
Implementing a Formally Verifiable Security Protocol
in Java Card

Engelbert Hubbers, Martijn Oostdijk, and Erik Poll

Nijmegen Institute for Information and Computing Sciences, University of Nijmegen,
P.O. Box 9010, 6500GL, Nijmegen, The Netherlands
{hubbers,martijno,erikpoll}@cs.kun.nl

Abstract. This paper describes a case study in refining an abstract security pro-
tocol description down to a concrete implementation on a Java Card smart card.
The aim is to consider the decisions that have to be made in the development of
such an implementation in a systematic way, and to investigate the possibilities
of formal specification and verification in the design process and for the final
implementation.

1 Introduction

Security protocols play a crucial role in pervasive computing, e.g. in ensuring authenti-
cation of different devices communicating over networks, or encryption of communica-
tions between these devices. There has been a lot of work on reasoning about security
protocols over the past years, for example BAN logic [1] or state exploration based
analysis using model checkers [2]. Still, there is a big gap between the abstract level
at which such protocols are typically studied and the concrete level at which they are
implemented. This is unsatisfactory since ultimately we are interested in properties of
the concrete implementation.

This raises several questions: Which choices have to be made in the process of
implementing a protocol and how do these affect the security of the implementation?
Which properties of the abstract description also hold for a concrete implementation?
What additional properties have to be worried about if for instance one of the agents
participating in the protocol is running on a smart card and can therefore be subject to
sudden loss of power at any moment?

Our aim is to investigate possible notations, techniques, and tools that can help in
answering these questions. Rather than trying to make more precise what is meant by
“the security of an implementation”, the approach taken in this paper is to consider the
kind of properties that we know how to specify and verify with today’s tools and to see
how these can contribute to secure protocol implementations.

This paper discusses a case study in refining a security protocol from the abstract
description down to an actual implementation, where one of the agents is implemented
on a smart card, using Java Card, a “dialect” of Java for programming smart cards.
We investigate the choices that have to be made in this process by looking at formal
descriptions of the protocol at different levels of abstraction and the properties we want
to specify and verify.

D. Hutter et al. (Eds.): Security in Pervasive Computing 2003, LNCS 2802, pp. 213–226, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

214 Engelbert Hubbers, Martijn Oostdijk, and Erik Poll

abstract protocol

refinement 1: extending

��
refined protocol 1

refinement 2: input enabling

��
refined protocol 2

refinement 3: smartcard specific

��
refined protocol 3

implement

��
formally specified Java (Card) implementation

Fig. 1. Refinement overview

The relation between the abstract protocol description and the final Java implemen-
tation is shown in Fig. 1. Our long term goal is to prove that the implementation of the
protocol ensures the security properties we are interested in. For the moment we have
to content ourselves with

– accurately specifying the different refinements that lead from the abstract protocol
to the implementation and making the design decisions underlying these refine-
ments explicit; this is done in Section 3.

– using the formal specification language JML (Java Modeling Language [3]) and
two tools that support JML, namely the runtime assertion checker for JML [4] and
the static checker ESC/Java [5], to ensure that the Java code correctly implements
the final refinement of the protocol; this is done in Section 4.

Section 2 first describes the abstract protocol that we want to implement.

2 The Abstract Protocol

For this case study we use the protocol for bilateral key exchange (BKE) with public
key described in [6, § 6.6.6]. This protocol allows two agents to agree on a session key.
One of the agents will be implemented as a so-called smart card applet, i.e. a program
executing on a smart card. It could, for example, be running on a mobile phone SIM or
a credit card. The other agent will be an off-card application, communicating with the
smart card applet via a smart card reader and possibly some network connection. The
protocol consists of three messages. In conventional notation for security protocols it
reads as follows:

Implementing a Formally Verifiable Security Protocol in Java Card 215

1. B → A : B, {Nb, B}Ka

2. A → B : {f(Nb), Na, A, K}Kb

3. B → A : {f(Na)}K

Here A and B are the two agents, Na and Nb are the nonces (challenges) from A and
B, and Ka and Kb are the public keys of A and B, respectively. The function f is a
hash function and {. . .}K denotes the data . . . encrypted using key K .

