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Abstract. In recent works on program analysis, transformations of var-
ious programming languages to term rewriting are used. In this setting,
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1 Introduction

Given the prevalence of computer programs in modern society, an important
role is reserved for program analysis. Such analysis could take the form of for
instance termination (“will this program end eventually, regardless of user in-
put?”), productivity (“will this program stay responsive during its run?”) and
equivalence (“will this optimised code return the same result as the original?”).

In recent years, there have been several results which transform a real-world
program analysis problem into a query on term rewriting systems (TRSs). Such
transformations are used to analyse termination of small, constructed languages
(e.g. [3]), but also real code, like Java Bytecode [13], Haskell [10], LLVM [5], or
Prolog [15]. Similar transformations are used to analyse code equivalence in [4,9].

In these works, constraints arise naturally. Where traditional TRSs generally
consider well-founded sets like the natural numbers, more dedicated techniques
are necessary when dealing with for instance integers or floating point numbers.
Unfortunately, standard techniques for analysing TRSs are not equipped to also
handle constraints. While integers and constraints can be encoded in TRSs, the
results are either hairy or infinite, and generally hard to handle.

For this reason, rewriting with native support for logical constraints over a
model was proposed [9]. While the results from normal term rewriting do not
immediately apply in this setting, the ideas extend easily, so dedicated results
are derived without much effort. Thus, constrained TRSs give a useful abstrac-
tion layer for program analysis. Several alternative definitions of constrained
rewriting, focused on integer constraints, have also been given, see e.g. [4,5,8].

* The research in this paper is supported by the Austrian Science Fund (FWF) inter-
national project 1963 and the Japan Society for the Promotion of Science.
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Unfortunately, the various formalisms are incompatible; results from one style
of constrained rewriting do not necessarily transfer to another. This is a shame,
as e.g. the lemma generation method in [12] (there used to prove equivalence of
C-functions) might otherwise be reused in termination proofs. Also, dependency
pairs and graphs are introduced in each of [3,8,14]. Thus, a lot of time is spent on
redoing the same work for slightly different settings. Moreover, there are things
we cannot do easily with any of them, such as overflow-conscious analysis.

In this paper, we propose a new formalism which unifies existing definitions
of constrained rewriting. This formalism seeks to be general: unlike most of its
predecessors, we do not limit interest to the integers, since in the future we
will likely want to analyse programs which involve for instance real numbers or
bitvectors. Moreover, we do not restrict attention to one kind of analysis (e.g.
only termination or function equivalence). This way, we may for instance use the
same dependency pair framework both to analyse termination of Haskell, and as
part of a proof that two Java programs produce the same result (as termination
is an essential property in inductive equivalence proofs, see e.g. [4,12]).

Paper Setup. This paper is structured as follows. In Section 2 we consider some
preliminaries: both mathematical notions and a definition of many-sorted term
rewriting. In Sections 3 and 4 we introduce the LCTRS formalism, which is the
main contribution of this work. In Section 5 we will study how LCTRSs relate
to existing definitions. Finally, to demonstrate how existing analysis techniques
extend, we will consider basic confluence and termination results in Section 6.

2 Preliminaries

2.1 Sets and Functions

We assume that the mathematical notion of a set is well-understood.

The function space from a set A to a set B, denoted A = B, consists of
all sets f of pairs (a,b) with a € A and b € B, such that for all a € A there
is a unique b € B with (a,b) € f. The = is considered right-associative, so
A = B = C is the function space A = (B = ('). We use functional
notation: for f € Ay = .- = A,, = B, f(a1,...,a,) denotes the unique
b with (a1, (ag,...{an,b)...) € f. When dealing with constraints, we need a
notion of truth. To this end, we will often use the set B = {T, L} of booleans.

Ezxample 1. We consider the set N of natural numbers and the set R of real
numbers. An example element of the function space R = R = N is the
function Az € R,y € R. abs([x +y] — 9). Here, the A notation denotes function
construction. The comparison relation > on natural numbers is an element of
N = N = B, and can also be denoted in extended form, Ax € N,y € N. z > y.

2.2 Many-Sorted Term Rewriting Systems

Next, we consider term rewriting. In constrained rewriting, types like integers and
booleans appear naturally. Since we have, at present, little reason to introduce
function types, let us consider many-sorted TRSs.
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Sorts and Signature. We assume given a set S of sorts and a set V of vari-
ables. A signature X is a set of function symbols f, each equipped with a sort
declaration of the form [t; X ... X t,] = k with all ¢; and & sorts. A variable
environment is a set I" of variable : sort pairs.3

Terms. Fixing a signature X, a term is any expression s built from function
symbols in X', variables, commas and parentheses, such that I' - s : + can be
derived for some environment I and sort ¢, using the following inference rules:

I'bsiivy .. Thspity filuX...Xy|=>reX
Fu{z:it}kx: 'Ef(s1,-.-,8n) 1 K

For any non-variable term s, there is a unique sort ¢ such that I' F s : ¢ for
some I'; we say that ¢ is the sort of s. The set of terms over X' and V is denoted
Terms(X, V). Var(s) is the set of variables in s. A term s is ground if Var(s) = 0.

Contexts and Substitution. Fixing an environment I', a substitution is a map-
ping [x1 := 81,...,2k := S| from variables to terms, with {1 : t1,..., 2 : tx}
C I' and where I' 81 : t1,..., I F s : tg. The result sy of applying a substltu—
tion v on a term s, is s with all occurrences of any x; replaced by s;. A context

C is a term with zero or more special variables: 01, ..., 0,, each occurring once.
fru{og:eu,...,0,:t,FC: kK, and also I' F s; : ¢; for all ¢, then we define
the term C[sy,. .., s,] as C with each O; replaced by the corresponding s;.

Rules and Rewriting. In a many-sorted TRS (without constraints!) rules are
pairs [ — r where [ and r are terms, [ is not a variable and Var(r) C Var(l);
moreover, [ and r must have the same sort. A (finite or infinite) set of rules R
induces a rewrite relation —x on the set of terms by the following inference rule:

C[ly] =r C[rv] for all rules I — r, contexts C' and substitutions ~.
— % denotes the transitive closure of —%, and —% the reflexive-transitive one.
Ezample 2. We consider a many-sorted TRS, with signature and rules as follows:

0:int plus : [int X int] = int  geq2: [int X int x int X int] = bool
s:[int] = int  sum: [int] = int sum?2 : [bool x int] = int
p:[int] =int  geq: [int X int] = bool

sum(z) — Sum2(geq(0 ), ) ged(z,y) — geq2(z,y,0,0)
sum2(true, z) — geq2(s(xz),y, z,u) — geq2(x,y,s(z),u)
sum2(false,s(z)) — plus( (x),sum(z)) geq2(p(x),y, z,u) = geq2(z,y, z,5(u))
plus(s(z),y) — s(plus(z,y)) geq2(0,s(x),y, 2) — geq2(0,x,y,s(2))
plus(p(z),y) — p(p|US(x y)) eq2(0,p(z),y,2) — geq2(0, ,s(y), 2)
plus(0,y) — eq2(0,0,s(x),s(y)) — geq2(0,0,z,y)
s(p(x)) — geq2(0,0,x,0) — true
p(s(z)) — geq2(0,0,0,s(z)) — false

3 In some sources variables in V are immediately equipped with a sort. This choice
leads to very similar definitions and results.
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Here, sum(n) calculates X ,i. Because we consider integers, rather than the
(well-founded) natural numbers, this is a somewhat tricky system for common
analysis methods. A term sum(s(0)) is reduced to s(0) in 11 steps.

Ezxample 3. We might simplify Example 2 by considering an infinite signature,
which contains all integers, and an infinite set of rules, as is (roughly) done in [8]:

sum(z) — sum2(geq(0 x),T)
sum2(true, x) —
sum2(false, z) — plus(x sum(plus(z, —1)))
plus(n,m) — Vn,m,k € Z such that n + m =k
geq(n,m) — true Vn,m € 7 such that n > m
geq(n, ) — false Vn,m € Z such that n < m

This system is more pleasant, but has infinitely many rules, which makes it awk-
ward to deal with except for dedicated techniques. Also, we still have to encode
the constraints in the rules (and add rules to evaluate them), which makes analy-
sis tricky. For example, termination of sum(x) relies on x getting closer to 0 in
every step; to prove this, we must track the implications of geq(0, ) —% false.

Note: term rewriting is usually defined without sorts. Then, function symbols
have an arity (number of arguments) rather than a sort declaration. Such a TRS
can be seen as a many-sorted TRS by assigning to symbols with arity n a sort
declaration [term X ... x term| = term, with n occurrences of term before the =-.

