
Integrating Tools for Automatic Program
Verification

Engelbert Hubbers

Nijmeegs Instituut voor Informatica en Informatiekunde,
University of Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands

hubbers@cs.kun.nl

Abstract. In this paper we describe our findings after integrating sev-
eral tools based upon the Java Modeling Language (JML) [1], a specifi-
cation language used to annotate Java programs. The tools we consider
are Daikon [2], ESC/Java [3], JML runtime assertion checker [1], and
Loop/PVS tool [4]. The first one generates specifications; the others are
used to verify them. We find that for the first three it is worthwhile to
combine them because this is relatively easy and it improves the spec-
ifications. Combining Daikon and the Loop/PVS tool directly works in
theory, but in practice it only works if the test suite is very good and
hence it is not advisable.

1 Introduction

Specifying Java programs can be done by adding JML-assertions expressing pre-
conditions, postconditions, invariants and lists of modified variables to the code.
Verifying Java programs involves proving the source code correct with respect
to the given specification. In this paper we present the results of an experiment
where we have combined tools for both these tasks.

Note that this experiment describes some small steps toward the so-called
verifying compiler, a compiler that guarantees program correctness before run-
ning the program, listed as one of the grand challenges of computer science [5].

1.1 Tools for Specification Generation

It is common knowledge that annotating programs with specifications or con-
tracts increases their quality. It is also common knowledge that most program-
mers are not very fond of spending time on writing these specifications. Therefore
some tools have been developed in order to assist programmers in writing these
contracts. Houdini [6] and Daikon [7] are examples of such tools. In this paper
we only use Daikon.

Daikon performs dynamic analysis. It starts with a large standard set of likely
program invariants [2]. By executing test suites it deletes those invariants from
the set that are falsified during the program run, leaving a set of possibly valid
specifications. Some examples generated by Daikon:

M. Broy and A.V. Zamulin (Eds.): PSI 2003, LNCS 2890, pp. 214–221, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Integrating Tools for Automatic Program Verification 215

/*@ invariant this.theArray != null; */
/*@ requires this.topOfStack < this.theArray.length-1; */
/*@ modifies this.theArray[*], this.topOfStack; */
/*@ ensures (\old(this.topOfStack) >= 0) ==>

(\old(this.topOfStack) == this.topOfStack + 1); */

Obviously this dependence on a specific test suite makes the tool unsound. There-
fore we need a different tool in order to check the outcome generated by Daikon.

1.2 Tools for Proving Contracts

Several tools are available for checking Daikon’s outcome when it is applied to
Java programs: ESC/Java, JML , JACK [8], CHASE [9] and the Loop/PVS tool.
Each of them has its special characteristics. In our experiment we use ESC/Java,
JML and Loop/PVS. To avoid confusion between the language and the tool JML,
we will use JMLRAC to refer to the tool.

1.3 The Specification Language JML

The binding factor between the tools we use is the specification language sup-
ported by all of them: JML, the Java Modeling Language. It can be used to
specify the behavior of Java modules. It includes class invariants, constraints,
method preconditions, and both normal and exceptional postconditions. The
clauses are written between the code using special comment tags. Hence normal
Java compilers do not notice these JML annotations. Goal of the JML project
is to provide a language that resembles the Java programming language very
closely, hereby making it easier to use for the actual Java programmers. Since
JML is still under development it is almost impossible for the tools to keep up
with full JML. Hence most tools use their own dialect of JML. The Java/JML
combination has a great resemblance to the Eiffel ‘design by contract language’
[10]. However, because JML supports quantifiers such as \forall and \exists,
and because JML allows so-called model fields, JML specifications can be more
precise and complete than those typically given in Eiffel.

1.4 Related Work

This is not the first paper on integrating tools for specification generation and
tools for specification verification. The papers [11,12] describe results of the
integration of Daikon and ESC/Java. And the paper [13] describes an experiment
of combining Daikon with the Larch Prover [14]. However, the combination of
Daikon with the Loop/PVS tool and JMLRAC has not been described before.

In this paper we only look at Java and JML tools. However, tools for other
languages also exist. See for instance Splint [15]. Using static analysis this tool
checks whether a C program operates according to its user written annotations.
And the SLAM/SLIC combination [16] resembles our experiment even better. It

216 E. Hubbers

is a Microsoft tool that checks safety properties of C programs without the need
for users to write annotations by hand because it generates them automatically.

In Sect. 2 we describe the tools used in more detail. In Sect. 3 we describe
the experiment itself. In Sect. 4 we discuss the relevance of our findings.

2 Tools

2.1 Daikon

Daikon is developed at MIT. The tool dynamically generates specifications for
input source code. We use Java source, but Daikon also supports C and Perl.
Given this source file and a test suite it generates a file containing the original
code annotated with JML assertions. These assertions are written in ESC-JML,
the dialect of JML that is used by ESC/Java.