Figure 2 presents an alternative description of the protocol as two simple finite au-
tomata, one for each agent. (These automata are almost identical, but in the course of
introducing more implementation details the automata for the two agents will become
different.) Initial states are indicated by extra circles. All transitions are labeled with
messages and either a ?, in case of an incoming message, or ! in case of an outgoing
message. This is standard CSP notation.

Msg2Sent

InitialState

Msg3Received

Msg1Received

Msg1?

Msg2!

Msg3?

Principal A

InitialState

Msg2Received

Msg1Sent

Msg3Sent

Msg1!

Msg2?

Msg3!

Principal B

Fig. 2. Abstract BKE protocol

We used Casper [7] in combination with the model checker FDR2 [8] to prove that
this protocol does indeed ensure mutual authentication and secrecy of the session key.

The abstract protocol only describes the initial handshake between A and B that es-
tablishes a session key. It does not say how this session key is actually used afterwards.
For an actual implementation we do of course want to use the session key to encrypt
subsequent communications between A and B. Therefore we extend the protocol as
follows:

1. B → A : B, {Nb, B}Ka

2. A → B : {f(Nb), Na, A, K}Kb

3. B → A : {f(Na)}K

4. A → B : {KeyOK}K

5. B → A : {Msg . . .}K

6. A → B : {Msg . . .}K

...

216 Engelbert Hubbers, Martijn Oostdijk, and Erik Poll

2n. B → A : {Msg . . .}K

2n + 1. A → B : {Msg . . .}K

2n + 2. B → A : {End}K

Here KeyOK is an acknowledgment message sent to agent B in order to make sure that
B knows he is allowed to send regular messages. This message is not really needed: if
agent A would simply start to send a regular message using K , agent B could know
that the suggested key has been accepted. The message End ends the session. This
extension leads to the automata in Fig. 3. The modifications to the previous diagram are
highlighted.

InitialState

Msg1Received

Msg2Sent

Msg3Received

KeyEstablished

Msg1?

Msg2!

Msg3?

KeyOK!

Msg! Msg?

End?

Principal A

InitialState

Msg1Sent

Msg2Received

Msg3Sent

KeyEstablished

Msg1!

Msg2?

Msg3!

KeyOK?

Msg! Msg?

End!

Principal B

Fig. 3. Extended BKE state-transition diagram

3 Refinements

3.1 Anything That Can Go Wrong . . .

Several things can go wrong during a protocol run:

1. We can get an unsolicited message. For example, agent A could be in its initial state
and receive message1 Msg3? from agent B, whereas it is expecting Msg1?. In this
case we say that the agents are “out of sync”, which is something that could happen
as a consequence of messages being lost. Note that Fig. 3 does not specify what
should happen if this situation occurs.

2. An exception may be thrown while processing expected messages. For instance,
an agent may receive an incorrectly encrypted message. For example, agent B
could receive a first response message of agent A that is not of the required form
{f(Nb), Na, A, K}Kb

.

1 We assume that the messages are labeled so it is clear which message is received. In the Java
Card implementation this is typically done by means of the so-called instruction byte.

Implementing a Formally Verifiable Security Protocol in Java Card 217

3. An agent may fail to receive any message at all, due to a basic failure of the com-
munication channel between the two agents.

Decision 1 1. Receiving an unsolicited message ends the current session, i.e. an agent
receiving an unsolicited message will move to its initial state. The only exception
to this is if Agent A receives an unsolicited message Msg1?; in that case a new
session will immediately start and Agent A will go to state Msg1Received.

2. In case an exception is thrown, for instance when an agent receives an incorrectly
encrypted message, the agent will go back to its InitialState (and sends a
special message XcB! back to the other agent).

3. An agent noticing a failure of the communication channel will go back to its
InitialState.

These decisions result in the new state-transition diagrams given in Fig. 4.

InitialState

Msg1Received

Msg2Sent

Msg3Received

KeyEstablished

Msg1?

Msg2!

Msg3?

Msg1?

Msg1?

Msg1?

KeyOK!

Msg! Msg?

Msg1?

End?

XcB?XcB!