3 Term Rewriting with Logical Constraints

Examples 2 and 3 illustrate why rewriting with native support for integer op-
erations and constraints is a good idea. Normal rewriting simply does not seem
adequate when handling data types which are not usually defined inductively.
We could add integers and integer constraints to rewriting, as in [3]. But with
equal effort, we may be more general. Rather than focusing on Z, we follow the
ideas of [9] and take the underlying domain, and operations on it, as parameters.

Terms. We assume given a signature X' = Yierms U Vineory. Terms are elements
of Terms(X,V) as in Section 2.2. Moreover, we assume given a mapping Z which
assigns to each sort occurring in Yyeory a set, and an interpretation mapping
J which maps each f : [t1 X ... X tp] = K € Zipeory to a function Jy in
Z,, = ... = 1,, = I,.. For every sort ¢ occurring in Yoy we also fix a set
Val, C Yipeory of values: function symbols a : [| = ¢, where J gives a one-to-one
mapping from Val, to Z,.

Let Val be the set of all values. We generally identify a value ¢ with the logical
term ¢(). An interpretation mapping can be extended to an interpretation on
ground terms in Terms(Zineory, V) in the obvious way:

(515 s80)la = Tp([s1] 7y [snlr)
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The elements of YXipeory and Yierms may overlap only on values (Xineory N
Zierms C Val). We call a term in Terms(Zineory, V) a logical term, and a term
in Terms(Xierms, V) a proper term. Intuitively, logical terms define a function or
constraint in the model, while proper terms are the objects we want to rewrite.
Mixed terms typically occur as intermediate steps in a reduction.

A ground logical term s has value t if ¢ is a value such that [s] = [t]. Every
ground logical term has a unique value. A logical constraint is a logical term of
some sort bool with Zpoo = B. We generally let Valpool = {true, false}. A ground
logical constraint s is valid if [s] 7 = T. A non-ground constraint s is valid if sy
is valid for all substitutions v which map the variables in Var(s) to a value.

Ezample 4. Choosing Ziny = Z and Zpool = B, we might let Xyje0my be the set
below, with interpretations as given in e.g. SMTLIB [1]:

true : bool + : [int x int] = int A : [bool x bool] = bool
false : bool > : [int x int] = bool = : [bool] = bool
n:int (n € Z) =:][int x int] = bool

Here, we would for instance define J(s) = An.n+ 1, and J(>) = “the greater
than or equal function”. Moreover, we let Xopms consist of:

sum: [int] = int  n:int (Vn € Z)

The values in X are true, false, and n for all n € Z. Examples of logical terms,
considering >, + and = as infix symbols, are 0 =0+ —1 and = + 3 > y + —42.
Both are constraints. 5+ 9 is also a ground logical term, but is not a constraint.
sum(z) and sum(sum(42) are proper terms. The value 0 is both a proper and a
logical term. sum(37 + 5) is neither, but is still a term (also called mized term).

In Example 4 we restricted interest to functions in SMTLIB for Xeory, but
this is not fundamental; we might also for instance have a symbol p : [int] = int
with J, = Az.z — 1, or pi : [int] = int with J, = An.“the ntt decimal of 7”. Tt
is in general a good idea, however, to limit interest to computable functions.

Rules and Rewriting. A rule is a triple | — r [p] where [ and r are terms, and ¢

is a logical constraint. [ must have the form f(l1,...,{,) with f € Zierms \ Ztheory

and [ and r must have the same sort. If ¢ = true with J(true) = T, the rule is

usually just denoted [ — 7. A rule is regular if Var(e) C Var(l) and standard if

1 is a proper term. We define LVar(l — r [¢])) as Var(p) U (Var(r) \ Var(l)).
A substitution v respects a rule [ — r [¢] if:

1. Dom(y) = Var(l) U Var(r) U Var(y);
2. y(x) is a value for all x € LVar(l — r [¢]);
3. @y is valid.

We assume given a set of rules R. The rewrite relation —5 is a relation on
terms, defined as the union of —,y1. and —ca1c, Where:

Cllv] =ru1e Clry] if Il = 7 [p] € R and v respects I — r [¢]
Clf(s1,.--,5n)] =carc Clv] if f € Ziheory \ Xterms, all s; values,
and v is the value of f(s1,...,8,)
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A reduction step with — a1 is called a calculation. A term is in normal form if
(and only if) it cannot be reduced with —x. Sometimes we consider innermost
reduction: C[f(s)] =r,in C[t] if f(s) =>x t, and all s; are in normal form.

A logical constrained term rewriting system (LCTRS) is defined as the pair
(Terms(X,V),—x). An LCTRS is typically given by providing Z and J and the
sets Xierms, Ztheory a0d R. When clear from context, the signatures and map-
pings may be omitted. An innermost LCTRS is the pair (Terms(X,V), =r, in)-

A (normal or innermost) LCTRS is standard or regular if all its rules are stan-
dard or regular respectively. In a regular LCTRS, —% is computable, provided
Jy is computable for all f € Yypeory. Even in a regular LCTRS, the right-hand
sides of rules may contain fresh variables. This can for example be used to simu-
late user input. Think for example of a rule Start — Handle(input) where input
is a variable; by definition of —%, input can only be instantiated by a value.

Ezample 5. It is time to see how these definitions work in practice. Let us modify
Example 2 to use constraints and calculations. We have defined Xyjeory and
Yierms in Example 4. The rules are replaced by the following set:

sum(z) - 0[0> 2] sum(z) = x+sum(z+—1) [-(0> x)]

Note that the sum rules may only be applied to a term sum(n) whose immediate
argument n is a value, so this subterm itself cannot contain the symbol sum.
For an example derivation, let us calculate X2_;n. We have: sum(2) —rye
24 sum(24+ —1) —carc 2+ sum(l) —pp1e 2+ (1 +sum(l 4+ —1)) —carc 2+ (1 +
sum(0)) —rure 2+ (14+0) —carc 2+1 —ca1c 3. In each step, it so happens that we
have exactly one choice of what rule to apply, and where. For example in the first
step, —(0 > 2) holds and 0 > 2 does not, so only the second rule is applicable.
Neither rule can be applied on sum(2 + —1), as 2 + —1 is no value; —ca1c s
applicable. We cannot use a calculation step on 2 4 (1 4 sum(0)), as there is no
subterm with the right form; the system does not know about associativity.

One might wonder why we insist that all variables in LVar are instantiated
with values, rather than just logical terms. Having a rule f(z,y) — vy [z > y],
could we not reduce f(z + 1,2) without this instantiation?

The reason to require that v(x) is ground for x € Var(yp) is simplicity of the
rewrite relation: by posing this restriction, validity of ¢y is mostly easy to test.
Without it, validity might not be computable.* Moreover, without this restriction
the reduction relation is not preserved under substitution: for a symbol a €
Zierms \ Zitheory, We cannot have f(a+1,a) — a, as a+ 1 is not a logical term.

It does make sense to study whether a term f(z+1,y), or even a term f(z,y)
with z > y reduces. In Section 4 we will see how to rewrite constrained terms.

By requiring that (z) is even a value, we avoid complicating notions like
complexity. If we could —,y1e-reduce terms like sum(3+—1+—1+—1), then these

* For example, defining J,(n) to be true if a sequence of 9999 nines starts at the n'®
decimal of 7, and false otherwise, and considering a rule f(z) — z [-p(z)], we don’t
know whether a term f(z) should reduce for all instances of x.
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additions would have to be calculated in every step when testing the constraint.
There does not seem to be any advantage to allowing these hidden calculations;
we can simply —>ca1c.-normalise ground logical terms before applying a rule step.

For the same motivation of complexity, we only allow — .1 to take single
steps, rather than allowing C[s] —ca1c C[v] for any logical term s with value v.

Note that —ca1c is not special; using —¢a1c is functionally equivalent to ex-
tending R with all rules f(z1,...,2,) =y [f(21,...,2,) = y] where f € Zipeory-

Regularity and Standardness. Regularity is a useful condition. An irregu-
lar LCTRS is not in general deterministic, polynomially solvable, or even com-
putable. Consider for example a rule f(z) — g(f(y),f(2)) [x = y*xzAy > 1Az > 1],
which quickly decomposes a natural number into its prime factors.

Still, there is some advantage in allowing irregular systems. For example, in
termination analysis a transformation might chain the two regular rules

f(z) = g(z — 1, input) [z > 0]
9(z,y) = f(y) [z > y]

into a single irregular rule:

f@) = fly) [r > 0Nz =12y

In addition, an irregular rule can be used to calculate a partial function, e.g.
div(z,y) — z [z * y = z], which cannot be easily defined otherwise. Note that
such a rule does not lead to undecidability.

Similar to regularity, standardness is convenient: in a standard system there
are no overlaps between —,u16 and —ca1.. Standardness is a natural property,
since symbols from Xipeory \ Zterms i terms are conceptually intended primarily
as a way to do calculations. We don’t use modulo reasoning: a non-standard rule
f(x+ 1) — r matches only terms of the form f(s+ 1), so not for instance f(3).
As with regularity, non-standard systems may arise during analysis, for example
when a rule is reversed. Note that even in standard systems, left-hand sides of
rules may contain values (or other symbols in Xey,s); while we often encounter
rules of the form f(z1,...,2,) — 7 [¢], this is not an innate property.