2.2 ESC/Java

ESC/Java stands for Extended Static Checker for Java. It is developed at Com-
paq Research. ESC/Java tries to prove complete programs correct with respect
to their specification in ESC-JML using the theorem prover Simplify as engine.
It is neither sound nor complete. However, this has been a design issue: one
rather has a tool that is very easy to use and good at detecting certain type
of errors than a sound and complete tool which is difficult to use. In particu-
lar ESC/Java is good in finding programming errors at compile time which are
usually not detected before run time; for example null dereference errors, array
bounds errors, type cast errors, and race conditions. Note that ESC/Java does
not require any user interaction: once started it runs completely automatic.

2.3 JMLRAC

JMLRAC is being developed primarily at Iowa State University. It compiles
JML assertions into an executable with runtime checks. If during execution these
assertions do not hold, the program stops and reports a violation of the corre-
sponding assertion. Like ESC/Java, JMLRAC doesn’t require user interaction.

We have seen before that ESC/Java uses the so-called ESC-JML dialect of
JML. JMLRAC uses the full JML syntax. Unfortunately there are some differ-
ences1 between ESC-JML and JML as it is currently supported by the tools.
However, JML is nearly a superset of ESC-JML, hence a program annotated in
ESC-JML should almost always run without problems in JMLRAC.

It may seem strange to use a runtime assertion checker like JMLRAC to test
whether specifications generated by Daikon are correct or not. If this checker
is used on the same test suite as the specification generator Daikon, it is to be
1 See [17, Ref. Manual, Sect. 16]. At the moment Kiniry and Cok have almost finished

their project to adapt ESC/Java to full JML syntax. Their results will be made
available on [4].

Integrating Tools for Automatic Program Verification 217

expected that no line generated by Daikon will lead to a violation of the runtime
checks in JMLRAC. So if we do find these violations this might indicate that
there is a problem with one of the two tools.

2.4 Loop/PVS

Loop stands for Logic of Object-Oriented Programming. It is the name of a
research project carried out by our own Security of Systems group at the Uni-
versity of Nijmegen [4], and also the name of the tool that plays a central role
in this project. The topic is formal methods for object-oriented languages. The
aim is to specify and verify properties of classes in object-oriented languages,
using proof tools like PVS [18].

The Loop project is centered around the Loop tool. Basically this is a com-
piler. The input for this compiler consists of Java source code annotated with
JML specifications. The output are logical theories which can be loaded into
the theorem prover PVS. If one succeeds in proving the corresponding theorems,
one knows for sure that the JML specifications really match the code. Intrinsi-
cally, this process of proving requires a lot of user interaction and is very tedious
work, which is a big contrast with ESC/Java and JMLRAC. Therefore an im-
portant part of our research involves writing sophisticated proof strategies that
can automate the process as much as possible.

The Loop tool is not publicly available. Furthermore, it uses its own JML
dialect. We will refer to it as Loop-JML. Although the Loop compiler and PVS
are separate tools, we will use the term Loop/PVS as if it is one tool.

Note also that the goal of Loop/PVS is more ambitious than the goals of
ESC/Java and JMLRAC. These two mainly serve the purpose to reduce the
number of errors very easily, whereas Loop/PVS wants to show the absence of
all errors at the cost of hard work.

3 Experiment

3.1 Test Suites

In order to stay close to the experiments already done by Nimmer and Ernst,
we have used the same examples, originating from a textbook by Weiss [19]:
DisjSets, QueueAr and StackAr. We have also added an example that comes
from the tutorial for Loop/PVS [20]: Tutorial.

Weiss’s examples come with minor test programs. The QueueAr and StackAr
also come with the Daikon distribution where they have larger test suites. We
used both of these suites. In the table of results we have made this distinction
visible with a (W) for Weiss and (D) for Daikon. The Tutorial didn’t have any
test suite at all, so we made one ourselves.

218 E. Hubbers

3.2 Setup

The setup of this experiment is shown in Fig. 1. The dashed arrows indicate the
desired situation where the code is proved correct with respect to the given spec-
ification. Both ESC/Java and JMLRAC report exactly which assertion is being

Java Daikon Java + ESC−JML

ESC/Java

JML

ESC2Loop Java + Loop−JML Loop/PVS

QED

Fig. 1. From Java source file to a proof

violated. Loop/PVS combines all assertions and tries to prove them together.
Hence it is more difficult to point out which annotation caused the problem if
the whole set of assertions couldn’t be proved in Loop/PVS. And therefore we
split the experiment into two sub-experiments.