Principal A

InitialState

Msg1Sent

Msg2Received

Msg3Sent

KeyEstablished

Msg1!

Msg2?

Msg3!

KeyOK?

Msg! Msg?

End!

XcB?XcB!

Principal B

Fig. 4. Extended BKE state-transition diagram with exceptional behavior included

In order to keep these diagrams readable, two abbreviations are introduced. First,
dummy states are introduced (indicated in Fig. 4 as the white states in the upper cor-
ners). Such a dummy state is to be seen as an abbreviation for all states. So, for example,
from each state we have a transition to InitialState labeled XcB?. Without the
upper right dummy state our diagram would be cluttered with five extra arrows.

Second, the label XcB? is an abbreviation for “all other messages”, i.e. all pos-
sible messages that are not mentioned explicitly in the diagram. For example, con-
sider the state Msg2Sent of agent A in Fig. 4. Two outgoing transitions, labelled with
Msg3? and Msg1?, are drawn from this state. By the convention discussed above,
there is also an implicit transition to InitialState labeled XcB?. Here XcB?
now stands for any message other than Msg3? and Msg1?. So, from Msg2Sent
we can move to Msg1Received by Msg1?, to Msg3Received by Msg3?, and
to InitialState by any other message (i.e. Msg? or End? is received.

218 Engelbert Hubbers, Martijn Oostdijk, and Erik Poll

3.2 Initialization Phase

Before the protocol can be used, some initialization has to be performed: each agent
has to get its private and public key, and has to know the public key of the other agent.
All diagrams above start in the InitialState in which we assume the agents know
all the relevant keys. In an actual implementation we will have to take care of this
initialization phase.

PreBKE

InitialState

Issue!

Set?Status!

Status!

Principal A

PreBKE

InitialState

Issue!

Set!Status?

Status?

Trusted Principal

Fig. 5. Initialization phase

To model this, the automata should be extended with the automata of Fig. 5. Notice
how this affects the initial state of the automaton. The initialization phase involves com-
munication with another agent, some trusted principal that tells agent A the public keys
of the agents that the applet should be able to communicate with later on. We assume
the initialization takes place in a trusted environment, and the smart card applet will
ensure that initialization can only take place once by toggling a personalization flag.
For the sake of the presentation, we will avoid talking about this PreBKE state in the
diagrams below. However, in the JML specifications for the actual code we present later
on it will turn up again.

3.3 Applet Selection and Persistent vs. Transient Memory

Java Card smart cards are multi-application smart cards, which means that several ap-
plets can be installed on one smart card. As a consequence, before we can communicate
with a Java Card applet on a smart card, we tell the smart card which applet we want to
communicate with. This is done by sending a select command to the smart card.

Decision 2 If the card has been issued, the resulting state after a select command is
always InitialState. If the card has not been issued, the state will be PreBKE.

There are two kinds of memory available on a smart card: there is persistent memory,
EEPROM, which keeps its value if the card has no power, and there is transient memory,
RAM, which loses its value as soon as the power supply to the smart card is interrupted.
By default, all objects are allocated in persistent memory, but an applet can choose to
allocate some fields in transient memory. Such fields will be reset to default initial value,
e.g. 0 for numerical fields, by the smart card operating system when the card powers
up.

Implementing a Formally Verifiable Security Protocol in Java Card 219

Decision 3 All session-oriented information such as nonces, the state of the protocol,
and the session key are kept in transient memory. The other information like the card’s
id, public keys and the personalization flag is stored in persistent memory.

3.4 Card Tears

A smart card applet can suddenly lose power due to a so-called card tear, e.g. when a
card is removed from a card reader (or, in the case of a GSM SIM, when the battery
of the mobile phone runs down). What should be the behavior of the smart card applet
implementing agent A when a card tear happens? Of course, the applet will not be
able to do anything after the card tear happens, as it will stop executing, but it can do
something the next time the smart card powers up again and the applet is selected once
again.

Decision 4 It follows from Decisions 2 and 3 that after a card tear, the subsequent
powering up, and selection of the applet, the new state is InitialState and of
course all the transient memory is erased. This means that any session in progress is
closed.