Overview. Compared to the rather hairy (Example 2) or infinite (Example 3)
systems obtained when encoding integer arithmetic and constraints in a normal
TRS, LCTRSs offer an elegant alternative. Although LCTRSs often have infinite
signatures, calculation steps make it possible to avoid infinite sets of rules.

Ezample 6. To demonstrate a situation where we should not use the integers as
an underlying set, consider the following short imperative program:

1. function main() { 5. X =x * 2;
2. byte x = input(; 6. }

3. while (x < 150) { 7. return x;

4. if (x == 0) x = 1; 8.}

Here a byte is an unsigned 8-bit integer. This program doesn’t terminate: input 0
gives an infinite reduction (with x changing from 0 to 1,2, 4, 8,16, 32, 64,128, 0).
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Using the ideas of [3], we might model this program as follows:

main — loop(input) loop; (z) — loopy(1) [z = 0]
loop(z) — loopy(x) [z < 150] loopy (x) — loopy(z)  [~(x = 0)]
loop(z) — return(z)  [~(z < 150)] loopy(z) — loop(x * 2)

As bytes are not unbounded, our underlying set is not Z. Rather, we consider
the set BVg of bit vectors of length 8, and let 7 map to corresponding notions of
addition, multiplication, comparison and equality (see SMT-LIB [1]). With this
theory, a reduction from start adequately simulates a reduction in the original
imperative program. Note that if we had naively translated the program to an
LCTRS over the integers, we could have falsely concluded (local) termination.

We can analyse systems on bitvectors in much the same way as we analyse
systems over the integers. We will see some ideas for this in Section 6.

4 Constrained Terms

As discussed in Section 3, there are good reasons why the definition of rewriting
requires that variables in a constraint are instantiated by values. But sometimes
you may want to know whether a term of a certain form rewrites. For example,
if we know that 2 < —3, this is enough to decide that sum(x) reduces to 0.

In this section, we will therefore consider constrained terms: pairs s [¢] of a
term s and a constraint ¢. Constrained terms are harder to rewrite and analyse
than normal terms, but sometimes the need may arise. For instance in rewriting
induction (see e.g. [4,9]) when proving that f(z) <* g(x,0) [z > 1], being able
to reason about the reducts of f(z) [z > 1] is very relevant.

To rewrite constrained terms, we must take several things into account. For
example, given a rule f(0) — 1, we should be able to reduce a constrained term
f(z) [z = 0], even though f(x) itself is not matched by the left-hand side. We
will also need to deal with irregular rules; given a rule f(x) — g(y) [y > ], we
should be able to reduce a constrained term f(x) [« > 3] to g(y) [y > 4], or at
least to an instance, like g(y) [t >3 Ay =z +1].

To begin, let us consider how to compare constrained terms. A substitution ~y
respects a constrained term s [p] if y(z) is a value for all z € Var(y) and [¢v] =
T. Two constrained terms s [¢] and ¢ [¢)] are equivalent, notation s [¢] & t [¢}], if
for all substitutions v which respect s [¢] there is a substitution § which respects
t [¢] such that sy = td, and for all 6 which respect t [¢)] there is a substitution
~ which respects s [p] such that sy = t4.

Ezample 7. Examples of constrained terms over the signature of sum are:

1. sum(z) [z > 3];
2.z+ylz>yA-(z=y) Az =23];
3.3+z[1>xAx+12>z]
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Constrained terms 2 and 3 are equivalent, as the following formulas hold in Z:

Ve,y(x >yA-(z=y)Axe=3)=T",z1>a' AN’ +1>2Ax=3Ay=2=2
V',z. (1> 2 AN/ +1>2)= Az, yz >yA-(z=y) Az =3Ny==2

It is clear that equivalence of two constrained terms is not always easy to tell.

To be able to modify constraints, we assume that Xjeory contains a symbol
A : [bool x bool] = bool with J the conjunction operator on the booleans, and
for all sorts ¢ a symbol =,: [¢ X ¢] = bool with J—, := A,m € Z,.n = m.

Rewriting Constrained Terms. We let s [¢] —caic t [p A2z = f(s1,...,5n)]
if s =C[f(s1,...,5n)] With f € Zineory \ Lterms, all s; in Var(¢)UVal, z a fresh
variable, and ¢t = C|z]. Additionally, s [p] —ru1e t [¢] if ¢ is satisfiable, s = C[lv]
and t = C[rv] for some rule [ — r [¢)] and substitution + such that:

— Dom(v) = Var(l) U Var(r) U Var(¢y)
— ~(z) is a value or variable in Var(y) for all z € LVar(l — r [¢])
— ¢ = (v) is valid (that is, for all § with ¢d valid also ¥4 is valid)

The relation — on constrained terms is defined as & -(—ca1c U —ru1e)- =
Ezample 8. With the rule f(0) — 1: f(x) [z = 0] = f(0) [true] —ry1e 1 [true].

Ezample 9. With the irregular rule f(z) — g(y) [y > z], we have: f(z) [z >
3~ flx) [ >3ANy > x| =rue 9@¥) [2 > 3Ny > 2] = g(y) [y > 4]. Similarly,
f(z) [x > 0] reduces with f(z) — g(y) [x = y+ 1] to f(y) [y > 0]. We do not
have that f(x) [true] — g(x —1) [true], as z — 1 cannot be instantiated to a value.

Ezample 10. Following on Example 5, we may reduce sum(x) [z > 2] as follows:

sum(z) [z > 2] 5 g & +sum(z + —1) [z > 2]
—rr+sum(y) [t >2ANy=x+ —1]
—rx+(y+sum(y+-1)) [z >2Ay =12+ —1]
—r T+ (y+sum(z)) [z >2Ny=az+-1Az=y+ —1]

The notion of reduction on constrained terms is intimately tied to the notion
of reduction on terms, as the following two theorems demonstrate:

Theorem 1. If s —x t then also s [true] —x t [true].

Theorem 2. If s [p] = t [¢] then for all substitutions vy which respect s [¢)
there is a substitution & which respects t [1] such that sy —x 0.

Thus, we have a notion of constrained terms and reduction thereof. We do not
consider these notions as basic; rather, using for instance Theorem 2, they can be
used in analysis to find properties of unconstrained terms in the system (think
for instance of an inductive proof that sum(z) > z if z > 0).

Determining whether a constrained term reduces, or what it reduces to, is a
difficult problem. In special cases (for instance, regular rules with linear integer
arithmetic) it is decidable, but in others we may have to resort to clever guessing.
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5 Comparison to Existing Systems

So, we have a new formalism. Is this truly more convenient or general than
existing formalisms? Here we will briefly study some formalisms from the liter-
ature, and sketch how they relate to the LCTRSs introduced here. However, a
comprehensive study of all relevant formalisms is beyond the reach of this paper.

5.1 Constrained TRSs from [9,12,14]

LCTRSs are based primarily on the constrained TRSs in [9,12,14]. Like our
LCTRSs, these systems have a separate theory signature, and a given interpre-
tation mapping J. The main difference is that they have no values or calculation
steps. Instead, these features are encoded in the terms and rules, with for exam-
ple the integers being represented as 0,s(0),s(s(0)), ..., p(0), p(p(0)), ...

Ezxample 11. The sum system is implemented as a CTRS with rules:

sum(z) — 0 [0 > z] O+y—y s(p(z)) = =
sum(s(z)) — sum(z) +s(z) [r > 0] s(z)+y—s(z+y) p(slz)) ==
p(z) +y — p(z +y)

Compared to their predecessors, LCTRS are far simpler to use: by having sym-
bols for all values and using calculation steps, systems are implemented much
more concisely (as demonstrated by sum). Moreover, the resulting systems are
easier to analyse. For example, note that this version of sum is not a constructor
system, and proving confluence or complete reducibility is difficult. Also, due to
the countable nature of terms, no finite CTRS can encode Example 12:

Ezample 12. Using sorts int, real and bool, and addition on the real numbers
denoted by +, we might represent the function n — X7 .\/n as follows:

sumroot(x) — 0.0 [0 > x]
sumroot(x) — sqrt(x) +. sumroot(z — 1) [~(0 > z)]

There does not seem to be an easy way to simulate CTRSs as LCTRSs or the
other way around. However, initial results suggest that results for CTRS [9,12,14]
easily extend to LCTRSs, and are moreover vastly simplified by the translation.

