the round transformation:
pf=0omory (26)

Figure 6 gives a schematic representation of the different transformations of a
round. These component transformation are defined in such a way that they
impose strict lower bounds on the number of active S-boxes in four-round trails.
For two-round trails it can be seen that the number of active bundles is lower
bounded by B(p°) = B(A) = B(6). For four rounds, we can prove the following
important theorem:

Theorem 3 (Four-Round Propagation Theorem).
For a key-iterated block cipher with a vm8 round transformation and diffusion-
optimal 7, the number of active S-boxes in a four-round trail is lower bounded

by (B(6))?.
Proof. Firstly, we show that the transformation formed by 4 applications of the

round transformation p°® as defined in (26) is equivalent to four rounds of the
construction with p® and p® as defined in (18) and (19). For simplicity, we leave
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Fig. 6. Schematic representation of the different steps of a y7f round transformation,
followed by a key addition.

out the applications of the key additions, but the proof works in the same way
if the key additions are present. Let A be defined as:

A:pcopcopcopc
=(fomoy)o(fomoy)o(fomoy)o(Bomory) .

v is a bricklayer mapping, operating on every bundle separately and operating
independently of the bundle’s position. Therefore v commutes with 7, which
only moves the bundles to different positions. We get:

A= (0oy)o(roforoy)o(foy)o(mrobomory)
=ptop’opiop,

with © of p® defined exactly as in (23). Now we can apply Lemma 2 and Theo-
rem 2 to finish the proof. a

7 Conclusion and Open Problems

We have shown how the application of the wide trail design strategy leads to the
definition of a round transformation as the one used in Rijndael. The proposed
round transformation allows us to give provable bounds on the correlation of
linear trails and the weight of differential trails while at the same time allowing
efficient implementations.

An interesting open problem is the effect of trail clustering. Theorems 1, 2
and 3 give lower bounds on the weight of trails. As mentioned in Section 3,
the probability of input-output difference propagations as well as the correla-
tion between input parities and output parities are a sum over many trails. If
the trails follow indeed a Poisson distribution, then the results can be applied
straightforwardly. However, it has already been observed that in some cases, the
trails don’t follow a Poisson distribution. Instead, they tend to cluster and as
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a result the probability of a difference propagation can be significantly higher
[6]. A similar effect for correlations has been studied in [8]. It remains an open
problem whether trail clustering occurs and impacts the security for the cipher
structure described here.
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