Figure 6 later on makes these issues explicit. We have introduced two real states,
CardInserted and CardReady, and one dummy state. As before, the dummy state
can be seen as a union of all real states. So, the CardTear transition from this new
dummy state to the state CardInserted can be taking from any state in the diagram.
The name CardInserted may seem strange. The CardTear transition does not
mean that after a card tear this automaton goes immediately to CardInserted. As
soon as a card tear happens, the current session or the current automaton is stopped
completely. Nothing will happen until the card is re-inserted again. In particular no
transitions can be triggered during a card tear. Therefore this CardTear transition is
only triggered at the re-insertion.

When the card is re-inserted the powering up takes place. In particular the terminal
resets the card. The card responds to this by sending an Answer to Reset (ATR). After
this the card is ready and waiting for a select command from the terminal.

3.5 Command-Response Pairs

Communication with a smart card uses the ISO7816 protocol, in which the terminal acts
as a master and the smart card as a slave. The terminal sends commands, to which the
card answers with a response. The messages sent between terminal and smart card are
called APDUs (Application Protocol Data Unit) in ISO7816, which are just sequences
of bytes. In our protocol agent A is implemented as a smart card and B as an application
with access to the card terminal.

This means that all outgoing messages from A need to be triggered by an incoming
message from B. And vice versa all incoming messages need to be followed by an out-
going message. Of course it would be possible to let agent A respond to all messages
from B by sending a status word only. However, it seems more efficient to fill the re-
sponse APDUs with the expected answers and a status word. For instance Msg1 will be

220 Engelbert Hubbers, Martijn Oostdijk, and Erik Poll

implemented as a command APDU and Msg2 will be implemented as the correspond-
ing response APDU.

This choice has consequences for the states in the applet. After receivingMsg1? the
applet will be in the state Msg1Received. However, before it tries to do anything else
it will try to send back Msg2!. If this succeeds the resulting state will be Msg2Sent.
If this fails the resulting state will be InitialState. In particular, this means the
applet can never remain in state Msg1Received for any length of time, as the tran-
sition to this state –by a command APDU– will always be followed immediately by
another transition out of this state –by the matching response APDU. This means that
it is no longer possible for any incoming unsolicited message to be received in this in-
termediate state Msg1Received. Technically this means that some of the arrows in
the diagram for agent A can now be omitted. However, because we used dummy states
in our diagrams we do not see this in our representation. Only the interpretation of the
notion of dummy state is weakened slightly.

Decision 5 We need one extra response APDU Status!: it will act as a response to
SelectApplet?, End? and XcB?.

Below are the command-response pairs that may occur.

Commands Msg1? Msg3? Msg? End? XcB? SelectApplet?
Responses Msg2! KeyOK! Msg! Status! Status! Status!

XcB! XcB! XcB!

The way we implemented this affects the meaning of the message Msg!. Although it
still appears in the diagram for principal A, it is now restricted to being used as an
answer to the Msg? message. The applet will no longer be able to send Msg! on its
own initiative! Furthermore, adding the necessary Status! response on the applet
side implies also adding Status? on the terminal side.

Obviously the changes we have discussed here have an impact on the protocol as
we presented it earlier. We need to add a single line:

2n + 3. A → B : {Status}K

Fig. 6 shows the corresponding state-transition diagram.

4 Using JML

This section considers the use of the Java Modeling Language (JML, see [3]) and tools
that support JML to ensure that our Java (Card) implementation correctly implements
the final refinement of the protocol discussed in the previous section. JML is a specifi-
cation language that can be used to formally specify the behavior of Java programs.

4.1 JML Specifications

Fortunately, state-transition diagrams describing the required behavior of the agents can
easily be translated into JML. (The only problem is how to deal with specifying the card
tear mechanism; this is discussed in Section 4.4.)

Implementing a Formally Verifiable Security Protocol in Java Card 221

InitialState

Msg1Received

Msg2Sent

Msg3Received

KeyEstablished

CardReady

CardInserted

Msg1?

Msg2!

Msg3?

Msg1?

Msg1?

Msg1?

KeyOK!

Msg! Msg?

Msg1?

End?

XcB?XcB!

ATR!

SelectApplet?

CardTear?