5.2 Integer Term Rewriting Systems

In Example 3 we saw a system somewhat like the integer term rewriting systems
in [8]. These ITRSs are innermost TRSs with an infinite signature X U X4,
where X;,; includes BOp = {+, —, , /, %, >, >, <, <,=,#, A, =} and moreover
true, false and all integers. R is defined as R U PD, where PD = {nom — k |
n,m,k € ZUB, o€ BOp | nom =k holds in Z and B} (e.g. 1 +2 — 3 € PD).

Ezample 13. An example ITRS in [8] has X' = {log, lif} and R consisting of:

log(z,y) = lif(x >y Ay >1x,y) lif (true, z,y) — 1 + log(x/y,y)
lif (false, z,y) — 0

Terms containing symbols >, A, + and / can be rewritten using the PD rules.
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We can model an ITRS as an LCTRS, which is finite if R is finite. ITRSs are
not defined with sorts, but sorts can easily be imagined. Indeed, there seems
little reason to analyse the behaviour of a term like log(true, 5 + false), and for
innermost termination (the primary area of interest for ITRSs) presence of sorts
makes no difference [7]. The only other issue is that some elements of BOp (/
and %) define partial functions, so cannot be modelled by calculations.

To define an LCTRS with the same terms and rewrite relation as a given
sorted ITRS (with sorts int and bool assigned in the obvious way), let Val :=
{true, false : bool}U{n :int | n € Z}, Xiepms := X UValU{/, % : [int xint] = int}
and Xipeory 1= Val U (BOp \ {/,%}). We use the expected interpretations for
Ziheory- Let R := RU{z/y — z [x = yxz], 2%y — z [x = y*xu+2zA0 < zAz < y|}.
Then —5 is exactly the reduction relation from the original ITRS. R is finite,
because —ca1c and the two irregular rules take over the role of —pp. Note that
the irregularity is not an issue for computability in this case.

Ezample 14. The system from Example 13 becomes the following LCTRS (ig-
noring the % symbol which does not occur in any rule):

log(z,y) = lif(x >yAy>1zy) lif(true,z,y) — 1+ log(z/y,y)
x/y — z [x=1yx* 2] lif (false, z,y) — 0

Comment: if, for whatever reason, we do want to analyse the original unsorted
ITRS, we can also do so with an LCTRS. In this case, we assign a single sort
term as suggested in Section 2, and let Zierm, = Z UB; we cannot use calculations
now, because all functions are partial, but can encode —pp with irregular rules.

Conditional ITRSs. Integer TRSs play a role in the termination analysis of
Java Bytecode employed in [13]. There, termination of JBC is reduced to termi-
nation of a conditional ITRS; rules look somewhat like the rules in LCTRSs:

log(z,y) = 1+ log(x/y,y) | x >yAy>1—"true
log(z,y) — 0 | =(z>yAy>1)—=*true

These systems are unravelled to ITRSs for analysis (giving the system from
Example 13). However, if the elements of X;,; are not root symbols of left-hand
sides of R, and / and % do not occur in the conditions, we can translate such
systems into LCTRSs immediately (replacing conditions by constraints), and
obtain a system where constraints are not encoded. We can prove that a CITRS
generates the same relation as its transformation to an innermost LCTRS.

As for the other direction, LCTRSs are not a special case of ITRS. Most
importantly, ITRSs have no native treatment of constraints. These have to be
encoded, and to for instance prove termination of even simple systems we need
far more powerful techniques than in the LCTRS setting. Moreover, ITRSs are
restricted to the integers. While Example 6 can be encoded, using rules like
loopy (z) — loop((x * 2)%256), ITRSs cannot represent for instance Example 12.
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5.3 Z-TRSs

Next, we consider a mixture of the ideas in [3,4,5,6].°> Z-TRSs are based on a
many-sorted signature ¥, which must include X, = {0,1 : int, — : [int] =
int, +,*: [int X int] = int}. Constraints are given by the grammar:

Cu=true|false|s=t]|s>t]|s>t|-C|CAC s, t terms over X

Validity of constraints is defined as expected. Rules are triples [ — 7 [¢] where
@ is a constraint, [ and r are terms with the same sort, and [ has the form
f(ly,...,1;). The left-hand sides may not contain any element of Xj,;. The
reduction relation is defined much like in LCTRSs, except that a substitution
v “respects” a Z-TRS rule [ — r [p] if all variables of sort int are instantiated
by (not necessarily ground) terms over X, and ¢ is valid. Note that symbols
2,3,... are not included in the signature; terms have forms like sum((1+1)+1).

Ezample 15. In [3] we see how a code snippet is translated to a Z-TRS:
while (x > 0 & y > 0) {
if (x > y) { while (x > 0) { x——; y++; } }
else { while (y > 0) { y—=; x++; } }

}

evaly(z,y) — evala(z,y) [x>0Ay>0A2 >y
evaly (z,y) — evals(z,y) [x>0Ay>0A=(x>y)
evaly(z,y) — evala(z + -1,y + 1) [z > 0]

evaly(z,y) — evali(z,y) [—(z > 0)]

evals(z,y) — evalg(z + 1,y + —1) [y > 0]

evalz(z,y) — evali(z,y) [—(y > 0)]

In fact, Z-TRSs are very close to our LCTRSs, but with a fixed theory signature.
Although there is no concept of “values”, there is no harm to internally replacing
ground terms over Y, by the corresponding value (in a tool, or when manually
rewriting terms), because the symbols in X;,; do not occur in any left-hand side.

For every Z-TRS, we can define an LCTRS which is roughly the same, modulo
calculation of integer values. We can do this as follows; let:

Yiheory == {n :int | n € Z}
U {true, false : bool, — : [int] = int, +,*: [int x int] = int, =, >, >
: [int X int] = bool, = : [bool] = bool, A : [bool x bool] = bool}
Yierms = (X \ Zing) U{n:int| n € Z}

Every Z-TRS rule is already a standard rule in this LCTRS, and every term in
the original Z-TRS is still a term.

Theorem 3. We can derive, for all ground terms s,t:

—if s >r t in a Z-TRS, and s _>ca1c s € Terms(Zierms U Ztheory, V), then
exists t' such that t =%, t' and s’ —3 t' in the corresponding LCTRS;

calc

5 The authors use simplifications of this formalism for different applications. For ex-
ample, multiplication is omitted, or custom symbols must have output sort unit.
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— if 8 —ru1e t in the corresponding LCTRS, and s’ € Terms(X,V) such that
s' —* 1. s, then there is a term t' such that ' —* .t and s’ = t' in the

calc calc

original Z-TRS.

Thus, results from LCTRSs typically extend to Z-TRSs. As with ITRSs, Z-TRSs
cannot model the behaviour of LCTRSs. Being fundamentally restricted to the
integers, they cannot easily represent Example 6, nor Example 12. An extension
of Z-TRSs, which admits all integers in the signature, can model a variation
of Example 6, as discussed in [6]. This analysis uses extra rules to “normalise”
integers to their range, e.g.

loopy () — loops(x * 2)
loops(z) — loops(xz — 256) [x > 256]
loop; () — loop(x) [z > 0256 > z]

5.4 Constrained Equational Systems

For a very different direction, let us consider a system from the further past.
In [11], a framework for constrained deduction is developed, which uses con-
strained terms and rules. Like the current paper, the interpretation of function
symbols (J¢) is not fixed, but assumed to be given by the user. There is no
notion of values, however. This fits with a typical usage of the formalism, where
the underlying model is the set of terms modulo some theory.

Ezample 16. We consider a constrained system with symbols x : [term x term] =
term, a, b : term, =ac: [term X term] = bool. The model Zier, is the set of terms
over {*,a, b}, where a, b and x are interpreted as themselves and =ac is interpre-
ted as equality on terms modulo AC (associativity and commutativity) of *.

Unlike LCTRSs, this formalism has no separate “term signature”: all function
symbols have a meaning in the model, and may occur in both terms and con-
straints. Rules have the form s — ¢ [¢] and are used for example to simplify
constrained terms (called constrained formulas) modulo an equational theory.

Ezample 17. In the signature from Example 16, we consider a rule (z *z) *xx —
a [-(x =ac a)], which matches modulo AC. The constrained formula z * (b * (b *
y)) =ac axb [z =ac b] is AC-equivalent to ((z*b)*b)*y =ac axb [r =ac b], and
since every instance of this formula matches the left-hand side of the rule, it can
be reduced to a * y =ac a* b [z =ac b]. This notion of reduction is called total
simplification. There is also a notion of partial simplification, where constrained
terms are reduced to pairs. This happens when a rule does not necessarily match;
for example the constrained formula zx (bx (bxy)) =ac a*xb [-~(z =ac y| reduces
to the pair a*xy =ac axb [-(x =ac yA(x*xx)*xx =4¢ (z+b)*xbA—(z =ac a)] and
((x+b)*xb)xy =ac cxb [-(x =ac Y) A=((x*2)xx =4c (b)) xbA (2 =ac a)].