3.3 Daikon, ESC/Java, and JMLRAC Results

The results are related to the number of Daikon’s annotations in Fig. 2. The
figures in the Daikon columns reflect the number of invariant, requires and
ensures annotations created by Daikon. The figures in the ESC/Java columns
are the numbers of annotations that could not be verified by ESC/Java. And
the figures in the JMLRAC columns are the numbers of annotations for which
JMLRAC detected an assertion violation.

Daikon (generated) ESC/Java (rejected) JMLRAC (rejected)
inv req ens inv req ens inv req ens

DisjSets 7 16 29 2� 1 0 0 0 0
QueueAr (W) 9 39 74 2� 6� 8� 0 1 2
QueueAr (D) 9 25 49 0 1 4 0 0 1
StackAr (W) 8 3 20 4� 0 4� 0 0 1
StackAr (D) 7 4 36 1 1 1 0 0 1
Tutorial 0 20 26 0 1 7 0 0 1

Fig. 2. Daikon, ESC/Java and JMLRAC results. Entries with a� include unverified
clauses because of type check errors

Although in principle ESC/Java is able to read Daikon’s output, we did en-
counter ‘type check errors’ running ESC/Java on all three examples with Weiss’s

Integrating Tools for Automatic Program Verification 219

test suites. By removing the corresponding assertions and counting them as un-
verified and running ESC/Java again, we came up with the figures in Fig. 2.

A similar strategy is used for JMLRAC. The checker typically only mentions
the first assertion violation. By removing this assertion and running JMLRAC
again, we filled the whole table.

The problems we found here can be seen as interpretation differences be-
tween the tools or as bugs. We would like to classify the first four problems as
interpretation differences, the last one as a bug.

1. ESC/Java gives a type check error on Daikon’s this != null invariant.
2. ESC/Java gives a type check error on Daikon’s requires and ensures

clauses with the construct \elemtype(this.theArray).
3. JMLRAC detects postcondition violations on Daikon’s postconditions with

the construct \typeof(\result) == \typeof(null). JML’s \typeof refers
to the dynamical type. But what is the dynamical type of null? And what
is Daikon’s interpretation of \typeof?

4. ESC/Java complains about the fact that Daikon uses \old on variables that
are not mentioned in the modifies clause in its ensures clauses. In JML
\old(v) refers to the value of v in the pre state. If v is not modified this
implies that \old(v)==v in the post state and therefore it is usually written
as v. However \old(v) is correct JML, so why is ESC/Java cautious about
this? And what is Daikon’s interpretation of \old?

5. JMLRAC reports a postcondition violation on \result == this.i execut-
ing the Tutorial example. The code causing this problem is:

int tryfinally() {
try { switch (i) { case 0: throw (new Exception());

default: return i; }
}

catch(MyException e) { return --i; }
catch(Exception e) { return ++i; }
finally { i += 10;

j += 100; }
}

Apparently Daikon gets confused because of the tricky try-catch-finally
construction. It seems that Daikon only regards the return statements as
exit points for the method and doesn’t take into account that the finally
part modifies some values afterwards.

3.4 Daikon and Loop Results

Because Loop-JML is not a superset of ESC-JML we use the script ESC2Loop
to transform Daikon’s output to a format that can be parsed by Loop/PVS.
This transformation involves both pure syntax modifications as well as deletions
of constructs that are not supported in Loop-JML.

220 E. Hubbers

The real work starts in PVS. Every method in the Loop-JML file has been
translated to a lemma. If such a lemma is proved, one knows that the complete
specification for this method is correct. If one doesn’t succeed in proving this,
it takes some experience to see which line of the specification is really causing
the problem. Hence there is no easy reference back to the original line in the
specification generated by Daikon.

We managed to prove the specifications for some of the methods. Unfortu-
nately most method specifications lead to dead ends: situations where we don’t
know how to complete the proof. Sometimes this was because we could see that
the specifications were incorrect. ESC/Java can help here: if it cannot establish
the condition, it sometimes gives enough hints to construct a counterexample.
However, more often this was because we got stuck in PVS technicalities and
the complexity of the underlying formalism for the memory model as it is being
used by Loop/PVS.

4 Conclusion

The original goal of this experiment was to test whether Daikon’s results could
be verified by other tools. We noticed that both ESC/Java and JMLRAC are
well suited for this task. Mainly because they run without user interaction. The
combination of Daikon and Loop/PVS is less suitable for this task. PVS is
good at noticing that a proof has been completed. However, it is not good at
detecting branches of proofs that will lead to contradictions. If one also takes
into account that most proofs require a lot of work, it seems best not to feed
Daikon’s output directly to Loop/PVS. Note that this is in line with the earlier
claim that Loop/PVS is more ambitious but requires more effort: if you decide
to do the hard work with Loop/PVS then you should also invest more time in
writing the specifications and not rely on a specification generation tool only. But
if you do want to use a tool like Daikon, make sure that you also use a tool like
ESC/Java to filter out the ‘obvious’ problems before feeding the specifications
to Loop/PVS to formally prove their correctness.