Status!

Principal A

InitialState

Msg1Sent

Msg2Received

Msg3Sent

KeyEstablished

CardReady

CardInserted

Msg1!

Msg2?

Msg3!

KeyOK?

Msg! Msg?

End!

XcB?XcB!

CardTear?

ATR?

SelectApplet!

Status?

Principal B

Fig. 6. Extended BKE state-transition diagram with exceptional behavior, card tear recovery, and
paired APDUs included

In order to describe the rest of the diagram in Fig. 6 we use two instance vari-
ables. Namely the instance variable personalized, stored in persistent memory,
that keeps track of whether the card has been issued or not, and the instance variable
bke_state[0], stored in transient memory, that records the state in the protocol. (In
Java Card only arrays can be allocated in transient memory; therefore bke_state is
a transient array of length 1.)

The diagrams of Figures 5 and 6 can be expressed by a combination of JML invari-
ants, constraints, and method specifications.

In JML, as is usual, invariants are predicates which should be established by the
constructor and preserved by the methods, i.e. invariants should hold after an invo-
cation of a constructor, and both before and after any method invocation). E.g. the
invariants in the JML specification below give the possible values of the applet state
bke_state[0], and the relation between this state and the personalized flag.

In JML constraints are relations that should be respected by all methods, i.e. the
pre- and post-state of any method invocation should be in the relation specified by a
constraint. E.g. the constraint in the JML specification below specifies that once a card
has been personalized, it will remain personalized forever.

/*@ invariant
@ bke_state[0] == PRE_BKE || bke_state[0] == INIT ||
@ bke_state[0] == MSG1_RECEIVED || bke_state[0] == MSG2_SENT ||
@ bke_state[0] == MSG3_RECEIVED || bke_state[0] == KEY_ESTABLISHED;
@ invariant personalized <==> (bke_state[0] != PRE_BKE);
@ constraint \old(personalized) ==> personalized;
@*/

Based upon the automata in Fig. 5 and 6, and given these constraints and invariants, it is
easy to give JML specifications for the methods that specify the desired flow of control.
Below we give the method specification of the process method.

222 Engelbert Hubbers, Martijn Oostdijk, and Erik Poll

/*@ behavior
@ requires true;
@ ensures (\old(bke_state[0]) == PRE_BKE ==>
@ (bke_state[0] == \old(bke_state[0]) || bke_state[0] == INIT));
@ ensures (\old(bke_state[0]) == INIT ==>
@ (bke_state[0] == \old(bke_state[0]) || bke_state[0] == MSG2_SENT));
@ ensures (\old(bke_state[0]) == MSG2_SENT ==>
@ (bke_state[0] == \old(bke_state[0]) ||
@ bke_state[0] == KEY_ESTABLISHED ||
@ bke_state[0] == INIT));
@ ensures (\old(bke_state[0]) == KEY_ESTABLISHED ==>
@ (bke_state[0] == \old(bke_state[0]) || bke_state[0] == INIT ||
@ bke_state[0] == MSG2_SENT));
@ signals (Exception) (\old(bke_state[0]) == PRE_BKE ==>
@ bke_state[0] == PRE_BKE);
@ signals (Exception) (\old(bke_state[0]) != PRE_BKE ==>
@ bke_state[0] == INIT);
@*/
public void process(APDU apdu) throws ISOException

The method specification consists of a precondition (indicated by requires), post-
conditions for normal termination (indicated by ensures), and postconditions for ab-
normal termination (indicated by signals). All ensures clauses should be con-
sidered together as a logical conjunction. The first ensures clause is specifically for
the initialization phase. The signals clauses should be considered as a conjunction
as well. There are two clauses here because we need to make a distinction between
whether a card has been issued or not.

Below we give the specification of the receiveMsg1 method. On the top level
we see new keywords also and exceptional_behavior. The also splits the
specification into two parts. The distinction is based upon the value of bke_state[0]
on entry of the method. If this state is PreBKE the card has not been issued yet and
hence an exception must be thrown and the resulting state will still be PreBKE. In any
other state we allow this message to come in. If the receiving succeeds, the resulting
state will be Msg1Received, otherwise an exception is thrown and the applet will
go to InitialState. Note that this method has as a postcondition that the state
will be Msg1Received. This state does not appear in the specification of process.
This is because the process method will always call sendMsg2 and this method
will always change the state –either to Msg2Sent or to InitialState– before
process terminates.