There are many similarities between these equational systems and LCTRSs;
to a large extent they can be seen as non-standard LCTRSs. From this per-
spective, complete simplification is exactly constrained rewriting as we saw in
Section 4. We have no notion of partial simplification, because it fundamentally
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relies on the symbols from terms being moved into the constraint, but similar
techniques could be defined for the special case that X;eppms = 0.

However, LCTRSs do not allow reasoning modulo a theory, which alters fun-
damental properties like computability of reduction. Moreover, the systems from
[11] violate an essential rule in LCTRSs: logical terms reduce only to their value.
In the presence of rules like x + (y 4+ z) — y, many analysis techniques break.

Thus, while there is an overlap in expressability between these two for-
malisms, we do not claim to cover or improve on this style of constrained rewrit-
ing. The dynamics of the systems are too different, and so are their purposes:
where equational systems are designed for equational reasoning in logic, LCTRSs
are designed for analysing programs. In the rest of this section, we have seen how
LCTRSs relate to several formalisms which share this goal.

6 Analysing LCTRSs

Several times we have alluded to the ease of analysis in LCTRSs, so it is time
to give some indication of how this is done. Unfortunately, we cannot do this
justice, as there are many questions for analysis and little space. To give some
ideas of how common techniques extend to LCTRSs, we will now briefly study
some basic confluence and termination results.

6.1 (Weak) Orthogonality

Confluence is the property that whenever s —% ¢ and s —% ¢ there is some
w such that ¢ =% w and ¢ =% w. We will extend the common notion of
orthogonality, a property which implies confluence, to LCTRSs.

It is well-known that for any pair of terms which can be unified, there is a
most general unifier. Phrased differently, if s and ¢ have distinct variables, and
sy = ty, then there is a substitution § such that also s = ¢d, and any unifying
substitution v can be written in the form e o ¢ for some substitution e (here,
(e0d)(x) = 0(x)e if x € Dom(d) and e(z) otherwise). A substitution + respects
variables of a rule p if y(x) is a value or variable for all x in LVar(p). If v respects
variables of [ — r [p], then Iy — vy [¢] is also a rule.

Definition 1 (Critical Pair). Given rules p1 =11 — r1 [p1] and ps = 1o — 79
[p2] with distinct variables, the critical pairs of p1, p2 are all tuples (s, t, o) where:

— Iy can be written as C[l}], where I} is not a variable, but is unifiable with la;
— C # 0, or not p1 = p2 modulo renaming of variables, or Var(r1) € Var(ly);
— the most general unifier v of I} and ly respects variables of both py and pa;
— 17 A a2y is satisfiable;

— s=r1vy and t = (Cv)[r2y] and ¢ = 17 A 27.

The critical pairs for calculations of a rule p are all critical pairs of p with any
“rule” of the form f(z1,...,2n) =y [y = f(@)] with f € Zpeory \ Val.

Note that a rule f — g(z) has a critical pair with its own renamed copy:
(g9(x), g(y),true A true). This is necessary because fresh variables in the right-
hand sides of rules are a very likely source of non-confluence.



Term Rewriting with Logical Constraints 15

Ezxample 18. Consider the following rules:

(p1) f(z1,91) = g(@1 + 1) [21 > 9]
(p2) f(x2,y2) — g(2) [z2 < yo]
(p3) f(z3,y3) — g(y3) [r3 < y3]
(pa) f(wa, 04 +ya) — g(ya) [x4 > 0]

There are no critical pairs between p; and ps: although f(z1,y1) and f(z3,ys)
can be unified (with most general unifier [x; := z, z3 =z, y1 := vy, y3 := y]),
the formula > y A z < y is not satisfiable. On the other hand, p; and ps do
admit a critical pair: {(g(z+y), g(y),z > yAxz < y). None of the rules p1, p2 or p3
gives a critical pair with p4, since in the resulting mgu v we have v(y1) = = + v,
and thus this substitution does not respect the variables of p1, p2, p3. Finally, py
has a critical pair for calculations, (g(y), f(z,z),2 > 0Az =z +y).

Definition 2 (Weak Orthogonality). A critical pair (s,t, ) is trivial if for
every substitution v which respects s [¢| we have sy = ty. An LCTRS R is
weakly orthogonal if the left-hand side of each rule is linear (no variable occurs
more than once), and for any pair p1, p2 € R: every critical pair between py and
a variable-renamed copy of p2, and every critical pair of py for calculations, is
trivial. It is orthogonal if there are no critical pairs.

The following result follows much like its unconstrained counterpart:
Theorem 4. A weakly orthogonal LCTRS is confluent.
Ezample 19. sum is orthogonal, so by Theorem 4 this LCTRS is confluent.

6.2 The Recursive Path Ordering

To prove termination of a TRS, it suffices to show that its rules are included in
the recursive path ordering [2], a well-founded ordering > which is monotonic and
stable under substitutions. We will consider a simple variation of this ordering.
To deal with the possibly infinite number of values, we assume that Yipcory
contains a symbol 7, for all sorts ¢ occurring in Val, which is mapped to a well-
founded ordering >, in Z,. For example, we might take Jj,v= Azy.x > yAx > 0.
We also assume given a well-founded ordering t> on the symbols of Xcrms\Xtheory-
The recursive path ordering is defined by the following derivation rules:

=t p ]forsomeie{l,...,n}
g(t1, ..., m) with g € Xipeory or f > g, and for all i: s > t; [¢]
f(t1,...,tn), all s; = t; [¢] and for at least one i: s; = t; [¢]

€ Var(y)

1. s =t [¢] if one of the following holds:
(a) s,te Terms(theory, Var(y)), and ¢ = (s =tV s O t) is valid
(b) s = f(s1,...,5n),t = f(t1,...,tn) With f & Xipeory and each s; = t; [
c) s>t ][p], or s =t is a variable
2. s>t [¢] if one of the following holds:
(a) s,t € Terms(Emeory, Var(e)), and ¢ = s T ¢ is valid
(b) 5= f(s1,...,8n) With f € Zierms \ Ziheory and one of:
S
t=
t=
t
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Theorem 5. An LCTRS R is terminating if we can choose a suitable 1, for
all v, and some well-founded >, such that 1 = [¢] for alll — r [p] € R.

Proof. We can define a pair (=,>) of an equivalence relation and a compatible
ordering with —ca1c.C= and C[s] > C[t] if s - t [true] and s ¢ Terms(Xineory, D).
Having these, we observe first that > is well-founded, and second that if I > r [¢],
then Iy > rv [true] for all substitutions v which respect I — r [¢].

Ezxample 20. Taking n Jjpy mif n > m and n > 0, the sum system is terminating
by the recursive path ordering: For the first rule, sum(z) > 0 [0 > z] by 2(b)ii.
For the second, writing ¢ = =(0 > z), we have sum(z) = x+sum(z+ —1) [¢] by
2(b)ii because sum(x) = x [p] by 2(b)iv, and sum(x) > sum(z+—1) [¢] by 2(b)iii
because x = x + —1 [¢] by 2a, because ¢ = (z >z + —1 Az > 0) is valid.
Note that Example 3, with encoded constraints, cannot be handled by RPO.

Of course, this is a very basic version of the recursive path ordering. There
are various ways to strengthen the technique, but this is left for future work.

6.3 Observations

Both when analysing confluence and termination, a pattern appears: existing
techniques extend in fairly natural way, with the constraints handled by proving
validity of some formula. In other techniques we have studied but omitted here
(such as dependency pairs and inductive equality proofs) a similar pattern arises.

Importantly, this pattern does not depend on the kind of theory we use:
analysis takes a similar form whether we reason about integer arrays, reals or
bitvectors. The difference is in how to solve the resulting formulas. When auto-
matically analysing properties of LCTRSs, it seems natural to combine a dedi-
cated analysis tool with SMT-solvers for the theory of interest. This way, we can
immediately profit from the continuing improvement of the SMT-community,
without having to adjust our methods when a new theory is explored.

7 Conclusion

In this paper, we have studied logical constrained term rewriting systems.
LCTRSs offer an approach to program analysis for a large variety of languages
and analysis questions. Due to their similarity to normal term rewriting, we
can easily transpose the many powerful techniques of traditional term rewriting.
However, by natively handling constraints, we obtain a much simpler analysis
than if we were to encode the constraints in the rules.

In conclusion, LCTRS can be summarised with four keywords: They are
natural: values in the logic are modelled with constants, and calculations do not
need to be encoded. They are general: LCTRSs are not restricted to for instance
the integers, but can handle all kinds of theories. They are versatile: LCTRSs
can model a wide range of problems, from termination and overflow analysis to
program equivalence, and can represent examples from many existing formalisms
of constrained or integer rewriting. Finally, they are flexible: common analysis
techniques for term rewriting extend to LCTRSs without much effort.
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In the future, we aim to provide a tool to rewrite and analyse LCTRSs. Such

analysis would not necessarily need special treatment for the various theories: in
many cases (as we saw in Section 6), an LCTRS problem can be converted into
a sequence of SMT-queries which might be fed into an external solver.