During the experiment we found that combining tools also serves a second
goal: to detect problems with the tools. As we have seen before, these problems
can be real bugs or just differences of interpretation of the specification language
JML. The fact that we got type check errors for Weiss’s test suites is a good
indication that there is a problem between Daikon’s ESC-JML and ESC/Java’s.
And the fact that JMLRAC reports a postcondition violation although it is run
on the same test suite as Daikon indicates that there must be something wrong
with one of the programs. Furthermore, running Loop/PVS on Daikon’s output
revealed quite a few bugs in the parser of the Loop compiler. These bugs showed
up because Daikon sometimes uses constructs that are valid JML, but would
never have been written like this by a human. And hence Daikon’s automatic
output is interesting test input.

Finally, a tool for automatic derivation of test suites would be great. However,
creating it might be an even greater challenge than Hoare’s verifying compiler.

Integrating Tools for Automatic Program Verification 221

References

1. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06t, Iowa State
University, Dep. of Computer Science (2002) See www.jmlspecs.org.

2. Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically Discovering Likely
Program Invariants to Support Program Evolution. IEEE Trans. on Software Eng.
27 (2001) 99–123

3. Compaq Systems Research Center: Extended Static Checker for Java (2001) version
1.2.4, http://research.compaq.com/SRC/esc/.

4. Nijmeegs Instituut voor Informatica en Informatiekunde, University of Nijmegen,
The Netherlands: Security of Systems group (2003)
http://www.cs.kun.nl/ita/research/projects/loop/.

5. Hoare, T.: The verifying compiler: a grand challenge for computing research. In-
vited talk for PSI’03 conference (2003)

6. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Formal Methods Europe. Volume 2021 of LNCS., Berlin, Germany (2001) 500–517

7. Lab. for Computer Science, MIT: Daikon Invariant Detector (2003) version 2.4.2,
http://pag.lcs.mit.edu/daikon/.

8. Lilian Burdy and Jean-Louis Lanet and Antoine Requet: JACK (Java Applet
Correctness Kit) (2002) http://www.gemplus.com/smart/r_d/trends/jack.html.

9. Cataño, N., Huisman, M.: Chase: A Static checker for JML’s Assignable Clause. In:
Verification, Model Checking and Abstract Interpretation (VMCAI’03). Number
2575 in LNCS, Springer-Verlag (2003) 26–40

10. Meyer, B.: Eiffel: the language. Prentice Hall, New York, NY (1992)
11. Nimmer, J.W., Ernst, M.D.: Static verification of dynamically detected program

invariants: Integrating Daikon and ESC/Java. In Havelund, K., Rosu, G., eds.:
Electronic Notes in Theoretical Computer Science. Volume 55., Elsevier Science
Publishers (2001)

12. Nimmer, J.W., Ernst, M.D.: Automatic generation of program specifications. In:
ISSTA 2002, Proceedings of the 2002 International Symposium on Software Testing
and Analysis, Rome, Italy (2002) 232–242

13. Win, T.N., Ernst, M.D.: Verifying distributed algorithms via dynamic analysis and
theorem proving. Technical Report 841, MIT Lab. for Computer Science (2002)

14. Garland, S.J., Guttag, J.V.: A guide to LP, the Larch Prover. Technical Report 82,
Digital Equipment Corporation, Systems Research Center (1991)

15. Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. IEEE Software 19 (2002) 42–51

16. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of
interfaces. Lecture Notes in Computer Science 2057 (2001) 103–122

17. Gary Leavens et al.: Java Modeling Language (JML) (2003)
http://www.jmlspecs.org/.

18. Computer Science Lab., SRI: The PVS Specification and Verification System
(2002) version 2.4.1, http://pvs.csl.sri.com.

19. Weiss, M.A.: Data Structures and Algorithm Analysis in Java. Addison Wesley
(1999) ISBN: 0-201-35754-2.

20. Jacobs, B.P.: A Tutorial for the Logic of JML in PVS. under development (2002)

http://research.compaq.com/SRC/esc/
http://www.cs.kun.nl/ita/research/projects/loop/
http://pag.lcs.mit.edu/daikon/
http://www.gemplus.com/smart/r_d/trends/jack.html
http://www.jmlspecs.org/
http://pvs.csl.sri.com

	Introduction
	Tools for Specification Generation
	Tools for Proving Contracts
	The Specification Language JML
	Related Work

	Tools
	Daikon
	ESC/Java
	JMLRAC
	Loop/PVS

	Experiment
	Test Suites
	Setup
	Daikon, ESC/Java, and JMLRAC Results
	Daikon and Loop Results

	Conclusion