/*@ behavior
@ requires bke_state[0] != PRE_BKE;
@ ensures bke_state[0] == MSG1_RECEIVED;
@ signals (Exception) (bke_state[0] == INIT);
@ also
@ exceptional_behavior
@ requires bke_state[0] == PRE_BKE;
@ signals (Exception) (bke_state[0] == PRE_BKE);
@*/
private void receiveMsg1(APDU apdu) throws ISOException

Implementing a Formally Verifiable Security Protocol in Java Card 223

4.2 Runtime Checking with the JML Tool

The JML runtime assertion checker [4] takes as input Java source files annotated with
JML specifications. It augments the source files with runtime checks based on the JML
specifications so that all invariants, constraints, pre- and postconditions are checked at
runtime and any violation result in a special exception being thrown.

We used this tool to check the Java Card code of our applet against our JML spec-
ification. To do this we could not execute the code on an actual smart card, but we had
to use a smart card simulator instead. (The reason for this is that the runtime assertion
checker uses some Java API classes that are not part of the more restricted Java Card
API, and are consequently not available on Java Card smart cards.) The smart card sim-
ulator we used was Sun’s Java Card Workstation Development Environment (JCWDE).

In this setup we were able to find quite a few mistakes in our JML specification.
Typically these errors were caused by forgetting to specify some of the implicit trans-
actions from Fig. 6.

4.3 Static Checking with ESC/Java

ESC/Java [5], the ‘extended static checker’ for Java is a tool developed at Compaq SRC
for automatically checking JML-annotated code2. The tool uses a theorem prover to
automatically verify that assertions in Java code are correct, without any user interac-
tion. The tool is neither sound nor complete, i.e. it can warn about possible violations
of assertions that cannot happen, and fail to warn about possible violations of asser-
tions that could happen. Still, the tool is very useful for debugging Java(Card) code and
formal specifications, as it can provide quick feedback pointing out possible mistakes,
especially since, unlike for runtime assertion checking, no test scenarios are needed for
using ESC/Java. ESC/Java has already been used with great success in debugging Java
Card source code, see [9].

The kind of JML specifications we have written are well within the range of what
ESC/Java can handle. Running ESC/Java on our annotated applet pointed out several
mistakes. For example, our initial JML specifications did not allow for the fact that on
any point in the protocol the process method may receive a select APDU, in which
case the applet reverts to the INIT state. In particular we did not find this mistake
when we used the JML runtime assertion checker, simply because this possibility wasn’t
included in our test scenarios. On the other hand runtime assertion checking can deal
with the actual contents of APDUs being sent, which is something ESC/Java cannot.

Note that ESC/Java requires ESC/Java specifications of the API classes used by the
applet, such as the javacard.framework.APDU. Here we used the formal JML
specifications for the Java Card API version 2.1.1, discussed in [10, 11] and available
on-line via http://www.verificard.org.

4.4 Card Tears and Invariants

Card tears cause a special problem for invariants specified in JML. JML allows an in-
variant to be temporarily broken during the execution of a method. But if a card tear

2 Actually, the specification language ESC/Java uses is a ‘dialect’ of JML.

224 Engelbert Hubbers, Martijn Oostdijk, and Erik Poll

should happen at such a point, this could cause problems later, when the applet contin-
ues its operation in a state where some of its invariants are broken.

Such problems will not show up in the runtime checking with the JML tool, as the
simulator we use does not simulate card tears, and will also not show up in the static
checking with ESC/Java, as ESC/Java has been designed for Java and does not take the
peculiarities of Java Card into account.

There are three ways in which problems with a temporarily broken invariant at the
moment of a card tear can be avoided:

1. The invariant could become re-established the next time the smart card powers up
again, as a result of the resetting of all transient memory to its default initial value.

2. The invariant could become re-established when the applet is selected again,
namely if the applet itself takes care to restore the invariant when it receives its
select APDU.