In addition, we hope to extend translations of program analysis from e.g.

[3,9,13] with arrays and bitvectors, thus making use of the greater generality of
LCTRSs, and the power of SMT-solvers for various theories.
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A Omitted Proofs

In the text, proofs were omitted pretty much everywhere. Mostly, the proofs are
straightforward. They are included here for completeness.

A.1 Proofs for Section 4

Theorem 1. If s —% ¢ then also s [true] —x t [true].

Proof. Suppose s —py1e £, 850 s = C[lv] and t = C[rv| for some rule | — 7 [¢]
and substitution v which respects I — r [¢]. By definition of respects, Dom(vy) =
Var(l) U Var(r) U Var(p) and v(x) is a (variable or) value for all € LVar(l —
r [¢] and @7y is valid, so certainly ¢vd is valid for all § which substitute variables
by values, for which trued is valid. Thus, the conditions to apply constrained
term reduction are satisfied, and indeed C[lv] [true] —yme Clry] [true]

Suppose § —rcaic ¢, 80 s = C[f(s1,...,5,)] and t = Cfv] with v a value such
that [v] = [f(s1,--.,8,)]. All s; are values. Thus, s [true] —ca1c Clz] [trueAz =
f(s1,...,8,)] = C[v] [true].

To split the proof for the next theorem in more manageable chunks, let us
introduce two lemmas.

/

Lemma 1. If v respects s [¢], then for all s',¢" with s [p] = s
substitution ' such that sy = s''.

[¢'] there is a

Proof. By definition of s’ [¢'] = s [¢].

Lemma 2. If v respects s [¢] and s [p] —ru1e t [¢], then v respects t [¢] and
S —Frule -

Proof. By definition of —,4,1e we know that ¢ = ¢, so clearly v respects the
resulting constrained term. Furthermore, we can write s = C[l6] and t = C[rd]
for some rule I — r [¢] and substitution ¢ for which the following properties hold,
where 0 is the substitution on domain Dom(d) such that each dvy(x) = §(z)7y:

— Dom(d) = Var(l) U Var(r) U Var(d), so the same holds for d~y

— d(x) is a value or variable in Var(y) for all € LVar(l — r [c]), so for the
substitution d we have: if 6(x) is a value, then dv(z) = d(x)y is the same
value, and if it is a variable in Var(y), then because « respects ¢ also 6(z)y
is a value;

— = (cd) is valid, so since @~ is valid by definition of “respects”, also (¢d)y =
c(67) is valid

Thus, d7 respects the same rule, so sy —ru1e t7y as required.

Theorem 2. If s [p] =% t [¢] then for all substitutions v which respect s [¢]
there is a substitution § which respects ¢ [¢)] such that sy =g t7.
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Proof. Suppose s [¢] = t [¢] and 7 respects s [¢]. Then s [p] = " [¢'] (—calc
U —rute) t' [¥'] & t' [¢']. By Lemma 1, there exists some § which respects s [¢']
such that sy = s'6.

Suppose this was a —ru1 step. By Lemma 2, v also respects ¢’ and 80 —ru1e
t'5. By Lemma 1 again, there is a substitution y which respects 1), such that
t'd = ty. Thus, sy = s'0 —rue t'6 = tx.

Alternatively, suppose this was a —ca1c step, so s’ = C[f(s1,...,8,)] with
all s; values or variables in Var(y'), and ' = ¢’ Az = f(s) and t' = C[z]. All
$;0 must be values, so there is a value v with [v] = [f(s)7]. Let 6’6 U [z := v].
Then ¢ respects ¢’ [¢'] and §'d = C[f(s)d] —carc Cd[v] = ¢'6’. By Lemma 1
again, there is a substitution y which respects 1, such that ¢'6’ = ty. Thus,
57 =580 —ca1c t' = tyx.

A.2 Proofs for Section 5

Claim. When a sorted ITRS is transformed into an LCTRS, the resulting set
of terms and rewrite relation is the same as in the original.

Proof. XU X = Xierms U Xiheory, S0 the set of terms is clearly the same. Every
rule in R is in R, and every rule in PD is either an instance of a —¢a1. step, or
of one of the two irregular rules. Similarly, if C[f(s1,...,5n)] —ca1c C[v], then
C[f(s)] =r C[v], and similar for any instance of the two irregular rules (as the
variables z,y, z must all be instantiated with values).

In the text, we have also made a claim about conditional ITRSs. This is
perhaps somewhat bold, as it is never fully defined (either here or in e.g. [13])
what we might expect of an innermost conditional integer TRS. But let us make
some educated guesses.

CITRSs have a sorted signature X' U X;,;, where X;,; = BOp U Val with
BOp = {+,—,%,/,%,>,>,<,<,=,#,A\,=} and Val = {true, false}U{n|n €
Z}. The set of rules is R UPD, where PD ={nom — k| n,mk € ZUB, o€
BOp | nom = k holds in Z and B}. We assume the symbols are sorted, with
sorts int and bool.

The rules in R are conditional rules of the following form: I — r | s —=* true.
If the condition has the form true —* true, it is omitted. We moreover assume
that the elements of X;,,; are constructors with respect to R, and that s is built
using only function symbols in X;,; \ {/, %}. To avoid confusion with the | used
in set construction, we will alternatively denote the condition with: [ — r <
s =7 true.

The conditional innermost rewrite relation is defined as follows, defining R’
as the set {l = r |l — r <= s —* true € R}:

— AO = @

— Apy1 i ={ly > ry |l —r<=s—*"te R and v a substitution such that
all y(z) and all strict subterms of Iy are in normal form with respect to
R |[s—% t}
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- A, =U A

neN - n
— —gupp Is the relation given by: C[l] = grupp Clr] ifl — r € A,,.

Analysing this relation, we obtain:

Lemma 3. s —gupp t if and only if there are a context C, a rule | — r <—
q —* true and a substitution v such that:

s =Cl;

—t= C[r’}/] 5

— () is an integer or boolean for all x € Var(q);

— q7, interpreted as a constraint over Z and B (with the usual interpretations
of the functions) is valid

Proof. If s —pupp t, then s = C[ly] and ¢ = C[ry] for some | — r <= ¢ —*
true € RUPD, some context C' and some substitution v such that all v(z) and
all strict subterms of Iy are in normal form with respect to R/, which has the
property that gy —7 true.

Now, ¢v has the following property: every subterm is a functional term f(w)
with f € Xy, or a normal form ~(z).

Observing that terms which are in normal form with respect to R’ also do
not reduce with any A,, and that a term f(q1,...,q,) with f € X, cannot
root-reduce if some ¢; is not a “value” (integer or boolean), we see: ¢y can only
be reduced to true if all subterms which are normal forms are in fact values.
Thus: all y(z) with « € Var(q) are values.

Moreover, since a term f(q) € Terms(Xu:, V) can only be reduced by the
PD-rules, and these rules exactly calculate the value of a term over X;,;, we find
that ¢v, interpreted as a constraint over Z U B, must be valid. Thus, we have
one direction of the lemmal

For the other direction, we observe that —pp is contained in — 4,, because
the PD-rules do not carry conditions (or rather, they carry conditions true —*
true). We also note that if ¢ is valid when considered as a ground constraint,
then ¢y —%p true.

Thus, if | — r <= ¢ —™ true is a rule, and +y is a substitution such that ¢y
is valid, then Iy — rv € A,. This gives the other direction.

Now let us consider a translation to LCTRSs. We define Xiepms := 2 U Val U

{/,%} and Zipeory := Val U (BOp \ {/,%}. Let R:={l = r [¢] |l > r <

o= truetU{a/y = zz=yxz], 2%y — z [z =yxu+2AN0<2zAz <y}
With this transformation, we obtain the claim in the text:

Claim. When a sorted, conditional innermost ITRS is transformed into an in-
nermost LCTRS, the resulting set of terms and rewrite relation is the same as
in the original.

Proof. 1t is easy to see that the terms in this new LCTRS are exactly the terms
in the original ITRS. The claim follows quickly with Lemma 3.

Theorem 3. For all ground terms s, ¢:
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—if s »r tin a Z-TRS, and s —%,;. s’ € Terms(Eierms U Eiheory, V), then
exists ' such that t —%,,. ¢’ and s’ =7} t' in the corresponding LCTRS;

— if 8 —py1e ¢ in the corresponding LCTRS, and s’ € Terms(X,V) such that

s =% S, then there is a term ¢’ such that ¢ —%,;. ¢t and s’ =% t’' in the

original Z-TRS.

Proof. Suppose s —x t in a Z-TRS, so s = C[lv] and t = C[r~| for some rule
I — r [¢] and substitution v on domain Var(l) U Var(r) U Var(p) such that:

— y(z) € Terms(Xins, V) for all x € Dom(y) which have sort int, and must be
ground because s is ground
— oy is valid

Since I does not contain any symbols of X;,;, we must have: if Iy —

/

calc S

then s’ = 1§ with each v(z) —Z,;. d(z). But since —,1. has unique normal
forms, we then have: s’ —7,,_ Iyte, where v+« is the substitution on domain
Dom(7) with ytete (x) = () | cqre- We observe that v+« respects the LCTRS-

rule I — r [¢]: all y(z) are values for x of sort int (so certainly for all  occurring

in ) and since [D[q1,-..,qm]] = [D[v1,...,vm]] whenever ¢; has value v;, we
see that y*er is still valid. As ¢t = 7y we are done defining ¢’ = ryteic as clearly
t =gt and 8" =L Iyt 0ot

*

For the other direction, suppose s’ —7,;. s and s = ly for some rule | —
r [¢] and substitution v which respects this rule. Then, considering the inverse
relation of —¢a1c, the term s’ must have the form 1§ with v = §te. For those
x not occurring in I, we take a canonical representation, so 1 + (1 + (...)) or
—14(—=1+(...)) or 0. That way, J maps all variables of sort int to a substitution
over Y;,; as required. As we have t = rvy, we are done defining t' = rd (the
validity is easily seen to transpose).

A.3 Proofs for Section 6

The ideas in Section 6 correspond largely to similar results in the unconstrained
setting. Due to the presence of constraints a few aspects of the definitions and
proofs must change, but there are no great surprises (except perhaps in the
definition of = and > for the recursive path ordering). As mentioned in the text,
this section is primarily to show the way in which existing results extend to the
constrained setting, which is mostly very natural.

Weak Orthogonality In order to prove Theorem 4, we need the following
Lemmas:

Lemma 4. Let R be weakly orthogonal, and suppose we have rules p1 = 11 —
r1 [p1] and ps = la — ro [@2]. Suppose moreover that we have substitutions
v and § which respect p1 and ps respectively, a context C' and a non-variable
subterm ' of ly such that ly = C[l'] and I'y = 1506.

Then r1y = (C7y)[r2d].
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Proof. In the given situation, we have two options: either C' = O and the rules
are equal modulo renaming of variables and Var(ry) C Var(ly), or one of these
properties does not hold. In the first case, we rename the variables in py so the
rules are truly equal (we can do this provided we also rename the variables in
the domain of §). As I’ = I3 = Iy, the given statement I’y = [34 implies that
~(z) = 6(z) for all variables occurring in the left-hand side of the rule — which,
by assumption, are also all variables occurring in ry = r9. Thus, 71y = rd =
r20 = (Cy)[r20].

In the second case, we rename the variables in ps and d so the rules use
distinct variables; the variables being distinct, we may also merge v and 6. Thus
we are given that I’y = loy and must prove that r1y = (C7y)[r27]. For v, we may
assume it has a domain Var(ly)U Var(lo)U Var(r1)U Var(ry) U Var (1)U Var(es),
that all variables in Var(p1)U Var(pz) are mapped to values, and that both ¢y
and o7 hold.

We observe that unifiability of I’ and ls provides a critical pair {(rie, (Ce)[ra€,
1€ A pae), where € is a most general unifier. We extend e with e(x) = z for all
x € Dom(~y) which do not occur in the /;. By the definition of an MGU, we can
find a substitution 7 such that for all terms s with Var(s) C Dom(e): (se)n = sv.
In particular, this holds for 71,73, 1 and @y and the context C.

By weak orthogonality, we know that if 7 respects both r1e [p1€ A pa€] and
(Ce)[rae] [p1€ A @ae], then m1y = rien = (Ce)[rae]ln = Cylra7y] as required. It
remains to be seen that 7 indeed respects both constrained terms. So let = be a
variable in Var(pie A pq€); we must see that n(z) is a value. The truth of this,
however, is evident enough: if it were not the case, then ~(x) would not be a
value for some variable occurring in ¢1 or 2. We must also see that (p1eApae)n
is valid, but since this is exactly 17 A @27y and by assumption v respects both
rules, this is evident.

Lemma 5. Let R be weakly orthogonal, | — v [p] € R and v a substitution
which respects this rule, such that ly can be written as C[f(s1,...,8n)] with
[ € Ztheory \ Zterms and all s; are values.

Then rvy = (Cv)[v] where v is the value of f(s1,...,5n).

Proof. The proof of this is much the same as the proof of Lemma 4 (we can see
the calculation step as the second rule in this proof).

Now we can prove the main theorem:

Theorem 4. A weakly orthogonal LCTRS is confluent.

Proof. We will see that - is confluent, where -} is the parallel extension of
— . This implies confluence of —x, for if s =% ¢ and s —% ¢, then (because
— is included in -} ) there is some w such that both ¢ -* w and ¢ * w,
so (as b is included in —%) also t =% w and ¢ —% w as required. Confluence
of —4p holds if we have the diamond property: if s - ¢, ¢ then there is a w
such that ¢,q -t w. This, we will prove to be the case in a weakly orthogonal
LCTRS.
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Suppose s 4t and s -H>¢; we construct a suitable w with induction on s. If s
is a variable, then s = ¢t = ¢, and we are done choosing w := s as well. Otherwise
let s = f(s1,...,8n). If neither reduction is at the root, then t = f(t1,...,t,)
and ¢ = f(q1,...,qn) and each s; - t;, ¢;. By the induction hypothesis there
are wi, ..., w, such that each s;,t; 4> w;. Let w := f(w1,...,w,). Then both
t > w and ¢ b w. Otherwise, at least one of the reductions is at the root. We
can safely assume that this is the first of the two.

So suppose s =g t by a root-reduction and also s —p ¢. If the first is a
reduction with —¢,1¢, then s has a very specific form; either g = s or ¢ = ¢. In
either case we are quickly done. So, alternatively, let I — r [c] be the relevant
rule, with corresponding substitution v (so s = ly and t = rv and v respects
this rule). Let p1, ..., p, be the positions in s which are reduced in the reduction
s —b g. We can split {p1,...,pn} into {a1,...,ax} U{b1,...,bp_k}, where the
a; are positions which are also non-variable positions in [ and the b; are all other
positions. We can write s > s — ¢ where the first step reduces the positions
a; and the second the positions b;.

If £ > 2, then | can be written as C[l},1}] and for each i, either there is a
rule l; — r; [¢;] and a substitution §; which respects this rule such that I}y = ;0
(in which case we let ¢; := r;0), or liy can be written as f(s1,...,s,) with
f € Yiheory \ Zierms and all s; values (in which case we let ¢; be the value
of f(s)). By Lemma 4 or 5 respectively, t = rv both equals (Cv)[q1, 5] and
(C)[117, g2)- This can only be the case if each I}y = ¢; and Iy = rv. Thus, t = s,
and we are done choosing w := q.

If k =1, then [ can be written as C[I'] and either there are a rule [ — 7 []
and a respecting substitution § such that I’y = I§ (in which case we define
v := 7§), or I’y —ca1c v for some value v. By Lemma 4 or 5 respectively, then
t =ry = (Cv)[v] = ¢. Since we know that s’ —> ¢, it suffices once more to
choose w := q.

Finally, if £ = 0, then each of the parallel reduction steps takes place inside
the substitution. For each of the b; we can write: b; = x; - y;, with [, a variable
and (ljz,)|y, = Sb,- Let 0 be the substitution v, except with each v(l|,)y,
replaced by gp,. Then ¢ = [6. Moreover, since each §(z) is a reduct of y(x), the
substitution § respects any rule which ~ also respects. Choosing w := r§ we have
both t = ry b rd = w and ¢ = 1§ =% rd.

The Recursive Path Ordering For the recursive path ordering, we follow
the proof sketch in the paper. Thus, we first define an equivalence relation an an
ordering on unconstrained terms. Then, in Lemma 6 we prove that the relations
are indeed an equivalence relation and an ordering, but this is pretty much
routine. We then see that > is well-founded, which is similar to the corresponding
proof for the normal recursive path ordering, but with some simple additional
cases for terms with a root symbol in Yipeory. Then, we prove that —caic is
included in =, and —,41e in >. The latter has one tricky aspect: we cannot
define > to be monotonic. However, in Lemma 10 we will see that monotony is
satisfied if the left-hand side is not a ground logical term, which is all we need.
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Definition 3 (= and >).