3. Finally, Java Card offers a so-called transaction mechanism. By invoking special
methods from the Java Card API one can turn any sequence of Java instructions
into an atomic action. When the smart card powers up, the smart card operating
system will roll-back to the pre-state of such a sequence of instructions if it has
been interrupted by a card tear.

For every invariant in our JML specification we manually checked the following prop-
erties:

– Is this invariant ever temporarily broken during a method?
– If so, is the invariant re-established by one of the three mechanisms mentioned

above ?

Because the Java Card transaction mechanism is not supported by the tools ESC/Java
and JML, our applet does not use this functionality, and hence we never had to rely on
the third way to re-establish invariants after a card tear listed above.

5 Conclusions

We started with an abstract description of a security protocol, for bilateral key exchange,
for which we had earlier used Casper [7] and FDR2 [8] to prove its correctness. This
paper describes how, based on a few explicit design decisions, we refined this protocol
in several stages to an actual implementation, where one of the agents is implemented
as a Java Card smart card applet. It should be stressed that our interest here is not
the outcome of our decisions, but rather the decision making-process itself. The JML
language was used for a formal specification of the Java Card code. It turns out that
this specification can be systematically derived from the finite automaton in Fig. 6, the
final refinement of the abstract protocol, that includes card tears and the handling of
all possible exceptions that may arise. We have checked that the implementation meets
these specifications, using runtime assertion checking with the JML tool, and doing
static checking using ESC/Java.

Implementing a security protocol on a smart card involves some non-straightforward
decisions: decisions 1, 2, 3, 4, and 5.

Implementing a Formally Verifiable Security Protocol in Java Card 225

Both static checking and runtime checking turn out to be good methods to check
JML specifications of applets. Although they will not notice all problems, they cer-
tainly help to improve the code and the specifications. Both methods have their own
advantages and disadvantages, therefore it is a good idea to use both ESC/Java and
JML, although they are not specific Java Card tools.

In [12] a list of important security properties for Java Card applets is presented. The
JML specifications for our applet include several of these properties, e.g. ‘service con-
trol’ and ‘error prediction’, but not all of them. Some properties, most notably ‘secure
information flow’, have been taken into account while coding, but cannot be specified
in JML in any convenient way.

Future Work

The most important open question is how we can prove that the refinements of the
protocol ensure the same security properties that the original protocol establishes. We
can think of two ways to do this.

We already used the FDR2 model checker to prove that the original abstract protocol
establishes authenticity and secrecy. We also tried to use it to check the same properties
of our refinements of the protocol. However, FDR2 had problems with the recursion in
these refinements, which allow infinite traces. It might be a good idea to spend some
more time in defining this recursive CSP model. Maybe we could get FDR2 to prove
that our security properties are valid for traces of a certain maximum length, which
would give us some more confidence that the refinements preserve the properties of the
original protocol.

Alternatively, we could investigate properties of the refinements between the differ-
ent automata. For example, one obvious property that holds for the refinements is trace
inclusion. Another property is that any trace that leads to the state KeyEstablished
in the final refinement Fig. 6 will have a tail that leads to the state Msg3Received
in Fig. 2. Intuitively, such properties seem sufficient to guarantee that our refinements
preserve the security properties of the original protocol. However, we have not formally
proved this yet.

It would be interesting to experiment with model checkers, such as Uppaal [13], to
check interesting properties of the automata describing the protocol. (In fact, we already
used Uppaal to draw all the diagrams in this paper.) Even if we are not able to check
typical security properties, we might for example be able to rule out the possibility of
deadlock.

Maybe it is worthwhile to develop new versions of ESC/Java and JML in order to
cope with features specific to Java Card, such as the transaction mechanism and the
possibility of card tears.

After static checking with ESC/Java and runtime checker for JML, the next step
would be to prove the correctness of the JML specification with respect to the Java
Card implementation using the LOOP tool [14], in combination with the theorem prover
PVS [15]. See [16] for a discussion of examples of such correctness proofs. Such a
formal verification would provide a much higher level of assurance that our implemen-
tation does indeed meet its specification than the checking with ESC/Java. However,

226 Engelbert Hubbers, Martijn Oostdijk, and Erik Poll

it would also require much more effort, as such verifications are very labour-intensive.
For the current JML specifications, we do not think such an additional effort would
be worthwhile, as ESC/Java seems reliable enough when dealing with these kinds of
properties.