1. s =t if one of the following holds:
(a) s and t are terms with the same sort in Terms(Xipeory, D) and [s] = [t]
(b) s=teV,ors=f(s1,---,8n), t = f(t1,...,tn) and each s; = t;,
2. s >t if one of the following holds:
(a) s,t € Terms(Zineory, D), and [s] >, t]
(b) s=f(s1,...,5n) with f € Xierms \ Xtheory and one of:
i. $; >t ors; =t for somei € {l,...,n}
. t = g(t1,...,tm) with either g € Xipeory or f > g, and for all i €
{1,...,m}: s>t
iti. t = f(t1,...,tn), there is some i with s; > t; and for all other i:

8; >t
(c) s=f(s1,...,5n) with f € Xiheory but s & Terms(Zheory, ), and:
—t = f(t1,...,tn), there is some i with s; > t;, and for all other i:
8; > t;, or

— t € Terms(Zineory, 0)
3. s>tifeithers=tors>t

Then (=,>) is indeed a pair of an equivalence relation and a compatible
well-founded ordering. Well-foundedness we will see separately, but as for the
other properties:

Lemma 6. = is transitive, symmetric and reflexive, > is transitive, and > - =
is included in >.

Proof. We first observe that if s € Terms(Xineory, ) and s = ¢, then ¢t €
Terms(Xiheory,0) and [s] = [t] even if case 1b was applied; this follows eas-
ily with induction. Then transitivity of = for all terms is easily proved with
induction on the definition of =. Symmetry and reflexivity are equally evident,
with induction on the definition.

For the other two properties, we prove the following: if s > ¢ > ¢, and one of
these is strict, then s > ¢. Note that we already know that if neither is strict,
then s > ¢ because s = q. We prove this by induction first on the derivation of
t > q, second by induction on the derivation of s > ¢.

Noting that terms in Terms(Xineory, #) only reduce with = or > to terms in
the same set, we observe: if s € Terms(Zipeory, D), then t,q € Terms(Zineory, 0)
and [s] > [t] > [q] with at least one strict; we are immediately done by transi-
tivity of >, (a relation in the underlying theory).

If ¢ € Terms(Xiheory,?) but this does not hold for s, then s > ¢ either
by repeated application of 2(b)ii or 2c. So we are done unless none of s,t,q €
Terms(Xiheory, 0). Consider why s > ¢.

If s > t by case 2(b)i, then s > ¢ because s; > ¢, so by the second induction
hypothesis and transitivity of = also s; > ¢, so s > ¢ by case 2(b)i.

If s > t by case 2(b)ii, then s = f(s) and t = g(t) with either g € Zpcory
or f>g,and s >t; for all i. If g € Xipeory, then t > g by case 1b or 2c. Either
way, h = g(q) with t; > ¢; for all 4, so s > ¢; by the first induction hypothesis,
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so s > g by case 2(b)il. If g ¢ Xpeory but t > ¢ by case 1b or case 2(b)iii, s > ¢
follows in the same way. The only alternative is ¢ > ¢ by 2(b)ii, in which case
q = h(q) with s > t > ¢; for all 4, so by the first induction hypothesis s > ¢;,
and either h € Yypeory or f > g > h. Since > is an ordering, it is transitive, so
s > q by the same case 2(b)ii.

In all other cases, s = f(s) and t = f(¢) and ¢ = f(q) with s; > t; > ¢;, with
at least one s; > t; or at least one t; > ¢;. By the first induction hypothesis, we
find that s; > ¢; and at least one s; > ¢;, and conclude with either case 2c or
case 2(b)iii.

We must see two more things: first, that the ordering we define is well-
founded on unconstrained terms, and second, that orienting the rules actually
implies that s > ¢t whenever s —, 416 t, and s =t whenever s —¢a1¢ t.

Lemma 7. > is well-founded.

Proof. This holds if we can see that all terms s are terminating, that is, that
there is no reduction s > s; > s9 > .. ..

We first observe: every variable is terminating. This is because variables are
minimal with respect to >.

We then note: every element of Terms(Zineory, ) is terminating. We prove
this by induction on s € Terms(Xineory, D) by [s], ordered with the relevant >,.
The proof is trivial, noting that if s > ¢ then only 2a can be applicable, so t also
must be ground, must have the same sort, and s 7, t.

Observing that = and > are compatible, termination of some term s implies
termination of all =-equivalent terms. Thus, fixing some n, we can use induction
on (s1,...,8,) with all s; in the set of terminating terms, ordered by the product
extension of > but considered modulo =.

Then we see: every term of the form f(s) with f € Xyeory is terminat-
ing if all s; are, as we prove individually for all f by induction on s;. f(s) is
terminating if all its reducts are; but the reducts of f(s) are all either terms
in Terms(Xineory, ), which case we are done, or have the form f(t) with each
s; > t; and at least one s; > t;, in which case the induction hypothesis suffices.

What remains are terms of the form f(sq,...,s,) with f € Xierms \ Ztheory-
We will prove that all terms of this form are terminating if all s; are terminating,
ordered first by f with > and second by (s1, ..., s,) ordered by the product of >,
modulo =. A term is terminating if all its reducts are. So suppose f(s) > t. We
prove that ¢ is terminating by a third reduction, on the derivation of f(s) > t.
There are only three possibilities:

— some s; > t: whether s; > t or s; = t, we obtain termination of ¢ from
termination of s;;

—t=g(t1,...,tn) with s > t; for all ¢, and either f > g or g € Xipeory; by the
third induction hypothesis all ¢; are terminating, so t is terminating by the
first induction hypothesis if f > g, and as we saw before if ¢ ¢ Zieory;

— g=f(t1,...,t,) and for all 4, s; > t;, so all ¢; are terminating and 8 >4 t;
we complete with the second induction hypothesis.
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Next, we observe the relation between =, > and —%.
Lemma 8. If s —ca1c t then s = t.

Proof. By induction on the size of s. If the reduction occurs at the root, then
s € Terms(Xineory,0) and t is its value, so clearly [s] = [¢]. If the reduction
occurs in a subterm, we use case 1b and the induction hypothesis.

Lemma 9. Ifl > r [¢]| and v respects | — r [p], then Iy > 1.

Proof. By a shared induction on the derivation of I > 7 [p] or | > r [¢] we prove
two things:

— if I > r [¢] and y(z) is a value for all z € Dom(yp) and ¢y is valid, then

Iy >ry
—if I = r [¢] and () is a value for all z € Dom(yp) and ¢~y is valid, then

Iy >ry

Suppose first that [ > 7 [¢] by case la, so [ and r are terms with the same
sort in Terms(Xineory, Var(yp)) and ¢ = (I; = r; VI; O ry) is valid. Validity of
this formula implies that it holds for v (after all, all variables in the formula are
in Dom(y), so are mapped to values by ), so since ¢7 is true, we must have
validity of l;v = r;y V ;v 3 ryy. That is, either [l;4] = [riy] holds, in which
case l;y = ry7, or [l;v] > [riv], in which case l;y > ri7.

Alternatively, suppose | > r [¢] by case 1b, so | = f(l1,...,l,) and r =
g(ri,...,ry) and each I; = r; [¢]. By the induction hypothesis, each I;v > r;y. If
all these are =-equivalences, then Iy = rv by case 1b of the definition of = / >,
otherwise Iy > rv by case 2(b)iii.

If I = r [p] because | = r [p], then immediately Iy > ry by the induction
hypothesis.

We move on to the case where [ > r [¢]. If this was derived by case 2a, then
validity of ¢ = [ O r implies that [Iv] > [rv], so we obtain that Iy > ry by
case 2a of the definition of >. In each of the cases 2(b)i, 2(b)ii or 2(b)iii, we
use the induction hypothesis and the corresponding case in the definition of >.
Finally, if I > r [] by case 2(b)iv, then r € Var(yp) so rv is a value, so ly > ry
by case 2(b)ii.

Now, we are pretty much ready to obtain Theorem 5, but need one last step:
monotonicity of >. Unfortunately, > is not actually monotonic. For example,
2 > 1 but 3 -2 % 3 — 1. Fortunately, we do not need full monotonicity.

Lemma 10. If s > t and s ¢ Terms(Xipeory,0), then C[s] > C[t] for any
context C'.

Proof. We prove this by induction on the size of C, noting that whatever C' is,
C[s] ¢ Terms(Xineory, D). We use cases 2(b)ii or 2¢ if ¢t € Terms(Xipeory, ?), or
cases 2(b)iii and 2c¢ otherwise.
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Now, we are ready to combine the results and prove that the recursive path
ordering can indeed be used for termination!

Theorem 5. Given an LCTRS R such that for all [ — r [¢] € R we can prove
I = r [¢] for some choice of 7, and . Such an LCTRS is terminating.

Proof. We will prove that s —ru1e ¢ implies s > ¢ and s —ca1c t implies s =
t. Since > is well-founded, = and > are compatible, and —..1. is evidently
terminating (so any infinite reduction must have infinitely many —,ye steps),
we are done. So suppose § —pu1e ¢, that is, s = C[ly] and t = C[rv] for some
context C, rule | — r [¢] and substitution v which respects ¢. By Lemma 9,
the property ! = r [p] implies Iy > r+. Since the root symbol of I must be in
Zterms \ Ztheory, We have by Lemma 10 that C[iy] > Clry].