References

1. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. Proc. Royal Soc. Series
A, Volume 426 (1989) 233–271

2. Ryan, P., Schneider, S., Goldschmith, M., Lowe, G., A.W.Roscoe: The Modelling and Anal-
ysis of Security Protocols: the CSP Approach. Addison Wesley (2001)

3. Leavens, G., Baker, A., Ruby, C.: Preliminary design of JML: A behavioral interface spec-
ification language for Java. Technical Report 98-06q, Dep. of Comp. Sci., Iowa State Univ.
(2002)

4. Cheon, Y., Leavens, G.: A Runtime Assertion Checker for the Java Modeling Language
(JML). In Arabnia, H., Mun, Y., eds.: International Conference on Software Engineering
Research and Practice (SERP ’02), Las Vegas, Nevada, CSREA Press, June 2002 (2002)
322–328

5. Compaq Systems Research Center: Extended Static Checker for Java (2001) version 1.2.4,
http://research.compaq.com/SRC/esc/.

6. Clark, J., Jacob, J.: A Survey of Authentication Protocol Literature: Version 1.0. http://www-
users.cs.york.ac.uk/ jac/drareviewps.ps (1997)

7. Lowe, G.: Casper: A Compiler for the Analysis of Security Protocols (2001) version 1.5,
http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Security/Casper/.

8. Formal Systems: FDR2, Failures Divergence Refinement (2000) version 2.78,
http://www.formal.demon.co.uk/FDR2.html.

9. Cataño, N., Huisman, M.: Formal specification of Gemplus’s electronic purse case study. In
Eriksson, L.H., Lindsay, P.A., eds.: Formal Methods Europe (FME). Volume 2391 of LNCS.,
Copenhagen, Denmark, Springer-Verlag (2002) 272–289

10. Poll, E., van den Berg, J., Jacobs, B.: Formal specification of the Java Card API in JML: the
APDU class. Computer Networks 36 (2001) 407–421

11. Poll, E., van den Berg, J., Jacobs, B.: Specification of the JavaCard API in JML. In Domingo-
Ferrer, J., Chan, D., Watson, A., eds.: Fourth Smart Card Research and Advanced Application
Conference (CARDIS’2000), Kluwer Acad. Publ. (2000) 135–154

12. Marlet, R., Metayer, D.L.: Security properties and java card specificities to be studied in the
secsafe project. Technical Report SECSAFE-TL-006, Trusted Logic (2001) Available from
http://www.doc.ic.ac.uk/ siveroni/secsafe/docs.html.

13. Uppaal: An integrated tool environment for modeling, validation and verification of real-time
system modeled as networks of timed automata, extended with data types (2002) version
3.2.11, http://www.uppaal.com.

14. Jacobs, B., et al.: Reasoning about classes in Java (preliminary report). In: Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), ACM Press (1998) 329–
340

15. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS System Guide. Com-
puter Science Laboratory, SRI International, Menlo Park, CA, USA. (1999) Available at
http://pvs.csl.sri.com/.

16. Breunesse, C.B., Jacobs, B., van den Berg, J.: Specifying and verifying a decimal representa-
tion in Java for smart cards. In Kirchner, H., Ringeissen, C., eds.: 9th Algebraic Methodology
and Software Technology (AMAST). Volume 2422 of LNCS., St. Gilles les Bains, Reunion
Island, France, Springer-Verlag (2002) 304–318

	1 Introduction
	2 The Abstract Protocol
	3 Refinements
	3.1 Anything That Can Go Wrong . . .
	3.2 Initialization Phase
	3.3 Applet Selection and Persistent vs. Transient Memory
	3.4 Card Tears
	3.5 Command-Response Pairs

	4 Using JML
	4.1 JML Specifications
	4.2 Runtime Checking with the JML Tool
	4.3 Static Checking with ESC/Java
	4.4 Card Tears and Invariants

	5 Conclusions
	Future Work

	References

